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ON THE ORTHOGONAL GROUP OF UNIMODULAR
QUADRATIC FORMS: ORBITS OF [-TUPLES

NIKOS ASKITAS

ABSTRACT. Generalizing work of (W] and [A1], [A2], we define a complete set
of isometric invariants for an {-tuple of pairwise orthogonal, linearly indepen-
dent, primitive, elements and prove that it characterizes the orbits of such
pairs under the action of the group of isometries, when a certain indefiniteness
condition holds for the lattice.

1. Introduction

In ([W]) C. T. C. Wall proved that the group of isometries O(L} of a unimodular,
integral lattice (L, -), whose rank (L) and signature o (L) satisfy r(L) —|o(L}| > 4,
acts transitively on elements of the lattice of the same square, type and divisibility
(type refers to characteristic or ordinary: ¢ € L is characteristic if ¢ - ¢ = z -
zmod 2, Vr € L. It is otherwise called ordinary). In [Al], [A2] we isolated
a complete set of isometric invariants which characterize the orbit of a pair of
linearly independent, mutually orthogonal primitive, ordinary elements provided
that (L) — |¢(L)] > 6. In this paper we formulate a complete set of isometric
invariants of an arbitrary number of linearly independent, mutually orthogonal,
primitive elements ¢;, ¢ = 1,..,{ with a; - @; = 0 when ¢ # j and prove the
transitivity of the action of O(L) on all such sets of elements with the same complete
set of isometric invariants. In addition to the squares of the elements we formulate
the invariants into what we call the modular invariants which are defined for
every lattice {even or odd) which arise essentially from torsion information and
consist of various torsion groups together with certain clements in these groups,
and to the type of the I-tuple which is a generalization of the type of a single
element. It was somewhat of a surprise to me that briefly speaking a {-tuple can
be characteristic {cf. the definiton of Section 4) even though none of its members
are! The type invariant need not be predicted by the modular invariants.

2. Some Basic Notation

We recall some notation and terminology from [Al]. Let R, be the symmetric,
bilinear, unimodular, integral lattice with basis z;,y:, ¢ = 1,...,s and form given
by: z; -y = 1 Vi and all others zero (i.e. orthogonal direct sum of s hyperbolic
pieces). Let O(R,) be the orthogonal group. The generators of O(R;) are explicitly
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listed in {W] and we list them here for convenience.

:

a” b" c d d e
Yy — Iy +nrg I Iy —I zy I
y1 i hn—nyY2 Y2 -1 N N
Ty —F T2 T+ NIy I T2 —T2 Y2
Yy2 = Y2 — N Y2 o Y2 Y2 T2

When in R, we mean isometry a between the i** and j** summands we will write
i —a. When we apply Wall's result regarding transitivity on a single element in
the i*h and j** summands we will write ij — [W]. When dealing with an odd lattice
L of zero signature and rank r(L) = r we will view it as R, & (1) & (—1), with

basis z;,4;, ¢=1,...,r, and u,v such that u? =1 = —v?. An odd lattice L of
signature o(L) = ¢ > 1 and rank 7{L) = 2r + o will be thought of as R. ®, (+1),
with basis z;,%;, 1=1,...,r, h;, 7=1,...,0, hf = 1. We need to introduce

some isometries of R, @, (+1), Ry & (1) & (—1), which we will use later. Some
notation will be necessary. Let I = (my,...,m,). Then 7, (resp. ;) will be
vectors with 1 in the i-th (resp. i-th and j-th) slots and zeros elsewhere. The
isometries then are x; = given by:

hj — hj +iji: T; = I
Vi yi— 3 Zm?)mi - ijhj
J j
In the same way we have isometries X (m,,mz) of £t ® (1) @ (—1), given by:

U= U+MmMT;, V=V meT;, T T
yi = yi + 2(—mi + md)z; — myu+ mov
Finally here is some more notation we will be using throughout the paper. We
write Irry = (1,...,k+1), by X;(m) we will denote an element of the form: —z; +
my;, Y(m) will denote the element (2m — 1)u + (2m + 1)v, for an element « of the
lattice ., will denote the part of the element which lives in the span of z;,y;, 1 <
i<m.

3. The Modular Invariants

First notice that the torsion of L/ < @y, ..., oy > is the same as that of &;Z/Im(7),
where 7 : L = &, Z is given by 7(z) = (z - o1, ...,z - ay) for £ € L. Now we begin
decomposing L inductively in such a way that it will lead us to the sought after
definition of the modular invariants. Before we begin we fix the ordered set of ele-
ments (a1, ..., ;) as well as their squares a? = a; - a; i=1,...,l. We will write L} for
<a >+ N...N<a =t Then o € LE,, Vi=1,...,l, where Ly = L. Let dy,
be the unique positive integer such that z cota; = 0 mod d;,, Yo1L;- ;. Call this
integer the modularity of a; in LE ,- Notice that unimodularity of I implies
dr, = 1. Now let ar,'. € L be such that a'I_. -a; = dy, and call it a modular dual

i--1

to a;. It is well defined modulo Lf—. Obviously for all i,n € {1,... ,{}:
Li,=<ap, > 6L, L=<a; > ®--®<a;, » L}

Now we are ready to define uy,, € Zfd;, fors=2,...,landi=1,...,l-1as
follows. For alli =1,...,I we can take a}'_ - (g, 8 =1,...1. Recall a}‘ s = dy,.
Then since a’,‘, is well defined modulo L;-, a}i - aiy1 is well defined modulo dy,,.
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So we get an element [y, ;41| € Z/dy,,,, where here and from now on uy,(,) will be
a canonical representative. Procceeding inductively suppose that we have defined
[urs) € Z/d;, forall s =i+1,... ,n—1. Then look at the set of all o;, such that

. I
ay, - 0y = ur,. Any such element in well defined modulo L} | and hence a 5 On

is well defined modulo d;, thus giving rise to [uy,n] € Z/d;,. So we can now give:

Definition 3.1. For a l-tuple of mutually orthogonal, linearly independent, prim-
itive elements it’s modular invariants are u;; € Z/d;;, 2<j <, 1<i<j~1,

4, The Type Invariant

In the case of an even lattice the modular invariants together with the squares
of the elements will turn out to determine the orbit. In the case of an odd lattice
there is a further invariant which is related to the type of the elements. For an I-
tuple of mutually perpendicular linearly independent primitive (but not necessarily
ordinary) elements ¢;, 1 = 1,...,[ there is the issue of the type of the lattices:
L = M., < a, =+ (i.e. whether they are even or odd). If they are odd for
all k < &, and the one for & turns even then Li’s are even for all k > &. This
number & € {0,1,...,{} (defined to be zero if L;- is odd) is of course an invariant
of the I-tuple and as it turns out, need not be predicted by the modular invariants
we listed so far. Furthermore suppose that we have k = & € {1,...,1}. Suppose
that a}_ are such that a',_ S, = Upg, forall s =1,...,86 — 1. Then these are
well defined modulo Lé; . Since the latter is even the parities (, of the squares of

' . "
ay, s=1,...,6 — 1 are invariants. So we are ready to state:

Definition 4.1. For an !-tuple of mutually orthogonal, linearly independent, prim-
itive elements in an odd lattice L define its type to be an element:

(05 Cty--- »G-1) € (Z/(1+ 1)) D11 (2/2).

It will be called ordinary if (€0,C1,.-.,G—1) = (0;0,...,0) and characteristic of
type (€0, 1y, G-1) 3f Lo # 0.

Remark 4.2. Notice that Li is even iff oy is characteristic. So in a way this
invariant generalizes the type of one element to type of an l-tuple. This is what
made [A2] necessary. Although we were treating the case of a pair of ordinary
elements in [Al] the pair itself may turn out to be "characteristic” in the sense of
our definition above.

5. Statement and QOutline Of Proof

Theorem 5.1. Let (L,-) be an integral, unimodular, lattice whose signature o(L)
and rank r(L) satisfy: r(I) — lo(L)| > 1 + 1. The Orthogonal Group O(L) of L
acts transitively on all ordered l-tuples of pairwise orthogonal, linearly independent
elements (a1, ..., ) in a lattice provided they have the same squares, divistbilities,
type and modular invaeriants.

That the divisisibilities are invariants is obvious so assume that all elements are
primitive. One then fixes the squares and tries, after fixing bases and a suitable
set of generating elements for O(L), to find isometries which take the l-tuple to
a form in which the coordinates of all elements are determined by the invariants.
The basic strategy is to use the coordinates of a nice basis for the various L{ as
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the guides to which isometries to use. We devide the proof in various parts spread
over several sections as follows:

Section 6: Proof when L is even
Section 7: Proof when L is odd and o(L)=0
Subsection 7.1: a; is characteristic
Subsection 7.2: @ is ordinary and VPS=1
Subsection 7.3: «; is ordinary and there is no PS
Subsection 7.4: «; is ordinary, & is even and there is PS
Section 8: Proof when L is odd and o(L)#0
Subsection 8.1: a; is characteristic
Subsection 8.2: «; isordinary

The proof in the case of an cven lattice is simple and elegant. The complications in
the odd lattice case arise basically due to the fact that there are three possibilities
for a primitive element in such a lattice: Ordinary (of even or odd square: see
V PS) or characteristic.

6. Proof when L is even

We will assume that our elements are primitive. The canonical ordered I-tuple
with invariants as in the statement of the theorem is given by :

a1 = —I + iy
-1 1)
ap = Z[Tal-'cs + Blsys] + dh (-xl + nlyl):
=1
where vy, = —uy, mod d;, and 0 < uy, < df, — 1 and the By;’s are inductively

expressed as functions of the modular invariants via «; - a; = 0. Notice also that
the n;’s are determined by the invariants as well. So now we have to prove that
there is an isometry which carries an [-tuple as in the statement to a canonical
I-tuple. Before we begin we need to find a basis for L. It is easy to see that such
a basis consists of

!
eIJ;=ZH+71ﬂy5+ zPstyt: s=1)"')ll Ti Y 12[+1 (2)
t=s+1
where the P;;’s are computed in terms of the invariants via efj ca; = 0. We will
procceed by induction using [A1] as the base case. So suppose that we have found

an isometry ¢ which takes the first k elements to the desired canonical form. Then
¢(ak+1) looks like:

k
Z[Ri,(k+1)$s + Viktrr)s¥s] + Di(=Zrq1 + Nyps1)

s=t
where Ry (x41) = 71,(k4+1) mod dy, , and
=
Viks1)i = ;11—‘;("1.1'1"(;.-“): + Ry, (k41)Bis) + Rryea)ni
Using (2) and the difinition of d;,, we can easily see that:

dr,,, = gcd (€ * k1, .- €0k - k1, D1) (3)
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Now procceed by isometries. Let 8 be the part of a4 which lives in the first k
blocks.

For all i=1,....k, apply (i)(k+2)—a™ oeob™! followed by (i+ j){k+2) — af oG+
for all j=1,... k-i-1. The effect of these isometries is that at the i-th step while the
first k elements stay fixed the last element gets sent to an element of the form
B+ Dg+1(—zk+1 + Niypar) + Giﬂ:k_|.2 with Dy = ged (D,-, (ef; . O:z) and some
integer V;. Then apply a suitable (k + 1){(k+ 2) — [W] to keep e, ... , o fixed and
send the last element to 8+ Diy1(—Zr41 + Nig1yk41). Clearly then Dy =dy, ..
In the end making use of 3 we have Dy, = dy,,, and we found an isometry which
fixes a1, ..., and sends a4 to an element of the form 8+dy,  (—Zp41+Mypi1)
Now let Ry k41 = dy,,, Qi+7rk41. For alli=1,.. k apply: First (k+1)(k+2)—a™!
and then (i)(k 4 2) — a¥"™ o e 0 b~9 followed by: (i + j)(k + 2) — a@ T+ for
j=1,...k-i-1 and a suitable (k + 1)(k + 2) — [W] to send c44+; at the end of the
proccess to its desired form while keeping the first k elements fixed.

7. L is odd and o(L) = 0.

We need to define some quantities which are determined by the invariants and
which will be usefull devices for the write-up of the proof. For any ordinary I-tuple
like the ones we consider we can define certain parity quantities m;. What will be
important about these quantities is the first index for which they become (if ever)
odd. They are defined by:

1 i—1
™= {d_,_[a" + 3 upiefi_,l)
* =1
If for a tuple 7, is even ¥s < 1 — 1 and n; is even we say that a parity switch occurs
otherwise that it doesn’t and 7 will be called the value of the parity switch and we
will write it VPS.

7.1. ¢y is characteristic. The canonical [-tuple is of the form:

a; = (2ny — Du+ (21 + 1o,
and for i=2,...,}, a; = p1i((2n1 + u+ (2n, - Do)+ @
i-2

+Z(_u!,+1ims + Bisya) + dI.' (Yi—l (nl'))

=1
where the p;;’s, which satisfy 0 < py; < dj, ~ 1, are inductively determined via:
,01,'(4711 - 1) — Ui = )\i mod d['-, )\2 =0 and for 3 _<_ i S 1,

i—1
_ p13(4711 - 1) —Ulg — /\s (5)
A = 52 dl, Uj,i

whereas the B;,’s are determined by the invariants via the equations «; - @41 = 0.
A generating set for L;- is easily scen to be given by:

I—1
eff = (2 + u+ (2 — v+ Y Py,
=1
\- (6)
Crlj =Tj1 +nY-1 + Z Pijstisy 7=2,...,1
2=j+1
Ti,Yi, 21
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where Py, is determined by a,4 -eﬁ = 0 and for j > 2, Fyj, is determined by
Qg1 -ef; = 0. We now begin the proof by induction. That o is taken to an element
of the form (2n; + 1)u + (2n; ~ 1}v is due to C. T. C. Wall. For { = 2 then after we
have applied the isometry that takes o, to its canonical form as can be assumed to
look like: as = z1;({2ny + Du+ (2n; — 1)v) + D1a(—=z1 + Nayy ). Now one can easily
see that: dr, = ged (8n1214, D12). Applying X2,(2n,41,2n,-1) followed by 12 — [W]
we get to send o to an element of the form: as = z1;((2n; + u + (2n; — )v) +
di,(—£1 + Nay) for some No. It is easy to see that z), is determined mod dj,
by T12{dn; — 1) = uy2 mod dy; as in (5). Now letting z1; = dj, 2 4 p1: we apply
(12) —a™! followed by X2,(ga(2n,+1),- ga(2n3-1)) and finish with (12) — [W] to get the
canonical form. This finishes the case ! = 2.

Now assume the canonical form for [. We wish to prove it for [ + 1. After
applying the isometries which take the first / elements to their canonical form as in
(4), ary1 looks like:

-1
Ty 1y (2m+ Dut+ 2ri—1)0)+ > (=Ur 040 %s + Vigryelie) + Dy (Xi(Neg1)),
=1

where z;¢41) is determined by the invariants via an equation analogous to (5):

].) — U1 — As
d;

[
. in, —
$1(1+1)(4nl—1) = A]+1 mod d[|+1, with Af+1 = Z pla( !
s=2
the Ur,,,q+1) = u1,,,0+1) mod dy,,, and the V;,’s are determined via the
equations aj4q - aeq1 = 0. Now using (6) and the definition of dj,,, we sce that

UL+

dr,, = ged (eIJi RAESPERE lelJ[ "0 D1(1+1))
Now apply isometries as follows:

ApPly Xi41,(2n14+1,—(2n:—1)) followed by s({ +1) — a1+ fors=1,... ,l—1 and
finish with a suitable /(! + 1)} — [W] so that in the I** block we have something of
the form:

ged (efi - arg1, Digyy ) (Xt(Nig))
for some Nyy,. Then for all j = 2,...,l apply: (j=1)({+1) = a™ oeob™! followed
by s(i +1) —af fors = j+1,...,1 — 1 and for every j finish with a suitable
(I + 1) — [W] so that at the end of the j** series of isometries in the {** block we
have an element of the form:

ng (ejli ¢ 4 R ,Bilj sy, ‘DI(I+1))(71 (N[+1))
for some Npy;. In the end of this sequence of isometries we have kept the first /
elements fixed while we have sent ;41 to an element of the form:
-1
T4y (Qra+D)ut @ny —1)0)+ Y (=Ur . 041)Ts + Vosayatis) +dig g, (Ki(Nig1)),

=1

Now before continuing with the final sequence of isometries set:

Ti{i+1) = Ghdim + Pi(t+1)s UI,+1(I+1) = q,+1d1,+, U040
Apply [(I+1)—eoa™" and then X414, (2n1+1,—(2n;—1)) followed by s(l+1)—a® Firs
for s = 1,...,l — 1 and finish with a suitable {(! + 1) — [W] so that in the I**
block we have something of the form dy, ., (X;(Ni41)) for some Ni4,. Then for all
j=2,...,lapply: Il+1)—a"! followed by (j — 1){I+1) = a%™ ceob™% followed



THE ACTION OF THE GROUP OF ISOMETRIES 7

by s(I +1) —a% "4 for s = 4+ 1,...,1 — 1 and for every j finish with a suitable
{(1 + 1) — [W] so that at the end of the j** series of isometries in the I** block we
have an element of the form dy,,, (X1(Ny41)) for some Npyp. In the end of this
sequence of isometries we have kept the first { elements fixed while we have sent
a4 to its desired canonical form.

7.2. «, is ordinary and VPS = 1. First we state and prove the canonical form
of a k — 1-tuple for which L}, is odd . The canonical form in this case is:

g =nu+{m+1llv Vi<k-1, o;=
i—2
- 7
—prillo + Dt ) A3 (it + B +d5(Kica (), )

=1

where p1; = Zi;i Spur,;+06;dr;, 6, € {0,1}, §; =1 and a;-aj41 = 0 inductively
determine the various Bj;’s in terms of the invariants. For any : < k — 1, Lt is
generated by:

i-1
e = (n +Dutnv+ Y Paays
=1
t—1 8
eil'j=$j—l+njyj—l+zpijsynj=25--' )2 ®
=j
Tis¥j, >t
where the various Pj;,’s are easily seen to be determined inductively by the invari-
ants by writing down the successive equation which express their perpendicularity
to the ay’s, t=1,... k-~ 1.
It is now obvious that the modular invariants determine such a tuple. The §;'s
can be seen to be determined by them as well by an inductive argument.
procceed by induction. That there are isometries which take oy to its desired
form is a result of C. T. C. Wall. When we have taken a; to that form, a3 is in
general of the form:

as = —z12{(n) + Du 4+ nv) + Diz(—z1 + Nayp).

It can casily be seen that d;, = ged (z12(2n1 + 1), D12). Applying x22(n,41,—n1)
followed 12 — [W] we get one of:

oy = —z12((n1 + D+ nyv) + dig(—21 + Nayn)

ag = ~z19((n) + D)u + myv) + 2d12(—xy + Nayt)

for some N according as < a; >1 N < ay > is odd or even (technically according
as D1a isn’t or is divisible by 2d;2). Since we are assuming that ﬂf;l‘ < oy »T1isodd
the latter is not possible. Now assume the former and after setting o132 = dr, 2g2+p12
with piz = u1z or diz + u12 apply: 12 —~a~! followed by: X2,245(n(41,—n,) and finish
with a suitable 12 — [W] to sent, while keeping «; fixed, a; to an element of the
form:

as = —p12{(n1 + L)u + nyv) + dio(—z1 + Napn).
This finishes the case of two elements (k = 3).

Now suppose that we have proved that for m elements our canonical form is
given by (7) for m = k — 1. We wish to prove it for m + 1 elements. After we
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applied isometries which take the first m elements to the canonical form as in (7),
am4+1 18 of the form:

m—1

=T (1) (M1 +ut+nv)+ Z (Ut 11 (ma1)Ts + V(m+1)aya)+Dm+l(7m(Nm+1))
=1
By (8) and the definitions df,,,, = gcd (e, * Cm+1,- -+ €mm " ¥m+1, Dmy1). Now

apply isometries:

ApPDlY Xm+1,2(n1+1,—ny) followed by (s(m +1)) —aP=1* fors =1,...,m~1and
finish with a suitable (m,m + 1) — [W]. (Suitable as always means so that in the
m** block there is a multiple of an element of the form X,,,(N) and the (m + 1)h
block is empty. Then for j = 2,... ,m— lapply: (j —1){(m+1)—a™ oeob™!
followed by (s(m + 1)) — aPmi+ for s = j,... ,;m — 1 and for every j finish with a
suitable m(m + 1) — [W] as above. At the end of this we have kept the first m
elements fixed while a,,4; 18 taken to:

m—1
—I (m+1)((nl +Du+nv)+ Z (_Ul.+1(m+l)ma + V(m-l»l)ays)+d1m+1 (—Xm (Nm+1))
=1
m—1
_Il(m-f-l)((nl +1)u+nlv)+ E (_UI,+1(m+1)$.l + ‘/'(m+1)aya)+2dlm+1 ('}fm(Nm+1))

=1
according as 2dy,.,, doesn't or does divide ged (e,J,;2 Ty - ,e,{;m - Oma1). But
the latter case leads to an (m + 1)-tuple with Ly, even and so it doesn’t occur

here. So assume the former and before procceeding by isometries let:
Ti(ma1) = 1 200 + Prim+1) Ul iy (ma1) = QL Godl FUr (may (9)

Apply m(m + 1) — eca™! followed by Xpm+1,-2q1(n,-+1,~n,) fOllowed by (s(m +
1)) = a~20Pmie for s = 1,... ,m — 1 and finish with a suitable (m,m + 1) — [W].
(Suitable as always means so that in the m‘# block there is a multiple of an element
of the form X ,,(N) and the (m + 1)** block is empty.) Then for j =2,... ,m — 1
apply m(m + 1) — a followed by (j — 1)(m + 1) — a%+™ o e 0 b~%+! followed by
(s(m + 1)) — a%+Pmis for s = j,... ,m — 1 and for every j finish with a suitable
m(m + 1) — [W] as above. At the end of this we have kept the first m elements
fixed while @y, is taken to its desired canonical form.

Now suppose that Ly_; is odd and Lj is even. Then the canonical form is:

Qy,..., 0k as in (7) and ay = —pu((n + 1}u +nyv)
k=2 (10)
+Z("r1,+1k$s + Bka‘ys) -+ 2dh. (Xu‘-'—l (nk))
=1
L . L .
3"—'d'3fﬂzlmod2, f-(t(}}_‘—af-EOmOdZ, ji>2
: i ;
prk =tk + O OsTrk 4 Skdry, Trok = Uk o+ Serdiy, S €{0,1} (11)
=2

and the By,’s are inductively determined by the equations: oy - a,4+1 = 0. The
6r, Os1’s are new features not predicted by the modular invariants. They are
predicted by the type of the k-tuple as follows First of all notice that o, =

Gey1-an/dr, —1 . . ' .
elimin + (‘ﬁiﬂ—%’—)yk_l is of odd square. Then notice that the a; which
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achieves: ) - ay = uyy is given by ) = (~u—v) + Z:;f Sptr1¥ys + (’J'ka',ﬁ, and the
parity of its square is determined by the value of §; (even when zero and otherwise
odd). Similarly the a',., such that a’,i cap = Ung, 1= 2,...,k—11is given by
a'_.‘ = —Yi1+ 5(:‘-1)1:0';,,, 1= 2,...,k—1, and the parity of its square is deter-
mined by the value of §;_yx (even when zero and otherwise odd). The space L
is generated by:

en = 2e(i_1)1 + Prake-1¥e-1

&k; = ity T Prite-n¥r-1,5 =2, .k (12)
Tji Ui, .? Z k
L . — L .
where : Pkl(k—l} — (ﬂh_l)%)’ and ij(k—l) — e(";‘;ii oy

Here we apply the same isometries as in the previous case (the ones before (9) as
they are and they will lead to the second of the options mentioned there and then
by dividing by 2d;,_,, rather than dy ., in the equations (9) we get almost to the
claimed canonical form (10) except that a; gets sent to:

k=2
—z({(ny + u +nv) + Z('T1.+1k$a + Bisys) + 2d1, (X x—1(n))

=1

with £ = p1x = uyp + Zf;; dsr1,1 + 8dy, and § € {0,1,2,3} Now there remains
to find isometries which keep the first elements fixed while they send the k** with
d =0 (resp. § = 1) to the k** with § = 1 (resp. § = 3) provided that the invariants
are all the same. The following series of isometries does just that. By the first
equation of (11) we can write:

ek e
d,
Define for s = 1,... ,k - 2, = §5;,0[s~-¢€]o el e ek and let
11)3 T [ ] Xs'( 'L!“l.+::t1 , J'.EI‘-;I:E])

Y =1r_g0...01; Now define
b = [(k— 1)k =] o[(k=1) —e]o[(k =1k —b"#]o[(k— 1)k —b*] o [(k) — €]o

OX(k—1),(A,—1) © [(k—1)-€]oS;,_, 00 Xk,(n,—n) © [(k—1k—¢]o Xk,(—1,1)
and

¢=[(k-1) —eJoSyo[(k—1)k—a]o[(k—1)~—e|loxk(1,

The desired isometry is then given by: ¢>1“1 o ¢ o ¢p. This finishes the case.
Now we write down the canonical form of an I-tuple with | > k.

Q@1,...,0 as in (10) and Vi>k+1,
k—2
a; = —p1i((m + Du+nmv) + Z(—r1.+,,-z, + Bisys)+
s=1
i1 . (13)
—ThiTk—1 + Bie_1)ye—1 + Z(-U!,“izs + Bisys) + dr. (Xio1(:))

s=k
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where the k quantities p1i, 77,,,i, 8 =1,...,k — 1 are solutions to the system
mod dy, of k linear equations in k unknowns:

1 : .
Qi) = Uy, O = UL, j=2,...,k-1,

, (14)
@i (~ay, — yk—1) = un

whose coefficients are determined by the invariants of the tuple of the k first ele-
ments and the modular invariants us,;,s = 1,... ,k of ;. All but py; are canonical
representatives and py; = m1; + 8;dy,, with § € {0,1} easily seen to be predicted by
the invariants and r); a canonical representative of the solution to the first of (14).
The space Lj- is generated by:

-1
elJi = 26(J;=...1)1 + PIl(k—-l)?Jk-l + Z Pisys
a=k
s (15)
e = €y + Pie-1¥e-1 + Z Pijays, 3 =2,...,1
s=k

xj, yJ! J Z l
We prove this canonical form by induction on ! — k. If { — & = 0 then we are done
since it is the previous case. Suppose we have proved it for [ — 1 and we wish to
prove it for . After applying an isometry which brings the first { — 1 elements to
their canonical form as in {13) ¢; looks like:
k-2
g = —-'Ell((ﬂl + l)u + ﬂ[’U) + Z(—RI,“lms + Vlsya)+

=1
-1

—Rpaze—1 + Vie-1)¥e—1 + Z(—Ut.+,t-’l=a + Viays) + Di(X 121 (M) (16)
s=k
Then by definition and (15), dr, = ged (ei_yy; - @, - €f_1y1y ~ @ D).

APPlY Xi2(n,+1,—n,) followed by (s(l)) — a®fu-v1e, g=1,... k-2, and then
(s())—a™+, s =k—1,...,l—1and finish with (I—1){—[W] so that the ({)** block
is empty and the (I — 1)** block of the same form as before but now with divisibility
ged (e(J;_m -y, Dy). Thenforallj =2,...,lapply: (j—1)(I)—a" oeob™ followed
by (s()) —aFfu-vis, s=j ... k-2 followed by (s(1)) —afis, s=k—-1,...,1-1
and finish for every j with a suitable (({ — 1)) — [W] as above so that at the end of
these isometries the first I — 1-elements remain fixed while ¢; is sent to:

k-2
o = —zy((ny + Du+nv) + 3 (—Ri, s + Vieya)+
s=1
=1
—Rpgze—1 + Vigony¥i—1 + I _(=Ur,uZs + Viays) + di, (X121 (VD)) (a7
==k

Now set zy; = pll + 2qdy, Ri, 0 = 71,400 + Qsdyp, and Uy, ;1 = ug, 1 + qsdy, and
procceed by isometries.

Apply (I—1)l—eoa™!, then Xy _2q, (n,+1,—n,) followed by (s(1)) —a?Pu-nu | g =
1,...,k—2, and then (s())—a'™+, s =k—1,...,I—1 and finish with (I—1){ - [W}
so that the ()** block is empty and the (I — 1)** block of the same form as before.
Then for all j = 2,... 1 apply ({-1)])—a"!, then (j —1){{) ~a™ ocob~?! followed
by (s(1)) —afe-vis | s=j, ... k—2followed by (s(l)) —afis, s=k-1,...,1-1
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and finish for every j with a suitable {(! - 1)I) — [W] as above so that at the end of
these isometries the first | — 1-elements remain fixed while oy is sent to its desired
canonical form.

7.3. a? is even and there is no parity switch. The canonical {-tuple is of the
form:

ay = -z +miy, and for 2<i<k-1

i—1

o; = —uyfzy +my) + Z(—U/.ifﬂa + Bisys) + dr, (Xi(n1)),

=2

k—1

ap = —rie(T +y) + 3 _(~Tr.x%s + Brays) + di (Y (1)),
§=2

and for k+1<i<l, (18)
k1 i—2

i = —wg(T + 1) + 3 (—wsiZs + Biska) + 3 (—t1,iZs + Bisys)

s=k

=2
+[B + (211;; + 1)1‘1“']11. + [B + (21“-. — 1)1‘1“']1) 4 dl‘. (Xi_l(ﬂ,')),
where the B;;’s are inductively expressed in terms of the invariants by the equations
ai-a; =0, B = 2—(}7:&;[&_1 o and rr,; = upi + (1 — 2n)B mod dy,. Now we

need to compute Nf= ' o, NE af, and Nl af. Foralli < k—1,Ni_,af is easily
seen to be generated by:

i
eb =z +nyi+ Y Pisys, =1,

pos (19)

Zi, Yiy i Z i+1
Notice that e&_l)j <ay = 0mod 2d;, for all . This is due to the fact that we

assume Li to be even. Now we need to also compute a generating set for Ly It is
easily seen to be given by:

ekljzeﬁ-l)j—ijk(U+v), j=1,...k-1

. 20
ef, = (2ne + Lu+ (2ne — Vv, i35, @2k, (20)
N L .
where i%%“ﬂ. Finally it can be seen that L is given by:
-1
erJE’ =e(J;:)j +ZPljaya, i=1,...,k~1
=k
-1 21)
ey = (i1 +nYi-) + 9 Pstts J=k+1,...,1

§=j

TiyYiy 1 2 l

We give the proof by induction. First we prove the canonical form before L
becomes even. We do the case of two elements first. That there is an isometry
which takes «; to its desired canonical form is a result of C. T. C. Wall’'s. With o
in canonical form a2 might look like one of the following:

g = —z(—z1 +my) + Do X, (22)

where X is of the form of one of —z3 -+ Nays or Y(N2). Apply (12) —a™ oceob_;
in any case. Applying [W] in the direct sum of the 2" hyperbolic form with the
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span of © and v we sent o, in the first case to an element of the form:
ag = —z(—z1 + my1) + di (—z2 + Noya)

and in the second to the same as above if £2n;/d;, is odd and to an element of the
form:

az = —z(—z) + ny1) + di, Y (N2)
if z2n, /dy, is even. The latter case doesn’t occur because in that case Ly is even.

So now assume ay is of the form (22). Applying a suitable [W] in the span of
Z2,%2,U, v We sent «y to an element of the form:

Qg = —$(—$1 + nlyl) + d[, (—1132 + (Mk + l)u + Mky)

Then set 7 = d,q1 + w12 and simply apply a”™ oe o b™® and a suitable [W] in
the span of zg,y2,u,v to sent as to its desired canonical form while a; is kept
fixed. Now suppose that we have proved the canonical form in this case form -1
elements with L;,_, and we wish to prove it for m. With the first m ~ 1 clements
in canonical position a,, can be assumed to be of the form
m=1
~Uti(z1 + nagn) + Z (=Urn,mZs + Brals) + Dm(y) (23)
=2
where X is of the form —Z.,, + Ny ym or Y (Ny,). In the first case apply the following
isometries: Forallj = 1,... ,m—1 apply jm—a" oeob™! followed by sm—atm-nis
fors=j+1,...,m—1 and finish with a suitable [W] in the span of T, ym,u,v
so that the span of u, v is empty and the part of oy in the m*® block is of the same
form as at the biggining. At the end of these isometries a,, is taken to an element
of the form:
m-1
_Uli(zl + ﬂlyl) + Z (‘_Ul,mxa + Bmaya) +dy,, ("'xm + Nmym) ( )
=2 24

In the second case we procceed with the same isometries as above except when we
come to the point of applying ”a suitable (W] in the span of £, ym, u,v”. There a
suitable [W] exists in the j** step, to keep the part of oy in the span of &, ym, u, v
of the same form, only as long as e(J-m__l)J. - am = 0 mod 2d;_ . The first time that
the latter is not satisfied a suitable [W] in the span of ., Ym,u, v transforms the
part of o, there into a multiple of an element of the form —z,, + Ny 3. If that
happens then from that point on we continue with exactly the same isometries as
before. So depending on whether ef—m_l) ;i 0m = 0 mod 2dy,, for all j or not we get
to keep the first m — 1 elements fixed while «,, is taken to, respectively one of:
m-1
—Uri(zs + ) + O (—UsmZs + Bmata) + dr,, (Y (Nmm)) (25)
=2

or (24). Since we are assuming here that LY is odd it has to be the latter. So
now assume that the first m — 1 elements are in canonical form and «,, looks
like (24). Apply an isometry in the span of &, ym,u,v which sends dy, (Y (N,,))
to an element of the form dj_ [znm + (Ma + 1)u + Mpyvl and then after setting
Urp,m =di, gs +up,mapply forall j =1,... ;m—~1 jm —a%™ oeob™% followed
by sm — a%Fim-1ss for s = j+1,...,m — 1 and finish for every j with a suitable
(W) in the span of z,,,ym,u, v so that the part of a,, in the span of z.,,ym, 1, v
is of the same form as when we begun the procces for j — 1. For j = m -1 apply
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a different. [W] so that in the span of zm,ym,u,v we get something of the form
d; (—Tm + NP ). At the end of these isometries we keep the first m — 1 elements
fixed while a,, is sent to an element of the desired form. Now assume that we have
k elements, that Ly, is odd while Lj- is even and that the first £ — 1 elements are
in canonical form as in (18). Then from the discussion above we can find isometries
so that while the first k¥ — 1 elements are kept in canonical form, «y, is of the same
form as in (25):

m—1

—Rli(zl + nlyl) + Z (—Rl,mzn + Bmayx) + d]m (},(Nm)) (26)

=2
Now set Iiy,m = dy,2¢q, + ri,m for all s. Then apply x&(-1,1) and then apply
forall j = 1,...,m —1 jm — a%™ o e o b~9% followed by sm — a%Fm-1ss for
s =j+1,...,m — 1 and finish for every j with a suitable [W] in the span of

T, Ym, U, v 80 that the part of oy, in the span of T4, ym,u, v is of the same form
as when we begun the procces for 7 — 1. For j = m — 1 apply a different [W] so
that in the span of z,,, ym, u, v we get something of the form d;_ (Y (nn,)). At the
end of these isometries we keep the first m — 1 elements fixed while «,, is sent to
an element of the desired form. The final step of this case is to prove the canonical
form for { > k. We do this by induction on [ — k. Assume the canonical form for
I — 1 elements. With the first ! — 1 elements then in canonical form as in (18) ¢
looks like:
k—1 -2
o = —Upn(z1 + ) + Z(—Ul,tﬂh + Viays) + O (~Urixs + Viays)

=2 =k
+[V + (2ny + 1)R1,,1]'u + [V + (271;; — l)R;,_;]‘U + Dy (X1_1(ng))

By definition and (21): di, = ged (eg_yy, " au, ... ,e(J;_I)“_l} oy, D;). Now begin
with isometries.

For j = 1,...,k apply (jI) — a™ o eob™! followed by: (sl) — al*i* for s =
J+ 1.0k, then Xi(py;u,~Puse) followed by (sl) —af for s = k,... ,1— 1. Finish
for each j with a suitable (I — 1)I — [W] so that the part of a; in the I =1,
blocks is of the same form as at the beggining. Then apply X (2n,+1,~(2n,-1))
followed by (sl) — a”*+, for s = k,... ,i — 1. Finally for j = k+1,...,I apply
(( — 1)) = a™ o eo b~ !, followed by (sl) — af'i« for s = j,...,I — 1 and finish
for each 7 with a suitable (I — 1){ — [W]. At the end of these isometries we have
achieved to keep the first ! — 1 elements fixed while o; is sent to:

k-1 1-2
ap = —Uyplzy +mp) + Z(—Uf.rl‘a + Visys) + Z(“UI,I% + Via¥s)
=2 s=k

+[B + (211}; + I)Rm]u + [B + (2nk - l)ha]‘U +dj, (Yl_] (nz))

Now set U;_g = d;,q, + uy,1, Rh,! = d;,qk + T and V = d;,q + B and procced by
isometries: Forj =1,... k=1, (I—1)l—a™!, then (j1) —a%™ oecob~% followed by:
(sl) — a%Pwie for s =j 4+ 1,... ,k, then X1,(a5 Pujur—a; Puja) followed by (sl) — % Fss
for s = k,...,l — 1. Finish for cach j with a suitable (I — 1){ — [W] so that the
part of ¢y in the ! - 1, I blocks is of the same form as at the beggining. Then apply
(t-1)l—eoa™" X1 (2nu+1,~(2n,—1)) followed by (s!) —q®%Ps fors=k,... 1—1.
Finally after ({ — 1)l —e applyforj=k+1,...,, ((j = 1)) —a%-'"ioeo b},
followed by (sl) — a%-1"4¢ for s = 4,... ,/ — 1 and finish for each j with a suitable
(I — 1)1 — [W)]. At the end of these isometries we have achieved to keep the first
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! — 1 elements fixed while ay is sent to its desired canonical form. This finishes this
case.

7.4. a; is ordinary, o? is even and there is a parity switch. We first state
the canonical forms and the corresponding perpendicular subspaces. The canonical
form of a m — 1-tuple with L%_, odd and no parity switch is given by:

a) = —x1+my, and for 2<i<m-1
i-1
i = —uri(z1 +mpn) + Y (—niTe + Bigts) + di, (X)),

=2

(27)

where the B;;’s are inductively expressed in terms of the invariants by the equations
@;-a; =0, and for all i <m —1, L _, is easily seen to be generated by:

t
eb=zj+nyi+ D Pyaye, j=1,...1
r=+1
T, Y4, JZ"+1

(28)

The canonical of an k — 1 tuple with VPS = m < k—1 and L{_, odd is given by:

Cryees yQpey a8 in (27) oy =
m—1

_Tlm(zl + nlyl) + Z (-rl.mxa + Bralls) + di, (nmu + (nm + 1)U)s
=2

and for m+1<i<k-1 a; =

m—1

—ugi(zy +mp) + Y +(—ur,izs + Bigys)+ (29)

§=2
+(Bim = r1,i(nm + D)t + (Bim ~ T1.i0m)vt
i—2

+ Z ("'ul.+1iza + Biaya) +dj, (Yi—l(ni))y

5=1T
and Li for m <i < k — 1 is easily seen to be generated by:

i—1

efj = e(J-m—l)j -} P.-m(u +v) + E Pijays, J<m—1
s=m
i—1

etn=(m+Du+nmv+ Y Pim

s=m
i—1

L= Y0 +2Pijaysa m+1<5<d

(30)

&
=3

Tiy Y4y .721
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The canonical form of an I-tuple with VPS = m and change of parity of L at
i =k is given by:

ay,...,ax_1 as in (29) ayx =
m—1
—ri(@ +my) + Y (—rre@s + Broye) +
=2
+(Bkm - Timk(”»m + 1))u + (Bkm - r;mknm)v-i-
k-2
+ D (71,4188 + Broys) + 2d1, (- The1 + niyn-1),
a=m
and for k+1$i_<_1 ; =
m—1 (31)

—uyi(zy +my) + Z (—ur,iTs + Bigys)+
=2
+(Bim - 7'1'.“1‘("171 + 1))“ + (Bim - rIml'nm)'U’i"
k—2
+ Z (=up,41i%s + Bisya) + (=75,iTk-1 + Bi_1)¥k-1)+

s=m
i-2

+Z(_“I,+|i$s + Bigys) + dpy (—zi1 + muyi—1)

a=k
Notice that eé]c—l)j -ai/dr, = 1 mod 2 for j = m and otherwise to 0. This is, as is

not hard to see, due to the fact that Ly is even. Taking these into account we can
now compute L}:

i—1
ey =efi_yy;+ 3, Pisye 5<k=1 and j#m
L
e, = 2e€;_1)m + Z PinsVs (32)
e = Tj—1 +njyi-1 + ZPajsya, k<j<i
e

TiylYj, j 2 k
In all these canonical forms the various quantities are functions of the invariants

as one can check. The proof of these canonical forms runs in the same way as the
ones we did before.

8. Lis odd and o(L) #0

8.1. a; is characteristic. We can by [W] assume that «; is of the form: 2(—z, +
myt) + Yoo_, hs. Li is easily seen to be generated by:

ef_l =2Z1+my1, Zs,Ys, S22

hu =y +2h, hiy=-h+h, 5>2

Now with a; in as above there is an isometry which takes as to an element of the
form:

(33)

r12Z1 + Baiyn + d (~22 + naye) + 2wy — (6 = Durz)hy + umz h,
822
where 12 = —2u19, B21 = (r121) + we) and w2 is a canonical representative of a
solution to the equation 2z = ou,3 mod dj,. Notice that the latter equation might
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have up to two solutions (one if dy, or ¢ is odd and two if dy, and ¢ are even given
in this case by (6/2)u12 +idy,, i € {0,1}. But it is easy to see that in this case
i is determined by the invariants and hence proving that we can bring a2 to the
aforementioned form finishes this case for two elements: With «,; in its canonical
form ay looks like:

Rizx1 + Vaign + Da(—x2 + Naya) + (2W2 — E Cy)hy + Z Cshs,

8>2 8>2
with Vo, = (R12n + Wa). Now by definition and (33) we have:
dh =ng(€'1L1 '(12,’111 R 5 TR ,hl,,- '0.’2,D2) ' (34)

Now we are ready to apply isometries which bring ¢ to its desired canonical form
while they keep a; fixed. First apply 13—a™ oeob™! follwed by a suitable 23— [W].
Then apply X3 (2mr,) followed by 13 — a and a suitable 23 — [W] and finally for all
s > 2 apply: X3,—m,+m, followed for cach s by a suitable 23 — [W]. At the end of
these isometries while « is kept fixed oy is taken to an element of the form:

Rizz1 + Varyr + dp (—z2 + Noyo) + (2W, — ch)hl -+ Z Cshy

a>2 a>2

R12 = —2u)q mod d[n, R12 = ""2’".12 + dIng;

2W,; = ouyz mod dy,, ws a canonical representative,
and Wy =wa+djq, and for all s

Cy = u12 mod di,, C,=ujz + d[.)Q,

(35)

Now continue by isometries. First apply 23 —a~! followed by 13 —a®?™ ce o0 b™0!
followed by a suitable 23 — [W]. Then apply 23 — e o a™!, x3,(24m,) followed by
13 — a? and a suitable 23 — [W] and finally for all s > 2 apply 23 — eoa™! followed
by x3,-@.m,+q.m, followed for each s by a suitable 23 — [W]. At the end of these
isometries while ¢y is kept fixed o2 is taken to its desired canonical form. Now
we procceed to state the canonical form of an I-tuple in this case and prove it by
induction on !. The canonical form of an I-tuple is:

o
2{—z, + i) + Zh,, and for i=2,...,]

s=1

i1
a; =ru% + Bay + Z[_“I.i% + Bisys]+ (36)
=2
tay (— i+ mags) + (2wi — (0 — Durahs +un ) by,
822
where B;j; = (rin, + w;), rii = —2uy; and w; is a canonical representative of a

solution to the equation and 2z = ou;; mod dy,. Notice that the latter equation
might have up to two solutions. But it is easy to see that the solution is determined
by the invariants and hence proving that we can bring a, to the aforementioned
form finishes this case for two elements. The various other Bj;’s are determined in
terms of the invariants by the equations o4 - ; = 0. Now we need to compute L,'L.
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It is easily seen to be generated by:

k)
e = z; +n;y; + Z Pijsysy 7=1,...,1, Zo,¥Ys, 520+1
s=5+1 (37)
11 = Z i1sYs + +2h11 ;- Z nga hl +h'j; 32 2

8=2

Assume that we have found isometries which bring the first { — 1 elements to their
desired canonical form as in (36). Then o; is of the form:

-1
Ruzi+Vayn +Z[_Ul.iza + Vigya) + Di(—z1+ Noy) + (2 —E Cis)hi +Z Cish,

§=2 a>2 8>2

where the various V;’s are computed by equations similar to the ones above for
B;;’s. Now by definition and (37) we see that d;, is given by:

ged (egimyyy - Qs 5 €ty - @ R—ny1 @y h—1ye - u, D) 8)
38

Now we apply the first group of isometries. For j = 1,...,1 — 1 apply j(I +
1) —a™ oeob™! followed by s({ + 1) — a’t-vis forall s = j+1,...,/ -1 and
finish for each j with a suitable I{I + 1) — [W]. Then apply xit+1,2m, followed by
s(l+1) —a"t-0" forall s =2,...,1— 1 and finish with a suitable I( + 1) — [W].
Finally for every j = 2,...,0 apply X(i4+1),—m, +m; followed by s(l +1) - aFu-nis
for all s = 2,...,1 — 1 and finish for each j with I{{ + 1) — [V]. Now a is of the
form:

1-1
Rusi+Vay+ 3 _[=Urizs + Viaya] dr (~zi+ Nin) +@Wi = Y Cia )i+ Ciohy
=2 2>2 8§22

Ry = -2uymoddy, Ry=-2uy+dq,

Ui =urpmodd;,, Upnp=ur+qdr,

2W; = ouy; mod dy;, wi a canonical representative, (39)
and W, =w, +dyq, and for all s

Cis =uy mod dy, Ciy =uy+d,Q,

Now procceed with the second group of isometries to reduce the various quantities
defined only mod d;, to their canonical representatives.

Forj=1,...,01 =1 apply l{{I+1) —a™! then j{ + 1) — a%™ o e o b~ % followed
by s{i + 1) ~ a%Fu-vis for all s = j+ 1,...,1 — 1 and finish for each j with
a suitable (I + 1) —~ [W]. Then apply {(l + 1) — e 0 a™!, Xxi41,2¢m, followed by
s(l+1) - a®™ -0 forall s =2,...,1—1 and finish with a suitable I{l + 1) — [W).
Finally for every j = 2,... ,0 apply I(l+1) —eca™, xq41),—q,;m +q,m; followed by
sl +1)—a®Fu-nis’ forall s = 2,...,1—1 and finish for each j with I[({+ 1) - [W].
This brings ¢ to its desired canomcal form and finishes this case.
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8.2. a; is ordinary. Now we procceed to settle the final case. First we deal with
the case when Lj- is odd. The canonical form is:

a1 = =1 + mi +Adh,
i-1
a; = ’Z_?(”ur.i:r, + Biays) +dr (—zi + migs)  +Aik, i=2,..0,1 (40)

where A; = Z";ll 8suy,i+8;dy, fori =1,... ,land the §; € {0, 1} are easily seen to
be determined by the invariants. The various B;;'s are determined by the equations
o - = 0. We now need to determine a basis for L. Such a basis can be seen to
consist of:
!
e;'_; = z; + n;y; + Z Pijsttsy 3=1,00.41, Tpy, 32i+1
=j+1
, (41)
hi :_263y3+h13 hs: 2<s<o+1

§=1

Now suppose that the first £k — 1 elements are in canonical form as in (40). Then
¢, 15 of the form:

k-1
Z("Ul,(k)ma + Visyrs) + Di(2) + ARy
=1

where, Uk = ug,(k41) mod dy,, the Vig;’s are determined similarly to the By;'s
above and Z is of the form (1 + 8}(—zy + Neyx) + 63 0_, hs, 6 € {0,1}. Let us
now first examine the case § = 0. By definition and (41) dj, is equal to:

ged (e(Lk_l)l Tk, C{lk_l)(k_l) iy Ry - o, D).

Forj =1,...,k apply: [j, (k+1)] —a™ oceob~! followed by [s, (k+1)] —aFu-ni»
for every s = j+1,...,k -1 and finish for each j with an appropriate [(k),(k+1)]-
[W]. Then apply x(x+1)m, followed by [s,(k+1)]—a=% for s =1,... ,k—1, and
finish with [(k + 1}, (k + 2)] — [W]. At the end of these isometries the first £ — 1
clements remain fixed while a4 goes to:

k—1
Z(—Ul.k-’ﬂg + Visys) + dr, (—zk + Niyr) + Aly

s=1

Now set Ur i1y = drp, Qigk+1) + Yre41), & = A + 2¢dy, and apply for j =
...,k k(k+1) —a™!, [;,(k+1)] — a%™ o e o b~% followed by [s, (k + 1)] —
a%fu-nis for every s =j+1,... ,k — 1 and finish for each j with an appropriate
[(k),(k+1)]-[W]. Then apply k(k + 1) — e o a™" X(k+1)2m, followed by [s,(k +
1)] —a=% for s = 1,... ,k — 1, and finish with a suitable [(k + 1), (k + 2)] -
[W]. At the end of these isometries the first £ — 1 elements remain fixed while
oy goes to its desired cononical form. This finishes the case § = 0. We now
take up the case & = 1. We separate two cases. By definition and (41), dy, =
ged (Bfk—l)l C Qg ’e#;c—l)(k—l) T h(k-l)l -ayg, Dg), if 6 > 2 and to

ng (e(J;c—l)l 4 TP ,e(lk_l)(k_l) . ak,h(k—l)l ‘ ak,2Dk), if ¢ = 1. In the first case
working basically the same way as in the first group of isometries in the case § = 0
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we send, while keeping the first kK — 1 clements fixed a4 to:

k-1 b
D (—UnkZs + Viays) + dr [2(—zx + Nigs) + Y hal + Al
s=1 =2

if [e(J;c_l)j ayg)fdy, is even for all § (in which case [h¢_1); - @x]/dy, is odd) and
Dy /d;, 13 odd and otherwise to:

k-1

D (“ULkZs + Viays) + di, (=x + Neys) + Ahy.

s=1
Of course the case must be the second because we are assuming that Li is odd. If
o = 1 then working the same way we get to send oy to:

k-1

> (=Usks + Vieys) + 2d1, (— 7k + Nigi) + Ahy

s=1
if [e(ll-—l)j - ag]/dy, is even for all § (in which case [hg—1)1 - ax]/ds, is odd) and
dr, | Dr and otherwise to:

k-1

Z(—U;_k:l:, + ViaYs) + d1, (—zr + Niye) + Aby.

s=1
Once again for the same reasons the second happens. In either case now the rest
of the proccess in identical to the one for § = 0. Now we deal with case when L}
is odd for all 7 < k and L;:- is even. From the discussion in the previous paragraph
we see that we can assume the first k — 1 elements in canonical position as in (40)
and ay, of the form

k—1 o
Y (—ULizs + Visys) + di, [2(=7k + Neya) + 3 ho] + Ay
=1 =2

with [ef;_y;-@x]/di, even, for all j and [h(x—1): -ak]/dy, odd. Now we can procced
by isometries to determine the canonical form of ag. Applying the same isometries
as in the second group of the case § = 0 (devide by 2dy, instead of by dj,) we can
send oy to an element of the form:

k-1 o
Z(—Tl,kﬂia + Via¥s) + dr, [2(—Zx + Neye) + Z he] + Ay

s=1 =2
where 7,1 = up or uyx + dy, (What the case is will be distinguished by the
coordinates of the invariant characteristic vector of the tuple} and A is now equal

to
k—1

A= Zé,?‘]lk + 6'(11,'
=1
with &' € {0,1,2,3}. In fact &' € {1,3} because [h(_1); - x]/dy, is odd. If § =3
we can apply isometries to change it into 1 as follows: Apply, k(k+1) —eoa™! and
forj=1,...,k—=1,j(k+1)—a% followed by k(k +1) —e. Then apply Xg41,--2m
and finish by a sign change of h;. This sends ay to:
k-1 4

S (—TLkTs + Viays) + di, 20—k + mayz) + Y ha] + Dih (42)

=1 a=2
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where Ay = Zi;: 8s71,% + dj, and achieves the canonical form in this case. We
now compute Li-. It is easily seen to be generated by elements of the form:

e,szef;c_l)j+ijkyk, j=1,...,k-1,
Tg + NpYk, TayYsy 32.‘:-}-1 (43)
hkl = 2h(k'|)1 + Qk!yk hiys =hs + h(k-—l]l; 2 <s<o+ 1

Now we finally need to find and prove the canonical form in the case k < !. The
general canonical form looks like:

ay,... 0k, as in (40),(42)

stk
Qi = Z (—u1,iTy + Bisys) + (= 2ur,_ 52k + Buys) (44)
1<s<i—1

+dy (—z; + nyys) + Ajhy, i=2,... 1
Where the A;’s are determined by the invariants in the same manner as the pre-
vious ones. (may or maynot have a summand of dj, together with their canonical
representatives but what the case is, is determined by the invariants. The lattice
Li is generated by:

14
eij = €i + Z Prjsye, 7=1,...,k—1,

s=k+1
i
e$=$1+n1y3+ Z ) .?Zk: Ty Ys,s 32l+1 (45)
a=j+1
! !
hIl:hkl'l' Z Q[l, hkahkj+ Z ij.n 25350.'.1
s=k+1 a=k+1

To finish this now one works as always by induction. Using L;- define dj, and then
use the vectors of Lj~ as a guide to reduce the various quantities to their canonical
representatives. This finishes the proof.
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