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THE DG-CATEGORY OF SECONDARY COHOMOLOGY OPERATIONS

HANS-JOACHIM BAUES AND MARTIN FRANKLAND

ABSTRACT. We study track categories (i.e., groupoid-enriched categories) endowed with
additive structure similar to that of a 1-truncated DG-category, except that composition is
not assumed right linear. We show that if such a track category is right linear up to suitably
coherent correction tracks, then it is weakly equivalent to a 1-truncated DG-category. This
generalizes work of the first author on the strictification of secondary cohomology operations.
As an application, we show that the secondary integral Steenrod algebra is strictifiable.
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1. INTRODUCTION

Cohomology operations are important tools in algebraic topology. The Steenrod algebra (of
primary stable mod p cohomology operations) was determined as a Hopf algebra in celebrated
work of Milnor [Mil58]. The structure of secondary cohomology operations was determined
as a “secondary Hopf algebra” in [Bau06], and via different methods in [Nas12]. Unlike for
primary operations, composition of secondary operations is not bilinear, but bilinear up to
homotopy. Part of the work in [Bau06] was to strictify the structure of secondary operations,
i.e., replace it with a weakly equivalent differential bigraded algebra, in which composition
is bilinear. The purpose of this paper is to revisit this strictification step, simplify it, and
generalize it.

Here is the motivating example in more detail. For a fixed prime number p, mod p coho-
mology operations correspond to maps between finite products of Eilenberg—MacLane spaces
K(F,,n), the representing objects. Stable operations correspond to maps between finite
products of Eilenberg-MacLane spectra X" HIF,. Primary operations are encoded by homo-
topy classes of such maps. More precisely, the Steenrod algebra A is given by homotopy
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2 HANS-JOACHIM BAUES AND MARTIN FRANKLAND

classes of maps
A" = [HF,,X"HF,].

For higher order cohomology operations, one needs more than homotopy classes. One way
to encode higher order operations is the topologically enriched category £M consisting of
finite products of Eilenberg-MacLane spectra

A=YX"HF, x ... x ¥ HF,

and mapping spaces between them. Composition in the homotopy category mo€ M is bilinear,
but composition in EM is not bilinear. It is strictly left linear, i.e., satisfies (a+b)x = ax+bz,
and right linear up to coherent homotopy a(x +vy) ~ ax + ay. The higher coherence for right
linearity is studied in [BF17].

For secondary operations, it suffices to take the fundamental groupoid of each mapping
space in EM. This yields a track category [I;EM, i.e., a category enriched in groupoids. In
fact, II,EM has some additional additive structure. Since each mapping space in EM is an
abelian group object, the same is true of II;EM. Now, an abelian group object in groupoids
corresponds to a 1-truncated chain complex C; — Cy. Moreover, composition in I[,EM is
left linear (strictly) and right linear up to track. Hence, the track category I1;EM looks
like a 1-truncated DG-category (i.e., a category enriched in 1-truncated chain complexes),
except that composition is not right linear. One of the structural results from [Bau06] is the
following.

Theorem A. The track category II,EM is weakly equivalent to a 1-truncated DG-category
over Z/p?.

The proof relied on correction tracks for right linearity a(z+y) = ax + ay. These linearity
tracks can be chosen to satisfy certain coherence conditions, which we call the linearity track
equations. The main result of this paper is the following; see Theorem 7.6.

Theorem B (Strictification theorem). Let T be a left linear track category which admits
linearity tracks satisfying the linearity track equations. Then T is weakly equivalent to a
1-truncated DG-category.

If moreover every morphism in T is p-torsion (i.e., satisfies pr = 0), then T is weakly
equivalent to a 1-truncated DG-category over Z/p*.

The contribution of this paper is threefold.

e We streamline the construction of the strictification, which is not about secondary
cohomology operations, but rather about coherence in track categories. This part is
mostly expository, to make the relevant literature more transparent. Moreover, the
current presentation can be adapted to tertiary cohomology operations.

e One new result is the observation that the construction works over Z, i.e., without p-
torsion assumption (Proposition 5.8). As an application, we show that the secondary
integral Steenrod algebra is strictifiable (Corollary 7.7).

e We provide an alternate proof of the strictification theorem using a 2-categorical
observation due to Lack. This bypasses the cocycle computation in Baues—Wirsching
cohomology, the argument used in [Bau06].

Organization. In Section 3, we describe the notion of a track category F having some ad-
ditive structure that makes composition left linear (strictly) and right linear up to coherent
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homotopy (Definition 3.4). In Section 4, we show that such a track category in which com-
position is also right linear (strictly) is the same as a 1-truncated DG-category. Next, the
proof of the strictification theorem consists of three steps.

e The construction of a certain pseudo-functor s: By — F. This is done in Section 5.

e Upgrading this construction to a certain pseudo-functor s: B — F, where B is a
1-truncated DG-category. This is done is Section 6.

e Some general categorical facts about pseudo-functors ensuring that we obtain the
desired weak equivalence. This is done in Section 7.

Appendix A makes the general construction more explicit in the case of secondary coho-
mology operations. Appendix B explains how a strictification of 7 can be used to compute
Toda brackets in 7.

Related work. There are other strictification problems in track categories with additive
structure. The strengthening theorem [BJP03, Theorem 6.2.2] says that under certain as-
sumptions, a track category with weak products is weakly equivalent to a track category
with strict products. If the track category has weak products and weak coproducts, then
one cannot in general strictify both the products and coproducts simultaneously. Gaudens
showed that one can strictify the products and make the weak coproducts somewhat more
strict [Gaul0].

Using Baues—Wirsching cohomology of small categories along with calculations in Hochschild,
Shukla, and MacLane cohomology, the first author and Pirashvili recovered the strictification
theorem for the secondary Steenrod algebra (Theorem A) and generalized it [BP04, Theo-
rem 8.1.1] [BP06], c.f. [BJP0S8, §3]. The current paper makes no use of cohomology theories
for categories. It is not obvious whether one could prove the strictification theorem for the
secondary integral Steenrod algebra (Corollary 7.7) using a similar cohomological argument.

There is also literature on the strictification of pseudo-algebras for certain 2-monads on
certain 2-categories [Pow89] [Lac02b] [Shul2]. It would be interesting to see if left linear
track categories equipped with linearity tracks form the pseudo-algebras of some appropriate
2-monad whose strict algebras are the bilinear track categories.

Acknowledgements. We thank David Blanc, Teimuraz Pirashvili, and Emily Riehl for
helpful conversations. The second author thanks the Max-Planck-Institut fiir Mathematik
Bonn for its generous hospitality. The second author was partially funded by a grant of the
DFG SPP 1786: Homotopy Theory and Algebraic Geometry.

2. PRELIMINARIES AND NOTATION
Notation 2.1. A groupoid is a category in which every morphism is invertible. Denote the
data of a (small) groupoid by G = (Go, G4, 0y, 6,,1d7, 0, (—)E'), where:
e GGy = Ob(G) is the set of objects of G.

e G; = Hom(G) is the set of morphisms of G, also called tracks in G. The set of
morphisms from x to y is denoted G(z,y). We consider a groupoid G as a graded set,

with
0 ifxe Go
d —
cg(7) {1 if 2 e Gy

and we write £ € GG in each case.
e 0y: G1 — Gy is the source map.
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e )1: G — G is the target map.

e id”: Gy — Gy sends each object x to its corresponding identity morphism idE.
o [1: Gy Xg, G1 — G is composition in G.

e f7:y — x is the inverse of the morphism f: z — v.

Groupoids form a category Gpd, where morphisms are functors between groupoids.
Denote the fundamental groupoid of a topological space X by II;(X).

Notation 2.2. A groupoid G is pointed if it is equipped with a morphism of groupoids
% — G from the terminal groupoid * (with one object and one morphism). Let Gpd, denote
the category of pointed groupoids.

The smash product of pointed groupoids G A G’ makes (Gpd,,A) into a symmetric
monoidal category, with the monoidal unit being S°, the discrete groupoid on two objects (a
basepoint and a non-basepoint).

Definition 2.3. A track category is a category enriched in (Gpd, x), the category of
groupoids with its Cartesian product as monoidal structure.

A track category 7T is pointed if it is enriched in (Gpd,,A). More explicitly, for any
objects A, B,C of T, the composition map

p: T(B,C)xT(A,B)—T(AC)

satisfies the following two conditions:
e Objects: 1(0,y) =0 and p(z,0) =0 for all x € T(B,C) and y € T (A, B)o.
e Morphisms: pu(idy,b) = idg and p(a,idy) = idy for all @ € T(B,C); and b €
T(A, B);.
Here 0 = 04,5 € T (A, B)y denotes the basepoint (in the appropriate mapping groupoid). By
abuse of notation, we will sometimes write 0 € T(A, B), for idj .

The homotopy category of a track category 7 is the category mo7 with the same objects
as T and whose hom-sets are obtained by taking components of each mapping groupoid:

(7TOT) (A, B) = 7TOT<A, B)

The underlying category of 7 is the category 7Ty obtained by forgetting the tracks, i.e.,
with hom-sets To(A, B) = T (A, B)o.

We write x € T if x € T(A, B) for some objects A and B. For z,y € C, we write
xy = p(r,y) when = and y are composable, i.e., when the target of y is the source of x,
and deg(z) = deg(y) holds. From now on, whenever an expression such as xy appears, it is
understood that x and y must be composable.

Notation 2.4. For deg(z) = deg(y) = 0 and deg(a) = 1, denote:

rTRY =Y
(2.5) r® a:=idY a, also written zo
a® z = aid | also written au.
We call x ® y the ®-composition of z and y, which is defined whenever deg(x)+deg(y) < 1

holds. The ®-composition is associative, unital, and satisfies deg(x ® y) = deg(z) + deg(y).
Moreover, it determines the pointwise composition. Indeed, for deg(«) = deg(8) = 1, the
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following factorizations hold in 7:

af = (a® 0 p)0 (dha @ )
(2.6) = (01a® P)0 (e ® dpf) .

For our purposes, it will be more convenient to work with the ®-composition instead of the
pointwise composition.

If T is a pointed track category and « and [ are tracks to zero, i.e., satisfying ;o = 0 and
018 = 0, then Equation (2.6) specializes to

(2.7) (600) ® B = o ® (d0).
3. LINEARITY TRACKS

The purpose of this paper is to study distributivity in track categories, i.e., the compati-
bility between multiplicative and additive structure. In this section, we describe the additive
structure of interest, where composition is left linear (strictly) and right linear up to coherent
homotopy.

Definition 3.1. A locally linear track category 7 is a pointed track category such that
each mapping groupoid 7 (4, B) is an abelian group object in Gpd (based at 04 5). The
track category T is left linear if moreover composition in 7 is left linear, i.e., satisfies
(a + d')z = ax + az’. Right linear and bilinear are defined analogously.

A morphism of locally linear track categories is a track functor (i.e. Gpd-enriched
functor) F': § — T such that for all objects A, B of S, the induced map of groupoids
F:S(A,B) — T(FA,FB) is a map of abelian group objects in groupoids, i.e., preserves
addition (strictly).

Lemma 3.2. For T a locally linear track category, the following are equivalent.

(1) Composition in T s left linear.
(2) The abelian group object structure of T (A, B) is natural in A.

If moreover T has finite (strict) products, then these conditions are further equivalent to the
following.

(8) For every object B, the abelian group object structure of T (A, B) is induced by a
(strict) abelian group object structure on B, i.e., by “pointwise addition in the target”.

Definition 3.3. Let 7 be a left linear track category, and let x,y: X — Aand a: A — B
be maps in 7. A track I'’Y € T(X, B); of the form
I'ev:alx +y) = ax +ay

is called a linearity track.

Definition 3.4. The following are called the linearity track equations.

(1) Precomposition: TI'**¥* = I'%¥z. In other words, the following diagram of tracks
commutes:

acz Yz

xz + yz = arz + ayz

a(x +y z:(ax+ay
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(2) Postcomposition: 'y = Ty"*™ObI%Y. As a diagram:

Y

F k)
ba(z + y) === bax + bay

z,Y
e “ %

blazx + ay).

In particular, setting a = b = 1 yields the unital equation I'{"Y = idiy.
(3) Symmetry: DY = T¥*,
(4) Left linearity: T0Y , =T%v 4+ T0Y.

ata’ T a’

(5) Associativity: (TZY + az) OTZTY* = (ax + T'Y*)OT%YT2 As a diagram:

Fngy,Z

alr+y+z)==a(r+y)+az

Fiay+zﬂ ﬂrg#]+az

ax + a(y + z) —.az +ay +az.
In particular, setting y = 2 = 0 yields I'?? = id}, and likewise I'%¥ = idaDy.
(6) Naturality in x and y: Given tracks G: x = 2’ and H: y = ¢/, the equation
(aG 4 aH)OT®Y =T2Y'0a(G + H)
holds in 7;. As a diagram:

z,Y
a(m+y)%aw+ay

a(G+H)ﬂ “aG+aH

a(z' +y) = ar’ + ay'’.

ra' v

(7) Naturality in a: Given a track a: a = @', the equation
(az + ay) OT2Y =T50a(z + y)

holds in 7;. As a diagram:

rey
a(z +y) == ax +ay

a(x—i—y)ﬂ ﬂax—l-ay

a(x+y) o ar+ay.

Let us recall how linearity tracks arise [Bau06, §4.2].

Proposition 3.5. Let T be a left linear track category with finite (strict) products. Assume
that for every object A of T, the two inclusion maps iy = (14,0): A - A X A and iy =
(0,14): A — A X A ezhibit A x A as a weak coproduct, i.e., the restriction

T(Ax A, B) W2 7(A, B) x T(A, B)

is an equivalence of groupoids for every object B of T. Then T admits canonical linearity
tracks, which moreover satisfy the linearity track equations.
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Proof. For every map a: A — B, let I', € T(A x A, B); be the unique track satisfying the
equations

T, = id”

3Ty = id- .
For every z,y: X — A, define the composite I'*Y :=T', ® (x,y) € T (X, B)1, which is a track

%Y a(z + y) = ax + ay as illustrated in the diagram

(x,y)

X—AXxA——BxDB

vty +a l F%‘ lJrB
A = B.

axa

These tracks I'2 satisfy the linearity track equations [Bau06, Theorem 4.2.5]. U
Note that for such a track category 7T, the homotopy category my7 is additive.

Example 3.6. If C is a topologically enriched category satisfying the topological analogue of
Proposition 3.5, then the proposition applies to the underlying track category 7 = II;C. This
happens in the example of higher order cohomology operations, as described in [BF17].

3.1. Iterated linearity tracks. For the remainder of the section, let T be left linear track
category equipped with system of linearity tracks I'*Y: a(z 4+ y) = ax + ay satisfying the
linearity track equations.

Definition 3.7. Given an integer n > 2 and maps zq, .. X - Aand a: A — B
define the track I'*v*: a(xy + ... + z,) = ax; + . —l— axn inductively by I'Ztr®n =
(DZrPn—t g, ) OTE T Fon-1.2n - ag jllustrated in the dlagram

Fgl ,,,,, Tn
a(ri+ ...+ 2y 1 +a,) ——ar1+ ... +azx,
le+.4.+zn_1,znﬂ(
a cetxgy
a +axrn

a(xy+ ...+ xy_1) + axy,.

For n =1, take by convention the identity track I'#' = id”: azy = ax.

Proposition 3.8. (1) The (n — 1)! ways of breaking the sum 1 + ...+ x, into single
terms, counted by ordering the (n — 1) instances of the symbol +, all yield the same
track TZv%: a(xy 4+ ...+ 2p) = axy + ... + ax,.

(2) Writing the sum into k blocks

n n Ni
/& /3 A\

Ttz =@t Tn) @ ot Do) F o (T a1 o T)
:51—1—+Sk

yields the factorization

k
[&1tn — <§ :Finl+"'+”i—1+1""’x”1+“-+ni) DFS1,...,Sk
a a

i=1
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as illustrated in the diagram

a(zy+...+x,) =a(S1+ ...+ Sk)

ary + ...+ ax,.

Proof. The case n = 3 holds by assumption, as Equation 3.5 (5). The case n = 4 says that
the diagram

a(w+x)+T4*

a(w+ )+ aly + 2) a(w+ )+ ay + az

Fg-&-w-%y,z

alw+z+y+2) alw+x+y)+az Y% 4ay+az
Lo +a(y+z)

aw+az+ITY7?
ety aw + azx + a(y + z) = aw + ar + ay + az

y SR W
F§+y7z

aw + a(x +y + z) ikl aw + a(x + y) + az

commutes. The front face commutes by induction, and is equal to I'****¥*: likewise for
the top and left faces. The right face commutes by induction, and is equal to I'V"*Y + az;
likewise for the bottom face. The back face commutes and is equal to I'""* + I'* by the
interchange law in the additive groupoid 7 (X, B). The general case n > 4 is proved similarly
by induction.

The second statement is a straightforward generalization of the factorization of I'y*¥* :

Fw+x,y+z

alw+z+y+z)=——=alw+z)+aly+2)

w,T Y,z
\ “Fa +T
a

aw +ar +ay + az
using the back face of the cube. O
Proposition 3.9. The iterated linearity tracks I'2v%» satisfy the following equations, which

are analogous to the linearity track equations in Proposition 3.5.

(1) Precomposition: 1% = [tz

(2) Postcomposition: Ff;i" = Fgﬂ’""“"D ) I

(8) Symmetry: [Zi-2n = T2 for any permutation o € %,,.

(4) Left linearity: ')} ™" = [gve®n 4 [P0

(5) Naturality in x;: Given tracks G;: x; = x} for 1 <i <mn, the equation
(aGy + ...+ aGy,)OT%0%n = D% q(Gy + ... + Gy)

holds.

(6) Naturality in a: Given a track a: a = o, the equation

(azy + ...+ ax,) O = T2 Do) + ...+ 2y,)

holds.
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Proof. This follows inductively from the case n = 2. 0
3.2. Multiplying by an integer.
Notation 3.10. For a map a: A — B in Ty and n > 1, denote the track in T (A, B);

n terms
—_—
[(n)g =T q(ly+ ... +14) =ala+... +aly=n-a.
In particular, if p annihilates every map in 7 and p|n, then I'(n) is a track of the form
I'(n): 0=0.

Remark 3.11. The p-torsion condition px = 0 is meant for morphisms x € 7T of degree 0, but
together with left linearity, this implies that tracks are also p-torsion. Indeed, let a: z = y
a be track between morphisms z,y: A — B. Then we have

pa=a+...+a=(lg+...+1)a=0.

Lemma 3.12. For a map a: A — B in Ty and m,n > 1, the following equality holds:
F(m-n)y=(m-15)'n),O0(m).(n-14)

in T(A, B)y. In other words, the following diagram of tracks commutes:

I'(mn)g
a(mn - 1,4) ) mn-a

a(m-1A)(n-1A)m(m-a)(n-1A) = (m-1B)a(n-1A)m(m-13)(n-a).

In particular, if p annihilates every map in Ty and p*|n, then we have T'(n) = idg : 0 = 0.

Proof. Break the sum mn - 14 into m blocks of n terms each

m blocks
N\

Ve

Using Proposition 3.8, we obtain

mmn

——
L(mn), = F(}A’ e la

n m

mo e—tN— - ~
_ ZI&A,...,LA DF?'lA""m'lA
1

m
A\

:m.F(n>aDFg'1A7"'an'1A

m

——
=m-I'(n),0 F(}A’ e 1A(n 14) by Equation 3.5(1)

=m-I'(n),dL(m).(n-14).
0

Next, we deal with negatives.
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Notation 3.13. For any map a: A — B in 7y, define the track I'(—1),: a(—14) = —a by
the commutative diagram of tracks

rb-t

a(l+(—1)) =——=a(1) + a(-1)

| o

a(0) 0 a+ (—a).

Explicitly, it is given by I'(=1), = (I}7! — @)% = —T'L=1 + q(-1).

The analogously defined track a(—z) = —ax for an arbitrary map z: X — A is equal to
['(—=1),x, by the precomposition equation.

Lemma 3.14. For any map a € Ty and integer m > 0, the following diagram of tracks
commutes:
P'(=1)a(m)

ol —1ﬂ —T(m)a
mI(—1)q

a(-1)+...+a(—-1)=—= —ma
Denote the resulting track by I'(—m),: a(—m) = —ma.

Lemma 3.15. For any map a € Ty and integers m,n € Z, the following equality of tracks
holds:

I'(m+n), =(T(m), +T(n),) "

In diagrams:

m,n

a(m 4+ n) —_— a(m) + a(n)

ma + na = (m + n)a.

Proof. The case m,n > 0 follows from Proposition 3.8. The general case m,n € Z follows
from Lemma 3.14. 0

4. LEFT LINEAR TRACK CATEGORIES AND DG-CATEGORIES

In this section, we consider pointed track categories endowed with a certain additive struc-
ture. The motivational example is when C is a category enriched in (Top,,A), and each
mapping space C(A, B) has the structure of a topological abelian group. Note that C is not
enriched in topological abelian groups, as we do not assume that composition is bilinear.
However, we will assume that composition is left linear, i.e., satisfies (z + 2')y = zy + 2'y, as
is the case when addition of maps x, 2’ € C(B, () is defined pointwise in the target. We are
interested in the Gpd,-category I1;C of such a category C.

4.1. Abelian group objects in groupoids. The following equivalence can be found in
[Bau06, Proposition 2.2.6], [Bou07, Theorem 1.2, Remark 1], or [Bou90, §2]. Here we fix
some choices.
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Proposition 4.1. The category Gpd,,, of abelian group objects in the category Gpd of small
groupoids is equivalent to the category of 1-truncated chain complexes of abelian groups (in
other words, chain complexes concentrated in degrees 0 and 1). The equivalence sends an
abelian group object G in Gpd to its Moore chain complex

M(G) = (ker 5, 2=, G0> .

An inverse equivalence assigns to a 1-truncated chain complex of abelian groups Fy 9, Fy the
groupoid denoted

0
O(F) := (F1 o F, —= FO)
o1
defined as follows. For (x1,x¢) € Fy @ Fy, the source and target maps are given by
{50(371,%) = O0x1 +

51(561, 330) = Zo

so that (z1,x¢): Ox1 + xo = X0 is a track in the groupoid G(0). The composition of tracks is
given by

(42) (xhxo)l:l (yhy()) = (‘Tl +y1)x0)
when the composability condition 01y = yo = dox = 0x1 + xo 1S satisfied.
Likewise, the category of IFj-vector space objects in Gpd is equivalent to the category of
1-truncated chain complezes of F,-vector spaces.
The homotopy groups of the groupoid ©(F') are given by the homology of the corresponding
chain complex:
cokerd ifi =0
mO(F) = H)(F) =} kerd ifi=1

0 otherwise.

Via the equivalence of Proposition 4.1, a left linear track category (as in Definition 3.1)

can be viewed as the data F = <.7:1 LN Fo, +, ®>, where we replace each mapping groupoid

0
T(A, B) = (T(A, B), :0§ T(A, B)O) by the corresponding 1-truncated chain complex of
o1

abelian groups
MT(A, B) = F(A, B) = (F(A, B)1 % F(4, B)o) .

4.2. Truncated chain complexes. In this section, a chain compler will mean a non-
negatively graded chain complex unless otherwise noted, i.e., a chain complex C satisfying
C; = 0 for i < 0. We work in the category Modp of R-modules. The tensor product C'® D of
chain complexes of R-modules will mean the tensor product C'®z D over R unless otherwise
noted.

Let us recall some basics about truncation of chain complexes.

Definition 4.3. Let n > 0 be an integer.

(1) A chain complex C' is called n-truncated if it is trivial above degree n, that is,
satisfying C; = 0 for ¢« > n. Denote by Ch, the full subcategory of n-truncated
chain complexes and by ¢: Ch<, — Ch its inclusion into the category of all chain
complexes.
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(2) The n-truncation of a chain complex C' is the n-truncated chain complex

(Tr,, C'); = | coker (Cn+1 LN C’n> =C,/imd ifi=n
0 ifi>n

with differential inherited from that of C'. This construction defines a functor Tr,,: Ch —
Ch.,.

Recall that a (non-negatively graded) differential graded category, or DG-category
for short, is a category enriched in chain complexes (Ch, ®, R).

Definition 4.4. A DG-category F is called n-truncated if every hom-complex F(X,Y) is
n-truncated. Note that this is the same as a category enriched in Ch,,, where the tensor
product in Chg, is given by M ®,, N := Tr,(M ® N).

The n-truncation Tr,: Ch — Ch, is also known as the good n-truncation, because it
induces the n-truncation on homology groups:

4 o
HZ-(TrnC)—{HZC ifi<n

0 if 1 > n.
Moreover, Tr,, is left adjoint to the inclusion, and the adjunction Tr,, - ¢ is monoidal.
FExample 4.5. A O-truncated DG-category over the ring R = Z is precisely a preadditive
category. More generally, it is an R-linear category, i.e., a category enriched in (Modg, ®g).
Example 4.6. Let us spell out explicitly the structure found in a 1-truncated DG-category
F=(A5F+e).

(1) A category Fo.

(2) For all objects A and B of Fy, a 1-truncated chain complex of R-modules

F(A,B) = (]—“(A, B), & F(A, B)0> .

The zero elements are denoted 0 = 04 5 € F(A, B)o.

(3) For z,y € F composable and satisfying deg(x) + deg(y) < 1, the ®-composition
r®y € F is defined and satisfies deg(z ® y) = deg(x) + deg(y).

The following equations are required to hold.

(1) (Associativity) ® is associative: (z®y)® 2z =2® (y ® 2).

(2) (Units) The units in the category Fy, with deg(14) = 0, serve as units for ®, i.e.,
satisfy t ® 1 =z =1® x for all x € F.

(3) (Bilinearity) ® is bilinear.

(4) (Leibniz rule) The ®-composition is a chain map, which yields the following equations.
For z,y,a,b € F with deg(z) = deg(y) = 0 and deg(a) = deg(b) = 1, we have:

(Ja) @b =a® (0b) € Fy
Iz ®b) =2® (0b) € Fy
da®y) =(0a) @y € Fo.

Proposition 4.7. A left linear track category which is right linear can be identified with a
L-truncated DG-category (up to a strict track equivalence which is the identity on objects).
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Proof. Like the Dold-Kan correspondence, the equivalence M: Gpd,, = Ch<;: O from
Proposition 4.1 is not a monoidal equivalence [SS03, §2.3]. Both functors M and © are lax
monoidal, so that they induce change-of-enrichment functors [Bor94b, Proposition 6.4.3]. The

counit e: MO = 1 is monoidal, and the unit n: 1 = OM is pseudo-monoidal. Nonetheless,
applying the unit 7 to each hom-groupoid of a bilinear track category T yields a pseudo-
functor n: T — ©MT which turns out to be a (strict) track functor. O

5. CONSTRUCTION OF THE PSEUDO-FUNCTOR

Definition 5.1. Let 7 be a track category and B, a category. A pseudo-functor (s,I'): By —
T consists of the following data.

(1) A function assigning to each object A of By an object sA of T.
(2) For all objects A and B of By, a function

S Bo(A, B) — T(SA, SB)O.
(3) For every (composable) x,y € By, a track
[(z,y): (sz)(sy) = s(xy).

The following equations are required to hold.

(1) (Associativity) For every x,y, z € By, we have the equality
(5:2) P(zy, 2)0 (T2, y)(s2)) = T(z, y2)8 ((s2)I'(y, 2))
of tracks (sz)(sy)(sz) = s(zyz), as illustrated in the diagram

s(zyz)

s(zyz)

where pasting the four tracks yields the identity track idsu(zyz) €T
(2) (Units) For every object A of By the equality s(14) = 154 holds (strictly). For
every € By(A, B), we have equalities T'(15, ) = id>, and I'(x,14) = id_, as tracks

sr = sx in Ty.

Remark 5.3. A pseudo-functor satisfying the strict unital condition above is sometimes called
reduced. This condition can be weakened to having tracks 1,4 = s(14) that satisfy certain
coherence conditions; c.f. [BMO07, Appendix| and [Bor94, §7.5]. Our example of interest will
satisfy the strict unital condition.
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As before, we fix a prime number p and denote by I, the field of p elements. Consider
the ring Z/p* with the canonical quotient map Z/p* — F,. Let F be a left linear track
category in which every morphism is p-torsion, equipped with a system of linearity tracks
%Y. a(x+y) = ax+ ay satisfying the linearity track equations. In this section, we construct
a pseudo-functor

(s,I): By = F
which will induce a strictification of F, as discussed in Section 7. First, let us fix some
notation and terminology.

Notation 5.4. A (directed) graph FE = (Ey, Ey,dp,01) consists of sets Ey and Ey, called
the vertices and edges respectively, and two functions dg, 01 : F1 — Ej, called the source and
target maps. A small category C has in particular an underlying graph UC, and the forgetful
functor U: Cat — Graph has a left adjoint

Mon: Graph — Cat.
We call Mon(F) the free category generated by the graph F; c.f. [DKS80, §2].
Explicitly, the objects of Mon(F) are the vertices Ey of E, and morphisms in Mon(FE) are

composable words in Ey. If Ey = {x} consists of a single vertex, then Mon(F) is the free
monoid on the set of edges Fj.

Notation 5.5. Given a commutative ring R and a category C, let RC denote the category
with the same objects as C, with morphisms modules in RC given by free R-modules
(RC) (A, B) := R(C(A, B))
and composition given by the R-bilinear extension of composition in C, as illustrated in the
diagram
RC(B,C)®r RC(A, B) — RC(A, C)

e

R(C(B,C) x C(A, B)).

Now, choose a graph E together with a graph morphism hg: F — UmyF. Since the homo-
topy category moF is Fy-linear, this defines by adjunction an F-linear functor h%,: F, Mon(E) —
moF. Assume that the functor A’ is full, and is the identity on objects. In this case, we call
E equipped with hg a generating graph for myF.

Next, choose a graph morphism sg: F — UF, which is a lift of hg, as in the diagram

UFo

7
SE -

Ve
Ve

E- —UnyF.
hp

Explicitly, this amounts to choosing a representative in Fy for each map hg(f) in mF. By
adjunction, sg yields a functor s: Mon(E) — Fy. Since the hom-sets in the category Fy
are [F,-modules, we obtain by adjunction an F,-linear map

sk F,Mon(E)(A, B) — F(A, B)y

for all objects A, B of Mon(FE), namely the vertices of E. Note however that s7, does not
define a functor F, Mon(E) — Fo, since Fy need not be right linear.
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Proposition 5.6. Let F be a left linear track category in which every morphism is p-torsion,
equipped with a system of linearity tracks I'™Y: a(z + y) = ax + ay satisfying the linearity
track equations. Let E be a generating graph for moF, and let s%: F,Mon(E) — Fy be as
constructed above. Let s: By — F be defined as the composite

1"

By := Z/p* Mon(E) — F, Mon(E) —2= F,

where the first map is the canonical quotient, induced by the quotient map Z/p* — F,. Then
there exists a unique pseudo-functor (s,I'): By — F satisfying the following conditions.

(1) T is left linear:
Pz +a,y) = T(z,y) + T, y).
(2) T(z,w) = id” if w € Mon(E), where id” : s(xw) = s(zw) is the identity track.
(3) T(z,y + 2) = (D(x,y) + [(x,2)) D02 In other words, the following diagram of
tracks commutes:

s(x y+z)=(’y+z) s(x(y+ 2))

sx(sy + sz) s(zy + zz)

Fzz’sz\“ H

(sx)(sy) + (sx)(sz)m) s(xy) + s(zz).
Proof. Uniqueness follows from the fact that every morphism y € By = Z/p?>Mon(E) is a
Z/p*-linear combination y = >, c;w; of words w; € Mon(F), in particular a finite sum of
words w;. Condition (2) determines the value of T'(x, w) for w € Mon(FE). Applying condition
(3) repeatedly then determines the value of I'(z,y) for arbitrary y.

For existence, note that applying condition (3) inductively, together with Proposition 3.8,
yields the equality

k k
(5.7) [(x, Zyz) = (Z P(%?ﬁ)) [ [5YL502,050k
i=1 i=1

In other words, the following diagram of tracks commutes:

F(%Zfﬂ yi)
_

s(2)s(C 1 ) s (2 w)

SI(ZL sYi) 5(2?:1 zy;)

S (s2) (sys) Sy s(ay).

Zi I'(2,y:)

The formula (5.7) does not depend on the ordering of the terms y = Zle y;, by the symmetry
equation Proposition 3.9 (3). Let us check that the formula is well-defined over the ground



16 HANS-JOACHIM BAUES AND MARTIN FRANKLAND

ring Z/p?. For an integer k € Z, consider the morphism in By given by the sum k -y =
y+ ...+ y. The diagram above specializes to

y)

stk - sy) s(k - xy)

Fg%sy »»»»» Syﬂ H

k- (s2)(sy) =g k- slay).

T'(z,ky)

The corresponding equation is:
F(l’y k- y) — (k F(Q?, y>> Drzg,sy ..... sy
= (k-D(z,y) 0T (sy)

= (k- D(z,y)) OT (k) sz (sy).
If p?|k holds, then this equation of tracks yields:
L(z,k-y) = (k- T(z,y) O (k)s(sy)
= idg Oidy
= idy
where we used Lemma 3.12. For the left variable x in I'(z,y), a single factor of p is enough:
L(p-z,y) =p-T(z,y) =idg.
Thus, given Z/p*-linear combinations x = Y-, c;z; and y = Y. d;y; in By = Z/p* Mon(FE),

lift those to Z-linear combinations >, ciz; and y = . d;y; and define I' by the following
formulas.

(1) For arbitrary z,y € Z/p? Mon(FE):

=T (Z CiTq, Z djyj) = Z C;F (.CCZ‘, Z djyj)
i J i J

which does not depend on the lifts of the scalars ¢; € Z/p? to ¢, € Z.
(2) When = z; € Mon(F) is a single word:

k
(o) (B
J Jj=1

which does not depend on the lifts of the scalars d; € Z/p® to d; € Z.
(3) When moreover y is a scalar multiple of a word y; € Mon(£):

U(x;, djy;) o= (d - D(as, ;) OT(d)) e, (s5)
which again does not depend on the lifts d; € Z. The result of the previous two

steps does not depend on the way to write » i d;jy; as a Z/p*linear combination, by
Proposition 3.8; for example: T'(x,2y; + 5y1) = T'(z, Tyy).
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(4) For single words z;,y; € Mon(E), define:
.10
[(z,y;) =1d-.

Then I'(x,y) is well-defined, and one readily checks that I" satisfies the three conditions in
the statement.

A straightforward (if tedious) verification shows that (s,T'): Z/p? Mon(E) — F satisfies
the composition equation (5.2) of a pseudo-functor [Bau06, Theorem 5.2.3]. Also, (s,T")
satisfies the strict unital condition. The equations s(14) = 1,4 = 14 and I'(x,1) = id2, hold
by construction, while the equation I'(1,y) = idsDy follows from the unital equation for the

linearity tracks 'Y = id? - O

The proof also yields an analogous statement over Z instead of IF),.

Proposition 5.8. Let F be a left linear track category equipped with a system of linearity
tracks ™Y : a(x+y) = ax + ay satisfying the linearity track equations. Let E be a generating
graph for moF, and let s, : Z Mon(E) — Fy be as constructed above. Denote By := Z Mon(E).
Then there exists a unique pseudo-functor (s,I"): By — F satisfying the conditions listed in
Proposition 5.6.

Proof. The proof is similar to that of Proposition 5.6, with the following changes. Condi-

tion (3) specialized to z = —y yields the commutative diagram of tracks:
L(zy+(-y)
0= (~y) —=———==s(a(y + (~))) =0
s(x) (sy + s(=y)) s (zy + z(—y))

Fzg,S(—y)ﬂ

(sz)(sy) + (s2)(s(=y)) 5

_—
(x’y)+r(w77y)

s(zy) + s(z(-y)) =0
which in turn yields the commutative diagram

(s2)(=(sy)) = s(z)s(~y)

I'(—1)sz(sy) ‘

—(s2)(sy

e —s(xy).
In particular, the track I'(x, —y) is determined by I'(x,y), which proves uniqueness of I

In the explicit construction of I', the result of steps (2) and (3) does not depend on the way
to write Zj d;y; as a Z-linear combination, by Lemma 3.15; for example: I'(z, —2y; +5y1) =
F(f, 3y1) ]

6. PSEUDO-FUNCTORS AND ASSOCIATED ACTION

In this section, let 7 be a pointed track category and let (s,I"): By — T be a pseudo-
functor as in Definition 5.1. We will construct an action associated to a pseudo-functor, as
in [Bau06, §5.3].
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6.1. The multiplicative structure.
Notation 6.1. Given z,y € By and a track a: sx = 0 in 7y, define operations

yea=(sy®a)0l(y,z) €Ty
aey=(a®sy)0T(z,y)" € Th

as illustrated in the commutative diagrams of tracks

(Sy)ﬂ(sx) (va)ﬂ(sy)
F(y2) sy®a - a®sy
s(ya:)> 0 S(xy)> 0.

Definition 6.2. Let B; be the pullback in the diagram of (pointed) sets

Bl — ker 51

{3
By ——To

with kerd; = {a € Ty | O1a = 0}. Explicitly, elements of By are pairs (a,z) € kerd; x By
satisfying dpa = sz. Define the left and right ®-action of By on B; by the formulas

{y@(a,x) = (yea,yx) € By

(6.3) (a,7)®@y = (aey,xy) € By

for (a,x) € By and y € By, using Notation 6.1.

Remark 6.4. If one denotes the pair (a,x) € By = T; X5, By as a single symbol o = (a, z),
then by definition we have sa = a, da = z, and the formulas (6.3) can be rewritten as

y®a=(ye(sa),y(da)) € By
(6.5) {a Ry = ((sa) ey, (da)y) € B;.

Proposition 6.6. (1) The ®-action on B is associative. Explicitly, for (a,x) € By and
Y,z € By, the following equations hold:

((a,2) @y) @ z = (a,2) @ (y2)
(Y@ (a,2) @z =y ((a,7)®2)
y@ (2@ (e, 1)) = (y2) © (a, 7).
(2) The ®-action on B is unital, i.e., satisfies x ® 1 =z =1® x for all x € B.

(3) B satisfies the Leibniz rule. Explicitly, given (a,z), (b,y) € By, the following equation
holds in B;:

(d(a,x)) ® (b,y) = (a,z) @ (d(b,y)) -
Given (a,z) € By and y € By, the following equations hold in By:

{d«a,x) ©y) =d((a,2)) ®y
d(y® (a,7)) =y @ d((a,z)).
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Proof. (1) We will prove the equality
((a,2) ©y) © z = (a,2) @ (y2)

as the other two cases are proved similarly. Expanding in terms of the product e, the equation
becomes

((aoy)ez zyz) = (ae(yz),zyz)
or equivalently, (e @ y) ® z = a @ (yz). The factorization equation for the tracks a: sz = 0
and I'(y, 2): (sy)(sz) = s(yz) in Ty yields the equality of tracks

a® (sy)(sz) = (a®s(yz)) O (sx @ (y,2)).

Using the definition of e and the coherence equation for the pseudo-functor s, the right-hand
side becomes

(a®s(yz)) U (sz @(y,2)) = ae (yz)UI(z,yz)d (sz @ I'(y, 2))
=ae (yz)OT(zy, 2)0 (T'(z,y) ® sz)
while the left-hand side becomes
a® (sy)(sz) = ((a o y) ®s2) O (I(z,y) ® sz)
= (aey)e 200 (zy,2)0 (I'(z,y) @ s2)
which yields the desired equality a @ (yz) = (a e y) e z.
(2) For an element x € B of degree 0, the equations + ® 1 = z = 1 ® z hold by definition.

Now let (a,z) € B be an element of degree 1. The equations 1® (a,z) = (a,z) and (a,z) ® 1
are equivalent respectively to 1ea = a and a e 1 = a. We have

lea=(sl®a)dT(1,2)
= al] idEw
=a

and likewise a @ 1 = a.
(3) The second and third equations hold by definition of the ®-action:

d((a,2) ®y) = d(aey,zy)
= xy
d((a,2)) @y =2®y =1y
For the first equation, the two sides are:
(d(a,2)) ® (b,y) =z ® (b, y)
= (zob,xy)
(a,2) ® (d(b,y)) = (a,2) ®y
= (a oy, zy)

so that the equation in B; is equivalent to the equation = e b = a e y in 7;. By definition of
e, we have the equalities in 7;

zeb=(sz®b)O(z,y)F
aey=(a®sy) Ol (z,y)°
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so that the equation is equivalent to sz ® b = a ® sy. This is an instance of the factorization
equation (2.7):

(0a) ® b= a® (0b)

sSt®b=a® sy
which holds in any pointed track category. 0

6.2. The left linear case. We are interested in the situation where the pointed track cate-
gory F is left linear. The pullback diagram in Definition 6.2 can be rewritten as

(6.7) B ——F

dl :| la
By — Fo

where 0: F; — JFq is a morphism of abelian groups. We focus on the case where the following
assumptions hold.

Assumption 6.8. (1) By is a preadditive category.
(2) s: By — Fo is locally linear. That is, for all objects A and B of By, the map
s: Bo(A, B) — F(A, B)y is a morphism of abelian groups.
(3) The functor By = Fy — HoF = cokerd is full, i.e., each map s: By(A, B) —
HyF (A, B) is surjective.
(4) The functor By = Fy — HyF is essentially surjective.

The first two assumptions ensure that d: B; — By is a homomorphism, and Diagram (6.7)
defines a chain map s: B — F. Denote by o: H;B — H;F the map induced on homology,
for « = 0,1. By the third assumption, ¢ is an isomorphism. The fourth assumption then
implies that o: HyB = HyF is an equivalence of categories.

Proposition 6.9. Let (s,I'): By — F be a pseudo-functor where By is a preadditive category
and s: By — Fy is locally linear. Let (s,I'): B — F be defined as in Diagram (6.7). Then B
s a 1-truncated DG-category.

Proof. In view of Proposition 6.6 and Example 4.6, the statement amounts to the ®-composition
in B being right linear. Since By is a preadditive category, the ®-composition x ®y is bilinear
in the case deg(z) = deg(y) = 0.

Let us prove the case deg(x) = 1, deg(y) = 0. Let (a,z) € By, y,y' € By. We want to
show that (a,2) ® (y + ') = (a,2) ® y + (a,z) ® ¥y’ holds, which is equivalent to

ae(y+y)=aey+aey.
Consider the diagram of tracks in F

a®s(y+y')
st ® (s(y+y')) =sr® (sy + sy')

Fsy\

L(zy+y") (s7)

(z,y)+(zy’
a@Qsy+a®sy
aey+taey’

s(x(y +y')) = s(zy) + s(zy)

ae y+y
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The left triangle commutes, by Proposition 5.6 (3). The top right triangle commutes, by the
naturality Equation 3.4 (7) and I3¥*¥" = id}. The track a e (y +3') makes the outer triangle
commute, while a ® y + a @ ¢ makes the bottom triangle commute, proving the equality.
The case deg(x) = 0, deg(y) = 1 is similar, using the naturality Equation 3.4 (6) and
o0 =idg'. O

Compare with [Bau06, Theorem A.15, Theorem 5.3.5].

Example 6.10. Consider the Eilenberg-MacLane mapping theory £M and the left linear track
category II;EM. Then Proposition 6.9 yields s: B — II;EM. This 1-truncated DG-category
B over Z/p? is called the DG-category of secondary cohomology operations.

Given a spectrum X used as distinguished object of II;EM{X} — i.e., where we allow
maps out of X but never into X — Proposition 6.9 yields B{X} where X is still a distin-
guished object. The 1-truncated DG-module over B

H (X)) = B{X}(X,—): B— Chq
is called the strictified secondary cohomology of X.

In Appendix A, we will describe an explicit choice of generating graph F which is adapted
to this case.

Warning 6.11. What was called the secondary Steenrod algebra in [Bau06, §2.5] is the
groupoid-enriched full subcategory of I[I,EM on the objects {K,, | n € Z}. Likewise, what
was called strictification of the secondary Steenrod algebra in [Bau06, Definition 5.5.2] is the
Ch;-enriched full subcategory of our B on the objects {K,, | n € Z}.

7. STRICTIFICATION VIA PSEUDO-FUNCTORS

In this section, we show how a pseudo-functor can induce a strictification, relying on a
2-categorical observation due to Lack [Lac02], which was kindly pointed out to us by Emily
Riehl. The construction we will describe is also found in [Lac04, §1] and [Gurl3, §4]. Let us
recall some terminology.

Definition 7.1. A track functor F': & — T between track categories is called a Dwyer—Kan
equivalence, or DK-equivalence for short, if it satisfies the following conditions.

e For all objects A, B of S, the induced map of groupoids F': S(A, B) — T(FA, FB)
is an equivalence.
e The induced functor on homotopy categories moF': moS — my7T is an equivalence of
categories.
Track categories S and T are said to be weakly equivalent if there is a zigzag of DK-
equivalences between them.
A pseudo-DK-equivalence F': S — 7T between track categories is a pseudo-functor
satisfying the conditions listed above.

Lemma 7.2. Let F: S — T be a pseudo-DK-equivalence between track categories. Then F
induces a zigzag of DK-equivalences between S and T .

Proof. Let @Q: &' — S be the counit of the adjunction described in [Lac02, Proposition 4.2],
which is a DK-equivalence. (The construction &" was called the relazation of S in [BJP03,
§2.4].) Let P: § — &’ denote the unit, which is a pseudo-DK-equivalence. Let G: 8" — T
be a unique track functor satisfying GP = F. Then G is a DK-equivalence, since F' is a
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pseudo-DK-equivalence. Hence, () and G provide the desired zigzag, as illustrated in the
diagram

(7.3) S’
Q/. BN
) ~ T,
where the squiggly arrows denote pseudo-functors. 0

We will need a locally linear version of that statement. Recall that the morphisms in &’
are words in &

w = [fi] - [fo][f1],

that is, formal composites of composable morphisms in §. Now, given locally linear track
category S, consider the following construction S.

e The objects of S are the same as those of S.

e 1-morphisms in S are formal Z-linear combinations S ciw'® of words w® of 1-
morphisms in S, modulo the relation generated by relatlons of the form [f + ¢] =
[f] + [g] for 1-morphisms f,g: A — B in S.

e 2-morphisms in S between formal linear combinations of words

a: Zcz[f,iz)][ fs :>Zd : ][9(])]

are the 2-morphisms in § between the correspondmg sums of composites computed
in S, that is:

% Zczflf;: : f2l)f1 :Zd]gfj) 92 )95)'
i=1

In general, this construction does not make S into a 2-category, since the 2-morphisms cannot
be horizontally composed. However, if the locally linear track category S is bilinear to begin
with, then this construction makes S into a track category, itself also bilinear.

Lemma 7.4. Let S be a bilinear track category and S the bilinear track category described
above.
(1) Consider the assignment @: S — S which is the identity on objects and sends a formal
linear combination of composable words to the corresponding sum of composites. Then
Qisa (strict) track Junctor, locally linear, and moreover a DK-equivalence.
(2) Consider the assignment P: 8 — S which is the identity on objects and sends a
1-morphism f: A — B to the single term with a length one word 1[f]: A — B.
Then P is a canonically a pseudo-functor, locally linear, and moreover a pseudo-DK-
equivalence.
(8) Let T be a locally linear track category and F': S — T a locally linear pseudo-functor.
Then there ezists a unique locally linear (strict) track functor G ST satisfying
GoP =F, c.f Diagram (7.3).
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Corollary 7.5. Let F':' § — T be a locally linear pseudo-DK-equivalence between locally
linear track categories, where S is moreover bilinear. Then F' induces a zigzag of locally
linear DK-equivalences between S and T .

We now have all the ingredients to prove the main theorem.

Theorem 7.6. Let F be a left linear track category admitting linearity tracks I'CY that satisfy
the linearity track equations (Definition 3.4). Then F is weakly equivalent to a 1-truncated
DG-category.

If moreover every morphism in F is p-torsion, then F is weakly equivalent to a 1-truncated
DG-category over Z/p*.

Proof. Proposition 5.8 (or 5.6 in the p-torsion case) yields a pseudo-functor (s,I'): By —
F which satisfies Assumption 6.8. The construction in Section 6.2 yields a pseudo-DK-
equivalence (s,I"): B — F, which moreover is locally linear. By Proposition 6.9, B is a
1-truncated DG-category. Corollary 7.5 then yields the desired zigzag. O

Corollary 7.7. Consider the integral Eilenberg—MacLane mapping theory EMyz consisting
of finite products of integral Eilenberg—MacLane spectra

A=Y"H7Z x ... x X" HZ,

and mapping spaces between them. Then the underlying track category 11,EMy is weakly
equivalent to a 1-truncated DG-category.

Proof. By Proposition 3.5, [[;EMy is left linear and admits canonical linearity tracks ['¥.
The result then follows from Theorem 7.6. 0J

APPENDIX A. THE STEENROD ALGEBRA AND A CHOICE OF GENERATING GRAPH

Consider the example described in the introduction €M and the left linear track category
F = 1II1EM, in which every morphism is p-torsion. Recall that the objects of F are the finite
products K = [, K,,,, with K,, = sh"K, ~ ¥"HTF, some convenient model for Eilenberg-
MacLane spectra [BF'17, Corollary A.8]. We now describe how to produce a generating graph
E of mpéM and a lift sp: B — UFy = UEM as in Section 5. To begin, make the following
choices.

(1) Choose generators E4 C A of the Steenrod algebra as an F,-algebra. Each a € A"
of degree n corresponds to a homotopy class a: HF, — X"HF,,.
(2) For each generator a € E 4, of degree n, choose a representing map a: Ky — K, in

EM.

The generating set E 4 of the Steenrod algebra yields a generating graph E of myEM.
Explicitly, £ C UmyEM is the subgraph with the same vertices, and whose edges consist of
matrices of elements in E 4, namely the homotopy classes

f=lai;]: [[S™HF, — [[ =" HF,
i i

where each a;;: X" HIF, — X" HIF), is ¥™iq; ; for some generator a; ; € E 4. The shift

mi~! . m; o
sh Ta; Ky, = sh™ Ky, = Ky,
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is a map in £M representing a; ;. For fixed 4, consider the map in EM

fi= Zshmjag’j o proj; : Hij — K,

J J

and let f: [I; K, — II; Kn be the map in EM whose it coordinate map is f;. By

construction, f is a representative of the homotopy class f in mpEM. N

Define the graph morphism sg: F — UEM as the identity on vertices and sg(f) = f on
edges. Then sg lifts the inclusion hg: E — UngEM.

There is an analogous construction given a spectrum X. Choose generators Fx C H*X
of the cohomology of X as an A-module, and a representing map z: X — K, in EM{X}
for each generator x € Ex, with x € H"X. Repeating the construction above, we obtain a
generating graph hp: £ — UmgEM{X} and a lift sp: E — UEM{X}.

APPENDIX B. TODA BRACKETS VIA A STRICTIFICATION
In this section, we explain how a strictification B = F as in Theorem 7.6 can be used to

compute Toda brackets in the homotopy category HyF.

B.1. Toda brackets in track categories.

Definition B.1. Let 7 be a pointed track category and let

Y1

Yb Y-lyQY-sty.S

be a diagram in w7 satisfying y1yo = 0, yoys = 0. Choose maps x; in Ty representing y;.
Then there exist tracks a, b as in the diagram

0

oo N

Y,

Yo = Yo =

S W S

0

Ys.

1

The 3-fold Toda bracket is the subset (y1,y2,y3) C m T (Y3, Y) of all elements in Aut(0) =
m T (Y3,Ys) of the form

(B.2) (az5)0 (210)7
as above. Each such element in 77 is called a representative of the Toda bracket (y, y2, y3).

Definition B.3. A pseudo-functor (s,I'): & — T between pointed track categories is called
pointed if it satisfies s(0) = 0 and I'(x,0) = T'(0,y) = idg .

For a morphism x € Sy and a track b: y = ¢’ in &;, the composition equation of the
pseudo-functor (s,I'): & — T reads

s(zb) = I'(z,y)O (sx)(sb) DT (, y)°
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and similarly for s(ay) € T;. For tracks to zero a: x = 0 and b: y = 0 and a pointed
pseudo-functor (s,I"), this specializes to

s(xb) = (sz)(sb)AT (z,y)"
(B.4) B 5

s(ay) = (sa)(sy)0T(z, y)
as illustrated in the diagrams of tracks:

s(zb s(a
s(zy) LGN s(zy) GO

F(W)ﬂ %sw “’”’”ﬂ %)@y)

(sz)(sy) (s7)(sy).

Proposition B.5. Let (s,I'): S — T be a pointed pseudo-functor between pointed track cate-
gories, and let o: m;S(A, B) — m;T (sA, sB) denote the induced map on homotopy groups, for
1 =0,1. Then:
(1) s: 8§ — T sends Toda bracket representatives in S to Toda bracket representatives in
T, in the following sense.
Given y1, Y2, ys € moS represented by xy,xq,x3 € Sy, with tracks a,b € &1 of the
form a: x129 = 0 and b: x93 = 0. Then the Toda bracket representative

axs (z,0)F € S
of (y1,y2,y3) € mS is sent by s: S; — T to a Toda bracket representative
s (az30 (210)7) = d'(sz3)0 ((sz)0)" €T

Of <0y17 0Y2, U?JS> g 7.‘—17’7 fOT some CL/, v € 71
In particular, the following inclusion holds in 7T :

o (y1,Y2,y3) C (oY1, Y2, 0Ys3) -

(2) If moreover s: S — T induces isomorphisms o: mS(A, B) = m/T(sA,sB) for
t = 0,1 and all objects A and B of S, then the following subsets of m'T are equal:

o (Y1, Y2, ys) = (o1, 02, 0Ys3) -
Proof. (1) Take the track a’ := saT'(xy, z5) in Ty, as illustrated here:

(Sml)(smg)rgi)s(xlxg) == ()

and likewise ¢/ := sbT'(z2, z3). We claim the equality in 7;
(B.6) s (a3 (210)%) = d' (s3)D ((s21)b)° .
Starting from the left-hand side, we find:
s (azs0 (210)7)
—=s(axs)0 s(x1b)
=(sa)(sz3)OT (212, 23) " O T (21, 2223)0 ((s21)(sb))" by Equation (B.4)
=(sa)(sx3)OT (21, 22) (s23)0 ((sx1)D(xa, z3))" O ((sz1)(sh))” by the associativity equation
=d/(sz3)0 ((sz1)b')" by definition of a’
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as claimed. The equations are illustrated in the commutative diagram of tracks in 7i:

a’(sz3) (sz1)b’

0 (sx1)(sws)(s23) 0.
X)(szg) / \ (sy
I(z1,x2)(sx3) (sz1)l(w2,73
s(mxz)(sa:?)) (le)s(x2x3)

s(wywows3)
(2) Represent the maps oy; € moT by sx; € Tp. Consider a Toda bracket representative

0 = d (sz3)0 ((sz)V)" € (oyr, oys, oYs3)
The existence of the track a’: (sz1)(sx2) = 0 ensures that x;x9 is also nullhomotopic,
since the map of groupoids s: S(Ys,Yy) — T (sYs,sYy) induces a bijection on 7. Like-
wise, b': (sxg)(sx3) = 0 ensures zoxz ~ 0. Moreover, s: S(Ys,Yy) — T (sYs, sYy) induces
bijections on sets of tracks to 0, which are torsors for m; = Aut(0). Hence, there exist tracks
a: r1x9 = 0 and b: xox3 = 0 in S satisfying

sa = /0T (z1,29)°
sb = b'0O7T (zg, 23)°.

By Equation (B.6), the track
0 = s (az30 (21b)7)
lies in the image of the restriction o: (y1,ya,y3) — m T . O

B.2. Massey products in DG-categories.
Definition B.7. Let B be a 1-truncated DG-category and let

Y1 Y2 Y3

Yo Y Y,

Y;
be a diagram in HyB satisfying y1yo = 0, y2y3 = 0. Choose maps x; in By representing ;.

Since x1x2 and xox3 are zero in homology, there exist elements a, b € By satisfying da = x4
and 0b = xox3. The element azz — x1b € B(Y3,Y0); is a cycle:
Jd(axs — x1b) = d(axs) — O(x1b)
= (da)xs — x1(0b)
= (r129)x3 — T1(T213)
=0.

The 3-fold Massey product is the subset (yi, y2,y3) € H1B(Y3,Y)) of all elements in ker 0 =
H,B(Y3,Y)) of the form

ars — T1b
as above. Each such cycle in B; is called a representative of the Massey product (y, y2, y3).
Remark B.8. Definition B.7 works more generally in a locally linear track category F, where

the mapping groupoids are viewed as 1-truncated chain complexes F (A, B) via the equiva-
lence from Proposition 4.1. One could instead work in the underlying pointed track category



THE DG-CATEGORY OF SECONDARY COHOMOLOGY OPERATIONS 27

©F. Via the correspondence m;0 (F(A, B)) = H,F(A, B), the Toda bracket in Definition B.1
corresponds to the Massey product, so that there is no ambiguity in the notation (yi, s, y3).

Specializing Proposition B.5 to the setup of Section 6.2 yields the following.

Corollary B.9. Let F be a left linear track category. Let (s,T): By — F be a pseudo-functor
where By is a preadditive category and s: By — Fq s locally linear. Let s: B — F be the
pseudo-functor as in Proposition 6.9. Then:

(1)

(2)

s: B — F sends Massey product representatives in B to Toda bracket representatives
in F, in the following sense.

Given y1,vy2,y3 € HoB represented by x1,x9,x3 € By, with a,b € By satisfying
da = x1x9 and db = xox3. Then the Massey product representative

axs —x1b € By
of (y1,y2,y3) C H1B is sent by s: By — F; to a Toda bracket representative
s(axz — x1b) = d'(sx3) — (sz)V € Fy
of (oy1, 0y, 0y3) C H\F, for some a',b' € F;.
In particular, the following inclusion holds in HyJF:
o (Y1, Y2, Y3) (01, 0Y2, 0Y3) -

If moreover the functor By = Fo — HoF is full (so that s: B — F is locally a
quasi-isomorphism), then the following subsets of H1F are equal:

o (Y1, Y2, Y3) = (OY1,0Y2,0Ys3) -

Compare with [Bau06, Equation (A18), Definition 5.5.7].
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