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.ON TYCHONOFF GROUPS

R.I. GRIGORCHUK!

1. Introduction.

The class AG of amenable groups can be characterized by the property of a
group to have a fixed point for any action by affine transformations on convex
compact subset of locally convex topological vector space.

Now let us suppose that instead of compact set we have a nonzero cone. What
kind of fixed-point theorems may hold in this situation? There is a number of
conditions when a selftransformation of a cone has a nonzero fixed point. We will
consider the situation when a group acts by affine transformations on convex cone
with compact base. The groups for which any such action has an invariant ray are
called Tychonoff and were defined (in case of Lie groups) by
H. Furstenberg [3]. We investigate the Tychonoff property for abstract groups (with
discrete topology) and show that this property is closely related to the property
of having a small space of harmonic functions. Another interesting property is
established in

Theorem 4.1. Any infinite finitely generated Tychonoff group is indicable (i.e.
can be mapped onto infinite cyclic group).’

This theorem is the first step in an attempt to describe all finitely generated
Tychonoff groups.

In the end of the paper we consider bounded actions of groups of subexponential
growth on convex cones with compact base and prove a fixed-point theorem for
such actions.

2.The definition and some properties of Tychonoff groups.
Let us recall some notions. A selfmap A : E — E of a topological vector space
E is called affine on a convex subset V ¢ E if for any z,y € V and p,q > 0,
p+qg=1 _
A(pz + qu) = pAz + qAy,

Aset K C E 1is called a cone if
1. K+ KCK

1The results presented here were obtained under the financial support of the Russian Fund
for Fundamental Research Grants 93-01-00239, 94-01-00820 and of the International Science
Foundation, Grant MVI000.
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2. AK C K for any number A > 0
3. K n(-K) = {0}.
The ray in a cone K is any halfline:

L,={);: 220},

where z € K, z #0.
A cone K has a compact base if there is a continuous linear functional ® on £
such that ®(z) >0, if z € K, z # 0 and such that the set

B={zeK: &z)=1}

is compact. Any such set B is called the base of the cone K.

Definition 2.1. A group G is called Tychonoff if for any action of G by continuous
affine transformations on convex cone K with compact base in locally convex
topological vector space there is a G-invariant ray.

Let TG be the class of Tychonoff groups. We will see later that TG C AG,
where AG is the class of amenable groups.

We agree that everywhere in this paper K denotes a cone with compact base B
determined by a functional &.

Examples.
2.2. Any finite group is Tychonoff.

If a finite group G acts on a cone K then for any z € K, z # 0 the nonzero point
1
£= Tel] Z gz
geq

is G-invariant and so the ray L¢ is G-invariant as well.
2.3. Infinite cyclic group z is Tychonoff.

If A: K — K is the affine transformation determined by the generator element
of a cyclic group, then the transformation

—~

A:B—- B
_A@
=) = Fai))

t

is continuous and by Tychonoff theorem has fixed point { € B. The ray Lg is Z -
invariant.
Later we will see that nilpotent and in particular commutative groups are TychonofT.

The following example shows that a virtually commutative group need not belong
to the class TG.
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invariant.
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2.4. Infinite dihedral group is not Tychonoff.

This group is given by one of the following presentations (by means of generators
and relations):

G=<gbla®=b=1>=
(1) =<a,cla® = (ac)’ =1>

where b = ac. It is easy to see that G is isomorphic to the group generated by

matrices 0 1 L
- —{ 2
a=(15): o=(5 2)

which acts by linear transformations on 2-dimensional vector space. The first
quarter

K = {(z,y) € R : 2,y > 0}

1s G - invariant and has comp&ct base but there are no invariant rays for such
action.

Proposition 2.5. Factor group of Tychonoff group is Tychonoff.
This is obvious.

Proposition 2.6. Let G be directed (by inclusion) union of Tychonoff groups H;,
i €I (thatis G =U; H; and for any H; and H; there is Hy O (H; U H;)). Then
GeTG.

A Let G act by affine transformation on a cone K with compact base B and let B;
be the compact nonempty set of traces of G; - invariant rays on the base B:

B;={z€B:gz=M\z, g€Gi, A;>0}

The system {B;}es satisfies the finite intersection property and so the intersection
Bo = Nier B is nonempty. Any z € By, determines G - invariant ray L;. A
The next statement was remarked in [3].

Proposition 2.7. The strict inclusion TG C AG holds.

A Let us prove that TG is a subset of AG. Let lo(G) be the space of bounded
functions on G with uniform norm, I%_(G) be the space of continuous functionals
equipped by the weak-* topology and let B C 1% (G) be the set of means on G that
is the set of linear positive functionals m € I (G) such that m(1¢g) = 1, where 1¢
is constant on G function with value 1.

Now let K be the cone generated by B:

={0} U{z €l (G): \z € B forsome A >0}

Then B is the base of cone K, determined by the functional ®: ®(m) = m(1lg),
m € I3.(G).

4



By the Alaoglu theorem this base is compact in the weak - * topology. The group
G acts on leo(G) by left shifts: (L,f)(z) = f(¢~'x) and this action in canonical
way induces the action on the dual space: (gm)(f) = m(Lyf), m € I%,(G).

The cone K is G - invariant, so there is G - invariant ray L,, z € K, z #0.
But the base B is G - invariant as well. Thus m = B N L, is invariant point for
action of G and m is left invariant mean on G. So G € AG. The inclusion TG C AG
is strict, because infinite dihedral group is amenable but not Tychonoff. A

An extension of a Tychonoff group by another Tychonoff group need not be a
Tychonoff group, as shows the example of infinite dihedral group.

A subgroup of a Tychonoff group also need not be a Tychonoff. The corresponding
example will be constructed later.

Now we are going to consider some types of extension preserving the Tychonoff

property.
Proposition 2.8. Let G =M x N, where M,N € TG. Then G € TG.

A Let G act on K with base B and let By C B be nonempty subset determined by
the traces of M - invariant rays on B. Let zo € By and mazo = A(m)ze, m € M,
where A : M — R4 is some homomorphism. We define K as a (nonzero convex
closed) subcone of K consisting of vectors z with the property mz = A(m)z. The
cone Ky is N - invariant. In fact, if £ € K, then

mnz = nmz = A(m)nz.

Since N € TG there is N - invariant ray L¢ which is G - invariant as well. A
Corollary 2.9. Any commutative group is Tychonoff.

Let us agree that in this paper the term ”a character” of a group G will mean any
homomorphism G — R4 where R4 is the multiplicative group of positive numbers.

Proposition 2.9. Let G = Z x 4 Z¢ be a semidirect product of infinite cyclic group
z and free abelian group of rank d > 2, where a generator of Z acts on Z% as the
automorphism determined by a matrix A € GL,(2) with the following condition:
A has no eigenvalues on the unit circle except probably 1. Then G € TG.

A Let G act on K with compact base B determined by a functional ¢. Because
z9 € TG there is a vector £ € B such that for some character ¢ : z¢ — R4 and
any g € z? the equality g¢ = ¢(g)¢ holds.
Let
K,={z€K: gz=9(g)zx, gez‘}

Then K, is convex subcone of K determined by some nonempty compact base
B, C B.

If a is a generator of infinite cyclic group z then aX, = K ., where the action
of a on ¢ is determined by the relation  ¢?(g) = p(g ™ ag).
For any b€ z? and z € K,

bgz = gg~'bgz = p(g~ " bg)gz

4
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G acts on lno(G) by left shifts: (Lyf)(z) = f(g~'z) and this action in canonical
way induces the action on the dual space: (gm)(f) = m(Lyf), m € I%(G).

The cone K is G - invariant, so there is G - invariant ray L, z € K, z #0.
But the base B is G - invariant as well. Thus m = B N L, is invariant point for
action of G and m is left invariant meanon G. So G € AG. The inclusion TG C AG
is strict, because infinite dihedral group is amenable but not Tychonoff. A

An extension of a Tychonoff group by another Tychonoff group need not be a
Tychonoff group, as shows the example of infinite dihedral group..

A subgroup of a Tychonoff group also need not be a Tychonoff. The corresponding
example will be constructed later.

Now we are going to consider some types of extension preserving the Tychonoft
property.

Proposition 2.8. Let G =M x N, where M,N € TG. Then G € TG.

A Let G act on K with base B and let By C B be nonempty subset determined by
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cone Ky is N - invariant. In fact, if z € K then

mnz = nmz = A\(m)nz.

Since N € TG there is N - invariant ray L¢ which is G - invariant as well. A
Corollary 2.9. Any commutative group is Tychonoff.

Let us agree that in this paper the term "a character” of a group G will mean any
homomorphism G — R4+ where R4 is the multiplicative group of positive numbers.

Proposition 2.9. Let G = Z x 4 Z¢ be a semidirect product of infinite cyclic group
Z and free abelian group of rank d > 2, where a generator of Z acts on Z¢ as the
automorphism determined by a matrix A € GLn(Z) with the following condition:
A has no eigenvalues on the unit circle except probably 1. Then G € TG.

A Let G act on K with compact base B determined by a functional ®. Because
z4 € TG there is a vector ¢ € B such that for some character ¢ : z¢ — R4 and
any g € 29 the equality g¢ = (g)¢ holds.
Let
K,={z€K: gz=y(g)z, gecz?}.

Then K, is convex subcone of K determined by some nonempty compact base
B,C B.

If a is a generator of infinite cyclic group Z then aK, = K «, where the action
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bgz = gg~'bgz = (97 bg)gx
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and so we have uniform on n € Z upper bound:
- $(ba"z) ®by)

"ba ——+ < su
Pl = 3ara) = 5eh 20

We see that for any b € z¢ the sequence ¢* (b) when n ranges over Z is bounded.
Let us show that ¢ is invariant under A.

< oC.

Let ap,--- ,aq be a basis of the group z%. Any character on Z¢ is determined
by the vector ¥ = (x1, - ,Xxd) of positive numbers: if g = o™ ... a}*
then

x(g)=x1"xa"
Let us consider the additive character p = log x:
u(g) = malogx1 + -+ + malog xa.

The action of an automorphism a on Z¢ corresponds to the mapping m — mA

of integer vectors 7@ = (my,- -+ ,my) which determines elements of the group z*%.
Thus
1" (g) = m{ logx1 + -+ + m{™ log x4,
where
(m{™, - mg) = (ma, - ma)A™
and

,u"n(g) =< logx,mA" >=< log x(A")*,m >
where <, > is scalar product and A’ is the matrix transpose to A.

Lemma 2.10. Let A be a linear transformation of R¢ which have no eigenvalues
on unit circle except probably 1. If for some z the set of vectors {A™z}t  is

bounded then Az = z. o

The proof is identical to the proof of lemma 4.1 from [3] and is omitted.

If the sequence of vectors {logp(A4')"*}12 . (y is the character defined above)
is bounded then due to the lemma 2.10 and condition of the proposition 2.9 the
vector log ¢ is invariant with respect to A’. Thus ¢ is a - invariant and so the cone
K, is a - invariant. An arbitrary a - invariant ray in K, will be G - invariant as
well. A

The following three statements are similar to those given above.

Proposition 2.11. Let G = N x H be a semidirect product, where N and H
are Tychonoff and let N act trivially on the set of characters of a group H. Then
GeTG.

A The cone
K,={z€k:gz=1¢(g)z, g€ H},

where ¢ is a character for which there is a vector ¢ € K, £ # 0, with g€ =
w(g)¢ for any g € H is N - invariant and so any N - invariant ray in K, will be
G - invariant. A There is a bijective correspondence (given by the function log)
between multiplicative characters G — R4 and additive characters G — rR. We
say that the set of multiplicative characters G — R is finite dimensional if the
space Char (G) of additive characters G — R is finite dimensional. ‘

5



Proposition 2.12. Let G = Z x 4 H, where H € TG. Suppose that the space
Char (H) is finite dimensional and the matrix A determining the action of generator
of Z on the space Char (H) has no eigenvalues on the unit circle other than 1. Then

GeTG.

The arguments are similar to those given in the proof of Proposition 2.11.
Examples.
2.13. Metabelian group G =< a,bla”!ba = b* > is Tychonoff.

A Indeed G = z x H, where z is infinite cyclic group generated by element a and
H = @, is the group of rational numbers of the form 2i,., k,n € Z with operation
of addition. The element a acts on H as multiplication by 2.

Any character p on H is determined by value (1) so the space of characters is
1-dimensional. We have

2*"(9) = ¢(2"9) = [(g)]*"

and thus the orbit {¢®"(g)}$2° , is bounded if and only if (g) = 1 and if this

n=-—o00

hold for any g then ¢ is trivial. Thus G € TG. A

2.14. Let zy = z/kz, G =z%rZ (wr means the wreath product). The group
G can be defined as )
G= Zd X (Z k)z R

where the group z? acts on the space (2)%" of Z - configurations on z¢ by shifts.

The group Zid has only trivial character. Thus G € TG.

2.15. The group zwrz is not Tychonoff, because it can be mapped onto infinite
dihedral group.

2.16. The Tychonoff property may not be preserved when pass to subgroup:

Let
H=<a,blla,b]=c, [a,c]=1[bc]=1>

be nilpotent Heisenberg group and let automorphism ¢ € AutH be defined as

a— ab
@

b—a.

Then ¢ induces automorphism of the group z? = H/[H, H) determined by the

matrix
1 1
4= (3 o)

the eigenvalues of which A; 2 = (1 £ /5)/2 do not belong to the unit circle.
The automorphism ¢ acts on the generator ¢ of the center Z(H), as

c=[a,b] 5 [b,a] = .

6
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H = @), is the group of rational numbers of the form zi,,, k,n € Z with operation
of addition. The element a acts on H as multiplication by 2.

Any character ¢ on H is determined by value (1) so the space of characters is
1-dimensional. We have
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=00

hold for any g then ¢ is trivial. Thus G € TG. A
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The group Zid has only trivial character. Thus G € TG.

2.15. The group zwrz is not Tychonoff, because it can be mapped onto infinite
dihedral group.
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be nilpotent Heisenberg group and let automorphism ¢ € AutH be defined as
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@
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Let

G=ZK¢pH=
=< a,b,cd|a,b =clac=[bec]=1 dlad=ab, d'bd=a>

By proposition 2.12 the group G is Tychonoff. At the same time G contains the
subgroup .
<c¢dldled=c"' >

which can be mapped onto infinite dihedral group and so is not Tychonoff.

§3. Harmonic functions and Tychonoff property.

Let G be a countable group and p(g) be probabilistic distribution on
G:p(9) 20, X, ecpl9)=1 |

A function f : G — R is called u - harmonic (u is a real number) if Pf = uf,
where P is the Markovian operator determined by the relation:

(Pf)(g) = p(h)f(gh).

hEG

The left shift of a u - harmonic function is again a g - harmonic function. If g =1
then we get the standard notion of harmonic function.
A distribution p(g) is called generating if its support

suppp(g) = {9 € G : p(g) # 0}

generates G.

Proposition 3.1. If given G there is a generating probabilistic distribution with
finite support such that for any u > 0 every positive p - harmonic function is
constant on cosets of the commutator subgroup then G is Tychonoff.

A From the condition it follows that every bounded harmonic function on G is
constant and this implies the amenability of G (2].

Let p(g) be a distribution on G for which every u - harmonic function is constant
on cosets of commutator subgroup when z > 0 and let G act by affine transformations
on a cone K with compact base B determined by functional &.

We can define affine continuous mapping T : K — K,

Te =Y plg)gs

g€G

for which there is an invariant ray L¢, £ € B.
The function f(g) = ®(g¢) is positive and i - harmonic. Indeed

(Pf)g) =Y p(h)f(gh) = (gh&)p(h) =

hed heG

= ®(g ) _ p(h)h€) = 2(gT€) = ud(g€) = nf(9)-

heq



By our assumption, this function is constant on cosets of the commutator subgroup.
In particular, f(g) =1if g € G' = [G,G]. Thus G’ - orbit of the point { belongs to
the base B.

We can consider the action of G' on the convex closure of the orbit {g€}4ec’ and
using the amenability of G’ to claim the existence of G’ - invariant point € B.

Now let X' C K be nonempty convex closed cone of G’ - fixed points. The cone
K'is G - invariant. Thus the action of G'on K’ induces the action of G4y = G/G’
on K' by affine transformations. This action has an invariant ray which is G -
invariant as well. A

Deflnition 3.2. A group G is ZA - group if G has increasing transfinite central
chain of normal subgroups

(2) . 1=G1< - <Ga < <Gy=GCG

where
G.\ - Ua(Ach

if A is a limit ordinal and for any «
GQ+1/GQ < Z(G/GQ)

(as usual Z(H) denotes the center of a group H).

The following statement is similar to the main result of [6] and our proof follows
the one given in [6]. We observe only that the lemma 2 from {6] must be a little bit
corrected either in the part of formulation or in the part of the proof.

Let us call G a superliouville group if for any generating probabilistic distribution
p(g) every positive u - harmonic function is constant on cosets of the commutator
subgroup.

Theorem 3.3. Any countable ZA - group is superliouville.

Corollary 3.4. Any nilpotent group is Tychonoff and so any locally nilpotent
group is Tychonoff as well.

Remark 3.5. By theorem of A. Malcev [5] any finitely generated Z A-group is
nilpotent. Thus Z A is proper sub-class of the class of locally nilpotent groups.

Proof of the theorem 3.5. Let p(g) be generating distribution on ZA - group G and
let for some p > 0 the set of p - harmonic functions be nonempty. We fix this
g and denote by K the convex cone of positive p - subharmonic functions that is
functions with the property Pf < pf.

Let V(G) be the space of real valued functions on G endowed with the topology
of pointwise convergence.

If foeK, n€Nisanetand f, — f then
Pf<limPf, < plim f, = pf.

8
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By our assumption, this function is constant on cosets of the commutator subgroup.
In particular, f(g) = 1if ¢ € G' = [G,G]. Thus G’ - orbit of the point { belongs to
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We can consider the action of G’ on the convex closure of the orbit {gé},ec’ and
using the amenability of G’ to claim the existence of G’ - invariant point € B.

Now let K’ C K be nonempty convex closed cone of G' - fixed points. The cone
K' is G - invariant. Thus the action of G'on K’ induces the action of G4 = G/G’
on K' by affine transformations. This action has an invariant ray which is G -
invariant as well. A
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(as usual Z(H) denotes the center of a group H).

The following statement is similar to the main result of {6} and our proof follows
the one given in [6]. We observe only that the lemma 2 from [6] must be a little bit
corrected either in the part of formulation or in the part of the proof.

Let us call G a superliouville group if for any generating probabilistic distribution
p(g) every positive p - harmonic function is constant on cosets of the commutator
subgroup.

Theorem 3.3. Any countable ZA - group is superliouville.

Corollary 3.4. Any nilpotent group is Tychonoff and so any locally nilpotent
group ig Tychonoff as well.

Remark 3.5. By theorem of A. Malcev [5] any finitely generated Z A-group is
nilpotent. Thus Z A is proper sub-class of the class of locally nilpotent groups.

Proof of the theorem 3.3. Let p(g) be generating distribution on Z A4 - group G and
let for some u > 0 the set of p - harmonic functions be nonempty. We fix this
p and denote by K the convex cone of positive u - subharmonic functions that is
functions with the property Pf < uf.

Let V(G) be the space of real valued functions on G endowed with the topology
of pointwise convergence.

If fn€K, ne€Nisanetand f, — f then
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Thus the cone K C V(G) is closed.

Let ® be the functional on V(G) determined by the relation ®(f) = f(1). Then
the base B = {f € K : ®(f) =1} is a compact set becouse from Pf < uf it is
easy to deduce that

m
(3) flg) < m

where the elements g;, 2 =1, .. nareselected in such a mannerthat ¢ =g, - - gn
and p(g;) >0, 1=1,--+ n.

From (3) it follows that all functions from B are majorized by the function from
the right-hand side of (3), which gives the compactness of B.

We can introduce the partial ordering on the cone K : z < y, =z,y € K if
y —x € K. Then the cone K is a lattice: for any z,y € K there is an infimum
z = inf(z, y) that is the element such that z ~ 2,y —2 € K andifz—2',y—2' € K
for some other z' € K then z -2’ € K
In our case z is determined by the relation

z(g) = min{z(g),y(9)}

The following statement follows from theorem of Choquet and Deny and is a part
of a more general statement from [3] (theorem 6.2).

n

Proposition 3.6. The set E of extremal points of B is a Borel set and any point
b € B is a resultant of some unique probabilistic measure dv defined on E i.e. b
can be presented in the form
b= / zdv(z).
B

If f is g - harmonic function then corresponding measure d v is concentrated on
¢ - harmonic functions. Indeed, let f be y - harmonic and

f =/ rdvy(z).

E

Then
Pf< / Pzdvs(z)

E

and
0=Pf—-uf< / (Pz — pz)dvs(z).
. E _
But Pz — uz €0, sofor any g € G the set
F,={z€ E:(Pz— pz)(g) =0}

has vy - measure 1 and thus

vi( n Fg)=1
9€G
because G is countable.
Now we are going to characterize extremal u - harmonic functions as characters

" of the group G.

Any such function will be denoted by k(z).

9



Lemma 3.7. If z € Z(G) then

(4) k(zz) = k(z)k(2).

A Since the left shift of u - harmonic function is again - harmonic and z is an
element of the center we get the relation

TR L)

where the function ¢ is defined as
c(zz) = k(z) — bk(zz),
the number b is selected to satisfy the inequality

k(z)
0<bc k_(:z:—z")—
and p = bk(z).
Now we observe that the functions
k(zz) c(zz)
k(z) " c(z)

belong to B and as k is extremal point we get that k& coinsides with each of this
functions that leads to (4). A

Lemma 3.8. Let 2,y € G and 2z = [z,y] € Z(G). Then k{2) = 1.
A If [z1,y], [22,y] € Z(G)  then

[z122,9] = [z1,¥][22,y] € Z(G).

This shows that if [z,y] € Z(G) then
=", y] = [z,y]" € Z(G).

Let K be closed cone generated by functions k(g"z), n € Z, the base B be defined
={f € K: f(1) = 1} and T} be continuous map from K to K, which preserves
B and is defined as fy2)
yzr
T,f
(Tf)=) = fly)
Every function h € K satisfies the relation h{zz) = h(z)h(z), when z = Z(G).
By a theorem of Tychonoff there is h € K such that Th = h ile. h(z)h(y) = h(yz)
for any z € G.

10
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Lemma 3.7. If z € Z(G) then

(4) k(zz) = k(z)k(z).

A Since the left shift of g - harmonic function is again g - harmonic and z is an
element of the center we get the relation

k(zz)  c(zz)
W) )

k(z)=p

where the function c is defined as
c(zz) = k(z) — bk(zz),
the number b is selected to satisfy the inequality

k(z)

0<b<g —=

k(zz)
and p = bk(z).

Now we observe that the functions

k(zz) c(zz)
k(2)’  c(2)

belong to B and as k is extremal point we get that k coinsides with each of this
functions that leads to (4). A

Lemma 3.8. Let z,y € G and z = [z,y] € Z(G). Then k(z) = 1.
A If [z1,y],[z2,y) € Z(G) then

[z122,y] = [z1, ][22, 9] € Z(G).
This shows that if [z,y] € Z(G) then
[z",y] = [z,y]" € Z(G).

Let K be closed cone generated by functions k(g"z), n € z, the base B be defined
as B ={fe K: f(1) = 1} and Ty be continuous map from K to K, which preserves
B and is defined as

_ flyz)

Every function h € K satisfies the relation h(zz) = h(z)h(z), when z = Z(G).
By a theorem of Tychonoff there is h € K such that Th = h i.e. h(z)h(y) = h(yz)

for any z € G.
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Besides this there is a constant b > 0 such that for any n € Z, the inequality
h(z"y)

b
0<b< 5

holds. 7
But zy = yz"[z"y],

h(z"y) = h(yz")k([z,y])" = h(yz")k([=, y]),
and we get for any n € Z
h(z"y) _ _h(z"y) b

I = higen) = hEm T R

that leads to the equality k([z,y]) =1. A

Now let us finish the proof of the theorem. For this purpose we will prove by
transfinite induction on a that k(z) is constant on cosets of subgroup [G,G4] < G.

Let (2) be a central series of a group G. If z € G, y € G3 then [z,y] € G2 <
Z(G) and by lemma 3.8 k([z,y]) = 1. So k is equal to 1 on the subgroup [G, G3)
and by lemma 3.7 k is constant on cosets of subgroup [G, G3]

Let us pass from (1) to the central series of ”smaller” length:

1< G3/[G,G3] <+ < Ga/lG,Gs) < -+ < G/[G, Gs]

After such factorization the distribution p(g) on G will be projected on some
distribution p®)(g) on the group G® = G/[G,G3] and the function k will be
projected on positive p - harmonic with respect to the distribution p{®)(g) function
k®) on the group G®). Moreover, k® will be extremal point in the base of the
corresponding cone of y - harmonic function on G,

Let us suppose now, that for some ordinal A every positive g - harmonic function
on G is constant on cosets of any subgroup [G,G,] @ < A. In case A is limit ordinal
this property can be extended on cosets of subgroup [G, G, as well.

If A is not a limit ordinal and A = g + 1 then let us consider the central series

(5) 1< G#/[GsG#] < G,\/[G, Gﬂ] << G/[G) G#]

Let p{")(g) and k{#) be distribution and g - harmonic function on G*) = G/[G, G,,]
that are projections of i and k respectively.

IfzeGW, yeGi/[G,G,)
then

[z,y] € G,/[G,G,u] < Z(G/(G,G,])
and so the function k{#) is constant on cosets of subgroup
[G/1G,Gul, GA/(G,Gull < G/[G, Gl
Thus we can pass from (5) to the series
1 <GA/[G,Gi] < -+ < G/[G,G)]

and to define on the group G = G/[G, G| projections p{*)(g) and ¥ of p(g),
k respectively.

This gives the possibility to apply the inductive assumption and to prove the
theorem.A
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Remark 3.9. As pointed out to me by B. Weiss, there is a direct proof shorter
than the one given above of the fact that every nilpotent group is Tychonoff.

Remark 3.10. There are examples showing that a group, containing nilpotent
subgroup of finite index can have extremal u - harmonic functions that are not
characters. Here is the simplest one.

Let G be infinite dihedral group, given by the presentation (1) and the distribution
p be uniform on the set {a,b} of generators: p(a) = p(b) = 1. The elements of G
can be identified with words not containing the subwords aa, bb.

The Cayley graph of G looks like Cayley graph of infinite cyclic group

--bab ba b 1 a ab aba---

and Markovian operator T, acts on functions on G analogously to the operator T
on the group z:

(F£)(r) = 5(f(n— 1)+ f(n +1)).

We can apply theorem 3.3 (or classical results) to the last operator and deduce
that extremal points of the base of the cone of positive solutions of the equation
Tf = pf, p>0existif z > 1 and have the form fe(n) = €™ where £ is some
positive number satisfying the equation

B = S(E e

1.€.

g_uiVM—l
.—-“—2—"—

Respectively the function fe(g) = £°(9), where o(g) is the length of an element
g taken with the sign + if irreducible form of g starts on a and taken with the sign
— 1In opposite case, is extremal g - harmonic function on G but is not a character.

Remark 3.11. There are groups with Tychonoff property having nonconstant
bounded harmonic functions. For instance, any group G = z%wrz ; is Tychonoff
(see example 2.14) and has nonconstant bounded harmonic functions when d > 3
{4]. Thus the class TG does not coincide with the class of superliouville groups.

§4. The Tychonoff property and indicability.
A group is called indicable if it can be mapped onto infinite cyclic group.
Theorem 4.1. Any infinite, finitely generated Tychonoff group is indicable.

Proof. Let G be such a group. The theorem will be proved if we construct an
action of G without fixed points by affine transformations on convex cone K with
compact base B. Indeed, then the action of G on any invariant ray L, £ € B:

g€ = p(g)¢
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Remark 3.9. As pointed out to me by B. Weiss, there is a direct proof shorter
than the one given above of the fact that every nilpotent group is Tychonoff.
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characters. Here is the simplest one.
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p be uniform on the set {a, b} of generators: p(a) = p(b) = 1. The elements of G
can be identified with words not containing the subwords aa, bb.
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and Markovian operator T, acts on functions on G analogously to the operator T
on the group z:
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Respectively the function fe(g) = £709)  where o(g) is the length of an element
g taken with the sign + if irreducible form of ¢ starts on a and taken with the sign
— in opposite case, is extremal u - harmonic function on G but is not a character.

£€=

Remark 3.11. There are groups with Tychonoff property having nonconstant
bounded harmonic functions. For instance, any group G = Z%wrz ; is Tychonoff
(see example 2.14) and has nonconstant bounded harmonic functions when d > 3
[4]. Thus the class TG does not coincide with the class of superliouville groups.

§4. The Tychonoff property and indicability.
A group is called indicable if it can be mapped onto infinite cyclic group.
Theorem 4.1. Any infinite, finitely generated Tychonoff group is indicable.

Proof. Let G be such a group. The theorem will be proved if we construct an
action of G without fixed points by affine transformations on convex cone K with
compact base B. Indeed, then the action of G on any invariant ray L¢, £ € B:

g€ = w(g)¢
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determines desired homomorphism ¢ : G — R4 with infinite cyclic image.
We are going to prove that the cone K of positive u - harmonic functions satisfies
the need property where u is any fixed number greater tha.n 1 and the distribution
p(g) has a finite support that generates G.
The group G acts on K by left shifts. This action is affine and has no nonzero fixed
points. The same arguments which were given in the proof of theorem 3.3 show

that the base
B={feK:f(1)=1)

is compact in the topology of pointwise convergence. Thus the only point remaining
i8 to prove that the cone K is nonzero.

Let p(g) be a distribution on G with finite support A that generates G. Let
p(n, z,y) be the probability of transmission from z to y in n steps in right random
walk on G, determined by distribution p(g): starting from z we can reach za in
one step with probability p(a). The Markovian operator P corresponding to this
random walk 1s determined by the relations:

(Pf)=) =) pw)f(zy) = > p(1,z,9)f(y)
ye€G yEG
For any A, |A| <1 the series

CgMey) =) A"p(n,z,y)
n=0

converges and we can define the generalized Martin’s kernels

a9, y)
ky(:c) = _g"(l,y)

= _ZA"f(i,z,y),

where f(z,z,y) is the probability of the first getting from z into y on 7 - th step
It is clear that

and functions

pTLSE,y) Zfim,yp(ﬂ-t,y,y)

i=0
and so
9 (z,y) = M) (z)g™(y,v)
because
> Amp(n,3,y) Z/\"Zf(wy ~i,y,9) =
n=0 =0
=> Z N fG,z,y)A " p(n —i,y,y) =
n=0 1+=0
=Y Nf(i,s y)Z)\“ ‘p(n —1,y,9) = I(2)g* (v, )-
i=0 y

13



Thus

3 (z)
ky(z) = =55
I3(1)
Lemma 4.2. The following equality
0 fz#y
AN Aoy —
k,(z) — APk,(z) { . 11,, o=y

holds.

A In fact we have

1
Pky(z) =m > p(1,2,h)g(h,g) =

heG

ly)z p(1,z,h) Z,\" (n, h,y) =

hGG n=0

*(Ly) ZA"ZP Lz, h)p(n, h,y) =

n=0 heg

1 oo
=iy L VH ) =
1 1

1
m[/\ g*(=z,y) — (0 z,y)]. A

We claim that when z and A are fixed the set of numbers {k';‘(:v), y € G} is
bounded.

Really let A be the set of generators of G, Cs be the Cayley graph of a group
G constructed with respect to the generating set A.
Let us fix for every element z € G a path I; in Cg that joins 1 and z. Let p(i;)
be the probability of the path I, (the product of probabilities of transmission along
links of this path) and let ¢, be the length of /..

If y ¢, then

f(zalay) > p(l:) : f(‘l - t;,.’l’:,y)-

Therefore

M=t (3 —t,,z,9) < 1
X f(i,1,y) = Atep(ly)
and
k'\(l‘) H’\(:B) 21 0 A f(?' T y)
’ (1) — 2o MG Ly)
2:’:0’\f(z)may) < 1
- Z:’:O ,\H‘f:f(i + tl: lay) - ’\‘zp(lz)
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Thus

Lemma 4.2. The following equality

kM) — APkNz) = { ° Hasy

yx(ll,y) ifz=y

holds.
A In fact we have

1
9*(Ly) &

1
g*1,y

Pk)(z) =

M

(1,I,h)g\)‘(h,g) =

p(1,2,h) > A"p(n, h,y) =

hEG n=0

> p(1,z,h)p(n, h,y) =

heg

iy DA+ 1) =

(—15@ Ma,y) - 32(0,2,9)).

R

O

n=

We claim that when z and A are fixed the set of numbers {k;‘(:c),

bounded.

y € G} is

Really let A be the set of generators of G, Cs be the Cayley graph of a group

G constructed with respect to the generating set A.

Let us fix for every element z € G a path [; in Cg that joins 1 and z. Let p(l;)
be the probability of the path [, (the product of probabilities of transmission along

links of this path) and let ¢, be the length of I,.
If y ¢ I;, then

f,Ly) > p(lz) - f(2 — tz, 2, y).

Therefore _
N fli—tymy) ]
NG Ly) - A

and
aoy Ig(@) 32 MG, 2, y)
50 =HND) = S, NG L)
E?OO /\if(i,.’ﬂ,y) < 1
E:fio Atz f(i 4 15,1,y) — At=p(ly)
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Thus the set of functions {k}(z)}yec is majorized by the function (A*ep(l;))~!.
Now we take any sequence y, € G, yn — oo and extract a subsequence yn,
such that the sequence k;\"t converges to some positive function £*(z) which is §

- harmonic. Really, because the distribution p(g) has finite support

PkMz) = P lim ky, (z) = lim Pk, (z)

k— o0

passing to the limit in the relation

1 0, if z # yn,
Thh, (@) = PR (2) =1 o
A (1,yn, ) = Yny

we get the relation
-}k*(m) = Pk*(z).

We have proved that on any infinite finitely generated group for any g > 1 there
is a positive p - harmonic function. The cone of such functions is nonzero and
satisfies all necessary conditions. The theorem is proved. '

§5. One fixed-point theorem for actions on cones.

Let a group G act by affine transformations on a cone K. We shall call such
action bounded if the orbit of any point £ € K is bounded. Thus the orbits can
accurmulate to zero, but not to infinity.

A finitely generated group G is called a group of subexponential growth if

vy = lim {/v(n)=1,

where 7(n) is the growth function of the group G with respect to some finite system
of generators (y(n) is equal to the number of elements of G that can be presented
as a product of < n of generators and its inverses).

Theorem 5.1. Let a group G of subexponential growth act by affine transformations
on nonzero convex cone K with compact base in locally convex topological vector
space and this action is bounded.

Then there is a G - fixed point £ € K, € # 0.

Proof. Let p(g) be symmetric (that is p(g) = p(g~") for any g € G) probabilistic
distribution the support of which is finite and generates G and let P be the
corresponding Markovian operator

(Pf)(g)=D_ p(h)f(gh).

keG

We can define continuous map T : K — K, where

Tz = Z p(h)hz.

heG
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By Tychonoff theorem there is a T - invariant ray L¢, { € B, that is T§ = A€ for
some A > 0.

We are going to prove that A = 1. Let & be a functional, determining the base
B of the cone K and let f be a function on G determined by the relation

f(g) = 2(g¢).

Then f is A - harmonic function:

(Pf)(g) =Y _ p(h)f(gh) = > p(h)®(ght) = () p(h)ght) =
heG heG heG

=®(g Y p(h)ht) = ®(gAf) = Ad(g€) = Af(g)-

heG

"From the relation (P™f)(1) = A" f(1) we get the inequality p(n,1,1) < A™ where
p(n,1,1) is the probability of returning to the unit after n - steps in the right
random walk on a group G.

It is well-known that any group of subexponential growth is amenable and by
theorem of H.Kesten the spectral radius

r = lim sup ¥/p(n,1,1)
n-—oo

is equal to 1 for a symmetric random walks on any amenable group. Thus A > 1
in our case. But because the action of G on K is bounded, one can find a number
d > 0 such that

(f)-A"=2(P*f)<d
which leads to the equality A = 1.

Thus the function f(g¢) is bounded a harmonic function on the group G. By the
theorem of Avez [1] the function f is constant and so the orbit O, of the point
€ is a subset of the base B. The closed convex hull O¢ of the orbit O¢ will be a
compact set on which G acts by affine transformations and this action has a fixed

point because G is amenable.
This finishes the proof of the theorem.

Remark 5.2. The statement of the theorem 5.1 holds for any group for which there
is symmetric probabilistic distribution with finite support having the property that
every positive bounded harmonic function is constant. There are some solvable
groups of exponential growth having this property. The simplest example is the
group of the form % x 4 Z%where not all eigenvalues of the matrix A lie on the unit
circle.
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