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Abstract

We discuss the relevance of Feichtinger�s modulation spacesM1;1
s andM r

s of
in deformation quantization. These functional spaces have a widespread use
in time-frequency analysis and related topics, but are not very well-known
in physics. It turns out that they are particularly well adapted to the study
of the Moyal star-product and of the star-exponential.
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1 Introduction

It has become rather obvious since the 1990�s that the theory of modulation
spaces, which plays a key role in time-frequency and Gabor analysis, often
allows to prove in a rather pedestrian way results that are usually studied
with methods of �hard�analysis. These spaces, whose de�nition goes back
to the seminal work [7, 8, 9] of Feichtinger over the period 1980�1995 (also
see Triebel [32]) are however not generally well-known by physicists, even
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those working in the phase-space formulation of quantum mechanics. This
is unfortunate, especially since �interdisciplinarity�has become so fashion-
able in Science; it is a perfect example of two disciplines living in mirror
Universes, since, conversely, many techniques which have proven to be suc-
cessful in QM (for instance, symplectic geometry) are more or less ignored
in TFA (to be fair, Folland�s book [10] comes as close as possible to such
an interdisciplinary program, but this book was written in the 1980�s, and
there has been much progress both in TFA and quantum mechanics since
then).

This paper is a �rst (and modest) attempt towards the construction of
bridges between quantum mechanics in phase space, more precisely defor-
mation quantization, and these new and insu¢ ciently exploited functional-
analytic techniques; this is made possible using the fact that ordinary (Weyl)
pseudo-di¤erential calculus and deformation quantization are �intertwined�
using the notion of wave-packet transform, as we have shown in our recent
paper [18], and the fact that these wave-packet transforms are closely related
to the windowed short-time Fourier transform appearing in the de�nition of
modulation spaces.

This work is structured as follows:

� In Section 2 we brie�y review deformation quantization with an em-
phasis on the point of view developed in de Gosson and Luef [18]; in
this approach the star-product is expressed as the action of a pseudo-
di¤erential operator eA~ of a certain type (�Bopp operator�). In fact,
the Moyal product A ?~ B of two observables can be expressed as

A ?~ B = eA~(B) (1)

That operator is related to the usual Weyl operator by an intertwin-
ing formula involving �windowed wave-packet transforms�, which are
closely related to the short-time Fourier transform familiar from time-
frequency analysis. We take the opportunity to comment a recent
statement of Gerstenhaber on the choice of a �preferred quantization�;

� In Section 3 we introduce the basics of the theory of modulation
spaces we will need. We �rst introduce the weighted spacesM1;1

s (R2n)
which generalize the so-called Sjöstrand classes. The elements of these
spaces are very convenient as pseudo-di¤erential symbols (or �ob-
servables�); we show that, in particular, M1;1

s (R2n) is a �-algebra
for the Moyal product (Proposition 11): if A;B 2 M1;1

s (R2n) then
A ?~ B 2 M1;1

s (R2n) and A 2 M1;1
s (R2n). We thereafter de�ne the
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modulation spaces M q
s (Rn) which are particularly convenient for de-

scribing phase-space properties of wave-functions. The use of mod-
ulation spaces in deformation quantization requires a rede�nition of
these spaces in terms of the cross-Wigner transform. We do not con-
sider here the slightly more general spaces M q;r

s (Rn), this mainly for
the sake of notational brevity, however most of our results can be
generalized without di¢ culty to this case;

� In Section 3.3.3 we rede�ne the star-exponential

Exp(Ht) =
1X
k=0

1

k!

�
t

i~

�k eHk; (2)

in terms of the Bopp operators; in fact we have

Exp(Ht) = exp

�
� i
~
eHt� : (3)

This allows us to prove regularity results for Exp(Ht).

Notation

The scalar product of two square integrable functions  and  0 on Rn is
written ( j 0); that of functions 	;	0 on R2n is ((	j	0)). We denote by
S(Rn) the Schwartz space of functions decreasing, together with their deriv-
atives, faster than the inverse of any polynomial. The dual S 0(Rn) of S(Rn)
is the space of tempered distributions. The standard symplectic form on
Rn�Rn � R2n is given by �(z; z0) = p�x0�p0 �x if z = (x; p) and z0 = (x0; p0);

equivalently �(z; z0) = Jz �z0 where J =
�
0 I
�I 0

�
is the standard symplectic

matrix. When using matrix notation x; p; z are viewed as column vectors.
If A is a �symbol�we denote indi¤erently by Aw(x;�i~@x) or bA~ the

corresponding Weyl operator.
We will also use multi-index notation: for � = (�1; :::; �2n) in N2n we set

j�j = �1 + � � �+ �2n , @�z = @�1z1 � � � @
�2n
z2n

where @�jzj = @�j=@x
�j
j for 1 � j � n and @�jzj = @�j=@�

�j
j for n+1 � j � 2n.

The unitary ~-Fourier transform is de�ned, for  2 S(Rn), by

F (x) =
�
1
2�~
�n=2 Z

Rn
e�

i
~x�x

0
 (x0)dx0:
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2 Deformation Quantization and Bopp Calculus

2.1 Deformation quantization

2.1.1 Generalities

The rigorous de�nition of deformation quantization goes back to the work
[1, 2] of Bayen et al. in the end of the 1970s. We recommend the reading of
Sternheimer�s paper [31] for a recent discussion of the topic and its genesis.
Roughly speaking, the starting idea is that if we view classical mechanics
as the limit of quantum mechanics when ~ ! 0, then we should be able to
construct quantum mechanics by �deforming�classical mechanics. On the
simplest level (which is the one considered in this paper), one replaces the
ordinary product of two functions on phase space, say A and B, by a �star
product�

A ?~ B = AB +
1X
j=1

~jCj(A;B)

where the Cj are certain bidi¤erential operators. Since one wants the star-
product to de�ne an algebra structure, one imposes certain conditions on
A ?~ B: it should be associative; moreover it should become the ordinary
product AB in the limit ~ ! 0 and we should recover the Poisson bracket
fA;Bg from the quantity i~�1(A ?~ B �B ?~ A) when ~! 0.

Assume now thatbA~ = Aw(x;�i~@x) : S(Rn) �! S 0(Rn)

and bB~ = Bw(x;�i~@x) : S(Rn) �! S(Rn):
Then the product bC~ = bA~ bB~ is de�ned on S(Rn) and we have bC~ =
Cw(x;�i~@x) where the symbol C is given by the Moyal product C = A?~B:

A ?~ B(z) =
�
1
4�~
�2n ZZ

R2n
e
i
2~�(u;v)A(z + 1

2u)B(z �
1
2v)dudv (4)

(Bayen et al. [1, 2]; also see Maillard [26]). Equivalently:

A ?~ B(z) =
�
1
�~
�2n ZZ

R2n
e�

2i
~ �(z�z

0;z�z00)A(z0)B(z00)dz0dz00: (5)

Recall that the Weyl symbol of an operator bA~ : S(Rn) �! S 0(Rn) is the
distribution A 2 S 0(R2n) such that

bA~ = � 1
2�~
�n Z

R2n
A�(z0) bT ~(z0)dz0 (6)
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where bT ~(z0) is the Heisenberg�Weyl operator, de�ned by
bT ~(z0) (x) = e

i
~ (p0�x�

1
2
p0�x0) (x� x0) (7)

if z0 = (x0; p0) and

A�(z) = F�A(z) =
�
1
2�~
�n Z

R2n
e�

i
~�(z;z

0)A(z0)dz (8)

is the symplectic Fourier transform of A; note that F�A(z) = FA(�Jz).
It is clear that the Moyal product is associative (because composition

of operators is); to see that lim~!0A ?~ B = AB it su¢ ces (at least on a
formal level) to perform the change of variables (u; v) 7�!

p
~(u; v) in the

integral in (4), which leads to

A ?~ B(z) =
�
1
4�

�2n ZZ
R2n

e
i
2
�(u;v)A(z +

p
~
2 u)B(z �

p
~
2 v)dudv; (9)

letting ~! 0 and using the Fourier inversion formulaZZ
R2n

e
i
2
�(u;v)dudv = (4�)2n :

we get lim~!0C(z) = A(z)B(z). That we also have

lim
~!0

�
i~�1(A ?~ B �B ?~ A)

�
= fA;Bg

is veri�ed in a similar way.

2.1.2 Symplectic covariance

Recall that the metaplectic group Mp(2n;R) is the unitary representation
of the connected double covering of the symplectic group Sp(2n;R) (see e.g.
[10, 15, 25]). The metaplectic group is generated by the following unitary
operators:

� The modi�ed ~-Fourier transform

bJ~ = i�n=2F (10)

whose projection on Sp(2n;R) is the standard symplectic matrix J ;
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� The �chirps�dV�P ~ de�ned, for P = P T by

dV�P ~ (x) = e
i
~Px�x (x) (11)

whose projection on Sp(2n;R) is
�
I 0
P I

�
;

� The unitary changes of variables, de�ned for invertible L by

\ML;m
~
 (x) = im

p
jdetLj (Lx) (12)

where the integer m corresponds to a choice of arg detL; its projection

on Sp(2n;R) is
�
L�1 0
0 LT

�
.

Every S 2 Sp(2n;R) is the projection of two operators�bS~ inMp(2n;R).
We recall the following fundamental symplectic covariance property of

Weyl calculus:
\(A � S�1)

~
= bS~ bA~ bS~�1 (13)

where bS~ is any of the two metaplectic operators associated with S.
Proposition 1 For every S 2 Sp(2n;R) we have

(A � S�1)?~ = US(A?~)U
�1
S (14)

where US is the unitary operator on L2(R2n) de�ned by US	(z) = 	(Sz),
and we have US 2 Mp(4n;R).

Proof. To prove (14) we notice that A?~ is the Bopp operator with Weyl
symbol A(z; �) = A(z � 1

2J�). Let
eAS�1 be the Weyl symbol of the Bopp

operator Ĥ � S�1; since S�1J = JSST we have

( eA~)S�1(z; �) = A(S�1(z � 1
2J�)) =

eA~(MS(z; �))

with

MS =

�
S�1 0
0 ST

�
2 Sp(4n;R)

(Sp(4n;R) is the symplectic group of R4n equipped with the standard sym-
plectic form � � �). It follows from the general theory of the metaplectic
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group (see in particular Proposition 7.8(i) in [15]) that MS is the projection
on Sp(4n;R) of the metaplectic operator US de�ned by

US	(z) =
p
detS	(Sz) = 	(Sz)

(recall that detS = 1). This proves (14) applying the covariance formula
(13) to eH viewed as a Weyl operator. That US 2 Mp(4n;R) is clear (cf.
formula (12)).

2.1.3 On the use of Weyl calculus in deformation quantization

We take the opportunity to brie�y discuss a remark done by Gerstenhaber
in his recent paper [11]. The Weyl correspondence resolves in a particular
way the ordering ambiguity when one passes from a symbol (�classical ob-
servable�) A(x; p) to its quantized version A(bx; bp); for instance to monomials
such as xp or x2p it associates the symmetrized operators 1

2(bxbp + bpbx) and
1
3(bx2bp + bxbp + bpbx2). This choice, argues Gerstenhaber, is totally arbitrary,
and other choices are, a priori, equally good (for instance, people working
in partial di¤erential equations would usually choose the quantizations bxbp
and bx2bp in the examples above), in fact for a given symbol we have in�nitely
many choices

bA~� (x) = � 1
2�~
�n ZZ

R2n
e
i
~p�(x�y)A((1� �)x+ �y; p) (y)dydp (15)

corresponding to a parameter value � (see Shubin [28]); Weyl quantization
corresponds to the choice � = 1=2. Gerstenhaber is right, no doubt. How-
ever, one should understand that when working in deformation quantization,
the Weyl correspondence is still the most �natural�, and this for the follow-
ing reason: the primary aim of deformation quantization is to view quantum
mechanics as a deformation of a classical theory, namely classical mechan-
ics in its Hamiltonian formulation. Now, one of the main features of the
Hamiltonian approach is its symplectic covariance. It is therefore certainly
desirable that the objects that one introduces in a theory whose vocation is
to mimic Hamiltonian mechanics retains this fundamental feature. It turns
out that not only is Weyl calculus a symplectically covariant theory, but it
is also the only quantization scheme having this property! This fact, which
was already known to Shale [27] (and is proven in detail in the last Chap-
ter of Wong�s book [33]) justi�es a posteriori the suitability of the Weyl
correspondence in deformation quantization, as opposed to other ordering
schemes.
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2.2 Moyal product and Bopp operators

2.2.1 The notion of Bopp pseudo-di¤erential operator

There is another way to write the Moyal product, which is reminiscent of
formula (6) for Weyl pseudodi¤erential operators. Performing the change of
variables v = z0, z + 1

2u = z0 in formula (4) we get

A ?~ B(z) =
�
1
2�~
�2n ZZ

R4n
e�

i
~�(z0;z

0�z)A(z0)B(z � 1
2z0)dz0dz

0

=
�
1
2�~
�2n Z

R2n

�Z
R2n

e�
i
~�(z0;z

0)A(z0)dz0
�
e
i
~�(z0;z)B(z � 1

2z0)dz0:

De�ning the operators eT (z0) : S(R2n) �! S(R2n) by

eT (z0)B(z) = e
i
~�(z0;z)B(z � 1

2z0) (16)

we can thus write the Moyal product in the form

A ?~ B =
�
1
2�~
�n Z

R2n
A�(z0)( eT (z0)B)dz0: (17)

This formula, which is reminiscent of the representation (6) of Weyl opera-
tors, will play an important role in the subsequent sections. Note that the
operators eT (z0) are unitary on L2(R2n) and satisfy the same commutation
relations as the Heisenberg�Weyl operators.

In [18] we have proven the following results:

Proposition 2 The Weyl symbol of the operator

eA~ : B 7�! eA~(B) = A ?~ B (18)

is the distribution A 2 S 0(Rn � Rn) given by

A(z; �) = A(z � 1
2J�) = A(x� 1

2�p; p+
1
2�x) (19)

where z 2 R2n and � 2 R2n are viewed as dual variables.

2.2.2 Windowed wave-packet transforms

For � 2 L2(Rn) such that jj�jjL2 = 1 we de�ne the windowed wave-packet
transform W� : S 0(Rn) �! S(R2n) by

W� = (2�~)n=2W ( ; �) (20)
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for  2 S 0(Rn); here W ( ; �) is the usual cross-Wigner transform, given by

W ( ; �)(z) =
�
1
2�~
�n Z

Rn
e�

i
~p�y (x+ 1

2y)�(x�
1
2y)dy: (21)

The windowed wave-packet transform is thus explicitly given by

W� (z) =
�
1
2�~
�n=2 Z

Rn
e�

i
~p�y (x+ 1

2y)�(x�
1
2y)dy:

Since jj�jjL2 = 1 it follows from Moyal�s identity

((W ( ; �)jW ( 0; �0))) =
�
1
2�~
�n
( j 0)(�j�0) (22)

(see e.g. [15, 20]) that the restriction of W� to L2(Rn) is a linear isometry
of L2(Rn) onto a subspace H� of L2(R2n). A simple calculation shows that
for 	 2 S(Rn) the adjoint W �

� : L
2(R2n) �! L2(Rn) of W� is given by

W �
�	(x) =

�
2
�~
�n=2 Z

Rn
e
2i
~ p�(x�y)�(2y � x)	(y; p)dpdy: (23)

The subspace H� is closed (and hence a Hilbert space): the mapping P� =
W�W

�
� satis�es P� = P �� and P�P

�
� = P� hence P� is an orthogonal projec-

tion. Since W �
�W� is the identity on L2(Rn) the range of W �

� is L
2(Rn) and

that of P� is therefore precisely H�. Since H� is the range of P� and the
closedness of H� follows.

2.2.3 The intertwining property

The key to the relation between deformation quantization and Bopp calculus
comes from following result:

Proposition 3 We have the intertwining formulae

eA~W� =W�
bA~ , W �

�
eA~ = bA~W �

� (24)

where W �
� : S(R2n) �! S(Rn) is the adjoint of W�. Equivalently:

A ?~ (W� ) =W�( bA~ ) , W �
�(A ?~ B) =

bA~(W �
�B) (25)

for  2 S(Rn).
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Proof. See Proposition 2 in [18].
Formula (19) justi�es the notation

eA~ = A(x+ 1
2 i~@p; p�

1
2 i~@x) (26)

and we will call eA~ the Bopp pseudo-di¤erential operator with symbol A; the
terminology is inspired by the paper [4] by Bopp, who was apparently the
�rst to suggest the use of the non-standard quantization rules

(x; p) 7�! (x+ 1
2 i~@p; p�

1
2 i~@x) (27)

(which also appear in Kubo�s paper [24]). We note that formula (26) is
found in many physical texts without justi�cation. It was precisely one of
the aims of [18] to give a rigorous justi�cation of this notation.

3 Modulation Spaces

We de�ne and list the main properties of two particular types of modula-
tion spaces: the spaces M1;1

s (R2n) which are a generalization of the Sjös-
trand classes, and the spaces M q

s (Rn) which contain, as a particular case
the Feichtinger algebra. We refer to Gröchenig�s book [20] for proofs and
generalizations.

3.1 A good symbol (=observable) class: M1;1
s (R2n)

3.1.1 De�nition and main properties

In the 1970�s the study of L2-boundedness of pseudo-di¤erential opera-
tors was a popular area of research. For instance, a landmark was the
proof by Calderón and Vaillancourt [5] that every operator with symbol in
C2n+1(R2n) satisfying an additional condition had this property (the same
applies to the Hörmander class S00;0(R2n)). It turns out that results of this
type �whose proofs needed methods from hard analysis� are much better
understood (and easier proved) using the theory of modulation spaces. For
instance, Calderón and Vaillancourt�s theorem is a simple corollary of the
theory of the modulation space of this subsection.

Let us introduce the weight function vs on R2n, de�ned for s � 0, by

vs(z; �) = (1 + jzj2 + j�j2)s=2 (28)

(some of the results we list below remain valid for more general weight
functions). By de�nition, M1;1

s (R2n) consists of all A 2 S 0(R2n) such that

10



there exists a function � 2 S(R2n) for which

sup
z2R2n

[jV�A(z; �)jvs(z; �)] 2 L1(R2n) (29)

where V�A is the short-time Fourier transform of A windowed by �:

V�A(z; �) =

Z
R2n

e�2�i��z
0
A(z0)�(z0 � z)dz0: (30)

The formula

jjAjj�
M1;1
s

=

Z
R2n

sup
z2R2n

[jV�A(z; �)jvs(z; �)] d� <1 (31)

de�nes a norm onM1;1
s (R2n). A remarkable (and certainly not immediately

obvious!) fact is that if condition (31) holds for one window �, then it
holds for all windows; moreover when � runs through S(R2n) the functions
jj � jj�

M1;1
s

form a family of equivalent norms on M1;1
s (R2n). It turns out

that M1;1
s (R2n) is a Banach space for the topology de�ned by any of these

norms; moreover the Schwartz space S(R2n) is dense in M1;1
s (R2n).

When s = 0 the modulation space

M1;1
0 (R2n) =M1;1(R2n)

is the so-called �Sjöstrand class�studied in [29, 30].
The spaces M1;1

s (R2n) are invariant under linear changes of variables:

Proposition 4 LetM be a real invertible 2n�2n matrix. If A 2M1;1
s (R2n)

then A �M 2M1;1
s (R2n): In fact, there exists a constant CM > 0 such that

for every window � and every A 2M1;1
s (R2n) we have

jjA �M jj�
M1;1
s

� CM jjAjj	M1;1
s

(32)

where 	 = � �M�1.

Proof. it su¢ ces to prove the estimate (32) since A 2 M1;1
s (R2n) if and

only if jjAjj	
M1;1
s

< 1. Let us set B = A �M ; performing the change of
variables z0 7�!Mz0 we have

V�B(z; �) = (detM)
�1
Z
R2n

e�2�i��M
�1z0A(z0)�(M�1z0 � z)dz0
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and hence

V�B(M
�1z;MT �) = (detM)�1

Z
R2n

e�2�i��z
0
A(z0)�(M�1(z0 � z))dz0

that is

V�B(z; �) = (detM)
�1V	A(Mz; (MT )�1�) , 	 = � �M�1:

It follows that

sup
z2R2n

[jV�B(z; �)jvs(z; �)] = (detM)�1 sup
z2R2n

�
V	A(z; (M

T )�1�)vs(M
�1z; �)

�
so that

jjBjj�
M1;1
s

= (detM)�1
Z
R2n

sup
z2R2n

�
V	A(z; (M

T )�1�)vs(M
�1z; �)

�
d�

=

Z
R2n

sup
z2R2n

�
V	A(z; �)vs(M

�1z;MT �)
�
d�:

Diagonalizing M and using the rotational invariance of vs it is easy to see
that there exists a constant CM such that

vs(M
�1z;MT �) � CMvs(z; �)

and hence the inequality (32).
The modulation spaces M1;1

s (R2n) contain many of the usual pseudo-
di¤erential symbol classes and we have the inclusion

C2n+1b (R2n) �M1;1
0 (R2n) (33)

where C2n+1b (R2n) is the vector space of all functions which are di¤erentiable
up to order 2n + 1 with bounded derivatives. In fact, for every window �
there exists a constant C� > 0 such that

jjAjj�
M1;1
s

� C�jjAjjC2n+1 = C�
X

j�j�2n+1
jj@�z Ajj1:

3.1.2 The �-algebra property

For us the main interest of M1;1
s (R2n) comes from the following property

of the twisted product (Gröchenig [21]):

12



Proposition 5 Let A;B 2 M1;1
s (R2n). Then A#B 2 M1;1

s (R2n). In
particular, for every window � there exists a constant C� > 0 such that

jjA#Bjj�
M1;1
s

� C�jjAjj�M1;1
s
jjBjj�

M1;1
s

:

Recall that the twisted product A#B of two symbols is de�ned by

A#B(z) = 4n
ZZ

R2n
e�4�i�(z�z

0;z�z00)A(z0)B(z00)dz0dz00: (34)

Since obviously A 2M1;1
s (R2n) if and only and A 2M1;1

s (R2n) The prop-
erty above can be restated as:

The modulation space M1;1
s (R2n) is a Banach �-algebra with

respect to the twisted product # and the involution A 7�! A.

In the case of the Sjöstrand class M1;1(R2n) one has the following more
precise results:

Proposition 6 (i) Every Weyl operator Aw(x;�i~@x) with A 2M1;1(R2n)
is bounded on L2(Rn); (ii) If we have

Cw(x;�i~@x) = Aw(x;�i~@x)Bw(x;�i~@x)

with A;B 2 M1;1(R2n) then C 2 M1;1(R2n); (iii) If Aw(x;�i~@x) with
A 2M1;1(R2n) is invertible with inverse Bw(x;�i~@x) then B 2M1;1(R2n).

The Sjöstrand class M1;1(R2n) contains, in particular, the symbol class
S00;0(R2n) consisting of all in�nitely di¤erentiable complex functions A on
R2n such that @�z A is bounded for all multi-indices � 2 N2n. Property
(i) thus extends the L2-boundedness property of operators with symbols in
S00;0(R2n). Property (iii) is called the Wiener property of M1;1(R2n); for
the classical symbol classes results of this type go back to Beals [3].

3.2 The modulation spaces M q
s (Rn)

3.2.1 De�nitions

We de�ne a weight vs on R2n by

vs(z) = (1 + jzj2)s=2 (35)

(cf. (28)). Notice that vs is submultiplicative:

vs(z + z
0) � vs(z)vs(z

0): (36)

13



In what follows q is a real number � 1, or 1. Let Lqs(R2n) be the space
of all Lebesgue-measurable functions 	 on R2n such that vs	 2 Lqs(R2n).
When q <1 the formula

jj	jjLqs =
�Z

R2n
jvs(z)	(z)jqdz

�1=q
de�nes a norm on Lqs(R2n); in the case q =1 this formula is replaced by

jj	jjL1s = ess sup
z2R2n

jvs(z)	(z)j:

The modulation space M q
s (Rn) is the vector space consisting of all  2

S 0(Rn) such that V� 2 Lqs(R2n) where V� is the short-time Fourier trans-
form (STFT) with window � 2 S(Rn):

V� (z) =

Z
Rn
e�2�ip�x

0
 (x0)�(x0 � x)dx0; (37)

it is related to the wave-packet transform by the formula

W� (z) = 2
ne

2i
~ p�xV�_p

2�~
 p2�~(

q
2
�~z) (38)

where �_(x) = �(�x) and  p2�~(x) =  (x
p
2�~). We thus have  2

M q
s (Rn) if and only if there exists � 2 S(Rn) such that

jj jj�
Mq
s
=

�Z
R2n

jvs(z)V� (z)jqdz
�1=q

<1 (39)

when q <1, and

jj jj�M1
s
= ess sup

z2R2n
jvs(z)V� (z)j <1 (40)

when q = 1. As in the case of the spaces M1;1
s (R2n) this de�nition is

independent of the choice of the �window��, and the jj � jj�
Mq
s
form a family

of equivalent norms on M q
s (Rn), which is a Banach space for the topology

thus de�ned (see [20], Proposition 11.3.2, p.233). Moreover the Schwartz
space S(Rn) is dense in M q

s (Rn).
The modulation spaces M q

s (Rn) can be rede�ned in terms of the win-
dowed wave-packet transform.

Proposition 7 We have  2 M q
s (Rn) if and only if W� 2 Lqs(R2n) for

some (and hence all) � 2 S(Rn).

14



Proof. It is based on formula (38) relating the STFT V� to the windowed
wave-packet transform W�. We only give the proof in the case 1 � q <
1, because the modi�cations needed in the case q = 1 are obvious. We
have  2 M q

s (Rn) if and only if V� 2 Lqs(R2n) for one (and hence every)
� 2 S(Rn), that is if and only if V�_p

2�~
 2 Lqs(R2n). Since, in addition,

 2 M q
s (Rn) if and only if  p2�~ 2 M q

s (Rn), we thus have  2 M q
s (Rn) if

and only if V�_p
2�~
 p2�~ 2 L

q
s(R2n) or, which amounts to the same,

 2M q
s (Rn)() 2ne

2i
~ p�xV�_p

2�~
 p2�~ 2 L

q
s(R2n): (41)

(Recall that we denote  � the function de�ned by  �(x) =  (�x).) Now, a
function 	 is in Lqs(R2n) if and only if 	� is, as follows from the inequalityZ

R2n
jvs(z)	(�z)jqdz � ��2nq(1 + ��2)s=2

Z
Rn
jvs(z)	(z)jqdz

obtained by performing the change of variable z 7�! ��1z and the trivial
estimate

(1 + j��1zj2)s=2 � (1 + ��2)s=2(1 + jzj2)s=2

valid for all s � 0. Combining this property (with � =
p
2=�~) with the

equivalence (41), and using (38), we thus have  2 M q
s (Rn) if and only if

W� 2 Lqs(R2n).

3.2.2 Metaplectic and Heisenberg�Weyl invariance properties

The modulation spaces M q
s (Rn) have the two remarkable invariance prop-

erties.

Proposition 8 (i) Each space M q
s (Rn) is invariant under the action of the

Heisenberg�Weyl operators bT ~(z); in fact there exists a constant C > 0 such
that

jjbT ~(z) jj�
Mq
s
� Cvs(z)jj jj�Mq

s
: (42)

(ii) For 1 � q < 1 the space M q
s (Rn) is invariant under the action of the

metaplectic group Mp(2n;R): if bS~ 2 Mp(2n;R) then bS~ 2M q
s (Rn) if and

only if  2 M q
s (Rn). In particular M q

s (Rn) is invariant under the Fourier
transform.

Proof. (i) The cross-Wigner transform satis�es

W ( bT ~(z0) ; �)(z) = T (z0)W ( ; �)(z)

=W ( ; �)(z � z0)

15



hence it su¢ ces in view of Proposition 7 and de�nition (20) to show that
Lqs(R2n) is invariant under the phase space translation T (z0). In view of the
submultiplicative property (36) of the weight vs we have, for q <1,

jjT (z0)	jjqLqv =
Z
R2n

j	(z � z0)jqvs(z)qdz

=

Z
R2n

j	(z)jqvs(z + z0)qdz

� v(z0)

Z
R2n

j	(z)jqvs(z)qdz

hence our claim; the estimate (42) follows. A similar argument works in the
case q =1.

The following consequence of the result above is the analogue of Propo-
sition 4:

Corollary 9 The modulation space M q
s (Rn) is invariant under the rescal-

ings  7�!  � where  �(x) =  (�x) where � 6= 0. More generally, M q
s (Rn)

is invariant under every change of variables x 7�! Lx (detL 6= 0).

Proof. The unitary operators ML with ML;m (x) = im
p
jdetLj (Lx)

(detL 6= 0, arg detL � m� mod2�) belong to Mp(2n;R); the Lemma fol-
lows since M q

s (Rn) is a vector space.
The class of modulation spacesM q

s (Rn) contain as particular cases many
of the classical function spaces. For instance, M2

s (Rn) coincides with the
Shubin�Sobolev space

Qs(R2n) = L2s(Rn) \Hs(Rn)

(Shubin [28], p.45). We also have

S(Rn) =
\
s�0

M2
s (Rn):

3.2.3 The Feichtinger algebra

A particularly interesting example of modulation space is obtained by tak-
ing q = 1 and s = 0; the corresponding space M1

0 (Rn) is often denoted
by S0(Rn), and is called the Feichtinger algebra (it is an algebra both for
pointwise product and for convolution). We have the inclusions

S(Rn) � S0(Rn) � C0(Rn) \ L1(Rn) \ L2(Rn): (43)
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A remarkable property of the Feichtinger algebra is that is the smallest
Banach space invariant under the action of the Heisenberg�Weyl operators
(7):

Proposition 10 Let (B; jj � jj) be a Banach algebra of tempered distributions
on Rn. Suppose that B satis�es the two following conditions: (i) there exists
C > 0 such that

jjbT ~(z) jj � Cvs(z)jj jj

for all z 2 R2n and  2 B; (ii) M1
s (Rn) \ B 6= f0g. Then M1

s (Rn) is
embedded in B and S0(Rn) = M1

0 (Rn) is the smallest algebra having this
property.

(See [20], Theorem 12.1.9, for a proof).
The Feichtinger algebra S0(Rn) contains non-di¤erentiable functions,

such as

 (x) =

�
1� jxj if jxj � 1
0 if jxj > 1

and it is thus a more general tool than the Schwartz space S(Rn). This
property, together with the fact that Banach spaces are mathematically
easier to deal with than Fréchet spaces, makes that the Feichtinger algebra
is a tool of choice for the study of wavepackets.

3.3 Applications to deformation quantization

3.3.1 The �-algebra property for the Moyal product

Comparing formulae (5) and (34) we see that the twisted product is just the
Moyal product with } = 1=2�:

A#B = A ?1=2� B: (44)

It turns out that more generally A ?~ B and A#B are related in a very
simple way, and this has the following interesting consequence:

If A;B 2M1;1
s (R2n) then A ?~ B 2M1;1

s (R2n):

More precisely:

Proposition 11 The symbol class M1;1
s (R2n) is a Banach �-algebra with

respect to the Moyal product ?~ and the involution A 7�! A: if A and B are
in M1;1

s (R2n) then A ?~ B is also in M1;1
s (R2n).
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Proof. Using the representation (9) of the Moyal product one sees imme-
diately that

(A ?~ B)p~ = (A
p
~)#(B

p
~) (45)

where Ap~(z) = A(z
p
~), etc. Since M1;1

s (R2n) is a Banach �-algebra for
the twisted convolution # it thus su¢ ces to prove the equivalence

A� 2M1;1
s (R2n)() A 2M1;1

s (R2n) (46)

for every � > 0. In fact, since (A�)1=� it su¢ ces to show that if A 2
M1;1
s (R2n) then A� 2M1;1

s (R2n). Recall that A 2M1;1
s (R2n) means that

for one (and hence every) � 2 S(R2n) we have

jjAjj�
M1;1
s

=

Z
R2n

sup
z
[jV�A(z; �)jvs(z; �)] d� <1

where V� is the short-time Fourier transform de�ned by

V�A(z; �) =

Z
R2n

e�2�i��z
0
A(z0)�(z0 � z)dz0:

Performing the change of variables z0 7�! �z0 in the formula above we get

V�A�(z; ) = ��2nV���1A�(�z; �
�1�)

and hence
sup
z
jV�A�(z; �)j = ��2n sup

z
jV���1A(z; �

�1�)j

so that

jjA�jj�M1;1
s

= ��2n
Z
R2n

sup
z
jV���1A(z; �

�1�)jvs(z; �)dzd�

=

Z
R2n

sup
z
jV���1A(z; �)jvs(z; ��)dzd�

� max(1; �2s)jjAjj���1
M1;1
s

where we have used the trivial inequality vs(z; ��) � max(1; �2s); it follows
that A� 2M1;1

s (R2n) if A 2M1;1
s (R2n) which we set out to prove.

3.3.2 Regularity results

The following result combines the properties of the spacesM1;1
s (R2n), viewed

as symbol classes, with those of M q
s (Rn).
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Proposition 12 Let A 2 M1;1
s (R2n). The operator bA~ = Aw(x;�i~@x)

is bounded on M q
s (Rn) for every q. In fact, there exists a constant C > 0

independent of q such that following uniform estimate holds

jj bA~jjMq
s�!Mq

s
� CjjAjj

M1;1
s

for all A 2M1;1
s (R2n).

Proof. The result is proven for ~ = 1=2� in [20], p.320 and p.323. Let us
show that it holds for arbitrary ~. Noting that Aw(x;�i~@x) = Bw(x;�i@x)
where B(x; p) = A(x; 2�~p) it su¢ ces to show that if A 2 M1;1

s (R2n) then
B 2M1;1

s (R2n). But this follows from Proposition 4 with the choice

M =

�
I 0
0 2�~I

�
for the change of variable.

Notice that if we take q = 2, s = 0 we have M2
0 (Rn) = L2(Rn) hence

operators with Weyl symbols in M1;1
s (R2n) are bounded on L2(Rn); in

particular, using the inclusion (33), we recover the Calderón�Vaillancourt
theorem [5].

We begin by making the following remark: there are elements of Lqs(R2n)
which do not belong to the range of any wave-packet transform W� (or,
equivalently, to the range of any short-time Fourier transform V� ). This
is actually a somewhat hidden consequence of the uncertainty principle.
Choose in fact

	(z) = e�
1
2~Mz�z

where M is a real symmetric positive-de�nite matrix; clearly 	 2 Lqs(R2n),
but the existence of � and  such that W� = 	 is only possible if the
matrix M satis�es the following very stringent condition (see [16, 17]; also
[22]):

The moduli of the eigenvalues of JM are all � 1

which is equivalent to the geometric condition:

The section of the ellipsoid Mz � z � ~ by any plane of con-
jugate coordinates xj ; pj is � �~:

The properties above are proven by using Hardy�s uncertainty principle
(Hardy [23]) which is a precise statement of the fact that a function and its
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Fourier transform cannot be simultaneously sharply localized; in the multi-
dimensional case this principle can be stated as follows (de Gosson and Luef
[19]): if A and B are two real positive de�nite matrices and  2 L2(Rn),
 6= 0 such that

j (x)j � CAe
� 1
2~Ax

2

and jF (p)j � CBe
� 1
2~Bp

2

(47)

for some constants CA; CB > 0, then the eigenvalues �j , j = 1; :::; n, of
AB are � 1. The statements above then follow, performing a symplectic
diagonalization of M and using the marginal properties of the cross-Wigner
transform.

We will call a function 	 2 Lqs(R2n) admissible if there exist  2M q
s (Rn)

and a window � such that 	 = W� . intuitively, the fact for a function to
be admissible means that it is not �too concentrated�around a phase-space
point.

The modulation spaces M q
s (Rn) can be used to prove the following reg-

ularity result in deformation quantization:

Proposition 13 Assume that A 2 M1;1
s (R2n) and that B 2 Lqs(R2n) is

admissible. Then A ?~ B 2 Lqs(R2n).

Proof. We have
A ?~ B = eA~(B) = eA~(W� )

for some  2M q
s (Rn) and a window �, and hence, using the �rst intertwining

formula (25),
A ?~ B =W�( bA~ ):

Since  2M q
s (Rn) we have W� 2 Lqs(R2n) and Proposition 12 implies thatbA~ 2M q

s (Rn) hence W�( bA~ ) 2 Lqs(R2n) which we set out to prove.
3.3.3 The Star-Exponential

Let H be a Hamiltonian function. In deformation quantization one de�nes
the star-exponential Exp(Ht)by the formal series

Exp(Ht) =

1X
k=0

1

k!

�
t

i~

�k
(H?~)

k

where (H?~)0 = Id and (H?~)k = H ?~ (H?~)
k�1 for k � 1. In terms of the

Bopp pseudo-di¤erential operator eH we thus have

Exp(Ht) =

1X
k=0

1

k!

�
t

i~

�k eHk; (48)
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this formula allows us to rede�ne the star-exponential Exp(Ht) by

Exp(Ht) = exp

�
� it
~
eH� : (49)

With this rede�nition Exp(Ht) is the evolution operator for the phase-space
Schrödinger equation

i~
@	

@t
= eH	 , 	(�; 0) = 	0: (50)

That is, the solution 	 of the Cauchy problem (50) is given by

	(z; t) = Exp(Ht)	0(z): (51)

Let now

Ut = exp

�
� it
~
bH~
�

(52)

be the evolution operator for the Schrödinger equation

i~
@

@t
 (x; t) = bH~ (x; t) ,  (x; 0) =  0(x) (53)

with Hamiltonian operator bH. (We will always assume that the solutions of
(53) exist for all t and are unique for an initial datum  0 2 S(Rn).)

The following intertwining and conjugation relations are obvious:

Exp(Ht)W� =W�Ut (54)

W �
� Exp(Ht) = expUtW

�
� (55)

W �
� Exp(Ht)W� = expUt: (56)

We also note that it immediately follows from formula (14) in Proposition
1 that we have the symplectic covariance formula

Exp
�
(H � S�1)t

�
= US Exp(Ht)U

�1
S

where US 2 Mp(4n;R) is de�ned by

US	(z) = 	(Sz)

for S 2 Sp(2n;R).
The following result shows that the star-exponential preserves the ad-

missible functions in the weighted Lq spaces:
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Proposition 14 Assume that the Hamiltonian is of the type

H(z) =
1

2
Mz � z +m � z (57)

where M is symmetric and m 2 R2n. Let 	 2 Lqs(R2n) be admissible. then

Exp(Ht)	 2 Lqs(R2n) for all t 2 R (58)

for all q � 1 and s � 0.

Proof. Assume �rst that m = 0; then the Hamiltonian �ow determined
by H consists of symplectic matrices and is thus a one-parameter subgroup
(St) of Sp(2n;R). To (St) corresponds a unique one-parameter subgroup
(bS~t ) of the metaplectic group Mp(2n;R), and we have Ut = bS~t , that is, the
function  (x; t) = bS~t  0(x) is the solution of Schrödinger�s equation (53) (see
for instance [15], Chapter 7, §7.2.2). In view of Proposition 8(ii) we havebS~t : M q

s (Rn) �! M q
s (Rn). If 	 is admissible there exists  2 M q

s (Rn) and
a window � such that 	 =W� hence, taking formula (54) into account,

Exp(Ht)	 =W�Ut ;

since Ut 2 M q
s (Rn) we have W�Ut 2 Lqs(R2n) hence (58) when m = 0:

The case m 6= 0 follows since the one-parameter subgroup (St) of Sp(2n;R)
is replaced by a one-parameter subgroup of the inhomogeneous (=a¢ ne)
symplectic group ISp(2n;R), from which follows that Ut = bS~t is replaced
by Ut = bS~t bT ~(z0) for some z0 2 R2n only depending on m (see Littlejohn
[25]); one concludes exactly as above using the invariance of M q

s (Rn) under
the action of Weyl�Heisenberg operators (Proposition 8(i)).

4 Concluding Remarks

Our results are not the most general possible. The modulation spaces
M1;1
s and M q

s considered in this paper are particular cases of the more
general spaces M q;r

m where q; r are real numbers or 1 and m a more gen-
eral weight function than vs. Our choice was dictated by the fact that
while many of the results we have stated still remain valid for these more
general modulation spaces if certain natural assumptions (for instance sub-
additivity) are made on the weight m the notation can sometimes appear
as too complicated. Another topic we only brie�y mentioned, is the Fe-
ichtinger algebra M1

0 (Rn) = S0(Rn). In addition to the properties we listed,
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it has the following nice feature: let S00(Rn) be the dual of S0(Rn); then
(S0(Rn); L2(Rn); S00(Rn)) is a Gelfand triple of Banach spaces; this prop-
erty makes S0(Rn) particularly adequate for the study of the continuous
spectrum of operators. In addition to smooth wavepackets (for instance
Gaussians).

Another direction certainly worth to be explored is the theory of Wiener
amalgam spaces [8, 20], which are closely related to modulation spaces;
Cordero and Nicola [6] have obtained very interesting results for the Schrödinger
equation using Wiener amalgam spaces. What role do they play in defor-
mation quantization?
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