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Abstract. The aim of this note is to describe an approach to a strong form of J. Tits’ Cen-
tre Conjecture for spherical buildings. This is accomplished by generalizing a fundamental
result of G.R. Kempf from Geometric Invariant Theory and by interpreting this generaliza-
tion in the context of spherical buildings. We are able to recapture the conjecture entirely
in terms of our generalization of Kempf’s notion of a state. We demonstrate the power of
this approach by proving the strong form of the Centre Conjecture in some special cases.
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1. Introduction

The main focus of this paper is the long-standing Centre Conjecture of J. Tits about the
structure of convex subsets of spherical buildings. Roughly speaking, the Centre Conjecture
asserts that a convex subset Σ of a spherical building ∆ should be a subbuilding in an
appropriate sense, or should contain a canonical centre – a point of Σ which is fixed by all
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automorphisms of ∆ that stabilize Σ. See Conjecture 2.10 below for a precise statement
and references. Apart from its independent interest, this conjecture arises in many areas of
mathematics, particularly the theory of reductive linear algebraic groups and their subgroups
([23], [3], [4]) and the study of algebraic groups acting on algebraic varieties, which we refer
to as Geometric Invariant Theory (GIT) ([17], [21], [7]).

The original formulation of the Centre Conjecture in the 1950s came about as a possible
way to answer a fundamental question about the subgroup structure of a reductive algebraic
group G, [25, Lem. 1.2], later answered by Borel and Tits via different means [11]. The Centre
Conjecture also occurs naturally in GIT, when one is considering the notion of unstable points
in an affine G-variety [17, Ch. 2]. In this context, solutions to the Centre Conjecture were
found by Kempf [14] and Rousseau [21] in the 1970s; see Remark 5.5. There has also been
a recent renewal of interest in the Centre Conjecture from building theorists, culminating in
a proof of the Centre Conjecture for convex subcomplexes of thick spherical buildings. This
proof relies on case-by-case studies of Mühlherr and Tits [16], Leeb and Ramos-Cuevas [15],
and Ramos-Cuevas [19].

The purpose of this paper is to bring together some of the GIT methods of Kempf [14],
Rousseau [21] and Hesselink [13] in the context of the Centre Conjecture. We concentrate in
particular on the work of Kempf [14], who never makes explicit the connection between his
work and the Centre Conjecture. By carefully modifying some of Kempf’s key constructions,
we are able to significantly extend his results. In the original context of GIT, this gives new
results about instability for G-actions on affine varieties (see Remark 5.8). In the context of
spherical buildings and the Centre Conjecture, our extensions provide a scheme for attacking
the Centre Conjecture for a large class of convex subsets of ∆G, the spherical building of G.
By combining these two points of view, we are able to apply our methods to provide uniform
(rather than case-by-case) proofs of some cases of the Centre Conjecture. Our methods have
the advantage of being constructive – not only do we prove the existence of a centre, but we
give a way of finding this centre – and they also cover new cases of the Centre Conjecture
(for example, in general the subsets coming from GIT are not subcomplexes of ∆G). On the
other hand, we restrict attention in this paper to finding “G-centres” for convex subsets Σ
of ∆G – that is, we restrict attention to those building automorphisms which come from G.
Our main reason for this is to keep the exposition more accessible; in the final section we
briefly indicate how our methods may be extended to cover automorphisms which do not
come from G.

The paper is laid out as follows. In Section 2 we collect a wide range of prerequisites.
Starting with basic properties of algebraic groups and their sets of cocharacters and char-
acters, we construct the vector and spherical buildings associated to a reductive group G.
This allows us to give a formal statement of Tits’ Centre Conjecture 2.10. We also provide
some basic material on convex cones, Serre’s notion of G-complete reducibility, and the no-
tion of instability in invariant theory. In Section 3, we proceed with our generalization of
Kempf’s work from [14]. This section lies at the heart of the paper, and culminates with our
Theorem 3.21, which generalizes Kempf’s key theorem [14, Thm. 2.2]. When translated into
the language of spherical buildings in Section 4, our results give an equivalent formulation
of the Centre Conjecture in terms of our generalization of Kempf’s notion of a state: see
Theorem 4.2, Theorem 4.5, and Remark 4.6(i). In particular, Theorem 4.5 gives a complete
characterization of the existence of a G-centre of a convex subset of ∆G.
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In Section 5, we apply our strengthening of Kempf’s results to situations arising from
GIT. In particular, we show how to recover existing results in the literature (especially from
[14], [7]) from our constructions; see Remark 5.5. Subsequently, we then apply our methods
to prove the Centre Conjecture in some special cases; see Theorem 5.7, Theorem 5.10, and
Theorem 5.12. The final section of the paper briefly discusses various ways in which our
results can be extended, depending on the situation at hand.

2. Preliminaries

2.1. Basic notation. Throughout the paper (except in part of Section 6), G denotes a
semisimple linear algebraic group defined over an algebraically closed field k. Many of our
results hold for an arbitrary reductive algebraic group G (see Section 6.1). By a subgroup
of G we mean a closed subgroup. Let H be a subgroup of G. We denote by Ru(H) the
unipotent radical of H.

Let T be a maximal torus of G and let Ψ(G, T ) denote the set of roots of G with respect to
T . For α ∈ Ψ(G, T ), we denote the corresponding root subgroup of G by Uα. For a T -stable
subgroup H of G, we denote the set of roots of H with respect to T by Ψ(H,T ) := {α ∈
Ψ(G, T ) | Uα ⊆ H}.

Whenever a group Γ acts on a set Ω, we let CΓ(ω) denote the stabilizer in Γ of ω ∈ Ω.
If Σ is a subset of Ω, we let NΓ(Σ) denote the subgroup of elements of Γ that stabilize Σ
setwise.

2.2. Cocharacters and parabolic subgroups. For any linear algebraic group H, we let
YH , XH denote the sets of cocharacters and characters of H, respectively. When H = G, we
drop the suffix and write Y = YG. We write X for the disjoint union of the XT , where T
runs over the maximal tori of G. If H is a torus, then YH and XH are abelian groups which
we write additively: e.g., if λ, µ ∈ YH and a ∈ k∗, then (λ + µ)(a) := λ(a)µ(a). For any
torus H, we denote by 〈 , 〉 the usual pairing YH ×XH → Z. We have a left action of G on
Y given by (g, λ) 7→ g · λ, where (g · λ)(a) := gλ(a)g−1 for a ∈ k∗. Moreover, there is a left
action of G on X given by (g, β) 7→ g!β, where (g!β)(x) = β(g−1xg) for x ∈ G. Note that if
H is a subgroup of G, λ ∈ YH , β ∈ XH and g ∈ G, then g · λ ∈ YgHg−1 and g!β ∈ XgHg−1 . If
H is a torus of G, λ ∈ YH , β ∈ XH , and g ∈ G, we have

(2.1) 〈g · λ, g!β〉 = 〈λ, β〉.
We recall [7, Def. 4.1].

Definition 2.2. A norm on Y is a non-negative real-valued function ‖ ‖ on Y such that

(a) ‖g · λ ‖ = ‖λ ‖ for any g ∈ G and any λ ∈ Y ;
(b) for any maximal torus T of G, there is a positive definite integer-valued form ( , ) on

YT such that (λ, λ) = ‖λ ‖2 for any λ ∈ YT .

Such norms always exist, as follows from [14, Lem. 2.1]. From now on, we fix a norm ‖ ‖
on Y .

We now extend the notion of a cocharacter. For the rest of the paper, whenever it is
not specified, the letter K stands for either one of Q or R. Let H be a subgroup of G.
Define YH(Q) to be the quotient of YH × N0 by the equivalence relation: (λ,m) ≡ (µ, n) if
nλ = mµ. In particular, YH(Q) ∼= YH ⊗Z Q if H is a torus. For any maximal torus T of G,
we define YT (R) = YT (Q) ⊗Q R. Given λ, µ ∈ YT (K), we denote by [λ, µ] the line segment
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{aλ + bµ | a, b ∈ K, a, b ≥ 0, a + b = 1} between λ and µ in YT (K). It is clear from the
definition that this line segment does not depend on the choice of T with λ, µ ∈ YT (K).

Let T be a maximal torus of G, and let Ψ(G, T ) be the set of roots of G with respect to T .
If λ ∈ YT (R), then we define Pλ to be the subgroup generated by T and the root groups Uα,
where α ranges over all roots in Ψ(G, T ) such that 〈λ, α〉 ≥ 0; note that Pλ is a parabolic
subgroup of G, [24, Prop. 8.4.5]. A Levi decomposition of Pλ is given by Pλ = LλRu(Pλ),
where Lλ = CG(λ) is the Levi subgroup of Pλ generated by T and the root groups Uα with
〈λ, α〉 = 0. The unipotent radical Ru(Pλ) is generated by the root groups Uα, where α
ranges over all roots such that 〈λ, α〉 > 0. If P is a parabolic subgroup of G and L is a Levi
subgroup of P , then there exists ν ∈ Y such that P = Pν and L = Lν .

The space Y (Q) = YG(Q) is made by glueing pieces YT (Q). We now construct a space
Y (R) from pieces YT (R) in a similar way. If g ∈ G and T is a maximal torus of G, then g
gives rise to a Q-linear map from YT (Q) to YgTg−1(Q). Hence g gives rise to an R-linear map
from YT (R) to YgTg−1(R). It follows that G acts on the disjoint union

⋃
T YT (R). Now we

identify ν ∈ YT (R) with x · ν ∈ YxTx−1(R), for x ∈ Lν . Then Y (R) is the resulting quotient
space. Given λ ∈ Y (R), we define Pλ and Lλ in the obvious way.

We also define X(Q) and X(R) as the disjoint union of pieces XT (Q) and XT (R) as T
runs over the maximal tori of G. The left action of G on Y (resp. X) extends to a left
action of G on Y (K) (resp. X(K)); the pairings 〈 , 〉 between YT and XT extend to give
non-degenerate pairings YT (K) × XT (K) → K for each maximal torus T of G. The norm
‖ ‖ on Y comes from integer-valued bilinear forms on YT for each maximal torus T of G, by
Definition 2.2(b); since each of these forms extends to a K-valued bilinear form on YT (K),
the norm on Y extends to a G-invariant norm on Y (K), which we also denote by ‖ ‖. In
particular, for any maximal torus T of G, the subset YT (R) of Y (R) is a real normed vector
space, and hence carries a natural topology coming from the norm. We endow YT (Q) with
the relative topology coming from the inclusion YT (Q) ⊂ YT (R).

Lemma 2.3. Let K = Q or R.

(i) For any α ∈ XT (K), the set of λ ∈ YT (K) such that 〈λ, α〉 > 0 is open in YT (K).
(ii) For any λ ∈ YT (K), there is an open neighbourhood U of λ in YT (K) such that for

any µ ∈ U , we have Pµ ⊆ Pλ.

Proof. (i). This is clear: α defines an open half-space in YT (K).
(ii). Choose U to be the set of µ ∈ YT (K) such that whenever 〈λ, α〉 > 0 for a root α, we

have 〈µ, α〉 > 0 also. By (i), U is a finite intersection of open sets, so is open. For µ ∈ U ,
we then have Ru(Pµ) ⊇ Ru(Pλ). It is a standard fact that this implies Pµ ⊆ Pλ. �

2.3. Convex cones. Let E be a finite-dimensional vector space over K = Q or R; in the
former case we give E the relative topology it inherits from its embedding in E⊗QR. A subset
C of E is called a cone if it is closed under multiplication by non-negative elements of K. We
recall some standard facts about cones; for more detail, see for example the appendix and
additional references in [18]. A convex cone in E is a cone in E which is also a convex subset.
Let D ⊆ E∗, where E∗ denotes the dual of E. The set {e ∈ E | β(e) ≥ 0 for all β ∈ D} is a
closed convex cone in E; we call this the cone defined by D. A convex cone C is said to be
polyhedral if it is the cone defined by some finite subset of E∗.

By the Minkowski-Weyl Theorem [12], a convex cone C is polyhedral if and only if it
is finitely generated : that is, if and only if there exist e1, . . . , es ∈ E for some s such that
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C = {c1e1 + · · · + cses | c1, . . . , cs ≥ 0} (we say that C is the cone generated by e1, . . . , es).
In particular, a finitely generated convex cone is closed.

2.4. Vector buildings and spherical buildings. We derive our main results in this paper
for subsets of Y (K), but we also wish to translate them into the language of spherical
buildings. In order to do this, we need to recall how to construct buildings from Y (K).
Instead of moving straight from Y (K) to the associated spherical building of G, we first pass
to the vector building and then identify the spherical building of G as a subset of this vector
building. The additional structure afforded by the vector building makes the exposition more
transparent.

First, define an equivalence relation on Y (K) by λ ≡ µ if µ = u · λ for some u ∈ Ru(Pλ).
We let V (K) = VG(K) be the set of equivalence classes and let ϕ : Y (K) → V (K) be the
canonical projection (to ease notation, we use ϕ for the projection in both cases K = Q
or R). We call V (R) and V (Q) the vector building of G and rational vector building of G,
respectively, see [21, Sec. II, Sec. IV]. Since the norm ‖ ‖ on Y (K) is G-invariant, it descends
to give a real-valued function on V (K), which we also call a norm and denote by ‖ ‖.

Given a maximal torus T of G, we set VT (K) := ϕ(YT (K)). We call the subsets VT (K) the
apartments of V (K). The restriction of ϕ to YT (K) is a bijection, so we can regard VT (K)
as a vector space over K. Any two points of V (K) lie in a common apartment, because
any two parabolic subgroups of G contain a common maximal torus. Because of this, we
can put a metric d on V (K) by defining d(x, y) = ‖x− y‖ to be the Euclidean distance
between x and y in any apartment that contains them both. Similarly, we let [x, y] denote
the line segment between x and y in any apartment containing them both. Neither of these
constructions depends on the choice of apartment ([21, Sec. II]). Likewise, if a, b ∈ K then
the linear combination ax + by does not depend on the choice of apartment. By [21, Prop.
2.3], V (R) is a complete geodesic metric space; it is the completion of the space V (Q) with
respect to the norm.

If W ⊆ V (K) and T is a maximal torus of G, then we define WT := W ∩ VT (K). We say
that W is convex if W contains the line segment [x, y] for all x, y ∈ W . If W is convex, then
WT is a convex subset of VT (K) for every maximal torus T of G, and vice versa.

Now the spherical Tits building ∆(R) = ∆G(R) of G can be defined simply as the unit
sphere in V (R), and the rational spherical building ∆(Q) = ∆G(Q) of G is the projection of
V (Q)\{0} onto ∆(R), [21, IV], [17, Ch. 2,§2]. Since the norm on V (K) is G-invariant, ∆(K)
is a G-invariant subspace of V (K). It is clear that ∆(K) is a closed subspace of V (K) and
the metric on V (K) restricts to give a metric on ∆(K), [21, II]; since we are working with
vectors of norm 1 in V (K), this metric gives the same topology on ∆(K) as that coming from
the angular metric defined in [17, Ch. 2, §2, p. 59]. In particular, ∆(R) is the completion
of ∆(Q). There is a natural notion of opposition of points in ∆(K) inherited from V (K);
x and y are opposite if and only if d(x, y) = 2. Given any two points in ∆(K) that are not
opposite, there is a unique geodesic between them; this is the projection of the corresponding
line segment in V (K) onto the unit sphere. We define the apartments of ∆(K) to be the
intersections of the apartments of V (K) with ∆(K); we set ∆T (K) := ∆(K)∩VT (K). Each
apartment ∆T (K) is the unit sphere centred at the origin in the Euclidean space VT (K). We
denote the projection map from V (K) \ {0} to ∆(K) by ξ and we define

ζ : Y (K)→ ∆(K)
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to be the composition ξ ◦ϕ (again, here we use the same letter for these maps in both cases
K = Q or R).

If Σ ⊆ ∆(K), then we define ΣT := Σ ∩ ∆T (K). We say that Σ is convex if whenever
x, y ∈ Σ are not opposite, then Σ contains the geodesic between x and y, [23, §2.1]. It follows
that Σ is convex if ΣT is a convex subset of ∆T (K) for every maximal torus T of G.

The spherical building ∆(K) has a simplicial structure. It is the geometric realization
over K of an abstract building, whose simplices correspond to the parabolic subgroups of
G (ordered by reverse inclusion). In our notation, given a parabolic subgroup P of G, we
can recover the corresponding topological simplex as σP = {ζ(λ) | λ ∈ Y (K), P ⊆ Pλ}.
Since ‖ ‖ is G-invariant, the action of G on V (K) restricts to give an action of G on ∆(K)
by isometries; this action preserves the simplicial structure. Note that ζ, ξ and ϕ are G-
equivariant. For any λ ∈ Y (K), the stabilizers of ϕ(λ) in V (K) and ζ(λ) ∈ ∆(K) are both
equal to Pλ.

2.5. Cones in Y (K). In this paper, we wish to move back and forth between Y (K) and the
building ∆(K), using the map ζ : Y (K) → ∆(K). In particular, we aim to consider what
happens to convex subsets of spherical buildings when we pull them back to Y (K). This
leads to the following basic definitions:

Definition 2.4. Given a subset C of Y (K) and a maximal torus T of G, we set CT :=
C ∩ YT (K).

(i) We say C is convex if CT is a convex subset of YT (K) for every maximal torus T of
G.

(ii) We say that C is saturated if whenever λ ∈ C, then u · λ ∈ C for all u ∈ Ru(Pλ).
(iii) We say that C is a cone if CT is a cone for every maximal torus T of G. In this case

we say that C is polyhedral if every CT is polyhedral, and that C is of finite type if
for every T , the set {g · (Cg−1Tg) | g ∈ G} is finite.

Definition 2.5. Let Σ be a convex subset of ∆(K) and let C = ζ−1(Σ). From the definition
of ζ, it is clear that C is a saturated cone in Y (K). We say that Σ is polyhedral if C is
polyhedral, and in this case we say Σ is of finite type if C is of finite type.

The next lemma shows how these definitions allow us to translate back and forth between
Y (K) and ∆(K).

Lemma 2.6. Let Σ be a subset of ∆(K) and let C be any saturated cone in Y (K) such that
ζ(C) = Σ. Then the following hold:

(i) C = ζ−1(Σ);
(ii) Σ is convex if and only if C is convex;

(iii) Σ is polyhedral if and only if C is polyhedral;
(iv) Σ is of finite type if and only if C is of finite type.

Proof. (i). Since ζ(C) = Σ, we have C ⊆ ζ−1(Σ). On the other hand, suppose λ ∈ ζ−1(Σ).
Then there exists µ ∈ C such that ζ(µ) = ζ(λ). By definition of ζ, this implies that there
exists u ∈ Ru(Pµ) such that λ is a positive multiple of u · µ. But C is a saturated cone, so
we must have λ ∈ C.

Now (ii), (iii) and (iv) follow from the definitions. �

We now show that subcomplexes of the building fit into this framework.
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Lemma 2.7. Let Σ be a convex subcomplex of ∆(K). Then Σ is closed, polyhedral, and of
finite type.

Proof. It is standard that a convex subcomplex is closed in ∆(K). Let C = ζ−1(Σ); then C
is a saturated convex cone in Y (K). Let P be a parabolic subgroup of G such that σP ∈ Σ.
Let T be a maximal torus of P and let B be a Borel subgroup of P with B ⊇ T . Let
Π = {α1, . . . , αr} be the base for the root system Ψ(G, T ) corresponding to B. Then Π is a
basis for the space XT (K). Let {λ1, . . . , λr} denote the corresponding dual basis of YT (K),
i.e., 〈λi, αj〉 = δij for 1 ≤ i ≤ r.

Now there exists a subset Π′ ⊆ Π such that P is of the form P (Π′) in the notation of [9, IV,
14.17] (this means that the Levi subgroup of P containing T has root system spanned by the
subset Π′, and the unipotent radical of P contains all the root groups Uα with α ∈ Π \ Π′).
Now for any λ ∈ YT , P ⊆ Pλ if and only if 〈λ, αi〉 = 0 for αi ∈ Π′ and 〈λ, αi〉 ≥ 0 for αi 6∈ Π′.

Let CP = ζ−1(σP ). Then CP
T = CP ∩ YT (K) consists of all the λ ∈ YT (K) such that

P ⊆ Pλ. We claim that CP
T is the cone in YT (K) generated by the set {λj | αj /∈ Π′}.

This follows easily from the characterisation of parabolic subgroups containing P given in
the previous paragraph. This shows that CP

T is a finitely generated cone in YT (K) for every
maximal torus T of G contained in P .

Now suppose T is a maximal torus of G not contained in P , and let Q denote the subgroup
of G generated by P and T . Since Q contains P , Q is also a parabolic subgroup of G, and
CP
T = CP ∩ YT (K) = CQ

T is a finitely generated cone in YT (K) by the above arguments
applied to Q. We have now shown that CP

T is a finitely generated cone in YT (K) for every
maximal torus T of G.

It is clear that CT = C ∩YT (K) is the union of the cones CP
T as P runs over the parabolic

subgroups of G containing T with σP ∈ Σ. Since there are only finitely many parabolic
subgroups of G containing any given maximal torus and each CT

P is finitely generated, we can
conclude that because CT is convex, CT is also finitely generated. Hence, by the Minkowski-
Weyl Theorem, CT is polyhedral for each T , and hence C is polyhedral.

It remains to show that C is of finite type. This also follows from the fact that for any
maximal torus T of G, the set of parabolic subgroups of G that contain T is finite. So there
are only finitely many possibilities for g · (Cg−1Tg) as g ranges over all the elements of G.
Hence C is of finite type, as required. �

2.6. Tits’ Centre Conjecture. Suppose Σ is a closed convex subset of ∆(R). If there
exists a point of Σ which has no opposite in Σ, then Σ is contractible: that is, Σ has the
homotopy type of a point. The converse is also true: if every point of Σ has an opposite in Σ,
then Σ is not contractible. For these results, and further characterizations of contractibility,
see [2, Thm. 1.1], and also [23, §2.2]. This dichotomy leads to the following definitions, where
our terminology is motivated by that of Serre [23, Def. 2.2.1]:

Definition 2.8. Let K = Q or R.

(i) Let Σ be a convex subset of ∆(K). We say that Σ is ∆(K)-completely reducible (or
∆(K)-cr) if every point in Σ has an opposite in Σ.

(ii) Let C be a convex, saturated cone in Y (K). We say that C is Y (K)-completely
reducible (or Y (K)-cr) if for every λ ∈ C, there exists u ∈ Ru(Pλ) such that −(u·λ) ∈
C (note that it is automatic that u · λ ∈ C for all u ∈ Ru(Pλ), since C is saturated).
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Recall from Definition 2.5 that C := ζ−1(Σ) is a saturated convex cone; it is immediate
that Σ is ∆(K)-cr if and only if C is Y (K)-cr.

Definition 2.9. Let Σ be a subset of ∆(K) and let c ∈ Σ. Let Γ be a group acting on ∆(K)
by building automorphisms. We say that c is a Γ-centre of Σ if c is fixed by NΓ(Σ).

The following is a version of the so-called “Centre Conjecture” by J. Tits, cf. [25, Lem.
1.2], [22, §4], [23, §2.4], [27], [17, Ch. 2, §3], [21, Conj. 3.3], [16], [15], [19].

Conjecture 2.10. Let Σ be a closed convex subset of ∆(K). Then at least one of the
following holds:

(i) Σ is ∆(K)-cr;
(ii) Σ has an Aut ∆(K)-centre.

Conjecture 2.10 often appears in the literature with the assumption that Σ is a subcomplex
of ∆(K), rather than an arbitrary closed convex subset. In this form, the conjecture is known;
this is the culmination of work of B. Mühlherr and J. Tits [16] (G of classical type or type
G2), B. Leeb and C. Ramos-Cuevas [15] (G of type F4 or E6) and C. Ramos-Cuevas [19] (G
of type E7 and E8).

Theorem 2.11. If Σ is a convex subcomplex of ∆(K), then Conjecture 2.10 holds.

When Σ is a closed convex subset of ∆(K) but not a subcomplex, very few cases of
Conjecture 2.10 are known. If the dimension of Σ is at most 2, then the conjecture is true,
[1].

The proofs of the various cases of Theorem 2.11 in [16], [15] and [19] rely on the extra
simplicial structure carried by a subcomplex, and it is not clear whether these methods can
be extended to arbitrary convex subsets of ∆(K), [19, Sec. 1]. One area in which relevant
cases of the Centre Conjecture have been known for some time is Geometric Invariant Theory,
see [14], [21], [17]. It is our intention in this paper to elucidate and extend these methods
with particular reference to Conjecture 2.10. In doing this, we are able to consider a wider
class of convex subsets of a spherical building ∆(K) and show how to reformulate the Centre
Conjecture for a subset of this class. This class consists precisely of the convex subsets of
∆(K) that are polyhedral and of finite type, cf. Definition 2.5.

Remark 2.12. It is worth pointing out that in Conjecture 2.10 the subset Σ is assumed
to be closed in ∆(K), whereas in most of our results in the sequel we do not require this
hypothesis of closedness. Thus, in some sense, we are looking at a slightly generalized version
of the conjecture. However, we do need to impose the extra conditions that Σ is polyhedral
and of finite type, and we restrict attention in this paper to finding G-centres, rather than
Aut ∆(K)-centres, so this narrows the field again. Note that a convex subcomplex of a
spherical building, being both closed and polyhedral of finite type by Lemma 2.7 above, fits
into either camp.

2.7. G-complete reducibility. We briefly recall some definitions and results concerning
Serre’s notion of G-complete reducibility for subgroups of G, see [22], [23], [3], [6], and [7]
for more details. A subgroup H of G is called G-completely reducible (G-cr) if whenever H
is contained in a parabolic subgroup P of G, there exists a Levi subgroup of P containing
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H. This concept can be interpreted in the building ∆(K) of G (where K = Q or R): let

∆(K)H :=
⋃
H⊆P

σP ,

the fixed point set of H in ∆(K). Then ∆(K)H is a convex subcomplex of ∆(K), which is
∆(K)-cr if and only if H is G-cr [23, §3]. The study of G-complete reducibility motivated
much of the work in this paper; for a direct application of (the known cases of) the Centre
Conjecture 2.10 to G-complete reducibility, see [5].

In the proof of Theorem 5.10 below, we require a piece of terminology introduced in [7,
Def. 5.4]. Let H be a subgroup of G, let G → GLm be an embedding of algebraic groups,
and let n ∈ N. We call h ∈ Hn a generic tuple of H if the components of h generate the
associative subalgebra of Matm spanned by H. Generic tuples always exist if n is sufficiently
large. Now G acts on Gn by simultaneous conjugation, and H is G-cr if and only if the
G-orbit of h ∈ Hn is closed in Gn [7, Thm. 5.8(iii)].

2.8. Instability in invariant theory. Many of the results in this paper are inspired by
constructions of Kempf [14] and Hesselink [13], and also by our generalization of their work
in [7]. We briefly recall some of the main definitions which are relevant to our subsequent
discussion (see especially Section 5 below). Throughout this section, G acts on an affine
variety A, and S is a non-empty G-stable closed subvariety of A. We denote the G-orbit of x
in A by G · x. For any λ ∈ Y , there is a morphism φx,λ : k∗ → A, given by φx,λ(a) = λ(a) · x
for each a ∈ k∗. If this morphism extends to a morphism φ̂x,λ : k → A, then we say that

lima→0 λ(a) · x exists, and we set this limit equal to φ̂x,λ(0). In this case we say that λ
destabilizes x, and we say that λ properly destabilizes x if the limit does not belong to G · x;
we call the corresponding parabolic subgroup Pλ a (properly) destabilizing parabolic subgroup
for x.

The following are [7, Def. 4.2 and Def. 4.4].

Definition 2.13. For each non-empty subset U of A, define |A,U | as the set of λ ∈ Y such
that lim

a→0
λ(a) · x exists for all x ∈ U . We define

|A,U |S = {λ ∈ |A,U | | lim
a→0

λ(a) · x ∈ S for all x ∈ U}.

If λ ∈ |A,U |S, then we say λ destabilizes U into S or is a destabilizing cocharacter for U
with respect to S. Extending Hesselink [13], we call U uniformly S-unstable if |A,U |S is
non-empty; if, in addition, U 6⊆ S, we call U properly uniformly S-unstable. We write |A,U |s
instead of |A,U |{s} if S = {s} is a singleton, and we write |A, x|S instead of |A, {x}|S if
U = {x} is a singleton. By the Hilbert-Mumford Theorem [14, Thm. 1.4], x ∈ A is S-
unstable if and only if G · x ∩ S 6= ∅. Note that if U is properly uniformly S-unstable, then
|A,U |S is a proper subset of |A,U | (for example, |A,U | contains the zero cocharacter, but
|A,U |S does not).

In order to make the links between this paper and [14], [13] and [7] more transparent, we
introduce a final piece of notation, which helps the exposition in Section 5.

Definition 2.14. Let A, U and S be as above. We define

DA,U(K) := |A,U | ⊗Z K := {aλ | a ∈ K,λ ∈ |A,U |} ⊆ Y (K),

and we let EA,U(K) := ζ(DA,U(K)) ⊆ ∆(K).
9



Note that if λ ∈ Y and n ∈ N are such that nλ ∈ |A,U |, then λ ∈ |A,U |. It follows
from this that DA,U(K) ∩ Y = |A,U | and NG(DA,U(K)) = NG(|A,U |). Note also that if
U is properly uniformly S-unstable, then |A,U |S ⊗Z K is a proper subset of DA,U(K) (cf.
Definition 2.13).

Suppose U is properly uniformly S-unstable. In [7, Thm. 4.5], we constructed a so-called
optimal class of cocharacters contained in |A,U |S which enjoys a number of useful properties.
That construction consisted of a strengthening of arguments of Kempf and Hesselink; one of
the main goals of this paper is to extend these ideas even further and interpret them in the
language of buildings, where they give new positive results for Conjecture 2.10. The central
idea is that if λ belongs to the optimal class, then ζ(λ) is a G-centre of EA,U(K). Indeed,
many of the results of Kempf [14] and Hesselink [13], and our uniform S-instability results
in [7, Sec. 4], can be recovered as special cases of the general constructions presented in this
paper; see for example Remark 5.5 below.

3. Quasi-states and optimality

In this section we generalize some of the results of Kempf from [14], concerning states.
We then translate these results into the language of buildings, and show how they can be
used to prove Conjecture 2.10 in various cases. Our core results are Theorem 3.21, which
generalizes Kempf’s key theorem [14, Thm. 2.2], and Theorem 4.5, which gives a complete
characterization of the existence of a G-centre of a convex subset of ∆(K) in terms of our
generalization of Kempf’s notion of a state. Our main applications to GIT come in Section 5.

The main point of the material at the start of this section is that many results in [14] go
through under considerably weaker hypotheses; this allows us to extend Kempf’s formalism
to cover other interesting cases. We start by introducing quasi-states, generalizing Kempf’s
notion of a state [14, Sec. 2].

Definition 3.1. A real quasi-state Ξ of G is an assignment of a finite (possibly empty) set
Ξ(T ) of elements of XT (R) for each maximal torus T of G. If Ξ(T ) ⊆ XT (Q) for every
T , then we call Ξ a rational quasi-state, and if Ξ(T ) ⊆ XT for every T , then we call Ξ an
integral quasi-state. If K = Q or R, then K-quasi-state has the obvious meaning. Given a
real quasi-state Ξ and g ∈ G, we define a new real quasi-state g∗Ξ by

(g∗Ξ)(T ) := g!Ξ(g−1Tg) ⊆ XT (K).

This defines a left action of G on the set of real quasi-states of G. Note that if Ξ is rational
(resp. integral), then so is g∗Ξ for any g ∈ G. For each real quasi-state Ξ, we write CG(Ξ) =
{g ∈ G | g∗Ξ = Ξ} for the centralizer of Ξ in G. We say that Ξ is bounded if for every maximal
torus T of G, the set

⋃
g∈G(g∗Ξ)(T ) is finite. Note that if Ξ is a bounded Q-quasi-state, then

some positive multiple of Ξ is integral.

Definition 3.2. Associated to a real quasi-state Ξ and a maximal torus T of G, we have
the R-valued function µ(Ξ, T, ·) : YT (R)→ R defined by

µ(Ξ, T, λ) := min
α∈Ξ(T )

〈λ, α〉.

We call µ(Ξ, T, ·) the numerical function of Ξ and T . Note that Ξ(T ) is empty if and only
if µ(Ξ, T, λ) = ∞ for some λ ∈ YT (R) if and only if µ(Ξ, T, λ) = ∞ for some λ ∈ YT (R).
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Note also that if Ξ is rational (resp. integral), then the associated numerical function takes
rational (resp. integer) values on YT (Q) (resp. YT ), wherever it is finite.

Suppose λ ∈ Y (R). We say that Ξ is admissible at λ if for any maximal torus T of G with
λ ∈ YT (R) and any x ∈ Pλ, we have

µ(Ξ, xTx−1, x · λ) = µ(Ξ, T, λ).

By extension, for any subset S of Y (R), we say that Ξ is admissible on S if Ξ is admissible
at every point of S. If Ξ is admissible on all of Y (R), then we simply call Ξ an admissible
quasi-state (note that this agrees with the definition of admissibility given in [14, Sec. 2]).

We say that Ξ is quasi-admissible if for any maximal torus T of G, any λ ∈ YT (R), and
any x ∈ Pλ, we have

µ(Ξ, T, λ) ≥ 0 ⇒ µ(Ξ, xTx−1, x · λ) ≥ 0.

Note that if Ξ is admissible, then Ξ is quasi-admissible.

Remark 3.3. Our concept of a quasi-state is weaker than Kempf’s notion of a state [14, Sec.
2]. However, Kempf’s main result [14, Thm. 2.2] goes through with his bounded admissible
states replaced by bounded admissible quasi-states. The real difference between our results
and Kempf’s is that we replace admissibility with the weaker notions of admissibility at a
point and quasi-admissibility; this gives us genuinely new results.

We also note that it is rather important for our purpose of translating results into the
language of buildings to be able to use admissibility at a point, rather than Kempf’s stronger
notion of admissibility; see especially Theorem 4.5 and the subsequent Remark 4.6(ii) below.

We collect some useful properties of quasi-states in the next lemma.

Lemma 3.4. Suppose Ξ is a real quasi-state of G.

(i) Suppose T is any maximal torus of G, and suppose that λ1, λ2 ∈ YT (R) are such that
µ(Ξ, T, λi) > 0 for i = 1, 2. Then µ(Ξ, T, ν) > 0 for any ν = a1λ1 + a2λ2, where
a1, a2 ∈ R≥0 are not both 0.

(ii) For any maximal torus T of G, any λ ∈ YT (R), and any g ∈ G, we have

µ(Ξ, T, λ) = µ(g∗Ξ, gTg
−1, g · λ).

(iii) If Ξ is admissible at λ ∈ Y (R), then the value of µ(Ξ, T, λ) is independent of the
choice of maximal torus T with λ ∈ YT (R).

(iv) If Ξ is quasi-admissible and λ ∈ Y (R), then whether µ(Ξ, T, λ) is non-negative or
not is independent of the choice of maximal torus T with λ ∈ YT (R).

(v) If Ξ is admissible at λ ∈ Y (R), then g∗Ξ is admissible at g · λ for any g ∈ G.
(vi) If Ξ is quasi-admissible, then g∗Ξ is quasi-admissible for any g ∈ G.

Proof. (i). For i = 1, 2, we have µ(Ξ, T, λi) > 0 if and only if 〈λi, α〉 > 0 for all α ∈ Ξ(T ).
If this holds, and if a1, a2 ∈ R≥0 are not both 0, then 〈a1λ1 + a2λ2, α〉 > 0 for all α ∈ Ξ(T ).
This gives the result.

(ii). By definition, (g∗Ξ)(gTg−1) = g!Ξ(T ). The result now follows from (2.1).
(iii) and (iv). Suppose T and T ′ are maximal tori of G and λ ∈ YT (R) ∩ YT ′(R). Then

xTx−1 = T ′ for some x ∈ Lλ ⊆ Pλ. So if Ξ is admissible at λ, we have

µ(Ξ, T, λ) = µ(Ξ, xTx−1, x · λ) = µ(Ξ, T ′, λ),
11



which proves (iii). Similarly, if Ξ is quasi-admissible, then

µ(Ξ, T, λ) ≥ 0 ⇐⇒ µ(Ξ, xTx−1, x · λ) ≥ 0 ⇐⇒ µ(Ξ, T ′, λ) ≥ 0,

which proves (iv).
(v) and (vi). Suppose g ∈ G, λ ∈ YT (R) and x ∈ Pλ. Set λ′ = g · λ, T ′ = gTg−1 and

y = gxg−1. Then λ′ ∈ YT ′(R) and y ∈ Pλ′ . By part (ii), in this situation we have

(3.5) µ(g∗Ξ, T
′, λ′) = µ(Ξ, T, λ).

Moreover, for the same reason, we also have

(3.6) µ(g∗Ξ, yT
′y−1, y · λ′) = µ(Ξ, xTx−1, x · λ).

Now suppose Ξ is admissible at λ. Then µ(Ξ, T, λ) = µ(Ξ, xTx−1, x · λ). Combining (3.5)
and (3.6) shows that g∗Ξ is admissible at λ′, which proves (v).

Finally, suppose Ξ is quasi-admissible. Then by (3.5), we have µ(g∗Ξ, T
′, λ′) ≥ 0 if and

only if µ(Ξ, T, λ) ≥ 0, so g∗Ξ is also quasi-admissible, by (3.6), which proves (vi). �

Definition 3.7. If Ξ is a quasi-admissible K-quasi-state, then we can define a subset Z(Ξ)
of Y (K) by setting

Z(Ξ) := {λ ∈ Y (K) | ∃ a maximal torus T of G with λ ∈ YT (K) and µ(Ξ, T, λ) ≥ 0}.
Here we use the convention that∞ > 0, so that in particular if Ξ(T ) = ∅ for every maximal
torus T of G, then Z(Ξ) = Y (K). By Lemma 3.4(iv), the quasi-admissibility of Ξ implies
that whether or not λ belongs to Z(Ξ) is independent of which maximal torus T of G we
choose with λ ∈ YT (K).

Our next two results show how to make new quasi-states by taking unions, and how to
exert some control over the stabilizer of a quasi-state.

Lemma 3.8. Let I be an arbitrary indexing set. For each i ∈ I, let Ξi be a K-quasi-state.
We define Ξ :=

⋃
i∈I Ξi by setting Ξ(T ) :=

⋃
i∈I Ξi(T ) for each maximal torus T of G. Then:

(i) If Ξ(T ) is finite for all maximal tori T of G, then Ξ is a K-quasi-state.
(ii) If for some maximal torus T of G (and hence for every maximal torus T of G),⋃

i∈I

(⋃
g∈G

(g∗Ξi)(T )

)
is finite, then Ξ is a bounded K-quasi-state.

(iii) If Ξ is a K-quasi-state and every Ξi is admissible at λ ∈ Y (R), then Ξ is admissible
at λ. Similarly, if each Ξi is quasi-admissible, then so is Ξ.

(iv) Suppose Ξ is a K-quasi-state. If T is a maximal torus of G, λ ∈ YT (K) and
µ(Ξi, T, λ) > 0 for all i then µ(Ξ, T, λ) > 0.

(v) Suppose Ξ is a K-quasi-state. Let T be a maximal torus of G and suppose that for
every i ∈ I, there exists λi ∈ Z(Ξ)T such that µ(Ξi, T, λi) > 0. Then there exists
γ ∈ Z(Ξ)T such that µ(Ξ, T, γ) > 0.

Proof. (i) and (ii) are immediate. For (iii), suppose each Ξi is admissible at λ, and choose a
maximal torus T of G such that λ ∈ YT (K). Then for x ∈ Pλ, we can write

µ(Ξ, xTx−1, x · λ) = min
i∈I

µ(Ξi, xTx
−1, x · λ) = min

i∈I
µ(Ξi, T, λ) = µ(Ξ, T, λ),
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where the admissibility of each Ξi tells us that µ(Ξi, xTx
−1, x · λ) = µ(Ξi, T, λ) for each i,

and (i) implies that to calculate each “min” we only need to consider a finite set of these
values. This proves (iii). For (iv), note that Ξ(T ) =

⋃
i∈J Ξi(T ) for some finite subset J of

I, so we have µ(Ξ, T, λ) = mini∈Jµ(Ξi, T, λ) > 0.
Now we consider (v). Let χ ∈ Ξ(T ). Then χ ∈ Ξi(T ) for some i ∈ I. By hypothesis,

there exists λi ∈ Z(Ξ)T such that µ(Ξi, T, λi) > 0. Then 〈λi, χi〉 > 0. Set λχ := λi. Set
γ :=

∑
χ λχ ∈ Z(Ξ)T (this makes sense, because Ξ(T ) is finite). Now a simple calculation

shows that µ(Ξ, T, γ) > 0. �

Lemma 3.9. Let Ξ be a bounded K-quasi-state and let H be a subset of G. Then Θ :=⋃
h∈H h∗Ξ is a bounded K-quasi-state, which is admissible wherever Ξ is and quasi-admissible

if Ξ is. Moreover, H ⊆ CG(Θ).

Proof. That Θ is a bounded K-quasi-state with the required admissibility properties follows
from Lemma 3.8, setting I = H, and Ξh = h∗Ξ for each h ∈ H. That H ⊆ CG(Θ) is obvious
from the definition of Θ. �

The motivation for our definition of a quasi-state is that it is precisely what is needed to
capture the properties of saturated polyhedral convex cones in Y (K). This is the content of
our next results.

Lemma 3.10. For Ξ a quasi-admissible K-quasi-state of G and g ∈ G, we have g · Z(Ξ) =
Z(g∗Ξ). In particular, CG(Ξ) ⊆ NG(Z(Ξ)).

Proof. Let λ ∈ YT (K). Then, by Lemma 3.4(ii), we have µ(g∗Ξ, gTg
−1, g · λ) = µ(Ξ, T, λ).

Therefore, λ ∈ Z(Ξ) if and only if g · λ ∈ Z(g∗Ξ) and the result follows. �

Lemma 3.11. Let C ⊆ Y (K) be a saturated polyhedral convex cone of finite type. Then
there exists a bounded quasi-admissible K-quasi-state Ξ(C) such that C = Z(Ξ(C)) and
NG(C) = CG(Ξ(C)). Moreover, if K = Q, then we can take Ξ(C) to be integral.

Proof. Fix a maximal torus T0 of G. Since C is of finite type, the set {g · Cg−1T0g | g ∈ G}
gives a finite number of cones in YT0(K): call these cones C1, . . . , Cr. Since C is polyhedral,
for each Ci we can find a finite set Di ⊂ XT0(K) such that Ci is the cone defined by Di.
Moreover, if K = Q, then we can pick each Di to be a subset of XT0 .

We define a quasi-state Ξ0 as follows: For each maximal torus T of G, let H(T ) be the
transporter of the fixed torus T0 to T ; i.e., the set of g ∈ G such that gT0g

−1 = T . Note that
for any g, h ∈ H(T ), we have gh−1 ∈ NG(T ) and h−1g ∈ NG(T0). For each g ∈ H(T ), we
have g−1 · CT = Ci for some 1 ≤ i ≤ r, and we set Dg = g!Di, which gives a finite subset of
XT (K). Note that if g, h ∈ H(T ) are such that gh−1 ∈ T , then Dg = Dh, since T is abelian.
So there are only finitely many different subsets Dg arising in this way (we get a number less
than or equal to the order of the Weyl group of G). Moreover, for any g ∈ H(T ), we see by
construction that CT is the cone defined by Dg in YT (K). Define a quasi-state Ξ0 by

Ξ0(T ) :=
⋃

g∈H(T )

Dg for each maximal torus T of G.

Note that this is a finite set for each T , so Ξ0 is a K-quasi-state, and Ξ0 is integral if K = Q.
Also, since each Dg defines the cone CT , we have that Ξ0(T ) defines the cone CT in YT (K).
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We claim that Ξ0 is bounded. To see this, let T be a maximal torus of G, and let g ∈ G.
Then we have H(g−1Tg) = g−1H(T ), so

(3.12) (g∗Ξ0)(T ) = g!

(
Ξ0(g−1Tg)

)
= g!

 ⋃
h∈H(g−1Tg)

Dh

 = g!

 ⋃
x∈H(T )

Dg−1x

 .

Now each Dg−1x has the form (g−1x)!Di for some 1 ≤ i ≤ r, so g!Dg−1x has the form x!Di

for some 1 ≤ i ≤ r. Further, if x, y ∈ H(T ) are such that y−1x ∈ T0, we have x!Di = y!Di

for all i. Hence there are only finitely many possibilities for x!Di as x runs over H(T ) and i
runs over the indices 1, . . . , r. Since each Di is a finite set, we can conclude that the set⋃

1≤i≤r

⋃
x∈H(T )

x!Di

is finite. Since (3.12) shows that (g∗Ξ0)(T ) is contained in this set for all g ∈ G, we see that
Ξ0 is bounded, as claimed.

We claim further that Ξ0 is quasi-admissible. To see this, suppose T is a maximal torus
of G, and λ ∈ YT (K) is such that µ(Ξ0, T, λ) ≥ 0. Then, since Ξ0(T ) defines the cone
CT in YT (K), we have λ ∈ C. Now for any x ∈ Pλ, we have x · λ ∈ C, since C is
saturated. Thus x ·λ ∈ CxTx−1 , which is the cone in YxTx−1(K) defined by Ξ0(xTx−1). Thus
µ(Ξ0, xTx

−1, x · λ) ≥ 0, as required. Moreover, since Ξ0(T ) defines the cone CT in each
YT (K), we have C = Z(Ξ0).

Finally, we can prove the result claimed. We define a new quasi-state

Ξ := Ξ(C) :=
⋃

g∈NG(C)

g∗Ξ0.

Then, by Lemma 3.9, since Ξ0 is a bounded quasi-admissible K-quasi-state, Ξ is a bounded
quasi-admissible K-quasi-state, and NG(C) ⊆ CG(Ξ). Since C = Z(Ξ0), thanks to Lemma
3.10 we have Z(g∗Ξ0) = g · Z(Ξ0) = g · C = C for each g ∈ NG(C), so C = Z(Ξ). Lemma
3.10 also shows that CG(Ξ) ⊆ NG(C), so we are done. �

Remark 3.13. Note that the construction of the quasi-state Ξ(C) associated to C in Lemma
3.11 depends on the choice of the sets Di in the first paragraph of the proof, and different
choices here may give rise to different quasi-states. However, Ξ(C) does enjoy the following
“functorial” property: for any g ∈ G, the quasi-state g∗(Ξ(C)) defines the cone g · C in
Y (K), and NG(g · C) = CG(g∗Ξ(C)).

Corollary 3.14. Let Ξ be a bounded quasi-admissible K-quasi-state. Then Z(Ξ) is a sat-
urated convex polyhedral cone of finite type in Y (K). In addition, CG(Ξ) ⊆ NG(Z(Ξ)).
Conversely, let C ⊆ Y (K) be a saturated convex polyhedral cone of finite type. Then there
exists a bounded quasi-admissible K-quasi-state Ξ(C) such that C = Z(Ξ(C)). Moreover,
we can choose Ξ(C) so that NG(C) = CG(Ξ(C)).

Proof. Let C = Z(Ξ). Since µ(Ξ, T, λ) = minα∈Ξ(T )〈λ, α〉, we have µ(Ξ, T, λ) ≥ 0 if and
only if 〈λ, α〉 ≥ 0 for all α ∈ Ξ(T ). Hence CT is the polyhedral convex cone defined by the
finite set Ξ(T ). It follows easily from the boundedness of Ξ that C is of finite type, and the
quasi-admissibility of Ξ implies that C is saturated.

The remaining statements follow from Lemmas 3.10 and 3.11. �
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Definition 3.15. Corollary 3.14 provides us with the key link between cones and quasi-
states. In view of this corollary, given a convex cone C in Y (K) and a quasi-admissible
K-quasi-state Ξ, we say that Ξ defines C, or C is defined by Ξ, if C = Z(Ξ).

Remark 3.16. Suppose C = Z(Ξ) is a convex cone defined by the quasi-admissible quasi-state
Ξ. If C is not Y (K)-cr, one might hope that this is reflected in the values of the numerical
functions µ(Ξ, T, ·): for example, if there exists λ ∈ C such that 0 < µ(Ξ, T, λ) < ∞ for
some maximal torus T , then we have µ(Ξ, T,−λ) < 0, so −λ 6∈ C. However, it can happen
that the numerical functions µ(Ξ, T, ·) are identically zero on C — we might have 0 ∈ Ξ(T )
for every maximal torus T , for example — and this doesn’t give us enough information to
work with. In order to get around this problem, we are forced to consider two quasi-states:
one defining C, and one picking out certain points of C without an opposite in C. This is
the reason that our results below (and those in [14]) involve two quasi-states Ξ and Υ.

We continue by recalling an important lemma of Kempf [14, Lem. 2.3].

Lemma 3.17. Let E be a finite-dimensional real vector space with a norm || · || arising
from a positive definite R-valued bilinear form. Let A and B be finite subsets of E∗. Define
a, b : E → R by a(v) = minα∈A α(v) and b(v) = minβ∈B β(v). Assume that the cone C =
{v ∈ E | a(v) ≥ 0} contains more than just the zero vector. Then the following hold:

(i) The function v 7→ b(v)/ ‖v‖ attains a maximum value M on C \ {0}.
(ii) If the maximum value from (i) is finite and positive, then there is a unique ray R in

C such that for all v ∈ C, we have b(v)/ ‖v‖ = M if and only if v ∈ R.

Suppose further that the inner product and each function in A and B are integer-valued on
some lattice L in E. Then the following hold:

(iii) L ∩R is non-empty.
(iv) L∩R consists of all positive integral multiples of the unique shortest element in L∩R.

Remark 3.18. Note that if the set B in Lemma 3.17 is empty, we have C = E and M =∞.
Parts (ii)–(iv) do not apply in this case, because M is not finite.

Translating the above result into our setting gives the following corollary.

Corollary 3.19. Let Ξ and Υ be real quasi-states and let T be a maximal torus of G. Let
CT = {λ ∈ YT (R) | µ(Ξ, T, λ) ≥ 0}. Then the following hold:

(a) The function λ 7→ µ(Υ, T, λ)/ ‖λ‖ has a maximum value M(T,Ξ,Υ) on CT \ {0}, if
this set is non-empty.

(b) If the maximum value from (i) is finite and positive, then the following hold:
(i) There exists a unique ray R in CT \ {0} such that µ(Υ, T, λ)/ ‖λ‖ = M(T,Ξ,Υ)

if and only if λ ∈ R.
(ii) If Ξ and Υ are rational quasi-states, then R ∩ YT (Q) is a ray in YT (Q).

(iii) If Ξ and Υ are integral quasi-states, then R ∩ YT is non-empty and consists of
all positive integer multiples of the shortest element in R ∩ YT .

Proof. Parts (a) and (b)(i) follow from Lemma 3.17(i) and (ii), setting E = YT (R) with the
norm ‖·‖ we have fixed, and with A = Ξ(T ) and B = Υ(T ).

For (b)(ii), first note that the norm on YT (R) arises from an integer-valued form on YT (by
Definition 2.2). If Ξ and Υ are Q-quasi-states, then their numerical functions take rational
values on YT and there is a sublattice of YT upon which they take integer values. By parts
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(iii) and (iv) of Lemma 3.17, the ray defined by λ intersects this lattice, and so R ∩ YT (Q)
is non-empty, and is hence a ray in YT (Q).

For (b)(iii), we can apply Lemma 3.17(iii) and (iv) with L = YT . �

The previous result shows that if Ξ is a quasi-admissible quasi-state, C = Z(Ξ), and Υ is
another quasi-state, then Υ can be used to pick out certain rays in the subsets CT of C as
T ranges over the maximal tori of G. Roughly speaking, each such ray is the set of points
in YT (R) where the numerical function µ(Υ, T, ·) attains a maximum, for some maximal
torus T of G; we call these points local maxima. The key to Kempf’s constructions in [14],
and to our generalizations in this paper, is to impose an extra condition on Υ to ensure
that these local maxima patch together nicely inside all of Y (R); this is where the notion of
admissibility becomes important. We formalize these ideas in the following definition.

Definition 3.20. Let Ξ and Υ be bounded real quasi-states, and suppose Ξ is quasi-
admissible. Let C = Z(Ξ) ⊆ Y (R). For each maximal torus T of G, if CT = {0}, then
set M(T ) = −∞. Otherwise, let M(T ) = M(T,Ξ,Υ) be the maximum value provided by
Corollary 3.19. We call a point λ ∈ C a local maximum of Υ in C if there exists a maximal
torus T of G such that λ ∈ CT and 0 < µ(Υ, T, λ)/ ‖λ‖ = M(T ) <∞.

We now present a generalization of Kempf’s central result [14, Thm. 2.2]. Kempf’s proof
goes through almost word for word if one replaces the bounded admissible states Ξ and Υ with
bounded admissible quasi-states. The essential difference between our result and Kempf’s is
that in Theorem 3.21(b) we just require that the quasi-state Ξ is quasi-admissible, and that
the quasi-state Υ is admissible at its local maxima in C = Z(Ξ), cf. Definition 3.20.

Theorem 3.21. Let Ξ and Υ be bounded real quasi-states, and suppose Ξ is quasi-admissible.
Let C = Z(Ξ) ⊆ Y (R). For each maximal torus T of G let M(T ) be as in Definition 3.20.
Then the following hold:

(a) The set {M(T ) | T is a maximal torus of G, M(T ) <∞} is finite, and hence has a
maximum value M .

(b) Suppose M from (a) is positive, so that Υ has local maxima in C. If Υ is admissible
at its local maxima in C, then the set Λ := Λ(Ξ,Υ) of λ ∈ C \ {0} such that ‖λ‖ = 1
and µ(Υ, T, λ) = M for some maximal torus T of G has the following properties:
(i) Λ is non-empty;
(ii) there is a parabolic subgroup P = P (Ξ,Υ) of G such that P = Pλ for any λ ∈ Λ;

(iii) Ru(P ) acts simply transitively on Λ;
(iv) for each maximal torus T ′ of P there is a unique λ ∈ Λ ∩ YT ′(R);
(v) if Ξ and Υ are rational quasi-states, then some positive multiple of each λ ∈ Λ

lies in Y .

Proof. We follow the idea of Kempf’s proof [14, Thms. 2.2 and 3.4] closely. Fix a maximal
torus T0 of G, and let T be any other maximal torus. Then T = g−1T0g for some g ∈ G.
Since Lemma 3.4(ii) implies that g · CT = {λ ∈ YT0(R) | µ(g∗Ξ, T0, λ) ≥ 0} = Z(g∗Ξ)T0
and that µ(Υ, T, λ) = µ(g∗Υ, gTg

−1, g · λ) for any λ ∈ YT (R), the maximum values of the
function λ 7→ µ(Υ, T, λ)/ ‖λ‖ on CT and the function λ 7→ µ(g∗Υ, T0, λ)/ ‖λ‖ on g · CT are
equal, and this maximum value is M(T ). Since Ξ and Υ are bounded, there are only finitely
many possibilities for g∗Ξ and g∗Υ, and so there is only a finite number of values M(T )
arising. This proves (a).
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Now assume that M is positive, so that Υ has local maxima in C, and suppose that Υ
is admissible at its local maxima in C. Choose a local maximum λ1 ∈ Y (R) \ {0} such
that λ1 ∈ CT1 for some maximal torus T1 and µ(Υ, T1, λ1)/ ‖λ1‖ = M . Multiplying λ1 by a
positive scalar, we can ensure that ‖λ1‖ = 1. This proves part (b)(i).

Now suppose that λ2 is any other element of Λ, and let T2 be a maximal torus for which
λ2 ∈ CT2 , ‖λ2‖ = 1 and µ(Υ, T2, λ2) = M . We can choose a maximal torus T ⊆ Pλ1 ∩ Pλ2 .
There exists x1 ∈ Pλ1 such that x1T1x1

−1 = T , and hence x1 · λ1 ∈ YT (R). Likewise there
exists x2 ∈ Pλ2 such that x2T2x2

−1 = T , and hence x2 · λ2 ∈ YT (R). Note that we have
∞ > µ(Ξ, T, xi · λi) ≥ 0 for i = 1, 2, by the quasi-admissibility of Ξ, so xi · λi ∈ CT for
i = 1, 2. Moreover, we have µ(Υ, T, xi ·λi)/ ‖xi · λi‖ = µ(Υ, Ti, λi)/ ‖λi‖ = M for i = 1, 2, by
Eqn. (2.1), the admissibility of Υ at local maxima of C, and the G-invariance of the norm.
But M is the maximum possible finite value of µ(Υ, T ′, λ)/ ‖λ‖ on CT ′ as T ′ ranges over
all maximal tori of G, hence is the maximum value on CT . By the uniqueness statement in
Corollary 3.19(b)(i), we conclude that, as ‖x1 · λ1‖ = ‖x2 · λ2‖ = 1, we have x1 ·λ1 = x2 ·λ2.
Thus Pλ1 = Px1·λ1 = Px2·λ2 = Pλ2 . This proves parts (b)(ii) and (iv).

The arguments of the previous paragraph show that P acts transitively on Λ. Given
λ1, λ2 ∈ Λ and x ∈ P such that λ2 = x · λ1, we can write x = ul with u ∈ Ru(P ) and
l ∈ Lλ1 = CG(λ1). Then λ2 = u ·λ1, hence Ru(P ) acts transitively on Λ. Now if u ·λ1 = u′ ·λ1

for u, u′ ∈ Ru(P ), then u−1u′ ∈ Lλ1 ∩Ru(P ) = {1}, hence u = u′. This proves part (b)(iii).
For the final statement (b)(v), pick some λ ∈ Λ and some maximal torus T such that

λ ∈ YT (R). Then by Corollary 3.19(b)(ii), the ray of all positive multiples of λ intersects
YT (Q) in a ray. Any element of YT (Q) can be scaled by a positive integer to give an element
of YT . �

Definition 3.22. We call Λ(Ξ,Υ) ⊆ Y (R) from Theorem 3.21(b) the class of optimal cochar-
acters afforded by the pair of R-quasi-states (Ξ,Υ). Similarly, we call the parabolic subgroup
P (Ξ,Υ) of G the optimal parabolic subgroup afforded by the pair (Ξ,Υ).

Remark 3.23. Let Ξ and Υ be bounded real quasi-states as in Theorem 3.21 and let P (Ξ,Υ)
be the optimal parabolic subgroup of G afforded by the pair (Ξ,Υ) from Definition 3.22.
It is clear that the map (Ξ,Υ) 7→ P (Ξ,Υ) is functorial in the following sense: for any
g ∈ G, g · Λ(Ξ,Υ) = Λ(g∗Ξ, g∗Υ); hence gP (Ξ,Υ)g−1 = P (g∗Ξ, g∗Υ). In particular, if
g ∈ CG(Ξ)∩CG(Υ), then g stabilizes the optimal class Λ(Ξ,Υ) and normalizes the parabolic
subgroup P (Ξ,Υ); hence CG(Ξ) ∩ CG(Υ) ⊆ P (Ξ,Υ).

4. Quasi-states and G-centres

In this section, we translate our results into the language of spherical buildings. Recall
the notation from Section 2.4. The key tool is the link between convex subsets of ∆(K) and
quasi-admissible K-quasi-states, which we briefly discuss now. We first consider the special
case of quasi-states which are admissible.

Definition 4.1. Let Υ be a bounded admissible K-quasi-state of G. By Lemma 3.4(iii),
for any λ ∈ Y (K) the value of µ(Υ, T, λ) is independent of the choice of maximal torus T
with λ ∈ YT (K). Hence we can define a numerical function µ(Υ, ·) on all of Y (K) without
ambiguity by setting

µ(Υ, λ) := µ(Υ, T, λ),
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where T is any maximal torus ofG such that λ ∈ YT (K). Moreover, since µ(Υ, λ) = µ(Υ, u·λ)
for any u ∈ Ru(Pλ), this function descends to give a K-valued function on V (K), which we
also denoted by µ(Υ, ·). Finally, we can also restrict to get a K-valued function on ∆(K).

Now let Ξ be a bounded quasi-admissible K-quasi-state of G. If Ξ is not admissible,
the numerical functions µ(Ξ, T, ·) on Y (K) do not descend to give a well-defined function
on ∆(K) as in Definition 4.1, since the value of µ(Ξ, T, λ) may depend on the choice of T
with λ ∈ YT (K). However, we can still form Z(Ξ), which is a saturated convex polyhedral
cone of finite type in Y (K), by Corollary 3.14. So ζ(Z(Ξ)) is a convex polyhedral set of
finite type in ∆(K). This is analogous to considering the Zariski topology on projective
varieties: a homogeneous polynomial in n+ 1 variables does not give a well-defined function
on projective n-space, but its vanishing set is well-defined. Likewise, the numerical function
of the quasi-admissible quasi-state Ξ does not give a well-defined function on V (K) or ∆(K),
but it does make sense to speak of the set of points in V (K) or ∆(K) where the numerical
function is non-negative.

Theorem 4.2. Let Σ be a convex polyhedral set of finite type in ∆(K) and let C = ζ−1(Σ).
Suppose that Υ is a bounded K-quasi-state of G such that Υ has local maxima on C and Υ is
admissible at these local maxima. Then there exists a bounded quasi-admissible K-quasi-state
Ξ defining C with NG(C) = CG(Ξ). Moreover, for any such K-quasi-state Ξ we have:

(i) ζ(Λ(Ξ,Υ)) is a singleton set {c}, where Λ(Ξ,Υ) is the class of optimal cocharacters
afforded by the pair (Ξ,Υ);

(ii) c from part (i) is a CG(Υ)-centre of Σ.

Proof. The set C = ζ−1(Σ) is a convex polyhedral cone of finite type in Y (K), thanks to
Lemma 2.6. So, by Corollary 3.14, there is a quasi-admissible bounded K-quasi-state Ξ

such that C = Z(Ξ), and we can choose Ξ in such a way that CG(Ξ) = NG(C), which proves
the first assertion of the theorem.

Now suppose Ξ is any bounded quasi-admissible K-quasi-state defining C with NG(C) =
CG(Ξ). Since Υ has local maxima on C, and Υ is admissible at these local maxima, the
hypotheses of Theorem 3.21(b) hold, so we can define the optimal class Λ(Ξ,Υ). If K = R,
then ζ(Λ(Ξ,Υ)) is a singleton set {c}, by Theorem 3.21(b)(iii), which gives (i). Now Remark
3.23 implies that c is fixed by CG(Ξ) ∩ CG(Υ). Since CG(Ξ) = NG(C) = NG(Σ), part (ii)
follows.

In the case K = Q, we have to be a little bit more careful. We first move into Y (R)
by looking at the cone Z(Ξ) ⊆ Y (R) (this is just the completion of the corresponding
cone in Y (Q)). Now, by Theorem 3.21(b)(v), since Ξ and Υ are Q-quasi-states, we have
{c} = ζ(Λ(Ξ,Υ)) ⊆ ∆(Q) so c ∈ Σ. �

Corollary 4.3. Suppose that Σ is a convex polyhedral subset of finite type in ∆(K), and let
C = ζ−1(Σ). Suppose there is a bounded admissible K-quasi-state Υ of G such that Υ has
local maxima on C. Then Σ has a CG(Υ)-centre. If, further, NG(Σ) ⊆ CG(Υ), then Σ has
a G-centre.

Proof. Since Υ is admissible, it is certainly admissible at local maxima in C, so we can apply
Theorem 4.2. �

Remark 4.4. Let Σ be a convex polyhedral subset of finite type in ∆(K). Note that in
Theorem 4.2, Theorem 4.5 and Corollary 4.3, we do not assume that Σ is not ∆(K)-cr, and
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yet we still find a centre. However, the assumptions on the existence of Υ do restrict the
possibilities for Σ in practice.

For example, in Corollary 4.3, we have that µ(Υ, λ) > 0 for some λ ∈ C = ζ−1(Σ). This
implies that λ ∈ Z(Υ) ∩ C, but −λ 6∈ Z(Υ) ∩ C (cf. Remark 3.16). Thus the image of
Z(Υ) ∩ C in ∆(K), which is ζ(Z(Υ)) ∩ Σ, is a subset of ∆(K) which is not ∆(K)-cr, and
our centre actually lies in this set.

Our final theorem of this section is one of the central results of the paper. It shows that not
only do our methods involving quasi-states suffice to guarantee the existence of a G-centre
of a convex polyhedral subset of ∆(K), but actually the existence of a suitable quasi-state
is necessary.

Theorem 4.5. Let Σ be a convex polyhedral subset of finite type in ∆(K), and let C =
ζ−1(Σ). Then Σ has a G-centre if and only if there is a bounded integral quasi-state Υ such
that Υ has local maxima on C, Υ is admissible at these local maxima, and NG(Σ) ⊆ CG(Υ).

Proof. Suppose Σ has a G-centre c. Let λ ∈ Y (K) be such that ζ(λ) = c. Fix a maximal
torus T0 of G such that λ ∈ YT0(K), and let P = Pλ be the (proper) parabolic subgroup of
G attached to λ. We construct Υ with the desired properties directly; the construction is
similar to that employed in Lemmas 3.11 and 2.7.

First, let Ψ = Ψ(G, T0) be the root system of G with respect to T0, and define

Υ(T0) := {α ∈ Ψ | Uα ⊆ Ru(P )} = Ψ(Ru(P ), T0).

Now, for any other maximal torus T of G such that T ⊂ P , choose g ∈ P such that
gT0g

−1 = T , and set Υ(T ) = g!Υ(T0). Finally, for any maximal torus T of G which is not
contained in P , set Υ(T ) = ∅.

We first claim that Υ is well-defined. This amounts to showing that the construction of
Υ(T ) for T ⊂ P is independent of the choice of g ∈ P with gT0g

−1 = T . To see this, suppose
that h ∈ P is such that hT0h

−1 = T . Then h−1g ∈ NP (T0), and NP (T0) stabilizes the set of
roots Ψ(Ru(P ), T0) = Υ(T0), so we have g!Υ(T0) = h!Υ(T0), as required.

Now, it is clear that Υ is an integral quasi-state. The fact that Υ is bounded follows from
arguments similar to those in the proof of Lemma 3.11.

To show that Υ is admissible at local maxima, we first look at the stabilizer of Υ. Let
T be any maximal torus of P , and find g ∈ P such that gT0g

−1 = T ; then by construction
Υ(T ) = g!Υ(T0). Now for any x ∈ P , we have x−1g ∈ P and (x−1g)T0(x−1g)−1 = x−1Tx, so
Υ(x−1Tx) = (x−1g)!Υ(T0). Thus we have

(x∗Υ)(T ) = x!Υ(x−1Tx) = x!((x
−1g)!Υ(T0)) = g!Υ(T0) = Υ(T ),

which shows that (x∗Υ)(T ) = Υ(T ) for all x ∈ P . On the other hand, if T is a maximal
torus of G not contained in P , then Υ(T ) = ∅ and Υ(x−1Tx) = ∅ for all x ∈ P , so we
have (x∗Υ)(T ) = Υ(T ) in this case as well. This shows that P ⊆ CG(Υ). Now suppose
x ∈ CG(Υ). Then Υ(T0) = (x∗Υ)(T0) = x!Υ(x−1T0x). This implies that Υ(x−1T0x) is
non-empty, so x−1T0x ⊂ P . Find g ∈ P such that gT0g

−1 = x−1T0x; then xg ∈ NG(T0) and

Υ(T0) = x!Υ(x−1T0x) = x!g!Υ(T0) = (xg)!Υ(T0).

Consequently, xg is in the subgroup of NG(T0) consisting of the elements that stabilize
Υ(T0) = Ψ(Ru(P ), T0). ButRu(P ) is generated by the root groups Uα with α ∈ Ψ(Ru(P ), T0),
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so xg ∈ NG(Ru(P )) = P . Since g ∈ P , we have x ∈ P , and thus CG(Υ) ⊆ P . Combining
these inclusions, we get CG(Υ) = P .

Now suppose ν ∈ Y (K) is such that 0 < µ(Υ, T, ν) < ∞ for some maximal torus T of G
with ν ∈ YT (K). Then T ⊂ P because µ(Υ, T, ν) has a finite value, so there exists g ∈ P
such that gT0g

−1 = T and Υ(T ) = g!Υ(T0). Now µ(Υ, T, ν) > 0 implies that 〈ν, α〉 > 0 for
all α ∈ Υ(T ), which implies that 〈ν, g!β〉 = 〈g−1 · ν, β〉 > 0 for all β ∈ Υ(T0). So we have
Ru(P ) ⊆ Ru(Pg−1·ν), so Pg−1·ν ⊆ P . But g ∈ P , so we conclude that Pν ⊆ P . Therefore for
any x ∈ Pν , we have x ∈ P , so (x∗Υ)(T ) = Υ(T ) by the previous paragraph. Thus

µ(Υ, xTx−1, x · ν) = µ(x−1
∗ Υ, T, ν) = µ(Υ, T, ν)

for all x ∈ Pν . This shows that Υ is admissible at all points where its numerical function
takes a finite positive value.

Let C = ζ−1(Σ). By construction, 0 < µ(Υ, T0, λ) <∞, so Υ has local maxima on C, and
by the previous paragraph Υ is admissible at these local maxima. Moreover, since NG(Σ)
fixes c, and the function ζ : Y (K) → ∆(K) is G-equivariant, we must have that NG(Σ)
normalizes P = Pλ, and hence NG(Σ) ⊆ P = CG(Υ). This proves the forward implication
of the result.

The other direction follows immediately from Theorem 4.2. �

Remarks 4.6. (i). Note that Theorem 4.5 says that proving Conjecture 2.10 (or at least
finding a G-centre) for a convex polyhedral subset Σ of finite type in ∆(K) is equivalent
to finding a suitable quasi-state Υ whose numerical function is sufficiently well-behaved on
ζ−1(Σ). It also says that, in theory at least, it is enough to look at integral quasi-states.
Moreover, given Υ, we can construct a centre explicitly — it is the image under ζ of the
optimal class of cocharacters Λ(Ξ,Υ) in the building ∆(K). In Section 5 below, we show
how to find such a quasi-state Υ in some specific cases arising from GIT.

(ii). The quasi-state Υ in the proof of Theorem 4.5 is admissible at local maxima of C
in our sense, but is not necessarily admissible on all of Y (K). This result shows why it is
important to weaken Kempf’s original notions in Definition 3.2, cf. Remark 3.3.

Despite this difficulty, in our applications in Section 5 below, we are usually able to find
quasi-states Υ which are admissible.

(iii). The G-centre provided by the quasi-state Υ may not be the same as the original
G-centre c given in the statement of the theorem. For a simple example of this, consider a
proper parabolic subgroup P of G, and let Σ = ∆(K)P be the subcomplex consisting simply
of the simplices in ∆(K) that are contained in σP . Then it is easy to see that NG(Σ) = P .
Now, given any λ ∈ Y (K) such that Pλ = P , we have that c′ := ζ(λ) is fixed by NG(Σ);
hence c′ is a G-centre of P , and Σ has infinitely many G-centres in general. However, the
quasi-state Υ constructed in the proof of Theorem 4.5 depends only on P , and so picks out
just one of these G-centres, whatever our initial choice of λ was.

5. Geometric invariant theory and the Centre Conjecture

We now recall how Kempf’s results on GIT and optimal parabolic subgroups follow from
his result [14, Thm. 2.2] on states, and we recast his proof in the language of buildings and
centres. We use Theorem 3.21 — our extension of [14, Thm. 2.2] — to strengthen Kempf’s
results. This allows us to deal with a special case of the Centre Conjecture in which the
subset Σ of ∆(K) comes from a set of destabilizing cocharacters for some G-action. We then
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illustrate these ideas by proving some further cases of the Centre Conjecture (Theorems 5.10
and 5.12); these last two results provide applications of the GIT methods in this paper to
situations which have no apparent connection with GIT. This is rather striking, and supports
our view that these methods provide valuable insight into Conjecture 2.10.

Recall the notation and terminology set up in Section 2.8. In particular, fix an affine
G-variety A, a subset U of A and a closed G-stable subvariety S of A. We begin by showing
how to associate bounded admissible quasi-states to |A,U | and |A,U |S. The ideas follow
closely those in [14, Sec. 3] and [7, Sec. 4], but we reproduce many of the details for the
convenience of the reader.

Lemma 5.1. There exists a bounded admissible integral quasi-state Θ = ΘA,U such that
Z(Θ) = DA,U(K). In particular, DA,U(K) is a convex polyhedral cone of finite type in
Y (K).

Proof. We begin by setting up some notation, following ideas in [13] and [7, Sec. 4]. By [14,
Lem. 1.1(a)], we can embed A G-equivariantly into a finite-dimensional rational G-module
V . Now for each x ∈ U we define an integral quasi-state ΘV,x as follows: for each maximal
torus T of G, let ΘV,x(T ) be the set of weights χ of T on V such that the projection of
x on the weight space Vχ is non-zero (cf. [14, Lem. 3.2]). It is standard that for λ ∈ YT ,
lima→0 λ(a) · x exists if and only if 〈λ, χ〉 ≥ 0 for all χ ∈ ΘV,x(T ). By [14, Lem. 3.2], each
ΘV,x is a bounded admissible integral quasi-state. Now we define

(5.2) Θ := ΘA,U :=
⋃
x∈U

ΘV,x.

Since for each maximal torus T of G, the set of all weights of T on V is finite, Lemma 3.8(ii)
implies that Θ is still a bounded quasi-state. Moreover, since each ΘV,x is admissible, so is
Θ, by Lemma 3.8(iii). Now, for any λ ∈ Y , we have µ(Θ, λ) ≥ 0 if and only if µ(ΘV,x, λ) ≥ 0
for all x ∈ U if and only if lima→0 λ(a) · x exists for all x ∈ U . Thus Z(Θ) ∩ Y (G) = |A,U |,
and Z(Θ) = DA,U(K). �

Remark 5.3. Note that for ΘA,U as in Lemma 5.1 above, we have µ(ΘA,U , λ) > 0 if and
only if lima→0 λ(a) · x = 0 for all x ∈ U . Thus it is possible that µ(ΘA,U , λ) = 0 for all
λ ∈ DA,U(K). This happens, for example, if U = {x} is a singleton and the closure of the
G-orbit G · x does not contain 0.

Since our methods rely on optimizing over quasi-states whose numerical functions attain
strictly positive values, we have to introduce further quasi-states to the analysis. In par-
ticular, we have to consider the quasi-state Υ in Proposition 5.4 below. See also Remark
3.16.

Proposition 5.4. Suppose U is properly uniformly S-unstable. Then there exist bounded
admissible integral quasi-states Ξ = ΞA,U and Υ = ΥA,U,S such that:

(i) DA,U(K) = Z(Ξ) and NG(DA,U(K)) = CG(Ξ).
(ii) |A,U |S = {λ ∈ |A,U | | µ(Υ, λ) > 0}.

(iii) NG(DA,U(K)) ⊆ CG(Υ).

Proof. Let H := NG(DA,U(K)) = NG(|A,U |), and define

Ξ := ΞA,U :=
⋃
h∈H

h∗Θ,
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where Θ is the integral quasi-state given in Lemma 5.1. Then, by Lemma 3.9, Ξ is a bounded
admissible integral quasi-state and H ⊆ CG(Ξ). Moreover, Z(Θ) = DA,U(K), so by Lemma
5.1, for every h ∈ H we have

Z(h∗Θ) = h · Z(Θ) = h ·DA,U(K) = DA,U(K) = Z(Θ),

by Lemma 3.10. So Z(Ξ) = DA,U(K) and CG(Ξ) ⊆ H. This completes the proof of part (i).
For (ii) and (iii), we find a G-equivariant morphism f : A → W , where W is a finite-

dimensional rational G-module and f−1({0}) = S (scheme-theoretic preimage), as in [14,
Lem. 1.1(b)]. We then let Υ0 = ΘW,f(U), in the notation of (5.2). Now it is easy to see
that |A,U |S ⊆ |W, f(U)|0, and in fact we have |A,U |S = |A,U | ∩ |W, f(U)|0. Moreover,
|W, f(U)|0 = {λ ∈ Y (G) | µ(ΘW,f(U), λ) > 0}. Now, if we define

Υ := ΥA,U,S :=
⋃
h∈H

h∗Υ0,

and note that H = NG(|A,U |) clearly normalizes |A,U |S, part (iii) follow from Lemma 3.9.
If λ ∈ |A,U |, then λ ∈ |A,U |S if and only if µ(Υ0, λ) > 0. Since H normalizes |A,U |

and |A,U |S, it follows that if λ ∈ |A,U | and h ∈ H, then µ(Υ0, λ) > 0 if and only if
µ(Υ0, h

−1 · λ) > 0 if and only if µ(h∗Υ0, λ) > 0, where the last equivalence follows from
Lemma 3.4(ii). Part (ii) now follows from Lemma 3.8(iv). �

Remark 5.5. Using the quasi-states Ξ and Υ from Proposition 5.4, we can now recover
many of the existing optimality results from the literature by applying Theorem 3.21. For
example, to get Kempf’s [14, Thm. 3.4], we consider the case that U = {x} is a singleton:
then Theorem 3.21 supplies us with an optimal class Λ of cocharacters attached to x, and
the corresponding optimal parabolic subgroup P of G contains the stabilizer CG(x), by
Proposition 5.4(iii) and Remark 3.23. If λ ∈ Λ, then nλ ∈ |A,U | for some n ∈ N; Proposition
5.4(ii) ensures that nλ actually belongs to |A,U |S. In the more general setting that U is an
arbitrary subset of A, we obtain results on uniform S-instability from [7]. In this case, again
thanks to Theorem 3.21 and Proposition 5.4, we obtain [7, Thm. 4.5].

We have now also set up all the necessary preliminaries to fully interpret the results of
Kempf [14] and Hesselink [13] in the language of buildings. Recall that we set EA,U(K) =
ζ(DA,U(K)) ⊆ ∆(K). Now Lemma 5.1 says that EA,U(K) is a convex polyhedral subset of
finite type in ∆(K), and Theorem 4.5 combined with Proposition 5.4 says that EA,U(K) has
a G-centre if U is properly uniformly S-unstable. Thus, interpreted in the building ∆(K),
Kempf’s result [14, Thm. 3.4] really is proving a special case of the Centre Conjecture 2.10.

Remark 5.6. Keeping the notation from the previous remark, it is worth stressing here that
EA,U(K) is not a subcomplex of ∆(K) in general, so the methods in this section apply to
cases of Conjecture 2.10 not covered by Theorem 2.11.

For an easy example of this, let G = SL3(k) acting on its natural module V = k3, and let
v = (1, 1, 0) ∈ V . Consider the cocharacters λ and µ ∈ Y (G) given by λ(a) = diag(a2, a, a−3)
and µ(a) = diag(a3, a−1, a−2) for a ∈ k∗. Then Pλ = Pµ is the Borel subgroup of G consisting
of upper triangular matrices, but λ destabilizes v whereas µ does not. Hence EV,v(K) does
not contain the whole simplex corresponding to Pλ, and hence cannot be a subcomplex of
∆(K).

Theorem 5.7. Let Σ be a convex polyhedral subset of finite type of ∆(K), and let C =
ζ−1(Σ). Let A be an affine G-variety, S a non-empty closed G-stable subvariety of A, and
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U a subset of A. If Υ has local maxima on C, where Υ = ΥA,U,S is the quasi-state from
Proposition 5.4(ii), then Σ has a CG(Υ)-centre. If, further, µ(Υ, ·) attains a finite positive
value on some NG(Σ)-orbit in C, then Σ has a G-centre.

Proof. For the first assertion, just apply Corollary 4.3. For the second, replace Υ with
Υ′ =

⋃
g∈NG(Σ) g∗Υ and note that Υ′ is admissible and NG(Σ) ⊆ CG(Υ′), by Lemma 3.9.

Since µ(Υ, ·) attains a finite positive value on some NG(Σ)-orbit in C, so does µ(Υ′, ·), by
Lemma 3.8(iv). Now apply Corollary 4.3 to Σ and Υ′. �

Remark 5.8. We have two different settings where Theorem 5.7 is useful. First, suppose we
have a convex polyhedral subset Σ of ∆(K) such that Σ is not ∆(K)-cr. Then we want to
find a G-centre of Σ. Roughly speaking, Theorem 5.7 says that we can do this by finding
suitable A, S and U such that some element of ζ

−1
(Σ) properly destabilizes U into S. For

examples of this, see Theorems 5.10 and 5.12 below.
Second, suppose that we have suitable A, S and U , as above, and we want to find aG-centre

of EA,U(K) subject to the extra condition that this centre also lies in some convex subset
Σ ⊆ ∆(K). For example, suppose H is a reductive subgroup of G. Then Σ = ζ(YH(K))
is a convex subset of ∆(K), and if Theorem 5.7 applies, it provides a G-centre of EA,U(K)
which “comes from” a cocharacter of H. See [8] for similar ideas.

We continue by indicating how to apply our results to some cases of the Centre Conjecture
2.10 which do not appear to have anything to do with GIT (Theorems 5.10 and 5.12 below).
The idea is that finding a suitable G-action on an affine variety A can help to establish the
existence of a centre.

Recall the material on G-complete reducibility introduced in Section 2.7. Theorem 5.10
asserts the existence of a G-centre of the convex non-∆(K)-cr subset Σ of ∆(K), provided Σ
is fixed pointwise by a suitable subgroup of G. We make this precise in our next definition.

Definition 5.9. Let Σ be a convex subset of ∆(K), and let H be a subgroup of G. We say
that H witnesses the fact that Σ is not ∆(K)-cr if Σ ⊆ ∆(K)H and there is a y ∈ Σ which
has no opposite in ∆(K)H . Note that, in this case, neither Σ nor ∆(K)H is ∆(K)-cr, so in
particular, H is not G-cr, [23, §3].

Theorem 5.10. Let Σ ⊆ ∆(K) be a convex subset of finite type. If there exists a subgroup
of G which witnesses the fact that Σ is not ∆(K)-cr, then Σ has a G-centre.

Proof. Let H be a subgroup of G such that Σ ⊆ ∆(K)H and let y ∈ Σ such that y has no
opposite in ∆(K)H . Let C = ζ−1(Σ). We may replace H with the subgroup

⋂
ν∈C Pν without

affecting the hypotheses of the theorem; this replacement ensures that NG(Σ) ⊆ NG(H). Let
λ ∈ Y (K) be a cocharacter corresponding to the element y ∈ Σ, and let T be a maximal
torus of G such that λ ∈ YT (K). Let P = Pλ and L = Lλ. Note that since y has no opposite
in Σ, −(u · λ) 6∈ C for any u ∈ Ru(Pλ). We want to apply Theorem 5.7, so we need to verify
the conditions there.

We have H ⊆ P . Suppose H is contained in a Levi subgroup L of P . Then L is of the
form L = Lu·λ for some u ∈ Ru(P ), so H fixes u · λ, so H fixes −(u · λ). But y has no
opposite in ∆(K)H , so we have a contradiction. We deduce that H is not G-cr (see Section
2.7). Let H ′ denote the image of H under the canonical projection P → L. Then H and H ′

are not conjugate, by [7, Thm. 5.8].
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Now pick n ∈ N such that H admits a generic n-tuple (see Section 2.7), and recall that
G acts on Gn by simultaneous conjugation. There exists ν ∈ YT (a genuine cocharacter)
such that Pν = P and Lν = L. Taking the limit along ν moves this generic tuple for H
into (H ′)n. Thus, if we set S = G · (H ′)n ⊆ Gn, we see that Hn is uniformly S-unstable.
Moreover, since H and H ′ are not G-conjugate by [7, Thm. 5.8], Hn is not contained in S;
thus Hn is properly uniformly S-unstable.

By Proposition 5.4(ii), there is a bounded quasi-state Υ such that |Gn, Hn|S = {ν ∈
|Gn, Hn| | µ(Υ, ν) > 0}, and NG(H) = NG(Hn) ⊆ CG(Υ). Since ν ∈ |Gn, Hn| for all ν ∈ YT
with Pν = P , and since we can scale any point of YT (Q) by a positive integer to give an
element of YT , we can conclude that every ν ∈ YT (Q) with Pν = P satisfies µ(Υ, ν) > 0.
Hence µ(Υ, λ) > 0 if K = Q. If K = R, then we need a more complicated argument.
It follows from the proof of Lemma 2.7 that the cone CP

T is generated by cocharacters
τ1, . . . , τr ∈ XT with the property that for any σ ∈ YT (R), we have Pσ = P if and only
if σ =

∑
aiτi with all the ai > 0. Let ε1, . . . , εr be positive rational numbers and define

τ ′1, . . . , τ
′
r by τ ′i = τi +

∑
j 6=i εjτj. If we choose the εi to be sufficiently small then we have

λ =
∑r

i=1 a
′
iτ
′
i for some a′1, . . . , a

′
r > 0. Since Pτ ′i = P for all i, and each τ ′i ∈ YT (Q), we have

µ(Υ, τ ′i) > 0 for all i by the arguments above. Repeated application of Lemma 3.4(i) gives
µ(Υ, λ) > 0.

Finally, note that NG(Σ) ⊆ NG(H) ⊆ CG(Υ), so µ(Υ, ·) takes positive values on the orbit
NG(Σ) ·λ. We have now put all the conditions in place to apply Theorem 5.7, which finishes
the proof. �

Remark 5.11. Theorem 5.10 generalizes the main result from [4] and also [7, Thm. 5.31].
In [4, Thm. 3.1], we proved the special case of Theorem 5.10 when Σ = ∆(K)H . Note that
∆(K)H is a convex non-∆(K)-cr subcomplex of ∆(K). Thus by Theorem 2.11, ∆(K)H

admits an Aut ∆(K)-centre. However, it does not follow in general that this centre lies in
Σ, so Theorem 2.11 cannot be applied to find a centre of Σ.

We finish by showing how one can use Theorem 5.7 to prove another special case of
Conjecture 2.10. As we remark below, there are other ways to approach Theorem 5.12,
but our proof serves as a further illustration of how methods from GIT can be applied to
situations which apparently do not relate to this set-up.

Theorem 5.12. Suppose Σ is a convex polyhedral set of finite type in ∆(Q) which is con-
tained within a single apartment of ∆(Q). If Σ is not ∆(Q)-completely reducible, then Σ has
a G-centre.

Proof. Let C = ζ−1(Σ). Then C is a saturated convex polyhedral cone of finite type in Y (Q).
Let T be a maximal torus of G such that Σ is contained in the apartment corresponding to T .
Then CT is a polyhedral convex cone in YT (Q), and ζ(CT ) = Σ. Since CT ⊆ YT (Q), we can
find a subset {α1, . . . , αr} ⊂ XT defining CT ; i.e., CT = {λ ∈ YT (K) | 〈λ, αi〉 ≥ 0 for all i}.
Suppose Σ is not ∆(Q)-cr; then there exists y ∈ Σ such that y has no opposite in Σ, so there
exists λ ∈ CT corresponding to y such that −λ 6∈ CT . It follows that 〈λ, αi〉 > 0 for some i.
To ease notation, let β = αi.

Now let V be a finite-dimensional representation of G such that the weight space Vβ with
respect to T is non-zero. Let U be the set of vectors x ∈ V such that µ(ΘV,x, ·) is non-negative
on C and takes a finite positive value somewhere on C, where ΘV,x is the admissible quasi-
state defined in the proof of Lemma 5.1. We have 〈ν, β〉 ≥ 0 for all ν ∈ CT , and 〈λ, β〉 > 0,
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so for any 0 6= x ∈ Vβ, we have x ∈ U . Thus U is a non-empty subset of V , and U 6= {0}.
We claim that further NG(Σ) ⊆ NG(U). To see this, let g ∈ NG(Σ), and let x ∈ U . Then
χ ∈ ΘV,x(T ) if and only if g!χ ∈ ΘV,g·x(gTg

−1) if and only if χ ∈ (g−1
∗ ΘV,g·x)(T ). This shows

that ΘV,x = g−1
∗ ΘV,g·x. Now for all ν ∈ Σ, we have g−1 · ν ∈ C and thus µ(ΘV,x, g

−1 · ν) ≥ 0,
so

µ(ΘV,g·x, ν) = µ(g−1
∗ ΘV,g·x, g

−1ν) = µ(ΘV,x, g
−1 · ν) ≥ 0,

where the first equality follows from Lemma 3.4(ii). Moreover, there exists ν ∈ C for which
these values are all positive, and this shows that g · x ∈ U , as required.

Let Υ = ΥV,U,0 be the bounded admissible quasi-state from Proposition 5.4. Then
NG(U) ⊆ CG(Υ) and Υ is the union of the admissible quasi-states ΘV,x,0 from Lemma
5.1 for x ∈ U . Applying Lemma 3.8(v) to the ΘV,x,0, we deduce that there exists γ ∈ CT
such that µ(Υ, γ) > 0.

We have now verified all the hypotheses necessary to apply Theorem 5.7, which finishes
the proof. �

Remark 5.13. If one is working over R instead of Q, so that it makes sense to ask whether
a subset is contractible or not, then it is known that a closed convex contractible subset
of a sphere contains a centre, and this centre is fixed by all the isometries of the sphere
that stabilize the subset (this follows for example from [29, Lem. 1]). Now suppose Σ is a
closed convex contractible subset of a single apartment ∆T (R) of ∆(K). Then for any other
apartment ∆T ′(K) of ∆(R) containing Σ, there exists an isomorphism ∆T ′(R) → ∆T (R)
fixing Σ pointwise, by the building axioms. Thus any ∆(R)-automorphism stabilizing Σ
actually stabilizes ∆T (R), modulo an automorphism which fixes Σ pointwise. Now ∆T (R)
is a sphere, so the result follows.

If Σ ⊆ ∆(R) is a convex polyhedral subset of finite type which is contained in a single
apartment ∆T (R), then it is easily seen that Σ is closed. Thus if Σ is not ∆(R)-completely
reducible, then the argument of the previous paragraph shows that Σ has an Aut(∆(R))-
centre c. Hence Theorem 5.12 also holds when Q is replaced by R. That argument does not,
however, tell us that if Σ is defined by a Q-quasi-state then c belongs to ∆(Q). Our proof
of Theorem 5.12 is therefore of independent interest.

6. Extensions

In this section, we briefly discuss various ways in which our work in this paper can be
extended. We will return to these ideas in future work.

6.1. Reductive Groups. For simplicity, we have restricted attention in this paper to the
case when the group G is semisimple. However, in the setting of GIT, one often considers a
reductive group acting on an affine variety such that the centre does not act trivially (just
consider the action of GL(V ) on the natural module V ). Many of our results go through
under the weaker assumption that G is a reductive group. In particular, Theorem 3.21 works
for a reductive group G, and so the later results that rely on it also go through.

One reason for restricting attention to the case that G is semisimple is that this facilitates
our construction of the building ∆(K) of G from the set of cocharacters Y (K) in Section 2.4.
If G is reductive but not semisimple, then the object ∆(K) we construct actually contains a
contribution from the centre of G (see [21, Sec. IV, Remarques]). Considering convex subsets
of this new object suggests a generalization of the Centre Conjecture 2.10. Our results are
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easily seen to go through in this case (in particular, see Theorem 4.2, Theorem 4.5, and the
material in Section 5 above).

6.2. Automorphisms of G. As remarked in the previous section, if one is primarily inter-
ested in the building of G, it is no real loss to assume that G is semisimple. Further, the
isogeny class of G does not change the structure of the building, so we can also assume G
is adjoint. This allows us to view G as a subgroup of Aut(G), the (algebraic) group of all
algebraic automorphisms of G. Many of our constructions extend to give Aut(G)-centres
rather than G-centres. The crucial observations that allow us to make this transition are
that the actions of G on Y and X extend naturally to actions of Aut(G), and that we can
take the norm ‖ ‖ on Y in Definition 2.2 to be Aut(G)-invariant; see [20, Sect. 7]. The
functoriality of our constructions under the action of G noted in Remark 3.23 extends to
Aut(G)-functoriality.

These facts allow us to extend our results about G-centres to results about Aut(G)-centres
without much effort. In particular, under the assumption that G is semisimple and adjoint,
we can suitably modify Theorems 4.5, 5.7, 5.10, and 5.12 so that they provide Aut(G)-centres
for the subsets Σ involved. This is another step towards the full version of Conjecture 2.10
for the buildings ∆(K) in this paper, as Aut ∆(K) is made up of Aut(G) together with field
automorphisms, [26, Sec. 5]. See also [4] and [7] for constructions involving Aut(G).

6.3. Field Automorphisms. It is clear from the existing literature that our optimality
constructions behave well with respect to the induced action of Galois groups; see [14], [21],
[13], [7]. More precisely, let k be a field and let G be defined over k. Let Γ denote the Galois
group Gal(ks/k), where ks denotes the separable closure of k in its algebraic closure. Then
Γ also acts on the set of cocharacters Y of G and we can ensure that the norm is invariant
under this action, cf. [7, Def. 4.1]. Following [26, 5.7.1], any γ ∈ Γ induces an automorphism
of the building ∆(K), and the Γ-invariance of the norm ensures that, where this makes sense,
the G-centres we find in this paper are also Γ-invariant. We can thus make further incursions
into the existence of Γ-centres of convex subsets of ∆(K).
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[3] M. Bate, B. Martin, G. Röhrle, A geometric approach to complete reducibility, Invent. Math. 161, no.

1 (2005), 177–218.
[4] , On Tits’ Centre Conjecture for fixed point subcomplexes, C. R. Math. Acad. Sci. Paris 347

(2009), 353–356.
[5] , Complete reducibility and separable field extensions, C. R. Math. Acad. Sci. Paris 348 (2010),

495–497.
26
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