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Abstract. We introduce a natural structure of a semigroup (isomorphic to a fac-
torization semigroup of the unity in the symmetric group) on the set of irreducible
components of Hurwitz space of marked degree d coverings of P1 of fixed ramifi-
cation types. It is proved that this semigroup is finitely presented. The problem
when collections of ramification types define uniquely the corresponding irreducible
components of the Hurwitz space is investigated. In particular, the set of irreducible
components of the Hurwitz space of three-sheeted coverings of the projective line is
completely described.

Introduction

Usually, to investigate the Hurwitz space HURd(P1) of degree d coverings of the
projective line P1 := CP1, the following approach is used. A Galois group G of the
coverings, the number b of branch points, and the types of local monodromies (that
is, collections consisting of b conjugacy classes of G) are fixed, and after that the set
of collections of representatives of these conjugacy classes is investigated up to, so
called, Hurwitz moves (see, for example, [1] – [6]). There are several problems (for
example, to describe the set of plane algebraic curves up to equisingular deformation
or, more generally, to describe the set plane pseudoholomorphic curves up to symplec-
tic isotopy, to describe the set of symplectic Lefschetz pencils up to diffeomorphisms,
and so on) in which also resembling objects naturally arise, namely, finite collections
of elements of some group considering up to Hurwitz moves (see, for example, [7] –
[9]). (In the case of plane algebraic and pseudoholomorphic curves, to obtain such
collections, one should choose a pencil of (pseudo)lines to obtain a fibration over
P1.) As it was shown in [10], there is natural structure of semigroups on the sets
of such collections considered up to Hurwitz moves, namely, so called, factorization
semigroups over groups. Moreover, if we consider such fibrations not only over the
hole P1 but also over the disc DR = {z ∈ C | |z| 6 R}, then this semigroup structure
has a natural geometric meaning (see [10]).

In section 1 of this article, we give basic definitions and investigate properties of fac-
torization semigroups over finite groups. In particular, we prove that the factorization
semigroups of the unity in finite groups are finitely presented, and also we investigate
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the problem when an element of factorization semigroup is defined uniquely by its
type and product.

In section 2, factorization semigroups over symmetric groups Sd are considered
more closely. Here we prove a stabilization theorem and completely describe the
factorization semigroup of the unity in S3.

In section 3, we introduce a natural structure of a semigroup (a factorization semi-
group of the unity in symmetric group) on the set of irreducible components of Hur-
witz space of marked degree d coverings of P1 with fixed ramification types and we
show that this structure induces a semigroup structure on the set of irreducible com-
ponents of the Hurwitz space HURG

d of Galois coverings of P1 with Galois group G
having no outer automorphisms. Also, the results, obtained in sections 1 and 2, are
applied to the problem when the irreducible components of the HURd(P1) are defined
uniquely by collections of types of local monodromies of the coverings.
Acknowledgement. Part of this work was done at MPIM, Bonn. I would like to
thank this institution for hospitality.

1. Semigroups over groups

1.1. Factorization semigroups. A collection (S, G, α, λ), where S is a semigroup,
G is a group, and α : S → G, λ : G → Aut(S) are homomorphisms, is called a
semigroup S over a group G if for all s1, s2 ∈ S we have

s1 · s2 = ρ(α(s1))(s2) · s1 = s2 · λ(α(s2))(s1),

where ρ(g) = λ(g−1).
Let (S1, G1, α1, λ1) and (S2, G2, α2, λ2) be two semigroups over, respectively, groups

G1 and G2. We call a pair (h1, h2) of homomorphisms h1 : S1 → S2 and h2 : G1 → G2

a homomorphism of semigroups over groups if

(i) h2 ◦ α1 = α2 ◦ h1,
(ii) λ2(h2(g))(h1(s)) = h1(λ1(g))(s) for all s ∈ S1 and all g ∈ G1.

The factorization semigroups defined below constitute the principal, for our pur-
pose, examples of semigroups over groups.

Let O ⊂ G be a subset of a group G invariant under the inner automorphisms.
We call the pair (G, O) an equipped group. Let us associate to the set O an alphabet
X = XO = {xg | g ∈ O} and for each pair of letters xg1 , xg2 ∈ X, g1 6= g2 denote by
Rg1,g2;l and Rg1,g2;r the following relations: Rg1,g2;l has the form

xg1 · xg2 = xg2 · xg−1
2 g1g2

(1)

if g2 6= 1 and xg1 · x1 = xg1 if g2 = 1, and Rg1,g2;r has the form

xg1 · xg2 = xg1g2g−1
1
· xg1 (2)

if g1 6= 1 and x1 · xg2 = xg2 if g1 = 1.
Put

R = {Rg1,g2;r, Rg1,g2;l | (g1, g2) ∈ O ×O, g1 6= g2},
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and, with the help of the set of relations R, define a semigroup

S(G,O) = 〈xg ∈ X | R ∈ R〉
which is called the factorization semigroup of G with factors in O.

Introduce also a homomorphism α : S(G,O) → G given by α(xg) = g for each
xg ∈ X and call it the product homomorphism.

Next, we define an action λ of the group G on the set X as follows:

xa ∈ X 7→ λ(g)(xa) = xg−1ag ∈ X.

As is easy to see, the above relation set R is preserved by the action λ. Therefore λ
defines a homomorphism λ : B → Aut(S(G, O)) (the conjugation action). The action
λ(g) on S(G,O) is called the simultaneous conjugation by g. Put λS = λ ◦ α and
ρS = ρ ◦ α.

Claim 1.1. ([8]) For all s1, s2 ∈ S(G,O) we have

s1 · s2 = s2 · λS(s2)(s1) = ρS(s1)(s2) · s1.

It follows from Claim 1.1 that (S(G,O), G, α, λ) is a semigroup over G. When G
is fixed, we abbreviate S(G,O) to SO. By xg1 · . . . · xgn we denote the element in SO

defined by a word xg1 . . . xgn .
Notice that S : (G,O) 7→ (S(G,O), G, α, λ) is a functor from the category of

the equipped groups to the category of the semigroups over groups. In particular, if
O1 ⊂ O2 are two sets invariant under the inner automorphisms of G, then the identity
map id : G → G defines an embedding idO1,O2 : S(G,O1) → S(G,O2). So that, for
each group G, the semigroup SG = S(G,G) is an universal factorization semigroup of
elements in G, which means that each semigroup SO over G is canonically embedded
in SG by idO,G.

Let Γ be a subgroup of G. Denote by SΓ
O = {s ∈ SO | α(s) ∈ Γ}. Obviously, SΓ

O

is a subsemigroup of SO and it coincides with the image of semigroup S(Γ, O ∩ Γ)
under the homomorphism induced by the inclusion Γ ↪→ G. In particular, if GO is
the subgroup of G generated by the elements of the image of α : SO → G, then
S(GO, O) ' SGO

O .
If Γ = {1}, then the semigroup S1

O will be denoted by SO,1 and for each subgroup
Γ of G we denote SΓ

O,1 = SO,1 ∩ SΓ
O.

A group G acts on itself by inner automorphisms, that is, for any group G there
is a natural homomorphism h : G → Aut(G) (the action of the image h(g) = a of
an element g on G is given by (g1)a = g−1g1g for all g1 ∈ G). It is easy to see that
the homomorphism h defines on SG a structure of a semigroup over A = Aut(G),
where the homomorphism αA : SG → Aut(G) is the composition h◦α and an element
a ∈ Aut(G) acts on SG by the rule xg 7→ x(g)a. It is easy to see that the subsemigroup
SG,1 is invariant under the action of Aut(G) on SG. Therefore SG,1 also can be
considered as a semigroup over Aut(G).
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To each element s = xg1 · . . . ·xgn ∈ SO, gi 6= 1, let us associate a number ln(s) = n
called the length of s. It is easy to see that ln : SO → Z>0 = {a ∈ Z | a > 0} is a
homomorphism of semigroups.

For each s = xg1 · . . . · xgn ∈ SO denote by Gs the subgroup of G generated by the
images α(xg1) = g1, . . . , α(xgn) = gn of the factors xg1 , . . . , xgn .

Claim 1.2. The subgroup Gs of G is well defined, that is, it does not depend on a
presentation of s as a product of generators xgi

∈ XO.

The proof of Claim 1.2 and the following proposition is very simple and therefore
it will be omitted.

Proposition 1.1. ([8]) Let (G,O) be an equipped group and let s ∈ SO. We have

(1) kerλ coincides with the centralizer CO of the group GO in G;
(2) if α(s) belongs to the center Z(Gs) of Gs, then for each g ∈ Gs the action

λ(g) leaves fixed the element s ∈ SO;
(3) if α(s · xg) belongs to the center Z(Gs·xg) of Gs·xg , then s · xg = xg · s,
(4) if α(s) = 1, then s · s′ = s′ · s for any s′ ∈ SG.

Claim 1.3. For any equipped group (G,O) the semigroup SO,1 is contained in the
center of the semigroup SG and, in particular, it is a commutative subsemigroup.

Proof. It follows from Proposition 1.1 (4). ¤

It is easy to see that if g ∈ O is an element of order n, then xn
g ∈ SO,1.

Lemma 1.1. Let s ∈ SO,1 and s1 ∈ SO be such that Gs1 = GO. Then

s · s1 = λ(g)(s) · s1 (3)

for all g ∈ GO.
In particular, if C ⊂ O is a conjugacy class of elements of order nC and s ∈ SO is

such that Gs = G, then for any g1, g2 ∈ C we have

xnC
g1
· s = xnC

g2
· s. (4)

Proof. Equality (4) is proved in [5]. The proof of (3) is similar. ¤
1.2. C-groups associated to equipped groups and the type homomorphism.
Let (G,O) be an equipped group such that 1 6∈ O and let the set O be the union of
m conjugacy classes, O = C1 ∪ · · · ∪ Cm.

A group ĜO, generated by an alphabet YO = {yg | g ∈ O} (so called C-generators)
being subject to the relations

yg1yg2 = yg2yg−1
2 g1g2

= yg1g2g−1
1

yg1 , yg1 , yg2 ∈ YO, (5)

is called the C-group associated to (G,O). It is obvious that the maps xg 7→ yg and

yg 7→ g define two homomorphisms: β : S(G,O) → ĜO and γ : ĜO → G such that

α = γ ◦ β. The elements of Im β are called the positive elements of ĜO.
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A C-group ĜO, associated to an equipped group (G,O), has similar properties as
the semigroup SO has. For example, like in the case of factorization semigroups, it is
easy to check that for any ĝ ∈ ĜO and any g1 ∈ O the following relation

ĝ−1yg1 ĝ = yg−1g1g (6)

is a consequence of relations (5), where g = γ(ĝ).

Denote by Ô the subset {yg | g ∈ O} of ĜO. It follows from relation (6) that Ô is

invariant under inner automorphisms of ĜO.

Claim 1.4. Let (G,O) be an equipped group. Then the semigroups S(G,O) and

S(ĜO, Ô) are naturally isomorphic.

Proof. By relations (6), it is easy to see that the map ξ : S(ĜO, Ô) → S(G,O), given
by ξ(xyg) = xg for g ∈ O, is an isomorphism of semigroups. ¤

Applying relations (6), it is easy to prove the following proposition (see, for example,
[11]).

Proposition 1.2. For any equipped group (G,O) we have

Z(ĜO) = γ−1(Z(GO)),

where Z(GO) and Z(ĜO) are the centers, respectively, of GO and ĜO.

It is easy to see that the first homology group H1(ĜO,Z) = ĜO/[ĜO, ĜO] of ĜO is a

free abelian group of rank m. Let ab : ĜO → H1(ĜO,Z) be the natural epimorphism.

The group H1(ĜO,Z) ' Zm is generated by ab(ygi
) = (0, . . . , 0, 1, 0 . . . , 0) (1 stands

on the i-th place), where gi ∈ Ci.
The homomorphism of semigroups τ = ab ◦ β : S(G,O) → Zm

>0 ⊂ Zm is called
the type homomorphism and the image τ(s) of s ∈ S(G,O) is called the type of s. If
O consists of a single conjugacy class, then the homomorphism τ can (and will) be
identified with the homomorphism ln : S(G,O) → Z>0.

Lemma 1.2. Any element ĝ of the C-group ĜO, associated with an equipped group
(G,O), can be represented in the form:

ĝ = ĝ1ĝ
−1
2 , (7)

where ĝ1, ĝ2 are positive elements. In particular, ĝ ∈ Ĝ′
O = [ĜO, ĜO] if and only if

ab(ĝ1) = ab(ĝ2) in representation (7) of ĝ as a quotient of two positive elements ĝ1

and ĝ2.

Proof. Write ĝ in the form: ĝ = yε1
gi1

. . . yεk
gik

, where gij ∈ O and εj = ±1. To prove

lemma, it suffices to note that by relations (5) we have y−1
g2

yg1 = yg−1
2 g1g2

y−1
g2

for any

g1, g2 ∈ O. ¤
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Claim 1.5. Let (G,O) be a finite equipped group. The homomorphism β : SO → ĜO

is an embedding if and only if O ⊂ Z(GO), that is, GO is an abelian group.

Proof. Let O = C1 ∪ · · · ∪ Cm be the decomposition into the union of conjugacy
classes. It is easy to see that if O ⊂ Z(GO) then ĜO ' Z|O|, where the isomorphism
is induced by homomorphism ab, and in this case the semigroup SO can be identified

with semigroup Z|O|>0 ⊂ Z|O|.
If O 6⊂ Z(GO), then there is Ci ⊂ O consisting of at least two elements, say g1

and g2. Let n be their order in G. Then it is easy to see that xn
g1
6= xn

g2
in SO. On

the other hand, their images yn
g1

= β(xn
g1

) and yn
g2

= β(xn
g2

) coincide in ĜO. Indeed,

without loss of generality? we can assume that there is g ∈ GO such that g2 = g−1g1g.
Consider an element ĝ ∈ γ−1(g). Then

ĝ−1yn
g1

ĝ = (ĝ−1yg1 ĝ)n = yn
g−1g1g = yn

g2
,

but by Proposition 1.2, yn
g1

and yn
g2

belong to Z(ĜO). Therefore yn
g1

= yn
g2

. ¤

1.3. Hurwitz equivalence. As above, let O be a subset of G invariant under the
action by inner automorphisms of G. Consider the set

On = {(g1, . . . , gn) | gi ∈ O}
of all ordered n-tuples in O and let Brn be the braid group with n strings. We fix a set
{a1, . . . , an−1} of so called standard (or Artin) generators of Brn, that is, generators
being subject to the relations

aiai+1ai = ai+1aiai+1 1 6 i 6 n− 1,
aiak = akai | i− k |> 2.

(8)

The group Brn acts on On as follows

((g1, . . . , gi−1, gi, gi+1, gi+2, . . . , gn))ai = (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gn)).

Usually, the action of the standard generators ai ∈ Brn and their inverses on On is
called Hurwitz moves. Two elements in On are called Hurwitz equivalent if one can be
obtained from the other by a finite sequence of Hurwitz moves, that is, if they belong
to the same orbit under the action of Brn.

There is a natural map (product map) α : On → G defined by

α((g1, . . . , gn)) = g1 . . . gn

and an element (g1, . . . , gn) ∈ On is called a factorization of g = α((g1, . . . , gn)) ∈ G
with factors in O.

There is a natural map ϕ : On → S(G,O) sending (g1, . . . , gn) to s = xg1 · . . . ·xgn .

Claim 1.6. Two factorizations y and z ∈ On are Hurwitz equivalent if and only if
ϕ(y) = ϕ(z).

Proof. Evident. ¤
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Remark 1.1. In what follows, according with Claim 1.6, we identify classes of Hur-
witz equivalent factorizations in O with their images in S(G,O).

Define also the conjugation action of G on On:

λ(g)((g1, . . . , gn)) = (g−1g1g, . . . , g−1gng).

Obviously, this action is compatible under the map ϕ with the conjugation action of
G on S(G,O) defined above.

Denote by W = W (O) the set of words in the alphabet X = XO\{1} and by Wn

its subset consisting of the words of length n. In what follows, the elements of the
set On will be identified with the elements of Wn (identification: (g1, . . . , gn) ∈ On ↔
xg1 . . . xgn ∈ Wn) and we put

W (s) = {w ∈ W | ϕ(w) = s ∈ S(G,O)}.
1.4. Finite presentability of some subsemigroups of S(G,O). Let (G,O) be a
finite equipped group. By definition, the semigroup SO is finitely presented. From
geometric point of view the most interesting subsemigroups of SG are SO,1 and SG

O,1 =

{s ∈ SO,1 | Gs = G}. (Note that SG
O,1 is non-empty if and only if GO = G.) In this

subsection, we will show that the semigroups SO,1 are finitely presented, but for the
semigroups SG

O,1 the property to be finitely presented (and, moreover, to be finitely
generated) is not obligatory.

Let N = |G| be the order of G and C = {C1, . . . , Cm} be the set of conjugacy
classes of G such that O = ∪Ci. For C ∈ C let nC = ng be the order of g ∈ C. In
each C ∈ C we choose and fix an element gC ∈ C.

It is evident that a necessary condition for a subsemigroup S of SO to be finitely
generated is that its image τ(S) is a finitely generated semigroup, where τ : SO → Zm

>0

is the type homomorphism.

Theorem 1.1. A factorization semigroup SO,1 over a finite group G is finitely pre-
sented.

Proof. Let O = C1∪· · ·∪Cm be the decomposition into the union of conjugacy classes
and let 1 6∈ O. We numerate the elements of O = {g1, . . . , gK} so that gi = gCi

for
i = 1, . . . , m.

For any g ∈ O we have sg = x
ng
g ∈ SO,1. Let F = {s1, . . . , sM} be the set of

elements of SO,1 of length less or equal to KN , where N = |G|, and we assume also
that si = sgi

= x
ngi
gi for i 6 K. Let us show that the elements s1, . . . , sM ∈ F generate

the semigroup SO,1.

Lemma 1.3. An element s ∈ SO,1 of length ln(s) > KN can be written in the
following form:

s = sn1
i1
· . . . · snl

il
· s,

where 1 6 i1 6 . . . 6 il 6 K and s ∈ SO,1 with ln(s) 6 KN .
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Proof. If ln(s) > KN , then in a presentation of s as a product xg1 · . . . · xgln(s)
there

are at least N coinciding factors xg for some g ∈ O. Since ng 6 N , moving ng of
these factors to the left (by means of relations (1)), we obtain that s = sg · s′, where
s′ ∈ SO,1 and ln(s′) < ln(s). ¤

It follows from Lemma 1.3 that SO,1 is generated by the elements s ∈ SO,1 of length
ln(s) 6 KN , that is, SO,1 is finitely generated.

To show that SO,1 is finitely presented, let us divide the set of all relations as
follows. The first set R1 of relations consists of relations:

si · sj = sj · si, si, sj ∈ F.

Denote by k = (k1, . . . , kM) an ordered collection of non-negative integers and put

sk = sk1
1 · . . . · skM

M . In view of the existence of relations R1, we can assume that all
other relations in SO,1 connecting the generators s1, . . . , sM have the following form:

sk1 = sk2 . (9)

Note that if we have a relation of form (9), then Gsk1
= Gsk2

and τ(sk1) = τ(sk2).

Consider the set R2 of all relations of form (9) for which Gsk1
is a proper subgroup of

G. By induction, we can assume that the semigroups S(Γ, O)1 are finitely presented
for all equipped groups (Γ, O) of order less than N . Since there are only finitely
many proper subgroups of G and the embeddings (Gsk1

, O ∩ Gsk1
) ↪→ (G,O) define

the embeddings S(Gsk1
, O ∩ Gsk1

)1 ↪→ SO,1, we obtain that there is a finite set of

relations R2 ⊂ R2 generating all relations of R2.
Denote by R3 the set of all relations in SO,1 of the form sk1 = sk2 which are not

contained in R1 ∩R2 and such that ln(sk1) 6 KN . It is easy to see that R3 is a finite
set.

For each element si of the set of generators of SO,1 with i > K + 1, we put

ni = min
n
{ln(sn

i ) > KN} − 1.

From Lemma 1.3 it follows

Lemma 1.4. For any i > K + 1 the element sni+1
i can be written in the following

form:

sni+1
i = (

K∏
j=1

s
aj

j ) · sl, (10)

where a = (a1, . . . , aK) is a collection of non-negative integers and sl ∈ F is a gener-
ator with index l > K + 1.

Denote by R4 the set of relations of form (10). It is a finite set. By Lemma 1.4,
applying relations of the set R1 ∪ R4, each element s ∈ SO,1 can be written in the
form: s = sk, where k = (k1, . . . , kM) satisfies the following condition: ki 6 ni for
i > K + 1.
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An element sk is called Γ-primitive if in k = (k1, . . . , kM) all ki 6 1 for i 6 K,
ki 6 ni for i > K + 1, and Gsk = Γ. By Lemma 1.1, for each G-primitive element sk

we have the following relations in SO,1:

si · sk = sj · sk,

where i 6 m and j 6 K is such that gj ∈ Ci. Denote by R5 the set of all such
relations. Obviously, R5 is a finite set.

Let s ∈ SO,1 be such that Gs = G. Applying relations of R5, as above it is easy to
show that s can be written in the form:

s = (
m∏

j=1

s
aj

j ) · sk, (11)

where sk is some G-primitive element. Denote by R6 the set of relations in SO,1 of
the form:

(
m∏

j=1

s
bj,1

j ) · sk1 = (
m∏

j=1

s
bj,2

j ) · sk2 , (12)

where sk1 and sk2 are G-primitive elements.
To complete the proof of Theorem 1.1, it suffices to show that the relations of R6

are consequences of a finite set of relations R6. Since there are only finitely many
G-primitive elements, it is suffices to show that for fixed G-primitive elements sk1

and sk2 relations of form (12) are consequences of a finite set of relations. For this
purpose, consider the semigroup Zm

>0 = {a = (a1, . . . , am) ∈ Zm | ai > 0}.
A subsemigroup S of Zm

>0 is called non-perforated if for any a ∈ S and any b ∈ Zm
>0

the element a + b ∈ S. Note that if S1 and S2 are non-perforated subsemigroups,
then S1 ∪ S2 and S1 ∩ S2 are also non-perforated subsemigroups. An element a of a
non-perforated subsemigroup S is called an origin of S if there does not exist elements
b ∈ S and c ∈ Zm

>0 \ {0} such that a = b + c. Denote by O(S) the set of origins
of a non-perforated subsemigroup S. A non-perforated subsemigroup S with a single
origin is called prime. It is easy to see that if a is the origin of a prime non-perforated
subsemigroup S, then

S = Fa = {c = a + b ∈ Zm
>0 | b ∈ Zm

>0}.
It is obvious that a non-perforated subsemigroup S can be represented as a union of
prime non-perforated subsemigroups, for example,

S =
⋃
a∈S

Fa.

Let A be a subset of S and let S be represented as the union of prime non-perforated
subsemigroups,

S =
⋃
a∈A

Fa. (13)



10 VIK.S. KULIKOV

We say that representation (13) is minimal if

S 6=
⋃

a∈A\{a0}
Fa

for any a0 ∈ A.

Claim 1.7. For a non-perforated subsemigroup S ⊂ Zm
>0 there is the unique minimal

representation as the union of prime non-perforated subsemigroups, namely,

S =
⋃

a∈O(S)

Fa.

Proof. It follows from the definition of origins that if S = ∪Fai
is a representation as

the union of prime non-performed subsemigroups and a is an origin of S, then a = ai

for some i.
Assume that

C = S \
⋃

a∈O(S)

Fa

is not empty, then there is c0 = (c1,0, . . . , cm,0) ∈ C such that cm,0 = min cm for
(c1, . . . , cm) ∈ C, cm−1,0 = min cm−1 for (c1, . . . , cm−1, cm,0) ∈ C, . . . , c1,0 = min c1 for
(c1, c2,0 . . . , cm,0) ∈ C. It is obvious that c0 is an origin of S. ¤
Proposition 1.3. Every increasing sequence of non-perforated subsemigroups of Zm

>0,

S1 ⊂ S2 ⊂ S3 ⊂ . . . ,

such that Si 6= Si+1 is finite.

Proof. Proposition is obvious if m = 1. let us use the induction on m. Consider an
increasing sequence of non-perforated subsemigroups S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Zm

>0,
m > 2. Denote by Pj = {(z1, . . . , zm) ∈ Zm

>0 | zm = j}, and Si,j = Si ∩ Pj.

Then Si,j also can be considered as a non-perforated subsemigroup of Zm−1
>0 (if we

forget about the last coordinate). By inductive assumption, increasing sequences
S1,j ⊂ S2,j ⊂ S3,j ⊂ . . . must stop for each j. Denote by Sj = Si(j),j the first biggest
semigroups in these sequences.

Consider a map sh : Zm
>0 → Zm

>0 is given by

sh((z1, . . . , zm−1, zm)) = (z1, . . . , zm−1, zm + 1).

It follows from definition of non-perforated subsemigroups that sh : Si,j → Si,j+1 is
an embedding of semigroups. Therefore we can (and will) identify a semigroup Si,j

with subsemigroup shn(Si,j) of Si,j+n. It follows from definition of non-performed
subsemigroups that if j1 < j2, then Sj1 = Si(j1),j1 ⊂ Sj2 = Si(j2),j2 . As a result we
obtain an increasing sequence of non-perforated subsemigroups

Si(0),0 ⊂ Si(1),1 ⊂ Si(2),2 ⊂ · · · ⊂ Zm−1
>0 .

It must stop. It is easy to see that if Si(j0),j0 is the biggest semigroup, then Si(j0) =
Si(j0)+1 = Si(j0)+2 = . . . . ¤
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Corollary 1.1. The set of origins O(S) of a non-perforated subsemigroup S ⊂ Zm
>0

is non-empty and finite.

Proof. If the set O(S) = {a1, a2, a3, . . . } is infinite, then by Claim 1.7 we will have
an infinite increasing sequence

Fa1 ⊂ Fa1 ∪ Fa2 ⊂ Fa1 ∪ Fa2 ∪ Fa3 ⊂ . . . .

which contradicts Proposition 1.3. ¤

Let us return to the proof that the relations of the set R6 are consequences of a
finite set of relations R6. For this purpose, note that if

(
m∏

j=1

s
bj,1

j ) · sk1 = (
m∏

j=1

s
bj,2

j ) · sk2 (14)

is a relation, then

(b1,1nC1 , . . . , bm,1nCm) + τ(sk1) = (b1,2nC1 , . . . , bm,2nCm) + τ(sk2).

Therefore if τ(skj
) = (α1,j, . . . , αm,j), then αi,1 ≡ αi,2(mod nCi

) for all i. Put ai,1,0 =
bi,1 − bi,2 if αi,2 > αi,1 and ai,1,0 = 0 if otherwise. Respectively, put ai,2,0 = bi,2 − bi,1

if αi,1 > αi,2 and ai,2,0 = 0 if otherwise. We have

nCi
ai,1,0 + αi,1 = nCi

ai,2,0 + αi,2

and ai,1,0, ai,2,0 are defined uniquely by αi,1, αi,2, and nCi
. Moreover, if we denote

ai,j = bi,j − ai,j,0, then ai,1 = ai,2 > 0 for i = 1, . . . , m, and each relation of the form
(14) can be rewritten in the form

(
m∏

j=1

s
aj

j ) · (
m∏

j=1

s
aj,1,0

j ) · sk1 = (
m∏

j=1

s
aj

j ) · (
m∏

j=1

s
aj,2,0

j ) · sk2 , (15)

where aj = aj,1 = aj,2.
If (15) is a relation in SO,1, then

(
m∏

j=1

s
aj+bj

j ) · (
m∏

j=1

s
aj,1,0

j ) · sk1 = (
m∏

j=1

s
aj+bj

j ) · (
m∏

j=1

s
aj,2,0

j ) · sk2

is also a relation for each b = (b1, . . . , bm) ∈ Zm
>0 and it is a consequence of relation

(15).
It follows from consideration above that the set {(a1, . . . , am)} of exponents in-

terning into the relations written in the form (15) for fixed sk1 and sk2 form a non-
perforated subsemigroup Fsk1

,sk2
of Zm

>0. By Corollary 1.1, the set O(Fsk1
,sk2

) of its
origins is finite. It is easy to see that the relations (15) for fixed sk1 and sk2 are
consequences of the relations corresponding to the origins of Fsk1

,sk2
, and since there

are only finitely many G-primitive elements, we obtain that the relations of R6 are
consequences of some finite subset R6 of R6.
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To complete the proof of Theorem 1.1, it suffices to note that all relations are con-

sequences of the relations belonging to R1 ∪ · · · ∪R6 which is a finite set. ¤

Note that not any subsemigroup SG
O,1 of SG is finitely generated. For example, let

G ' (Z/2Z)2 be generated by two elements g1 and g2. If O = {g1, g2}, then SG
O,1 is

isomorphic to the semigroup

S = {(a1, a2) ∈ Z2
>0 | a1 > 0, a2 > 0}

which is not finitely generated.

Proposition 1.4. Let (G,O) be a finite equipped group. Assume that O is the union

of conjugacy classes, O = C1,∪ · · · ∪ Cm, such that for each i the elements of Ci

generate the group G. Then the subsemigroup SG
O,1 of SG is finitely presented.

Proof. In notations used in the proof of Theorem 1.1, denote

sCi
=

∏
gl∈Ci

x
nCi
gl =

∏
gl∈Ci

sl.

We have sCi
∈ SG

O,1, since the elements gl ∈ Ci generate G.

As it was shown in the proof of Theorem 1.1, any element s ∈ SG
O,1 can be written

in the form (11):

s = (
m∏

i=1

sai
i ) · sk,

where sk is some G-primitive element of SG
O,1. If ai > |Ci|, then by Lemma 1.1,

sai
i · sk = sCi

· sai−|Ci|
i · sk.

Therefore any element s ∈ SG
O,1 can be written in the form

s = (
m∏

i=1

sbi
Ci

) · (
m∏

i=1

sai
i ) · sk, (16)

where (b1, . . . , bk) ∈ Zk
>0 and 0 6 ai < |Ci|, and sk is a G-primitive element. Since

there are only finitely many expressions of the form

(
m∏

i=1

sai
i ) · sk, (17)

where 0 6 ai < |Ci|, and sk is a G-primitive element, the end of the proof of Propo-

sition 1.4 coincides with the proof of Theorem 1.1. ¤
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1.5. Stabilizing elements. If G is an abelian finite group, then it is obvious that

the type homomorphism τ : SG → Z|G|−1
>0 is an isomorphism. If G is not an abelian

group and c(G) is the number of conjugacy classes of its elements g 6= 1, then the type

homomorphism τ : SG → Zc(G)
>0 is a surjective, but not injective homomorphism, and

one of the main problems is to describe the preimages τ−1(a) of elements a ∈ Zc(G)
>0 (in

particular, to describe the set of elements a ∈ Zc(G)
>0 for which each element s ∈ τ−1(a)

is uniquely determined by their value α(s) ∈ G).

Proposition 1.5. Let SG
O,1 be as in Proposition 1.4. Then there is a constant c =

c(G,O) such that for any a ∈ Zm
>0 the number |τ−1(a)| of preimages of a under the

homomorphism τ : SG
O,1 → Zm

>0 is less than c.

Proof. In the proof of Proposition 1.4 it was shown that any element s ∈ SG
O,1 can be

written in the form (16). Therefore Proposition 1.5 follows from that the number of
different expressions of the form (17) is finite. ¤

Note that Proposition 1.5 is false if we consider the semigroup SO,1 instead of SG
O,1,

see, for example, Corollary 2.4.
An element s ∈ S(G,O) is called stabilizing if s · s1 = s · s2 for any s1, s2 ∈ S(G, O)

such that τ(s1) = τ(s2) and α(s1) = α(s2). A semigroup S(G,O) is called stable if it
possesses a stabilizing element.

Claim 1.8. If s is a stabilizing element of S(G, O), then for any s1 ∈ S(G, O)
the element s · s1 is also a stabilizing element. In particular, if S(G,O) is a stable
semigroup, then there is a stabilizing element s ∈ S(G,O) such that α(s) = 1.

Proof. Evident. ¤

Conway – Parker Theorem (see Appendix in [5]) gives some sufficient condition for
a semigroup SG to be stable. To formulate this theorem, recall that a Schur covering
group R of a finite group G is a group of maximal order with the property that R has a
subgroup M ⊂ R′ ∩Z(R) satisfying R/M ' G, where R′ = [R, R] is the commutator
subgroup and Z(R) is the center of R. Such an R always exists (but non necessarily
unique). The group M isomorphic to the Schur multiplier M(G) = H2(G,C∗) of G.
The Schur multiplier M(G) is said to be generated by commutators if M∩{g−1h−1gh |
g, h ∈ R} generates M .

Theorem 1.2. (Conway – Parker) ([5]) Let G be a finite group, O = G \ 1 =
Ci ∪ · · · ∪ Cm the decomposition into the union of conjugacy classes, and denote

s =
∏

g∈G\{1}
xng

g ∈ SG,
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where ng is the order of g in G. Assume that the Schur multiplier M(G) of G is
generated by commutators. Then there is a constant n = n(G) such that sn is a
stabilizing element of SG.

Note that a Schur covering group G of a finite group H satisfies the conditions of
Conway – Parker Theorem (see [5]).

In the next section we will prove that factorization semigroups SSd
over symmetric

groups Sd are also stable. On the other hand, there are many finite equipped groups
(G,O) for which S(G,O) is not a stable semigroup.

Proposition 1.6. Let (H, Õ) be a finite equipped group such that

(i) the elements of Õ generate the group H;
(ii) H ′ ∩ Z(H) 6= 1;

(iii) g̃1g̃
−1
2 6∈ Z(H) \ {1} for all g̃1, g̃2 ∈ Õ.

Let f : H → H/Z(H) = G be the natural epimorphism and put O = f(Õ) ⊂ G.
Then there are at least two elements s1, s2 ∈ SG

O,1 such that τ(s · s1) = τ(s · s2), but

s · s1 6= s · s2 for all s ∈ SG
O,1.

In particular, if Õ consists of a single conjugacy class of H, then there is a constant
N ∈ N such that for any t ∈ τ(SG

O,1)∩Z>N there are at least two elements s1, s2 ∈ SG
O,1

such that τ(s1) = τ(s2) = t, but s1 6= s2.

Proof. By (i), the elements of O generate the group G. By (iii), the surjective map
f|Õ : Õ → O is a bijection, and if we denote gi = f(g̃i) for g̃i ∈ Õ, then the equality

g−1
i gjgi = gk holds in G for some gi, gj, gk ∈ O if and only if the equality g̃−1

i g̃j g̃i = g̃k

holds in H. Therefore the induced homomorphism f∗ : SÕ → SO (sending the gen-
erators xg̃i

of SÕ to the generators xgi
of SO) is an isomorphism of semigroups. In

particular, the restriction of f∗ to SH
Õ,Z(H)

= {s̃ ∈ SH
O | α(s̃) ∈ Z(H)} gives an iso-

morphism between SH
Õ,Z(H)

and SG
O,1. In addition, the homomorphism f induces a

surjective homomorphism f∗ : ĤÕ → ĜO of C-groups associated to (H, Õ) and (G, O)

(sending the generators yg̃i
of ĤÕ to the generators ygi

of ĜO) such that the following
diagram

SÕ

β−→ ĤÕ

γ−→ H

SO
β−→ ĜO

γ−→ G

?
f∗'

?
f∗

?
f

is commutative and such that the induced homomorphism

f∗∗ : H1(ĤÕ,Z) → H1(ĜO,Z)

is an isomorphism compatible with isomorphism f∗ : SÕ → SO (that is, if s = f∗(s̃),
then τ(s) = f∗∗(τ(s̃)). Therefore to prove the first part of Proposition 1.6, it suffices
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to show that there are two elements s̃1, s̃2 ∈ SH
Õ,Z(H)

such that τ(s̃1) = τ(s̃2), but

α(s̃1) 6= α(s̃2). Indeed, for such two elements we will have that τ(s̃ · s̃1) = τ(s̃ · s̃2),
but α(s̃ · s̃1) 6= α(s̃ · s̃2) for all s̃ ∈ SH

Õ,Z(H)
. Therefore s1 = f∗(s̃1) and s2 = f∗(s̃2) are

non-equal elements of SO,1 and τ(s · s1) = τ(s · s2), but s · s1 6= s · s2 for all elements

s ∈ SG
O,1 in view of isomorphism f∗ : SH

Õ,Z(H)

'−→ SG
O,1.

It follows from Proposition 1.2 that for any subgroup Ĥ1 of ĤÕ we have

γ(Ĥ1 ∩ Z(ĤÕ)) = γ(Ĥ1) ∩ Z(H),

in particular,

γ(Ĥ ′
Õ
∩ Z(ĤÕ)) = H ′ ∩ Z(H).

Hence, by condition (ii), there is an element ĥ ∈ Ĥ ′
Õ
∩ Z(ĤÕ) \ {1}. By Lemma 1.2,

ĥ = ĥ1ĥ
−1
2 , where ĥ1 = β(ŝ1) and ĥ2 = β(ŝ2) for some ŝ1, ŝ2 ∈ SÔ (that is, ĥ1 and ĥ2

are positive elements). Since ĥ ∈ Ĥ ′
Õ
, we have ab(ĥ1) = ab(ĥ2).

Each element of a finite group H can be expressed as a positive word in its gen-

erators. Therefore, by condition (i), there are ŝ ∈ SÕ and the positive element

ĝ = β(ŝ) ∈ ĤÕ such that γ(ĝ) = γ(ĥ−1
2 ). Denote also by ŝ0 =

∏
g̃i∈Õ xni

g̃i
∈ SH

Õ,1
,

where ni is the order of g̃i. Then s̃1 = ŝ0 · ŝ · ŝ1 and s̃2 = ŝ0 · ŝ · ŝ2 are desired elements.

To prove the second part of Proposition 1.6, let us choose elements s1, . . . , sn gen-

erating SG
O,1 (by Proposition 1.4, the semigroup SG

O,1 is finitely generated in the case
when O consists of a single conjugacy class) and let s1, s2 be elements the existence

of which was proved in the first part of the proof. Denote by t0 = τ(s1) = τ(s2) and

ti = τ(si), i = 1, . . . , n, and let GCD(t1, . . . , tn) = d, ti = aid. Then the type τ(s)
of any element of SG

O,1 is divisible by d. Let us show that there is a constant M ∈ N
such that for any j ∈ N there is an element s ∈ SG

O,1 with τ(s) = (M + j)d. Indeed,
there are q1, . . . , qn ∈ Z such that

n∑
i=1

qiai = 1. (18)

After renumbering of si we can assume that qi = −pi < 0 for i 6 k and qi > 0 for
i > k + 1. Denote by M = a1d

∑k
i=1 aipi and for j = 0, 1, . . . , a1 consider elements

s0,j =
k∏

i=1

s
(a1−j)pi

i ·
n∏

i=k+1

sjqi

i ∈ SG
O,1.

We have

τ(s0,j) = da1

k∑
i=1

piai + dj(−
k∑

i=1

aipi +
n∑

i=k+1

aiqi) = d(M + j)
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for 0 6 j 6 a1. Then τ(sm
1 · s0,j) = d(ma1 + M + j). From this it is easy to see

that M satisfies the property that for any j ∈ N there is an element s ∈ SG
O,1 with

τ(s) = (M + j)d, since

{d(ma1 + M + j) | m > 0, 0 6 j 6 a1} = dN>M .

To complete the proof of Proposition 1.6, note that N = M + t0 = M + τ(s1) is a
desired constant. ¤

It is not difficult to give examples of groups H satisfying conditions of Proposition
1.6. For example, let H = SLp−1(Zp) be the group of (p− 1)× (p− 1)-matrices with
determinant 1 over the finite field Zp, p 6= 2. It is well-known that H ′ = H and Z(H),
consisting of scalar matrices, is a cyclic group of order p− 1. For i 6= j denote by ei,j

the matrix whose entries are all zero except one entry equal to one at the intersection
of the ith row and jth column. Put ti,j = e + ei,j, where e is the identity matrix.
It is well known that the matrices ti,j (the transvections) are all conjugate and that
they generate the group H = SLp−1(Zp). Therefore for equipped group (G,O), where
G = PGLp−1(Zp) and O is the set of transvections, almost all elements of SG

O,1 are

not defined uniquely by their type, that is, SG
O,1 (and, respectively, SO) is not a stable

semigroup.

2. Factorization semigroups over symmetric groups

2.1. Basic notations and definitions. Let Sd be the symmetric group acting on
the set {1, . . . , d} = Id. Remind that an element σ = (i1, . . . , ik) ∈ Sd sending i1 to i2,
i2 to i3, . . . , ik−1 to ik, ik to i1, and leaving fixed all over elements of Id is called a cyclic
permutation of length k. A cyclic permutation of length 2 is called a transposition.
Any cyclic permutation σ = (i1, . . . , ik) is a product of k − 1 transpositions:

σ = (ik, ik−1)(ik−1, ik−2) . . . (i2, i1). (19)

A factorization (19) of σ = (i1, . . . , ik) is called canonical if i1 = min16j6k ij.
As is well-known, any permutation σ ∈ Sd, σ 6= 1, can be represented as a product

of cyclic permutations:

σ = (i1,1, . . . , ik1,1)(i1,2, . . . , ik2,2) . . . (i1,m, . . . , ikm,m), (20)

where k1 > k2 > . . . > km > 2 and any two sets {i1,j1 , . . . , ikj1
,j1} and {i1,j2 , . . . , ikj2

,j2}
have empty intersection if j1 6= j2. If σ is written in the form (20), then the ordered
collection t(σ) = [k1, . . . , km] is called the type of σ and the number lt(σ) =

∑m
i=1 ki−m

is called the transposition length of σ.
Note that for any k1 > k2 > . . . > km > 2 such that

∑
kj 6 d there is a permutation

σ of the type [k1, . . . , km], and as is known, two permutations σ1 and σ2 are conjugated
in Sd if and only if t(σ1) = t(σ2). For a fixed type t(σ) = [k1, . . . , km] a permutation

(1, . . . , k1)(k1 + 1, . . . , k1 + k2) . . . (
m−1∑
i=1

ki + 1, . . . ,
m∑

i=1

ki)
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is called the canonical representative of the type t(σ). The type t(σ1) = [k1,1, . . . , km1,1]

is said to be greater than the type t(σ2) = [k1,2, . . . , km2,2] if there is l > 0 such

that k1,i = k2,i for i 6 l and k1,l+1 > k2,l+1 (here kj,i = 0 if i > mj). We say

that a cyclic permutation σ1 = (j1, . . . , jk1) is greater than a cyclic permutation

σ2 = (l1, . . . , lk2) if either t(σ1) > t(σ2) or if t(σ1) = t(σ2) then there is r < k1 = k2

such that j1 = l1, . . . , jr = lr, and jr+1 > lr+1 in the canonical factorizations of σ1

and σ2. Finally, we say that a permutation σ1 is greater than a permutation σ2 if

either t(σ1) > t(σ2) or if t(σ1) = t(σ2) and σi = σi,1 . . . σi,m, i = 1, 2, are cyclic

factorizations, then there is l such that σ1,j = σ2,j for j < l and σ1,l > σ2,l. Denote

by T = {t1 < t2 < · · · < tN} the set of all types of permutations σ ∈ Sd.

By definition, the factorization semigroup Σd = S(Sd,Sd) over the symmetric group

Sd is generated by the alphabet X = {xσ | σ ∈ Sd}. Let s = xσ1 · . . . · xσn be an

element of Σd. Applying relations (1) and (2), we can assume that t(σ1) 6 . . . 6 t(σn),

then the sum τ(s) =
∑N

i=1 aiti is the type of s, where ai is the number of factors xσj
,

t(σj) = ti, interning in s.
For a subgroup Γ of Sd denote ΣΓ

d = {s ∈ Σd | α(s) ∈ Γ}.

2.2. Decompositions into products of transpositions. Denote by Td the set of

transpositions in Sd. The subsemigroup STd
of Σd is generated by x(i,j), 1 6 i, j 6 d,

i 6= j, being subject to the relations

x(i,j) = x(j,i) for all {i, j}ord ⊂ Id;
x(i1,i2) · x(i1,i3) = x(i2,i3) · x(i1,i2) = x(i1,i3) · x(i2,i3) for all {i1, i2, i3}ord ⊂ Id;
x(i1,i2) · x(i3,i4) = x(i3,i4) · x(i1,i2) for all {i1, i2, i3, i4}ord ⊂ Id

(21)

(here {i1, . . . , ik}ord means a subset of Id consisting of k ordered elements, so that for

any subset {i1, . . . , ik} of Id we have k! ordered subsets {σ(i1), . . . , σ(ik)}ord, σ ∈ Sk).

Denote by STd,1 = STd
∩ Σd,1. By Proposition 1.1 (4), the semigroup Σd,1 is a

subsemigroup of the center of Σd. In particular it is a commutative semigroup.

It is easy to see that for each {i, j} ⊂ Id the element s(i,j) = xi,j ·xi,j = x2
(i,j) belongs

to STd,1. The element

hd,g = sg+1
(1,2) · s(2,3) · . . . · s(d−1,d) ∈ STd,1 ⊂ Σd

is called a Hurwitz element of genus g.

Lemma 2.1. For any ordered subset {j1, . . . , jk+1}ord ⊂ Id and for any i, 1 6 i 6 k,

the element s = x(j1,j2) · x(j2,j3) · . . . · x(jk−1,jk) · x(ji,jk+1) ∈ STd
is equal to

si = x(j1,j2) · . . . · x(ji−1,ji) · x(ji,jk+1) · x(jk+1,ji+1) · x(ji+1,ji+2) · . . . · x(jk−1,jk).
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Proof. By (21), we have (in each step of transformations the underlining means that
we will transform the underlined factors and the result of transformation is written
in brackets)

s = x(j1,j2) · x(j2,j3) · . . . · x(ji+1,ji+2) · . . . · x(jk−1,jk) · x(ji,jk+1) =

x(j1,j2) · . . . · x(ji,ji+1) · (x(ji,jk+1) · x(ji+1,ji+2) · . . . · x(jk−1,jk)) =

x(j1,j2) · . . . · x(ji−1,ji)(·x(ji+1,jk+1) · x(ji,ji+1)) · . . . · x(jk−1,jk) =

x(j1,j2) · . . . · x(ji−1,ji) · (x(ji,jk+1) · x(jk+1,ji+1)) · x(ji+1,ji+2) · . . . · x(jk−1,jk).

¤

Lemma 2.2. For any ordered subset {j1, . . . , jk}ord ⊂ Id and for any i, 1 6 i 6 k,
the element s = x(j1,j2) · x(j2,j3) · . . . · x(jk−1,jk) · x(ji,jk) ∈ STd

, where k 6 d− 1, is equal
to si = x(j1,j2) · . . . · x(ji−1,ji) · x(ji+1,ji+2) · . . . · x(jk−1,jk) · x2

(ji,ji+1)
.

Proof. By (21), we have

s = x(j1,j2) · x(j2,j3) · . . . · x(jk−1,jk) · x(ji,jk) =

x(j1,j2) · x(j2,j3) · . . . · x(jk−2,jk−1) · (x(ji,jk−1) · x(jk−1,jk)) = · · · =
x(j1,j2) · . . . · x(ji−1,ji) · x(ji,ji+1) · (x(ji,ji+1) · x(ji+1,ji+2)) · . . . · x(jk−1,jk) =
x(j1,j2) · . . . · x(ji−1,ji) · x2

(ji,ji+1)
· x(ji+1,ji+2) · . . . · x(jk−1,jk) =

x(j1,j2) · . . . · x(ji−1,ji) · (x(ji+1,ji+2) · x2
(ji,ji+1)

) · x(ji+2,ji+3) · . . . · x(jk−1,jk) = · · · =
x(j1,j2) · . . . · x(ji−1,ji) · x(ji+1,ji+2) · . . . · (x(jk−1,jk) · x2

(ji,ji+1)
) = si.

¤

Lemma 2.3. The following equalities:

x2
(i1,i2) · x(i2,i3) = x(i2,i3) · x2

(i1,i3) = x2
(i1,i3) · x(i2,i3) = x(i2,i3) · x2

(i1,i2); (22)

x2
(i1,i2) · x2

(i2,i3) = x2
(i1,i2) · x2

(i1,i3) = x2
(i2,i3) · x2

(i1,i3) (23)

hold for all ordered triples {i1, i2, i3}ord ⊂ Id; and

x2
(i1,i2) · x2

(i3,i4) = x2
(i3,i4) · x2

(i1,i2) (24)

hold for all ordered 4-tuples {i1, i2, i3, i4}ord ⊂ Id.

Proof. We will check only two of three equalities (22), since the inspection of the
other equalities is similar. By (21), we have

x2
(i1,i2) · x(i2,i3) = x(i1,i2) · x(i1,i2) · x(i2,i3) = x(i1,i2) · (x(i2,i3) · x(i1,i3)) =

(x(i2,i3) · x(i1,i3)) · x(i1,i3) = x(i2,i3) · x2
(i1,i3).

Similarly,

x2
(i1,i2) · x(i2,i3) = x(i1,i2) · x(i1,i2) · x(i2,i3) = x(i1,i2) · (x(i1,i3) · x(i1,i2)) =

(x(i2,i3) · x(i1,i2)) · x(i1,i2) = x(i2,i3) · x2
(i1,i2).
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¤

The following lemma is a particular case of Lemma 1.1.

Lemma 2.4. For any ordered subset {j1, . . . , jk}ord ⊂ Id the following equality:

x2
(j1,j2) · x(j1,j2) · x(j2,j3) · . . . · x(jk−1,jk) = x2

(ji,jl)
· x(j1,j2) · x(j2,j3) · . . . · x(jk−1,jk)

holds, where 1 6 i < l 6 k.

To each word w(x(i,j)) = x(i1,j1) . . . x(im,jm) ∈ W = W (Td), let us associate a graph

Γ̃w consisting of d vertices vi, 1 6 i 6 d, the set of edges is in one to one correspon-
dence with the collection of letters incoming in w so that two vertices vi and vj are
connected by an edge if the letter x(i,j) is contained in w, in particular the number of
edges connecting vertices vi and vj coincides with the number of entry of the letter

x(i,j) in w. The edges of the graph Γ̃w are numbered according to the position of the

corresponding letter in w. Denote by Viso the set of isolated vertices of Γ̃w (that is, a

vertex vi is isolated if it is not connected by an edge with some other vertex of Γ̃w)

and put Γw = Γ̃w \ Viso.

Lemma 2.5. For any s ∈ STd
and for any w1, w2 ∈ W (s) the graphs Γw1 and Γw2

have the same sets of vertices V (s) = V (Γw1) = V (Γw2).

Proof. It is easily follows from relations (21). ¤
Proposition 2.1. Let s ∈ STd

be of length k 6 d − 1. Then α(s) ∈ Sd is a cyclic
permutation of length k if and only if s satisfies the following condition:

there is a word w ∈ W (s) those graph Γw is a tree. (∗)
Moreover, an element s satisfying condition (∗) is uniquely defined by the cyclic per-
mutation α(s).

Proof. Let us show that if s satisfies condition (∗), then there are exactly k = ln(s)
words w1, . . . , wk ∈ W (s) such that Γwi

are simple paths if we go along the edges
according to their numbering. Indeed, it is easy to see that Lemma 2.1 implies the
existence of a word w1 = x(i1,i2)x(i2,i3) . . . x(ik−1,ik) whose graph Γw1 is a simple path.
Let us show that if we move the letter x(ik−1,ik) to the left then we again obtain a
word w2 defining the same element s and such that Γw2 is a simple path. Indeed, we
have

s = x(i1,i2) · . . . · x(ik−2,ik−1) · x(ik−1,ik) =

x(i1,i2) · . . . · x(ik−3,ik−2) · (x(ik−2,ik) · x(ik−2,ik−1)) = · · · =
(x(i1,ik) · x(i1,i2)) · . . . · x(ik−2,ik−1).

Repeating such transformations k times, we find desired words w1, . . . , wk.
We have α(s) = (i1, i2) . . . (ik−2, ik−1)(ik−1, ik) is a cyclic permutation of length k.

On the other hand, if σ ∈ Sd is a cyclic permutation of length k then it can be
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represented as a product of k − 1 transpositions σ = (i1, i2) . . . (ik−2, ik−1)(ik−1, ik)
and, obviously, that α(s) = σ for s = x(i1,i2) · . . . · x(ik−2,ik−1) · x(ik−1,ik) and the graph
Γx(i1,i2)...x(ik−2,ik−1)x(ik−1,ik)

satisfies condition (∗).
Now if we fix a set {i1, . . . , ik} ⊂ Id then there are exactly (k − 1)! distinct cyclic

permutations in Sd of length k cyclicly permuting the elements of the set {i1, . . . , ik}.
On the other hand, there are exactly k! distinct simple paths connecting the vertices
vi1 , . . . , vik . Therefore, the elements s satisfying condition (∗) are defined uniquely by
the cyclic permutations α(s). ¤
Theorem 2.1. For any s ∈ STd

the difference ln(s)− lt(α(s)) is a non-negative even
number and there are elements s̃ ∈ STd

and s ∈ STd,1 such that s = s̃ · s, the length
ln(s̃) = lt(α(s)) and α(s̃) = α(s).

If s ∈ SSd
Td

and ln(s) > lt(α(s))+2(d−1), then one can find a factorization s = s̃ ·s,
where s = hd,g with g = 1

2
(ln(s)− lt(α(s)))−d+1 and s̃ is such that ln(s̃) = lt(α(s)),

α(s̃) = α(s), moreover, s̃ is defined uniquely by α(s).

Proof. Consider the graph Γw of some w ∈ W (s). It splits into the disjoint union of
its connected components: Γw = Γw,1 t · · · t Γw,l. It is easily follows from (21) that
s = ϕ(w1(x(i,j))) · . . . · ϕ(wl(x(i,j))), where wi(x(i,j)) is a word in letters x(i,j)’s such
that Γwi

= Γw,i. Let si = ϕ(wi) ∈ STd
be an element defined by the word wi. We

have (Sd)si
∩ (Sd)sj

= 1 for i 6= j, in particular, si · sj = sj · si. Applying Lemma 2.1,
it is easy to see that for each i we can find a representation of si as a word in letters
x(i,j)’s such that

si = x(j1,i,j2,i) · . . . · x(jki−1,i,jki,i) · si,1

and the set {vj1,i, . . . , vjki
,i} is the complete set of the vertices of Γwi

.
Let x(ja,jb), a < b, be the first factor of si,1 if si,1 6= x1. Then it follows from

relations (21) and Lemma 2.2 that si can be written in the form : si = s′i · x2
(ja,jb)

.

Note that x2
(ja,jb)

∈ STd,1 and ln(s′i) = ln(si)−2 < ln(si), that is, we obtain that s can

be written in the form: s = s̃1 · s1, where ln(s̃1) < ln(s) and s1 ∈ STd,1, in addition,
α(s̃1) = α(s), since s1 ∈ STd,1. Repeating, if necessary, these arguments for s̃1, . . . ,
as a result we obtain that s can be written in the form: s = s̃ · s, where s ∈ STd,1 is a
product of some squares of x(i,j)’s and s̃ = s1 · . . .sm ∈ STd

, where for 1 6 i 6 m the
elements si = x(j1,i,j2,i) · . . . · x(iki−1,i,jki,i) are such that the subsets {j1,i, . . . , jki,i} and

{j1,l, . . . , jkl,l} of Id have the empty intersection for i 6= l. Therefore

α(s) = α(s̃) = (jk1,1, . . . , j1,1) . . . (jkm,m, . . . , j1,m)

and hence ln(s̃) = lt(α(s)).
Therefore, by Proposition 2.1, the elements si are defined uniquely (up to renum-

bering) by α(si).
Now let s = s̃ ·s ∈ SSd

Td
with ln(s) > lt(α(s))+2(d−1), where s ∈ STd1 is a product

of some squares of x(i,j)’s and s̃ is such that

α(s) = α(s̃) = (j1,1, . . . , jk1,1) . . . (j1,m, . . . , jkm,m)
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and ln(s̃) = lt(α(s)). Note that ln(s) > 2(d− 1), since ln(s̃) = lt(α(s)).
Consider the graphs Γw̃, Γw, and Γw̃w, where w̃ ∈ W (s̃), w ∈ W (s), and w̃w ∈

W (s). Let us show that there is a factorization of s = s̃ · s such that Vs = Id. First of
all, we have Vs = Id, since (Sd)s = Sd. Assume that Vs 6= Id for some factorization of

s = s̃ ·s and let s = ϕ(w(x2
(i,j))) and s̃ = ϕ(w̃(x(i,j))). Since ln(s) > 2(d−1), it follows

from Lemma 2.3 that there is a connected component Γ1 of Γw such that for any pair
of vertices vi1 , vi2 ∈ Γ1 we can find a word w ∈ W (s) such that s = (x2

(i1,i2))
2 · s′.

Next, since Vs = Id, then there is a pair vi0 , vi2 ∈ Vs̃ such that vi0 6∈ Vs, vi2 ∈ Vs, and
s̃ = s̃′ · x(i0,i2). By Lemma 2.3, we have

s = s̃ · s = s̃′ · x(i0,i2) · x2
(i1,i2) · x2

(i1,i2) · s′ = s̃′ · x(i0,i2) · x2
(i0,i1) · x2

(i1,i2) · s′ = s̃ · s1,

where either Vs1 = Vs ∪{i0} or for a word w1 ∈ W (s1) the number of connected com-
ponents of the graph Γw1 is strictly less than the number of connected components of
Γw. Repeating this transformation several times, as a result we obtain a factorization
s = s̃ · s, such that Vs = Id. Now, to complete the proof of Theorem 2.1 it suffices to
apply once more Lemma 2.3. ¤
Proposition 2.2. There is a unique homomorphism r : Σd → STd

such that

(i) α(r(xσ)) = σ for σ ∈ Sd,
(ii) ln(r(xσ)) = lt(σ),

(iii) r|STd
= Id.

Proof. Each element σ ∈ Sd, σ 6= 1, can be factorized into a product of pairwise com-
muting cycles: σ = σ1 . . . σm and such a factorization is unique up to permutations
of factors. According to Proposition 2.1, each of these cyclic permutations σi defines
uniquely an element si ∈ STd

such that ln(si) = ki− 1 and α(si) = σi, where ki is the
length of the cycle σi, and therefore the product s(σ) = s1 · . . . · sm ∈ STd

is defined
uniquely by σ. It is easy to see that the map σ 7→ s(σ) defines a homomorphism
r : Σd → STd

given by r(xσ) = s(σ) on the set of generators of Σd. It is obvious that
lnt(s) = ln(r(s)) and r|STd

= Id. ¤

The homomorphism r : Σd → STd
defined in Proposition 2.2 is called the regen-

erating homomorphism and the number lnt(s) = ln(r(s)) is called the transposition
length of s ∈ Σd.

2.3. Decompositions of the unity into products of transpositions. Let us
consider the semigroup STd,1.

Theorem 2.2. The semigroup STd,1 is commutative and it is generated by the ele-
ments s(i,j) = x2

(i,j), {i, j} ⊂ Id, being subject to the relations

s(i1,i2) · s(i2,i3) = s(i1,i2) · s(i1,i3) = s(i2,i3) · s(i1,i3) (25)

for all ordered triples {i1, i2, i3}ord ⊂ Id and

s(i1,i2) · s(i3,i4) = s(i3,i4) · s(i1,i2) (26)
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for all ordered 4-tuples {i1, i2, i3, i4}ord ⊂ Id. Moreover, any element s ∈ STd,1 has a
normal form, that is, it can be uniquely written in the form

s = (sk1

(i1,1,i2,1) ·s(i2,1,i3,1) · . . . ·s(ij1−1,1,ij1,1)) · . . . · (skn

(i1,n,i2,n) ·s(i2,n,i3,n) · . . . ·s(ijn−1,n,ijn,n)),

where 1 6 i1,1 < i1,2 < · · · < i1,n 6 d − 1, kl ∈ N for l = 1, . . . , n, the sets
Ml = {i1,l < i2,l, · · · < ijl,l}, 1 6 l 6 n, are subsets of Id of cardinality jl > 2 such
that Ml1 ∩Ml2 = ∅ for l1 6= l2.

Proof. It follows from Theorem 2.1 that STd,1 is generated by s(i,j)’s. By Lemma 2.3,
the elements s(i,j) satisfy relations (25) and (26).

Like in the proof of Theorem 2.1, for each s = s(j1,j2) · . . . ·s(jm−1,jm) we can associate
a graph Γw, where w is a word in letters s(i,j) representing the element s. The graph
Γw splits into the disjoint union of its connected components: Γw = Γw,1 t · · · t Γw,n.
It is easily follows from (21) that w = w1(s(i,j)) . . . wn(s(i,j)), where wl(s(i,j)) is a word
in letters s(i,j)’s such that Γwl

= Γw,l. Let sl ∈ STd,1 be an element defined by the
word wl, that is, sl = ϕ(wl).

It is easily follows from relations (25) and (26) that each element sl can be uniquely
written in the form

sl = skl

(i1,l,i2,l)
· s(i2,l,i3,l) · . . . · s(ijl−1,l,ijl,l

), (27)

where the set Ml = {i1,l < i2,l, · · · < ijl,l}, 1 6 l 6 n, is in one to one correspondence
with the set of vertices of the connected component Γw,l of the graph Γw. ¤

Remark 2.1. Note that the element skl

(i1,l,i2,l)
· s(i2,l,i3,l) · . . . · s(ijl−1,l,ijl,l

) in (27) is the

Hurwitz element hjl,kl−1 of the semigroup STjl
,1 if we consider STjl

,1 as a subsemigroup
of STd,1

and the embedding is defined by the natural embedding Ml ↪→ Id.

Proposition 2.3. The Hurwitz element hd,g belongs to the center of the semigroup
Σd and it is fixed under the conjugation action of Sm on Σd.

For hd,g1 , hd,g2 we have

hd,g1 · hd,g2 = hd,g1+g2+d−1.

Proof. The first part of Proposition follows from Proposition 1.1, since, on the one
hand, α(hd,g) = 1 and the transpositions (i, i+1), i = 1, . . . , d−1, generate the group
(Sd)hd,g

. On the other hand, they generate the symmetric group Sd.
The second part of Proposition follows from Theorem 2.1. ¤

Moreover, as a corollary of Theorems 2.1 and 2.2 we obtain that a Hurwitz element
hd,g is defined uniquely in the semigroup STd

by its length and the following two
conditions.

Corollary 2.1. (Clebsch – Hurwitz Theorem) ([1]) Let an element s ∈ STd

satisfy the following conditions

(i) (Sd)s = Sd;
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(ii) α(s) = 1.

Then ln(s) > 2(d− 1) and s = hd,g, where g = ln(s)
2
− d + 1.

2.4. Factorizations in the symmetric groups (general case). In this subsection
we will prove the following generalization of Theorem 2.1.

Theorem 2.3. Let s = xσ1 · . . . · xσm · s ∈ Sd, where s ∈ STd
. For j = 1, . . . , m,

denote by σj,0 the canonical representative of the type t(σj) and by

σ = σ(s) = (σ1,0 . . . σm,0)
−1α(s).

If s ∈ ΣSd
d and ln(s) = k > 3(d− 1), then

s = xσ1,0 · . . . · xσm,0 · r(xσ) · hd,g,

where g = k−lnt(xσ)
2

− d + 1.

Proof. Let us show that there is a factorization

s = xσ′1 · . . . · xσ′m · x(i1,j1) · . . . · x(ik,jk) = xσ′1 · . . . · xσ′m · s1

such that t(σi) = t(σ′i) for i = 1, . . . , m and the set Vs1 of vertices of the graph Γw1 of
the word w1 = x(i1,j1) . . . x(ik,jk) ∈ W (s1) coincides with the set Id.

Indeed, let w ∈ W (s) and assume that Vs 6= Id. Since ln(s) > 3(d− 1), then there
is a connected component Γ1 of the graph Γw such that the number of its edges is
greater than the number of its vertices. Then it follows from the proof of Theorem
2.1 that for any vi1 , vi2 belonging to the set V (Γ1) of vertices of Γ1 there is a word
w′ ∈ W such that s = x2

(i1,i2) · ϕ(w′) and the vertices of V (Γ1) belong to one and the

same connected component of Γx2
i1,i2

w′ . Next, since (Sd)s = Sd, then there is σl for

some l, 1 6 l 6 m, such that σl(i1, i2)σ
−1
l = (i0, j0), where either vi0 or vj0 (but not

both) does not belong V (Γ1). Without loss of generality, we can assume that l = m.
We have

s = xσ1 · . . . · xσm · s = xσ1 · . . . · xσm · x2
(i1,i2) · ϕ(w′) =

xσ1 · . . . · xσm−1 · x(i0,j0) · xσm · x(i1,i2) · ϕ(w′) =
xσ1 · . . . · xσm−1 · ρ((i0, j0))(xσm) · x(i0,j0) · x(i1,i2) · ϕ(w′) =
xσ1 · . . . · xσm−1 · ρ((i0, j0))(xσm) · ϕ(w′′),

where w′′ = x(i0,j0)x(i1,j1)w
′ such that either the set of vertices of Γw′′ strictly contains

the set Vs or the number of connected components of Γw′′ is strictly less than the one
of Γw′ .

Repeating such transformations several times, as a result we obtain a factorization
of s of the form

s = xσ′1 · . . . · xσ′m · s1

such that s1 ∈ STd
and Vs1 = Id, and t(σ′j) = t(σj) for j = 1, . . . , m. For this

factorization we have (Sd)s1 = Sd and ln(s1) > 3(d− 1).
To complete the proof of Theorem 2.3 we will use induction by m. For m = 0

Theorem 2.3 follows from Theorem 2.1.
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Let m = 1. By Theorem 2.1 we have s1 = hd,0 · s′ for some s′ ∈ STd
.

Lemma 2.6. For any disjoint union {i1,1, . . . , ik1,1}t · · · t {i1,n, . . . , ikn,n} of ordered
subsets of Id the element hd,0 can be represented as a product

hd,0 = (x(i1,1,i2,1) · . . . · x(ik1−1,1,ik1,1)) · . . . · (x(i1,n,i2,n) · . . . · x(ikn−1,n,ikn,n)) · h,

where h is an element of SSd
Td

.

Proof. The subgroup STd,1
is commutative and the element hd,0 is invariant under the

conjugation action of Sd, therefore hd,0 can be written in the form

hd,0 = (s(i1,1,i2,1) · . . . · s(ik1−1,1,ik1,1)) · . . . · (s(i1,n,i2,n) · . . . · s(ikn−1,n,ikn,n)) · h̃,

where h̃ is an element of STd,1
. We have

s(i1,j ,i2,j) · . . . · s(ikj−1,j ,ikj,j) = x2
(i1,j ,i2,j)

· . . . · x2
(ikj−1,j ,ikj,j)

=

x(i1,j ,i2,j) · (x2
(i2,j ,i3,j)

· . . . · x2
(ikj−1,j ,ikj,j)

) · x(i1,j ,i2,j) = · · · =
(x(i1,j ,i2,j) · . . . · x(ikj−1,j ,ikj,j)) · (x(ikj−1,j ,ikj,j) · . . . · x(i1,j ,i2,j))

and the elements x(il1,j1
,il1+1,j1

) and x(il2,j2
,il2+1,j2

) commute if j1 6= j2. Now to complete
the proof of Lemma, note that Vsj

= Vsj
, where sj = s(i1,j ,i2,j) · . . . · s(ikj−1,j ,ikj,j) and

sj = x(ikj−1,j ,ikj,j) · . . . · x(i1,j ,i2,j). Therefore Vh = Id for h = (
∏

si) · h̃. ¤

For the canonical representative σm,0 of the type t(σm) there is σm ∈ Sd such
that σm,0 = σ−1

m σ′mσm. The permutation σm can be factorized into the product of
cyclic permutations and each cyclic permutation can be factorized into the product
of transpositions:

σm = ((i1,1, i2,1) . . . (ik1−1,1, ik1,1)) . . . ((i1,n, i2,n) . . . (ikn−1,n, ikn,n)).

Consider an element

r(xσm) = (x(i1,1,i2,1) · . . . · x(ik1−1,1,ik1,1)) · . . . · (x(i1,n,i2,n) · . . . · x(ikn−1,n,ikn,n)) ∈ STd
,

where r is the regenerating homomorphism. By Lemma 2.6,

hd,0 = r(xσm) · hm

with hm such that (Sd)hm
= Sd.

We have
s = xσ′m · hd,0 · s′ = xσ′m · r(xσm) · hm · s′ =

r(xσm) · xσm,0 · hm · s′ = xσm,0 · r(xσ′m) · hm · s′,
where xσ′m = λ(σm,0)(xσm). We have s′1 = r(xσ′m) ·hm · s′ ∈ STd

, its length ln(s′1) = k,

its image α(s′1) = σ−1
m,0α(s), and (Sd)s′1 = Sd. Therefore, by Theorem 2.1, s′1 =

r(xσ) · hd,g, where σ = α(s′1) = σ−1
m,0α(s) and g = k−lnt(xσ)

2
− d + 1.

Now, assume that Theorem 2.3 is proved for all m < m0 and consider an element

s = xσ1 · . . . · xσm0
· s1,
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where s1 ∈ STd
has the length k > 3(d− 1) and it is such that (Sd)s1 = Sd. We have

s = xσ1 · . . . · xσm0
· s1 = xσ′2 · . . . · xσ′m0

· xσ1 · s1 =

xσ′2 · . . . · xσ′m0
· xσ1,0 · s′1 = xσ1,0 · xσ′′2 · . . . · xσ′′m0

· s′1,
where σ′j = σ1σjσ

−1
1 and σ′′j = σ−1

1,0σ
′
jσ1,0 for j = 2, . . . , m, and the element s′1 ∈ Sd is

such that ln(s′1) = k and (Sd)s′1 = Sd. Therefore, by inductive assumptions, we have

s = xσ1,0 · (xσ′′2 · . . . · xσ′′m0
· s′1) = xσ1,0 · (xσ2,0 · . . . · xσm0,0 · s′′1),

where the element s′′1 ∈ Sd is such that ln(s′′1) = k and (Sd)s′′1 = Sd. By Theorem

2.1, we have s′′1 = r(xσ) · hd,g, where σ = α(s′′1) = (σ1,0 . . . σm,0)
−1α(s) and g =

k−lnt(xσ)
2

− d + 1. ¤

Corollary 2.2. Let si = xσ1,i
· . . . · xσm,i

· si, i = 1, 2, be two elements of ΣSd
d ,

where si ∈ STd
of length ln(s1) = ln(s2) = k. Assume also that α(s1) = α(s2) and

τ(s1) = τ(s2). If k > 3(d− 1), then s1 = s2.

Corollary 2.3. The Hurwitz element hd,[ d
2
] is a stabilizing element of Σd, that is, the

semigroup Σd is stable.

2.5. Factorizations in S3. Consider the semigroups Σ3,1 ⊂ Σ3. The semigroup

Σ3 is generated by the elements x(1,2), x(1,3), x(2,3), x(1,2,3), and x(1,3,2) satisfying the

following relations:

x(1,2) · x(1,3) = x(2,3) · x(1,2) = x(1,3) · x(2,3); (28)

x(1,3) · x(1,2) = x(2,3) · x(1,3) = x(1,2) · x(2,3); (29)

x(1,2) · x(1,2,3) = x(1,3,2) · x(1,2) = x(2,3) · x(1,3,2) = x(1,2,3) · x(2,3); (30)

x(1,2) · x(1,3,2) = x(1,2,3) · x(1,2) = x(1,3) · x(1,2,3) = x(1,3,2) · x(1,3); (31)

x(2,3) · x(1,2,3) = x(1,3,2) · x(2,3) = x(1,3) · x(1,3,2) = x(1,2,3) · x(1,3); (32)

x(1,3) · x(1,3,2) = x(1,2,3) · x(1,3) = x(2,3) · x(1,2,3) = x(1,3,2) · x(2,3), (33)

x(1,2,3) · x(1,3,2) = x(1,3,2) · x(1,2,3). (34)

Denote by

s1 = x2
(1,2), s2 = x2

(2,3), s3 = x2
(1,3), s4 = x(1,2,3) · x(1,3,2),

s5 = x(1,2,3) · x(1,2) · x(2,3), s6 = x3
(1,2,3), s7 = x3

(1,3,2).

It is easy to see that s1, . . . , s7 ∈ Σ3,1.
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Theorem 2.4. The semigroup Σ3,1 has the following presentation:

Σ3,1 = {s1, . . . , s7 | si · sj = sj · si for 1 6 i, j 6 7;
si · sk = sj · sk for 1 6 i, j 6 3, 4 6 k 6 7;
si · s6 = si · s7 for 1 6 i 6 3;
s1 · s2 = s1 · s3 = s2 · s3;
s3
4 = s6 · s7;

s2
5 = s2

1 · s4 s3
5 = s3

1 · s6;
s4 · s5 = s1 · s6 = s1 · s7}.

Proof. First of all let us show that the elements s1, . . . , s7 generate Σ3,1. Indeed,
assume that any s ∈ Σ3,1 of length ln(s) 6 k can be written as a word in s1, . . . , s7

and consider an element s ∈ Σ3,1 of length ln(s) = k + 1. Moving the factors x(1,2,3)

and x(1,3,2) to the left side, any element s ∈ Σ3,1 can be written in the following form

s = xa
(1,2,3) · xb

(1,3,2) · s′,
where a, b are non-negative integers and s′ is a word in letters x(1,2), x(1,3), and x(2,3).

By Lemmas 2.1 and 2.2, if ln(s′) > 3, then s′ can be written in the form s′ =
x2

(i,j) · s′′. Similarly, if either a > 3, or b > 3, or both a and b are positive, then

s = si · s̃, where i is either 6, or 7, or 4 and s̃ ∈ Σ3,1, ln(s̃) 6 k − 1. So we need
to consider only the cases when ln(s′) 6 2 and either 0 6 a 6 2, b = 0 or a = 0,
0 6 b 6 2. If a = b = 0, then it is obvious that s′ = si for some i = 1, 2, 3, since
s = s′ ∈ Σ3,1.

Consider the case a = 1 and b = 0, that is, s = x(1,2,3) · s′. Since s ∈ Σ3,1

and α(x(1,2,3)) = (1, 2, 3), we have α(s′) = (1, 3, 2). Therefore s′ is equal to either
x(1,2) · x(2,3), or x(1,3) · x(1,2), or x(2,3) · x(1,3). But, by (29), the last three elements are
equal to each other and in this case s = s5.

Similarly, if a = 0, b = 1, that is, s = x(1,3,2) · s′, then we obtain that s′ is equal to
either x(1,3) ·x(2,3), or x(2,3) ·x(1,2), or x(1,2) ·x(1,3), and, by (28), the last three elements
are equal to each other. Therefore, by (31), we have

s = x(1,3,2) · x(1,3) · x(2,3) = x(1,3) · x(1,2,3) · x(2,3) = x(1,2,3) · x(1,2) · x(2,3) = s5.

If a = 2, b = 0, that is, s = x2
(1,2,3) · s′, then we obtain that α(s′) = (1, 2, 3) and

hence s′ = x(2,3) · x(1,2). Therefore, by (30),

s = x2
(1,2,3)·x(2,3)·x(1,2) = x(1,2,3)·x(2,3)·x(1,3,2)·x(1,2) = x(1,2,3)·x(1,3,2)·x(1,2)·x(1,2) = s4·s1.

Finally, if a = 0, b = 2, that is, s = x2
(1,3,2) · s′, then we have α(s′) = (1, 3, 2) and

hence s′ = x(1,3) · x(1,2). Therefore, by (31),

s = x2
(1,3,2) ·x(1,3) ·x(1,2) = x(1,3,2) ·x(1,3) ·x(1,2,3) ·x(1,2) = x(1,3,2) ·x(1,2,3) ·x(1,2) ·x(1,2) = s4 ·s1

and as a result we obtain that Σ3,1 is generated by s1, . . . , s7.
Since the inspection, that the generators s1, . . . , s7 of Σ3,1 satisfy all relations men-

tioned in the statement of Theorem 2.4, is similar, we will check only one of them
and the inspection of all other relations will be left to the reader.
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Let us show, for example, that s4 · s5 = s6 · s1. By (28) – (34), we have

s4 · s5 = x(1,2,3) · x(1,3,2) · x(1,2,3) · x(1,2) · x(2,3) = x(1,2,3) · (x(1,2,3) · x(1,3,2)) · x(1,2) · x(2,3) =

x(1,2,3) · x(1,2,3) · (x(1,2) · x(1,2,3)) · x(2,3) = x(1,2,3) · x(1,2,3) · x(1,2) · (x(1,2) · x(1,2,3)) =

x(1,2,3) · x(1,2,3) · x(1,2) · (x(1,3,2) · x(1,2)) = x(1,2,3) · x(1,2,3) · (x(1,2,3) · x(1,2)) · x(1,2) = s6 · s1.

The statement that the relations, mentioned in Theorem 2.4, are defining follows
from the next theorem.

¤
Theorem 2.5. Each element s ∈ Σ3,1, s 6= 1, has a normal form, that is, it is equal
to one and the only one element of the following form

s =





sn
i , i = 1, 2, 3, n ∈ N,

sa
4 · sm

6 · sn
7 , 0 6 a 6 2, m > 0, n > 0, a + m + n > 0,

sn
1 · s2, n ∈ N,

sn
1 · sm

6 , m, n ∈ N,
sn
1 · s5 · sm

6 , m > 0, n > 0,
sn
1 · s4 · sm

6 , m > 0, n > 0.

Proof. If s 6∈ ΣS3
3,1, then it is obvious that s is equal either sn

i , i = 1, 2, 3, or sa
4 · sm

6 · sn
7 .

Let s ∈ ΣS3
3,1. If s ∈ ST3,1, then by Clebsch – Hurwitz Theorem s = h3,g for some g.

Let s = s′ · s′′, where s′ = xk1

(1,2,3) · xk2

(1,3,2) and s′′ ∈ ST3 . Applying relations (30)

– (33), we can assume that s′ = xk
(1,2,3) for k = k1 + k2. If k ≡ 0 (mod 3), then by

relations in Theorem 2.4, we have s = sn
1 · sm

6 . If k ≡ 1 (mod 3), then s′ = sm
6 · x(1,2,3)

and x(1,2,3) · s′′ ∈ Σ3,1. By Theorem 2.4, x(1,2,3) · s′′ = s5 · sn
1 for some n > 0. Similarly,

if k ≡ 2 (mod 3), then s′ = sm
6 · x2

(1,2,3) and x2
(1,2,3) · s′′ ∈ Σ3,1. Applying relations (30)

– (33), we get x2
(1,2,3) · s′′ = x(1,2,3) · x(1,3,2) · s′′1 = s4 · s′′1 for some s′′1 ∈ ST3,1, and by

relations in Theorem 2.4, we obtain that s = sn
1 · s4 · sm

6 . ¤
Theorem 2.6. Up to simultaneous conjugation, an element s ∈ Σ3 is equal either to
s, where s is an element of Σ3,1 described in Theorem 2.5, or to

s =





x2k+1
(1,2) , k > 0,

xn
(1,2,3) · xm

(1,3,2), n > m, n or m 6≡ 0 (mod 3),

xn
(1,2) · x(2,3), n ∈ N,

xn
(1,2) · x3m

(1,2,3) · xa
(1,3,2), n ∈ N, m > 0, a = 0, 1, 2, and a 6= 0 if n ≡ 0(mod 2).

Proof. To prove Theorem 2.6, one must consider separately the following cases:
1)(S3)s = S2;
2) (S3)s = A3, where A3 is the alternating group;
3) s ∈ ST3 , (S3)s = S3, and α(s) is either a transposition or a cyclic permutation

of length 3;
4) s 6∈ ST3 , (S3)s = S3, and α(s) is either a transposition or a cyclic permutation

of length 3.
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It is easy to see that in the first three casees s is equal (up to conjugation) respectively
to 1) x2k+1

(1,2) ; 2) xn
(1,2,3) · xm

(1,3,2), 3) xn
(1,2) · x(2,3).

In case 4) we have s = s1 · s2, s1 ∈ STd
and s2 is represented as a word in letters

x(1,2,3) and x(1,3,2). By (30) and (31), we can assume that s1 = xn
(1,2). Next, we have

x(1,2) · x3
(1,2,3) = x3

(1,3,2) · x(1,2) = x(1,2) · x3
(1,3,2).

Applying these relations and (34), we obtain that s = xn
(1,2) · x3m

σ · xa
σ−1 , where σ =

(1, 2, 3) or (1, 3, 2). To complete the proof, notice that λ((1, 2))(xσ) = xσ−1 . ¤
Corollary 2.4. Let (S3)s = S2 or S3 for s ∈ Σ3. Then s is uniquely defined up to
simultaneous conjugation by its type τ(s) and the type t(α(s)) of its image α(s) ∈ S3.

Up to simultaneous conjugation, there are exactly [n
6
]+1 different elements s ∈ ΣA3

3,1

of ln(s) = n, and if α(s) 6= 1, then there are exactly m = −[−n
3

] different elements

s ∈ ΣA3
3 of ln(s) = n.

2.6. Cayley’s imbeddings. As is well-known, any finite group G can be embedded
into some symmetric group. In particular, if N = |G| is the order of a group G, then
we can have Cayley’s imbedding c : G ↪→ Sym(G) ' SN :

(g1)σg = g1g for g, g1 ∈ G, c(g) = σg,

that is, G acts on itself by multiplication from the right side. Let us identify the group
G with its image c(G) and denote by N(G) and C(G) the normalizer and centralizer
of G in SN , respectively. Since N(G) acts on G by conjugations, we have the natural
homomorphism a : N(G) → Aut(G).

Theorem 2.7. Let c : G ↪→ Sym(G) ' SN be the Cayley’s imbedding of a finite
group G. Then the natural homomorphism a : N(G) → Aut(G) has the following
properties:

(i) a is an epimorphism,
(ii) ker a = C(G) ' G,

(iii) the group generated by G and C(G) is isomorphic to the amalgamated direct
product G×C G, where C is the center of G.

Proof. Consider an automorphism f ∈ Aut(G) as a permutation σf ∈ SN of the
elements of G:

(g)σf = f(g) for g ∈ G.

Let us show that σf ∈ N(G). For all g1 ∈ G we have

(g1)σ
−1
f σgσf = (f−1(g1))σgσf = (f−1(g1)g)σf = f(f−1(g1)g) = g1f(g) = (g1)σf(g),

that is, σ−1
f σgσf = σf(g) ∈ G for all g ∈ G. Hence σf ∈ N(G) and, moreover, the

conjugation of the elements of G by σf defines the automorphism f of the group G.
Therefore the homomorphism a is an epimorphism.
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It is obvious that C(G) = ker a. Consider σ ∈ C(G). We have σgσ = σσg for all
g ∈ G. Therefore

(g1)σgσ = (g1g)σ = ((g1)σ) · g
for all g1, g ∈ G. In particular, for g1 = 1 if we denote (1)σ by gσ, then we have

(1)σgσ = (g)σ = gσg

for all g ∈ G. The equality (g)σ = gσg shows that σ acts on G as multiplication in G
from the left side by the element gσ ∈ G. Obviously, the multiplications by elements
of G from the left side and from the right side commute. Therefore C(G) ' G.

Remind that, by definition, the group G acts on itself by the multiplication from
the right side. It is easy to see from this that the group generated by G and C(G) is
isomorphic to the amalgamated direct product G×CG, where C is the center of G. ¤

Any imbedding G ↪→ Sd defines an imbedding S(G,O) ↪→ Σd. Let c : SG =
S(G,G) ↪→ Σd be the imbedding of semigroups defined by Cayley’s imbedding c :
G → SN . Theorem 2.7 implies the following

Corollary 2.5. The orbits of conjugation action of SN on ΣN intersecting S(G,G)
are in one to one correspondence with the orbits of the action Aut(G) on S(G,G).

3. Hurwitz spaces

3.1. Marked Riemannian surfaces. Let f : C → DR = {z ∈ C | |z| 6 R} be a
Riemannian surface, that is, f is a finite proper continuous ramified covering of the
disc DR = {|z| 6 R} (or P1 if R = ∞) of degree d branched at finite number of
points in D0

R = DR \ ∂DR = {|z| < R} (it is not assumed that C is necessary to
be connected). Two coverings (C ′, f ′) and (C ′′, f ′′) of DR are said to be isomorphic
if there is a homeomorphism h : C ′ → C ′′ preserving the orientation and such that
f ′ = h ◦ f ′′, and they are said to be equivalent if there are preserving orientations
homeomorphisms ψ : DR → DR and ϕ : C ′ → C ′′ such that ψ leaves fixed the
boundary ∂DR and ψ ◦ f ′ = f ′′ ◦ ϕ. Denote by RR,d the set of equivalence classes of
the coverings of DR of degree d with respect to this equivalence.

Let q1, . . . , qb ∈ D0
R be the points over which f is ramified. Let us fix the point

o = oR = e
3
2
πiR ∈ ∂DR (if R = ∞, then, by definition, o∞ = ∞ = P1\C) and number

the points in f−1(o). A numbering of the points in f−1(o) defines an order on the
points in f−1(o). Such coverings (C, f) with fixed point o ∈ DR and fixed ordering
of the points of f−1(o) will be called coverings with ordered set of sheets or a marked
coverings. We say that marked coverings (C ′, f ′)m and (C ′′, f ′′)m are equivalent if
there are homeomorphisms ψ : DR → DR and ϕ : C ′ → C ′′ preserving orientations
and such that

(i) ψ leaves fixed the boundary ∂DR;

(ii) ϕ(p′i) = p′′i ∈ f ′′
−1

(o) for each p′i ∈ f ′
−1

(o), i = 1, . . . , d;
(iii) ψ ◦ f ′ = f ′′ ◦ ϕ.
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Denote by Rm
R,d the set of equivalence classes of the marked coverings of DR of degree

d with respect to this equivalence. Renumberings of sheets define an action of the
symmetric group Sd on Rm

R,d and it is easy to see that RR,d = Rm
R,d/Sd.

If R1 < R2 < ∞, then any ramified covering f : C → DR1 can be extended to a

ramified covering f̃ : C̃ → DR2 non-ramified over DR2 \DR1 . The lift of the path

l(t) = e
3
2
πi(R2t + (1− t)R1) ⊂ DR2 \D0

R1
, t ∈ [0, 1],

to C̃ defines d paths f̃−1(l(t)) connecting the points of f−1(oR1) and f−1(oR2). If
(C, f)m is a marked covering, then these paths transfer the order from the set f−1(oR1)
to the set f−1(oR2). As a result, we obtain an isomorphism iR1,R2 : Rm

R1,d ↪→Rm
R2,d.

Similarly, for any marked covering (C, f)m of P1 and for any R > 0 there is an
equivalent covering (C, f)m those branch points belong to D0

R. Consider the restric-

tion f̃ of f to C̃ = f
−1

(DR). If we lift the path

l(t) = e
3
2
πiR/t ⊂ P1 \D0

R, t ∈ [0, 1],

to C, then we obtain d paths f
−1

(l(t)) connecting the points of f−1(o∞) and f−1(oR)

which transfer the order from f
−1

(o∞) to the set f̃−1(oR). Obviously, the equivalence

class of obtained marked covering (C̃, f̃)m does not depends on the choice of a rep-
resentative (C, f)m. Therefore we obtain an imbedding of i∞,R : Rm

∞,d ↪→ Rm
R,d. It is

easy to see that i∞,R2 = iR1,R2 ◦ i∞,R1 for any R2 > R1 > 0.

3.2. Semigroups of marked coverings. A closed loop γ ⊂ DRr{q1, . . . , qb} start-
ing and ending at o = oR can be lifted to C by means of f and we get d paths staring
and ending at the points in f−1(o). Such lift of the loops defines a homomorphism (the
monodromy of marked covering) µ : π1(DR r {q1, . . . , qb}, o) → Sd to the symmetric
group Sd (the monodromy sends starting points of the lifted paths to the ends of the
corresponding paths). Conversely, if a homomorphism µ : π1(DR r {q1, . . . , qb}, o) →
Sd is given, then it defines a marked covering f : C → D whose monodromy is µ.

The fundamental group π1(DR r {q1, . . . , qb}, o) is generated by loops γ1, . . . , γb

of the following form. Each loop γi consists of a path li starting at o and ending
at a point q′i close to qi, followed by a circuit in positive direction (with respect to
the complex orientation on C) around a circle Γi of small radius with the center at
qi, q′i ∈ Γ, followed by the return to q0 along the path li in the opposite direction;
for i 6= j the loops γi and γj have the only one common point, namely, o; and the
product γ1 . . . γb = ∂DR in π1(DR r {q1, . . . , qb}, o). Such collection of generators is
called a good geometric base of the group π1(DR r {q1, . . . , qb}, o). It is well known
that if R < ∞, then γ1, . . . , γb are free generators of π1(DR r {q1, . . . , qb}, o), that is,
π1(DR r {q1, . . . , qb}, o) = 〈γ1, . . . , γb〉; and if R = ∞, then γ1, . . . , γb generate the
group π1(P1 r {q1, . . . , qb}, o) being subject to the relation γ1 . . . γb = 1.

If we choose a good geometric base γ1, . . . , γb, then the monodromy µ is defined
by a collection of elements σ1 = µ(γ1), . . . , σn = µ(γb) ∈ Sd called local monodromies
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and the product σ = σ1 . . . σb = µ(∂D) is called the global monodromy of f . It is easy
to see that if R = ∞, then the global monodromy is equal to 1.

The collection (σ1, . . . , σb) depends on the choice of a good geometric base γ1, . . . , γb.
Any good geometric base can be obtained from γ1, . . . , γb by means of a finite sequence
of Hurwitz moves. In the other words, the braid group Brb naturally acts on the
set of good geometric bases of π1(DR r {q1, . . . , qb}, o) as the Hurwitz moves ([7]).
Therefore if (σ′1, . . . , σ

′
b) is a collection corresponding to some other good geometric

base γ′1, . . . , γ
′
b, then the collection (σ′1, . . . , σ

′
b) can be obtained from (σ1, . . . , σb) by

means of a finite sequence of Hurwitz moves (see subsection 1.3).
Let R < ∞. One can define a structure of semigroup on the set Rm

R,d as follows.
Let (C1, f1)m and (C2, f2)m be two marked coverings of degree d. Let us choose two
continuous preserving the orientations imbeddings ϕj : DR → DR, j = 1, 2, of the
disc DR to itself leaving fixed the point o and such that

(i) the image ϕ1(DR) = {u ∈ DR | Re u > 0} is the right halfdisc and
ϕ1({u ∈ ∂DR | Re u 6 0}) = {u ∈ DR | Re u = 0} is the vertical diameter;

(ii) ϕ2(DR) = {u ∈ DR | Re u 6 0} is the left halfdisc and
ϕ2({u ∈ ∂DR | Re u > 0}) = {u ∈ DR | Re u = 0}.

Let us identify the points belonging to the sets f−1
1 (o) and f−1

2 (o) by means of the
orders on the sets of these points, and after that let us identify, by continuity, the
points belonging to the d paths f−1

1 ({u ∈ ∂DR | Re u 6 0}) in C1 with the points
belonging to the d paths f−1

2 ({u ∈ ∂DR | Re u > 0}) in C2 so that the images under
the mappings ϕ1 ◦ f1 ϕ2 ◦ f2 of the all identified points should be coincided. By
means of this identification, we can glue the surfaces C1 and C2 along these d paths
and, as a result we obtain a marked covering (C, f)m, where f(q) = ϕ1(f1(q)) if
q ∈ C1 and f(q) = ϕ2(f2(q)) if q ∈ C2. We call the obtained covering (C, f)m the
product of marked coverings (C1, f1)m and (C2, f2)m (notation: (C, f)m = (C1, f1)m ·
(C2, f2)m). It is easy to see that the product introduced above defines a structure of
non-commutative semigroup on Rm

R,d such that the maps iR1,R2 are isomorphisms of
semigroups for all R1 > R2 > 0.

It is obvious that the semigroup Rm
d = Rm

R,d is generated by the marked coverings
(C, f)m which are coverings of the disc D = DR with a single branch point q1.
Such coverings are defined uniquely (up to equivalence) by their global monodromy
σf = µ(∂D) ∈ Sd where µ = µf is the monodromy of the marked covering (C, f)m.
Therefore the number of generators is equal to d!. Denote by xσf

the generator of the
semigroup Rd corresponding to a covering (C, f)m with single branch point. A simple
inspection shows that in the semigroup Rm

d the generators xσ satisfy the following
defining relations:

xσ1 · xσ2 = xσ2 · x(σ−1
2 σ1σ2), xσ1 · xσ2 = x(σ1σ2σ−1

1 ) · xσ1 ,

and xσ1 · x1 = xσ1 , x1 · xσ2 = xσ2 for all σ1, σ2 ∈ Sd.
It is easy to check that if a marked covering (C, f)m is equal to xσ1 · . . . · xσn in

Rm
d , then its global monodromy σf = µ(∂D) is equal to the product σ1 . . . σn and it
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is obvious that the comparison to each marked covering its global monodromy defines
a homomorphism from Rm

d to the symmetric group Sd. Denote this homomorphism
by α : Rm

d → Sd.
Renumberings of the sheets of the marked coverings define an action of Sd on

Rm
d . Namely, an element σ0 ∈ Sd acts on the generators xσ by the following rule:

xσ 7→ x(σ−1
0 σσ0). This action defines a homomorphism λ : Sd → Aut(Rm

d ). Therefore

we obtain the following

Proposition 3.1. The semigroup Rm
d as a semigroup over Sd is naturally isomorphic

to Σd.

According to Proposition 3.1, we call the elements of Σd monodromy factorizations
of the coverings of degree d.

It is easy to see that the kernel ker α = Rm
d,1 = {(C, f)m ∈ Rm

d | σf = 1} is

a subsemigroup in Rm
d isomorphic to Σd,1 and if the disc D is embedded in P1,

then the elements of Rm
d,1 are the marked coverings f : C → D for which there are

extensions to marked coverings f̃ : C̃ → CP1 non-ramified over P1 \D. Note that the

extension f̃ : C̃ → CP1 of a marked covering f : C → D with the global monodromy
µf (∂D) = 1 is defined uniquely up to equivalence.

The inverse statement is also true: the image of Rm
∞,d under the imbedding i∞,R

coincides with Rm
d,1. In the sequel we will identify Rm

∞,d with the semigroup Rm
d,1 by

means of this isomorphism. As a result, we have the following

Proposition 3.2. On the set of equivalence classes of marked coverings of P1 of
degree d there is a natural semigroup structure isomorphic to Σd,1.

3.3. Hurwitz spaces of marked Riemannian surfaces. In this subsection we
describe the Hurwitz spaces HURm

d (D) of marked ramified degree d coverings of
D = DR considered up to isomorphisms. The space HURm

d (D) =
⊔∞

b=0 HURm
d,b(D) is

the disjoint union of the spaces of coverings branched at b points, b ∈ N.
As in [3], let us consider the symmetric product D(b) of b copied of D0 = D \ ∂D.

It is a complex manifold of dimension b obtained as the quotient of the cartesian
product Db = D0 × · · · ×D0 (with b factors) under the action of Sb which permutes
the factors. The points of D(b) will be identified with the sets of unordered b-tuples
of points of D0. Those b-tuples which contain fewer than b distinct points form the
discriminant locus ∆ of D(b).

For a point B0 = {q1,0, . . . , qb,0} ∈ D(b) \ ∆ let us fix the ordered subset B0 =
{q1,0, . . . , qb,0} ⊂ D and choose a good geometric base γ1, . . . , γb of π1(D \ B0, o).
Then any word w of the set of words Wb of length b in the letters xσ, σ ∈ Sd, defines
a marked covering f = fw : C → D branched over B0 and whose monodromy is µ
such that µ(γi) = σi, where xσi

is a letter in w standing at the i-th place.
The choice of a good geometric base allow us to choose the standard generators

a1, . . . , ab−1 in π1(D
(b) \∆, B0) ' Brb so that this choice defines an action of Brb on
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the set of words Wb (see subsection 1.3). In the other words, this choice defines a
homomorphism θd,b,R : π1(D

(b) \∆, B0) ' Brb → SN , where N = (d!)b.
The homomorphism θd,b,R allows us to define the space HURm

d,b(D) as an unramified

covering hd,b,R : HURm
d,b(D) → D(b) \ ∆ associated with θd,b,R. Indeed, if we fix a

marked covering f : C → D with monodromy µ such that µ(γi) = σi, then any path
δ(t), 0 6 t 6 1, in D(b) starting at B0 can be lifted to D and we obtain b paths
δi(t) in D starting at the points q1,0, . . . , qb,0. These paths define (up to isotopy) a

continuous family of homeomorphisms δt : D \ B0 → D \ {δ1(t), . . . , δb(t)} leaving
fixed the boundary ∂D such that δ0 = Id and we can consider a continuous family of
marked coverings ft : Ct → D branched at δ1(t), . . . , δb(t) and given by monodromy
µt such that µt(δt∗(γi)) = σi. It is obvious that if δ(t) is a loop, then the collection
(µ1(γ1), . . . , µ1(γb)) is Hurwitz equivalent to (µ0(γ1), . . . , µ0(γb)). Therefore the points
of the covering space HURm

d,b(D) of the covering hd,b,R : HURm
d,b(D) → D(b) \ ∆

naturally parametrize all the marked coverings of D of degree d branched at b points.
The degree of the covering hd,b,R is equal to (d!)b. As a result, we obtain the following

Proposition 3.3. The irreducible components of HURm
d,b(D) are in one to one cor-

respondence with the elements s of the semigroup Σd of length ln(s) = b.
There is a natural structure of a semigroup on the set of irreducible components of

HURm
d (D) isomorphic to Rd ' Σd.

For R2 > R1 > 0 we have the imbedding D
(b)
R1

↪→ D
(b)
R2

and it is easy to see that the

restriction of hd,b,R2 to h−1
d,b,R2

(D
(b)
R1
\∆) can be identified with hd,b,R1 : HURm

d,b(DR1) →
D

(b)
R1
\∆ by means of iR1,R2 .

According to Proposition 3.3, we will denote by HURm
d,s(D) the irreducible compo-

nent of HURm
d,ln(s)(D) corresponding to an element s ∈ Σd. In particular, the global

monodromy σf = µ(∂D) = α(s) ∈ Sd is an invariant of the irreducible component
HURm

d,s(D). Put

HURm
d,b,σ(D) =

⋃

α(s) = σ
ln(s) = b

HURm
d,s(D).

It follows from consideration above that

HURm
d,b(P1) =

⋃
R>0

HURm
d,b,1(DR).

For a fixed type t of elements s ∈ Σd let us denote also by

HURm
d,t(D) =

⋃

τ(s)=t

HURm
d,s(D)

and put
HURm

d,t,σ(D) = HURm
d,t(D) ∩ HURm

d,σ(D).
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As it was mentioned above, a marked covering f : C → D of degree d branched at

the points q1, . . . , qb defines (and is defined) by monodromy µ : π1(D \{q1, . . . , qb}) →
Sd. The image µ(π1(D \ {q1, . . . , qb})) = Gal(f) ⊂ Sd is called the Galois group of

the covering f . It is easy to see that Gal(f) = (Sd)s if the covering f belongs to

HURm
d,s(D). It is not hard to show that the covering space C of a marked covering

(C, f)m is connected if and only if the Galois group Gal(f) acts transitively on the

set Id = [1, d].

Denote by HURm,G
d (D) the union of irreducible components of HURm

d (D) consisting

of the coverings with the Galois group Gal(f) = G ⊂ Sd and put HURm,G
d,t (D) =

HURm,G
d (D) ∩ HURm

d,t(D) and HURm,G
d,t,σ(D) = HURm,G

d,t (D) ∩ HURm
d,t,σ(D).

By Corollary 2.2, we have

Theorem 3.1. Let the type t of monodromy factorization contains k transpositions.
If k > 3(d − 1) then each irreducible component of HURm,Sd

d,t (D) is uniquely defined
by the global monodromy σf = µ(∂D) ∈ Sd of (C, f)m belonging to this irreducible

component.

3.4. Hurwitz spaces of (non-marked) coverings of the disc. To obtain Hurwitz

space HURd,b(D) of degree d coverings of a disc D = DR branched over b points lying
in D0, we must identify all marked coverings of D differ only in numberings of sheets.

The renumberings of sheets induces the action of Sd on the marked fibres. Remind

that the actions of Brb and Sd on Wb commute. Therefore this action of Sd induces an

action on HURm
d,b(D) and we obtain that the space HURd,b(D) is the quotient space:

HURd,b(D) = HURm
d,b(D)/Sd. From this it follows

Proposition 3.4. The irreducible components of HURd,b(D) are in one to one cor-

respondence with the orbits of the action of Sd by simultaneous conjugation on Σd,b =

{s ∈ Σd | ln(s) = b}.
If f : C → D is a non-marked covering, then we can also define the Galois group

as Gal(f) = (Sd)s. But in this case the subgroup Gal(f) ⊂ Sd is defined uniquely

only up to inner automorphisms of Sd.
In the sequel we denote by HUR·,·,·(D) (resp., HURG

·,·,·(D)) the image of introduced

above subspaces HURm
·,·,·(D) (resp., HURm,G

·,·,· (D)) of HURm
d,b(D) under the canonical

map

HURm
d,b(D) → HURd,b(D) = HURm

d,b(D)/Sd.

In particular, we have HURd,s1(D) = HURd,s2(D) if and only if there is σ ∈ Sd such

that λ(σ)(s1) = s2.

Corollary 2.4 gives us a complete description of irreducible components of HURd,b(D)

in the case d = 3.
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Corollary 3.1. The irreducible components of HURG
3,b(D) are uniquely defined by the

monodromy factorization type and the type of global monodromy if G ' S2 or S3.
The space HURA3

3,b(D) consists of m = [ b
6
] + 1 irreducible components if the global

monodromy is equal to 1 and it consists of m = −[−b
3

] irreducible components if the
global monodromy is not equal to 1.

3.5. Hurwitz spaces of (non-marked) coverings of P1. In [3], Hurwitz spaces
HURd,b(P1) of coverings of the projective line P1 of degree d, branched over b points,
were described as non-ramified coverings of the complement of the discriminant locus
∆ in the symmetric product P(b) of b copies of P1. The choice of a point ∞ ∈ P1

and the identification C with P1 \ {∞} defines an imbedding of HURd,b(D∞) into
HURd,b(P1) as an everywhere dense open subset. So we get the following

Proposition 3.5. The irreducible components of HURd,b(P1) are in one to one corre-
spondence with the orbits of the action of Sd by simultaneous conjugation on Σd,1,b =
{s ∈ Σd,1 | ln(s) = b}.

As in subsection 3.4, we can introduced the unions HUR·,·,·(P1) (resp., HURG
·,·,·(P1))

of irreducible components of HURd,b(P1) for fixed elements of Σb,1, for fixed types of
monodromy factorizations, fixed Galois groups, and so on.

As a consequence of Proposition 1.1 we have

Theorem 3.2. There is a natural structure of the semigroup ΣSd
d,1 = {s ∈ Σd,1 |

(Sd)s = Sd} on the set of irreducible components of HURSd
d (P1).

Theorem 2.3 and Corollary 2.4 give us the following two theorems.

Theorem 3.3. The space HURSd
d,t(P1) is irreducible if the monodromy factorization

type t contains more than 3(d− 1) transpositions.

Theorem 3.4. The irreducible components of HURG
3,b(P1) are uniquely defined by the

monodromy factorization type if G ' S2 or S3.
The space HURA3

3,b(P1) consists of m = [ b
6
] + 1 irreducible components.

According to Theorems 3.3, 3.4, and Clebsch – Hurwitz Theorem, one can hope
that the space HURSd

d,t(P1) is irreducible always for a fixed monodromy factorization
type t. The following theorem also confirms this conjecture.

Theorem 3.5. Let σ1 ∈ Sd be a transposition and σ2 ∈ Sd be a cycle of length d.
Then the space HURd,t(P1) is irreducible for fixed type t of the form ([2], t(σ1σ

−1
2 ), [d]).

There are exactly [d
2
] different types of such form.

Proof. If the type of s ∈ Σd is ([2], t(σ−1
2 σ1), [d]), then ln(s) = 3 and hence HURd,t(P1)

is unramified covering of P(3) \∆.
By Theorem 3.4, we can assume that d > 4.
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Let us show that there are at least [d
2
] different elements s ∈ Σd of the form

s = xσ1 · xσ2 · xσ−1
2 σ1

. For this it suffices to show that there are [d
2
] different types

for the elements of Sd of the form σ−1
2 σ1. Indeed, without loss of generality, we can

assume that σ−1
2 = (1, 2)(2, 3) . . . (d− 1, d) and σ1 = (i, d). Then the type of

σ−1
2 σ1 = (1, 2)(2, 3) . . . (d− 1, d)(i, d) =

(1, 2) . . . (d− 2, d− 1)(i, d− 1)(d− 1, d) = · · · =
(1, 2) . . . (i− 1, i)(i + 1, i + 2) . . . (d− 1, d),

is [i, d− i] for i = 2, . . . , [d
2
] and [d− 1] for i = 1. In particular, the element σ−1

2 σ1 is

not conjugated with σ1 nor with σ2 if d > 4.

Consider the set U of words w ∈ W consisting of three letters xi, xj, xk, where
xi = xσ1 , xj = xσ2 , and xk = xη, where η is equal to either σ−1

2 σ1 or σ1σ
−1
2 (depending

on the position of the letter xk in the word w so to have α(w) = 1). Since the number

of different transpositions is equal to d(d−1)
2

, the number of different cycles σ2 of length
d is equal to (d− 1)!, and the element xk is uniquely defined by the positions of the

letters xi, xj, and xk in the word w and by σ1 and σ2, then we have

]U = 6
d(d− 1)

2
(d− 1)! = 3d!(d− 1). (35)

Consider two words w1 and w2 of U consisting, respectively, of letters xi1 = xσ1 ,

xj1 = xσ2 , xk1 = xη and xi2 = xσ̂1 , xj2 = xσ̂2 , xk2 = xη̂. It is easy to see that the

words w1 and w2 do not belong to the same orbit of the action of Sd by simultaneous

conjugation if t(η) 6= t(η̂). Therefore in U there exist at least [d−1
2

] different orbits of

this action. Let us fix a word w ∈ U and count the number of elements belonging to

the orbit of w. It is easy to see that the stabilizer of the letter xσ2 is the cyclic subgroup

Zσ2 of Sd generated by σ2. The transposition σ1 is fixed under the conjugation by σn
2

for n ∈ [1, d− 1] only if d = 2n and in this case the order of the stabilizer of w is less

or equal 2. Like in the computation of the number of different types of permutations

of the form σ−1
2 σ1, one can show that if d = 2n and σ−n

2 σ1σ
n
2 = σ1, then t(η) = [n, n].

We have

]U > 6[
d

2
]d! = 3d!(d− 1) (36)

if d is odd and if d = 2n is even, then

]U > 6([
d

2
]− 1)d! + 6

d!

2
= 3d!((2n− 1) = 3d!(d− 1). (37)

It follows from (35) – (37) that the orbit under the simultaneous conjugation of an
element s of type τ(s) = ([2], t(σ−1

2 σ1), [d]} is uniquely defined by its type. There-
fore the space HURd,t(P1) is irreducible for fixed type t = ([2], t(σ−1

2 σ1), [d]) and the
number of such components is equal to [d

2
]. ¤
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3.6. Hurwitz spaces of Galois coverings. Let f : C → P1 be a Galois covering
with Galois group G = Gal(C/P1), that is, G is the deck transformation group of the
covering f and the quotient space C/G = P1. In this case we have deg f = |G| and
if we fix a point ∞ ∈ P1 over which f is not ramified and fix a point e ∈ f−1(∞),
then the action of G on f−1(∞) defines a numbering of the points in f−1(∞) by the
elements of G. If we choose also a numbering of the points in f−1(∞) by the numbers
belonging to the segment I|G| = [1, |G|], then these numberings define an embedding
G ↪→ S|G|. It is easy to see that this is Cayley’s embedding. Therefore the Hurwitz

space HURG(P1) of Galois coverings with the Galois group G can be identified with
HURG

|G|,1(P1) and, in particular, the natural map

HURm,G
|G|,1(P

1) → HURG
|G|,1(P1) = HURG(P1) (38)

is surjective unramified morphism.

Theorem 3.6. The irreducible components of HURG(P1) are in one to one corre-
spondence with the orbits of the elements s ∈ SG

G ⊂ S(G,G) under the action of
Aut(G) on S(G,G).

If Aut(G) = G, then there is a natural structure of the semigroup SG
G,1 on the set

of irreducible components of HURG(P1).

Proof. The first part of the theorem follows from Corollary 2.5.
To prove the second part, note that the equality Aut(G) = G means that any

automorphism of G is inner. By Proposition 1.1, the elements of SG
G,1 are fixed

under the action of G by simultaneous conjugation. Therefore, by Corollary 2.5,
natural map (38) is an isomorphism which gives the desired structure of semigroup
on HURG(P1). ¤

In particular, Theorem 3.6 and Corollary 2.4 imply

Theorem 3.7. The irreducible components of the Hurwitz space HURS3(P1) of Galois
coverings with Galois group G = S3 are defined uniquely by the monodromy factor-
ization type of coverings belonging to them.
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