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.ON TYCHONOFF GROUPS

R.I. GRIGORCHUK 1

1. Introduction.
The dass AG of amenable groups can be characterized by the property of a

group to have a fixed point for any action by affine transformations on convex
compact subset of locally convex topological vector space.

Now let us suppose that instead of compact set we have a nonzero cone. What
kind of fixed-point theorems may hold in this situation? There is a number of
conditions when a selftransformation of a cone has a nonzero fixed point. We will
consider the situation when a group acts by affine transformations on convex cone
with compact base. The groups for which any such action has an invariant ray are
called Tychonoff and were defined (in case of Lie groups) by
H. Furstenberg [3]. We investigate the Tychonoff property for abstract groups (with
discrete topology) and show that this property is closely related to the property
of having a small space of harmonie functions. Another interesting property is
established in

Theorem 4.1. Any infinite finitely generated Tychonoff grollp is indicable (i.e.
can be mapped onto infinite cyc1ic grollp)..

This theorem is the first step in an attempt to describe all finitely generated ,
Tychonoff groups.

In the end of the paper we consider bounded actions of groups of subexponential
growth on convex cones with compact base and prove a fixed-point theorem for
such actions.

2.The definition and some properties of Tychonoff groups.
Let us recall sorne notions. A selfmap A : E -t E of a topological vector space

E is called affine on a convex subset V C E if Jor any x, y E V and p, q ~ 0,
p+q=l

A(px + qy) = pAx + qAy,

A set K C E is called a cone if
1. K+KCK

1 The results presented here were obtained under the financial support of the Russian Fund
for Fundamental Research Grants 93-01-00239, 94-01-00820 and of the International Science
Foundation , Grant MVIOOO.
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2. J\K c !( for any number J\ ~ 0
3. K n (-K) = {O}.
The ray in a cone !( is any halfline:

where x E !(, x i= O.
A cone K has a compact base if there is a continuous linear functional <P on E

such that <p(x) > 0, if x E !(, x i= 0 and such that the set

B = {x E !( : <p(x) = 1}

is compact. Any such set B is called the base of the cone K.

Definition 2.1. A group G is called Tychonoff if for any action of G by continuous
affine transformations on convex cone !( with compact base in locally convex
topological vector space there is aG-invariant ray.

Let TG be the dass of Tychonoff groups. We will see later that TC c AG,
where AC is the dass of amenable groups.

We agree that everywhere in this paper K denotes a cone with compact base B
determined by a functionaJ <I>.

Examples.

2.2. Any finite group is Tych onoff.

If a finite group G acts on a cone !( then for any x E K, x i= 0 the nonzero point

is G-invariant and so the ray Le is G-invariant as weH.

2.3. Infinite cyc1ic group z is Tychonoff.

If A : K ~ K is the affine transformation determined by the generator element
of a cydic group, then the transformation

A:B-+B

--- A(x)
A(x) = <I> (A( x))

is continuous and by Tychonoff theorem has fixed point ~ E B. The ray Le is z ­
invariant.

Later we will see that nilpotent and in particular commutative groups are Tychonoff.
The following example shows that a virtually commutative group need not belong
to the dass TG.
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2. ),K c !( for any number ), ~ 0
3. Kn(-K)={O}.
T'he ray in a cone K is any halfline:

where x E K, x i=- O.
A cone K has a compact base if there is a continuous linear functional tP on E

such that tP(x) > 0, if x E ](, x i- 0 and such that the set

B = {x E K : 4>(x) = 1}

is compact. Any such set B is called the base of the cone K.

Definition 2.1. A group G is called Tychonoff iffor any action of G by continuous
affine transformations on convex cone ]( with compact base in locally convex
topological vector space there is aG-invariant ray.

Let TC be the dass of Tychonoff groups. We will see later that TG c AG,
where AG is the class of amenable groups.

-."'.;.-"'- We agree that everywhere in this paper K denotes a cone with compact base B
determined by a functional <I>.

Examples.

2.2. An)' finite group is Tychonoff.

If a finite group G acts on a cone ]( then for any x E K, x =1= 0 the nonzero point

is G-invariant and so the ray L e is G-invariant as weIl.

2.3. Infinite cyc1ic group z is Tycbonoff.

If A : K ~ !( is the affine transformation determined by the generator element
of a cyclic group, then the transformation

A:B-+B

-.- A(x)
A(x) = <I> (A( x))

is continuous and by Tychonoff theorem has fixed point ~ E B. The ray Le is z ­
invariant.

Later we will see that nilpotent and in particular commutative groups are Tychonoff.
The following example shows that a virtuallY commutative group need not belong
to the class TC.
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2.4. Infinite dihedral group is not TychonoH'.

This group is given by one of the following presentations (by means of generators
and relations):

(1)

G =< a, bla2 = b2 = 1 >=
=< a , ela2 = (ae)2 = 1 >

c= 0 ~)

where b = ae. It is easy to see that G is isomorphie to the group generated by
matrices

whieh aets by linear transformations on 2-dimensional veetor space. The first
quarter

K = {(x,y) E IR
2

: x,Y ~ O}

is G - invariant and has compact base but there are no invariant rays for such
action.

Proposition 2.5. Factor group of Tych onoff group is Tychonoff.

This is obvious.

Proposition 2.6. Let G be direeted (by inc1usion) union of Tychonoff groups Bi,
i E I (that is G = Ui Bi and for any Bi and B j there is Bk ::> (Bi U H j )). Then
GETG.

6 Let G aet by affine transformation on a cone K with compaet base Band let Bi

be the compact nonempty set of traces of Gi - invariant rays on the base B:

The system {BdiE I satisfies the fini te intersection property and so the interseetion
BOC) = niEIBi is nonempty. Any x E BOC) determines G - invariant ray Lx. 6-

The next statement was remarked in [3].

Proposition 2.7. The strict inclusion TG C AG holds.

6 Let us prove that TC is a subset of AG. Let loo( G) be the space of bounded
functions on G with uniform norm, /~(G) be the space of continuous functionals
equipped by the weak-* topology and let B C l~(G) be the set of means on G that
is the set of linear positive functionals m E l~(G) such that m(1G) = 1, where 1G
is constant on G function with value 1.

Now let K be the cone generated by B:

K = {O} U {x E /::, (G) : AX E B for some A > O}.

Then B is the base of cone !(, determined by the func tional <P: <P (m) = m(1 G ),

m E 1~(G).

3
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Ey the Alaoglu theorem this base is compact in the weak - * topology. The group
G acts on lcx·A G) by left shifts: (Lgf)( x) = f(g -1 x) and this action in canonical
way induces the action on the dual space: (gm)(f) = m(Lgf), m E l~(G).

The cone K is C - invariant, so there is G - invariant ray Lx, x E K, x =f: O.
Eut the hase B is G - invariant as weH. Thus m = B n Lx is invariant point for
action of G and m is left invariant mean on G. So G E AG. The inclusion TG C AG
is strict, because infinite dihedral group is amenable hut not Tychonoff. D.

An extension of a Tychonoff group by another Tychonoff group need not be a
Tychonoff group, as shows the example of infinite dihedral group.

A suhgroup of a Tychonoff group also need not be a Tychonoff. The corresponding
example will be constructed later.

No\v \ve are going to consider some types of extension preserving the Tychonoff
property.

Proposition 2.8. Let G = A1 x N, where M, N E TG. Then G E TC.

D. Let G act on !{ with base Band let B o eBbe nonempty subset determined by
the traces of M - invariant rays on B. Let Xo E Ba and mxo = ..\(m )xo, m E M,
where ..\ : M -+- IR + is some homomorphism. We define K 0 as a (nonzero convex
c1osed) suhcone of !( consisting of vectors x with the property mx = ..\(m)x. The
cone K o is N - invariant. In fact, if x E 1(0 then

mnx = nmx = A(m)nx.

Since N E TC there is N - invariant ray Lewhich is G - invariant as weIl. t::...

Corollary 2.9. Any commuta.tive group is Tychonoff.

Let us agree that in this paper the term II a character" of a group G will mean any
homomorphism C ---+ R+ where R:+ is the multiplicative group of positive numbers.

Proposition 2.9. Let C = Z l< A Z d be asemidireet product oE infinite cyc1ic group
z and [ree a.belian group oE rank d 2:: 2, where a generator oE Z a,ets on Z d as the
automorphism determined by a matrix A E GLn(z) ,with the following condition:
A has no eigenvalues on tbe unit circ1e exeept probably 1. Then G E TC.

IJ. Let C act on ]( with compact base B determined by a functional cIt. Because
z d E TC there is a vector € E B such that for some character cp : Z d ---+ IR + and
any 9 E z d the equality g€ = cp(g)€ holds.

Let
Kv; = {x E ]( : gx = <p(g)x, 9 E Zd}.

Then Kv; is convex subcone of 1( determined by some nonempty compact base
Brp C B.

If a is a generator of infini te cyclic group Z then a1(l{) = 1(v;Q l W here the action
of a on cp is determined by the relation cpB(g) = cp(g-l ag).
For any b E z d and x E K v;
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By the Alaoglu theorem this base is compact in the weak - * topology. The group
G acts on loo( G) by Ieft shifts: (Lgf)( x) = f(g-l x) and this action in canonical
way induces the action on the dual space: (gm)(f) = m(Lgf), m El~(G).

The cone K is G - invariant, so there is G - invariant ray Lx, x E K, x =f:. O.
But the base B is G - invariant as weH. Thus m = B n Lx is invariant point for
action of G and m is Ieft invariant mean on G. So C E AC. The inclusion TC c AC
is strict, because infinite dihedral group is amenahle hut not Tychonoff. ß

An extension of a Tychonoff group hy another Tychonoff group need not be a
Tychonoff group, as shows the exampie of infinite dihedral group._

A subgroup of a Tychonoff group also need not be a Tychonoff. The corresponding
exampie will be constructed Iater.

Now we are going to consider some types of extension preserving the Tychonoff
property.

Proposition 2.8. Let C = !vI x N, where M, N- E TC. Then G E TG.

ß Let G act on K with base Band let Bo eBbe nonempty subset determined by
the traces of M - invariant rays on B. Let Xo E Bo and mxo = .-\(m )xo, m E M,
where .-\ : !vI -. IR+ is same homomorphism. We define K o as a (nonzero convex
closed) subcone of K consisting of vectors x with the property mx = .-\(m)x. The
cone K o is N - invariant. In fact, if x E ](0 then

mnx = nmx = .-\(m)nx.

Since N E TC there is N - invariant ray L, which is G - invariant as weIl. ß

~.?: Corollary 2.9. Any commutative group is Tychonoff.

,~ Let us agree that in this paper the term "a character" of a group G will mean any
'f~~- homomorphism C --t IR+ where R+ is the multiplicative group of positive numbers.

Proposition 2.9. Let G = Z l< A Z d be asemidireet product of infinite eyc1ic group
z and free abelian group oE rank d ~ 2, where a generator oE Z acts on Z d as the
automorphism determined by a matrix A E CLn(z) with the following condition:
A has no eigenvalues on the unit circ1e except probably 1. Then C E TC.

6 Let G act on !( with compact base B determined by a functional ep. Because
z d E TG there is a vector ( E B such that for some character <p : Z d -t IR+ and
any 9 E z d the equality g( = <p(g)( holds.

Let
!(ip = {x E!(: gx = r.p(g)x, 9 E Zd}.

Then Kip is convex subcone of I< determined by same nonempty compact base
Bip C B.

If a is a generator of infinite cyclic group Z then a!(<p = !C.pa, wherc the action
of a on r.p is determined by the relation tpU(g) = 'f'(g-l ag ).
For any b E z d and x E !(<.p
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and so we have uniform on n E Z upper bound:

_ n n <I- (ban x ) . <I> ( by )
r.p(a ba) = <I> ( ) ~ sup~() < 00.anx yEB '±" Y

We see that for any b E z d the sequence <pan (b) when TI ranges over Z is bounded.
Let us show that cp is invariant under A.

Let al,'" ,ad be a basis of the group Z d. Any character on Z d is determined
by the vector X = (XI, ... 1 Xd) of positive numbers: if 9 = a;nl ... a;d
then

X(g) = X~l ... x:F d
•

Let us consider the additive character p. = log x:
. .

p.(g) = ml log Xl + ... + md log Xd·

The action of an automorphism a on Z d corresponds to the mapping m --+ mA
of integer vectors m = (m I 1 • •• ,md) whieh determines elements of the group Z d.
Thus

where
( (n) (n)) ( )An
m l ,'" ,md = ml,'" ,md

and
p.an(g) =< logx,mAn >=< logX(A')n,m >

where <, > is scalar product and A' is the matrix transpose to A.

Lemma 2.10. Let A be a linear transformation ofR d which have TIO eigenvalues
on unit circ1e except probably 1. If for some x the set of vectors {Anx}~~_oo is
bounded then Ax = x.

The proof is identical to the proof of lemma 4.1 from [3] and is omitted.
If the sequenee of veetors {log tp (A' )n } t~- 00 (<p is the character defined above)

is bounded then due to the lemma 2.10 and condition of the proposition 2.9 the
veetor log<p is invariant with respect to A'. Thus<.p is a - invariant and so the eone
Klp is a - invariant. An arbitrary a - invariant ray in ](lp will be G - invariant as
well. ~

The following three statements are. similar to those given above.

Proposition 2.11. Let G = N t( H be a semidirect product, where N and H
are Tychonoff and let N act triviallyon tbe set oE characters of a group H. Then
GETG.

6 The cone
Klp = {x E k : gx = tp(g)x, gEH},

where <.p is a character for which there is a vector ~ E K, ~ i=- 0, with g~ =
'P(g)~ für any gEH is N - invariant and so any N - invariant ray in K lp will be
G - invariant. ~ There is a bijective correspondenee (given by the function log)
between multiplieative characters G ---t IR + and additive charaeters G --+ IR. We
say that the set of multiplicative characters G -+ R+ is finite dimensional if the
space Char (G) of additive characters G --+ IR is finite dimensional. .

5



Proposition 2.12. Let G = Z K A H, where H E TG. Suppose that tbe space
Char (H) is finite dimensional and tbe matrix A determining tbe action oEgenerator
oEz on the space Char (H) has no eigenvalues on tbe unit circ1e other than 1. Then
GETG.

The arguments are similar to those given in the proof of Proposition 2.11.

Examples.

2.13. Metabelian group G =< a, bla- 1ba = b2 > js Tychonoff.

6. Indeed G = z ~ H, where z is infinite cyc1ic group generated by element a and
H = Q2 is the group of rational numbers of the form 2kn , k, n E Z with operation
of addition. The element a acts on H as multiplication by 2.

Any character <p on H is determined by value <p(I) so the space of characters is
I-dimensional. We have

and thus the orbi t {<p a n (g )}~~_ 00 is bounded if and only if <p(g) = 1 and if this
hold for auy 9 then cp is trivial. Thus G E TC. ß .

2.14. Let Zk = z/kz, G = ZdwrZk (wr means the wreatll product). Tbe group
G can be defined as

G d ( )Zd= Z K Zk 1

where the group Z d acts on the space (Z k)Z d of Z k - confjgurations on Z d by shifts.

The group Z~d has only trivial character. Thus G E TC.

2.15. The group ZwrZ js not Tychonoff, because it can be mapped onto infinite
dihedral group.

2.16. The Tychonoff property may not be preserved when pass to subgroup:

Let
H =< a , bl[a,b] = c, [a,c] = [b,c] = 1 >

be nilpotent Heisenberg group and let automorphism <p E AutH be defined as

~{
a -t ab

b -t a.

Then <p induces automorphism of the graup Z2 = H/[H, H] determined by the
matrix

A= C~)
the eigenvalues of which )\1,2 = (1 ± VS)/2 da not belong to the unit circle.

The automorphism <p acts on the generator c of the center Z(H), as

c = [a, b] ~ [b,a] = c- 1.

6
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Proposition 2.12. Let G = Z K A H, where H E TG. Suppose that the space
Char (H) is finite dimensional and the matrix A determining the action oEgenerator
olz on the space Char (H) has no eigenvalues on tbe unit circ1e otber tban 1. Then
GETG.

The arguments are similar to those given in the proof of Proposition 2.11.

Examples.

2.13. Metabelian group G =< a, bla- 1 ba = b2 > is Tychonoff.

6 Indeed G = z ~ H, where z is infinite cyclic group generated by element a and
H = Q2 is the group of rational numbers of the form 2~) k., n E Z with operation
of addition. The element a acts on H as multiplication by 2.

Any character ep on H is determined by value ep(1) so the space of characters is
1-dimensional. We have

and thus the orbit {ep a ,. (9) }~~_ 00 is bounded if and ooly if ep (9) = 1 and if this
hold for any 9 then ep is trivial. Thus G E TG. 6

2.14. Let Zk = z/kz, G = Zdwrzk (wr means the wreath product). The group
G can be defined as

G = Z d ~ (z k )Z d,

where the group Z d acts on the space (z k y d of Z k - configurations on z d by shifts.

The group zr' has only trivial character. Thus G E TC.

2.15. The group ZwrZ is not Tychonoff, because it can be mapped onto infinite
dihedral group.

2.16. The Tycbonoff property may not be preserved when pass to subgroup:

Let
H =< a, bl[a, bJ = c, (a, c] = [b, c] = 1 >

be nilpotent Heisenberg group and let automorphism ep E AutH be defined as

~{
a -+- ab

b-+-a.

Then ep induces automorphism of the group Z2 - H/[H, H] determined by the
matrix

A= CD
the eigenvalues of \vhich AI,2 = (1 ± ..;5)/2 do not belang to the unit circle.

The automorphism ep acts on the generator C of the center Z(H), as

C = [a, b] .:!... [b, a] = c- 1
.
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Let

G =Z t< tp H =
= < a, b, c, d I[a, b] = c, (a, c] = (b, c] = 1, d-1ad = ab, d- 1 bd = a >

By proposition 2.12 the group G is Tychonoff. At the same time G contains the
suhgroup

< c, d Id-1cd = c- 1 >

which can be mapped onto infinite dihedral group and so is not Tychonoff.

§3. Harmonie funetions and Tyehonoff property.
Let G be a countable group and p(g) be probabilistic distribution on

G : p(g) ~ 0, EgEG p(g) = 1.
A function / : G --. R is ealled J.l - harmonie (J.l is areal number) if P / = j..L/,

where P is the Markovian operator determined by the relation:

(P f) (g) = L p(h) f (g h).
hEG

The left shift of a J.L - harmonie funetion is again a /-l - harmonie function. If J.L = 1
then we get the standard notion of harmonie funetion.

A distribution p(g) is ealled generating if its support

suppp(g) = {g E G : p(g) i= O}

generates G.

Proposition 3.1. H given G there is a generating probabilistic distribution with
finite support sueh that for any J.L > 0 every positive J.L - harmonie funetion is
eonstant on eosets of the commutator subgroup then G is Tychonoff.

ß. From the eondition it follows that every bounded harmonie function on G is
eonstant and this implies the amenability of G [2].

Let p(g) be a distribution on G for whieh every j.J. - harmonie funetion is eonstant
on eosets of commutator subgroup when p. > 0 and let G aet by affine transformations
on a cone K with compact base B determined by funetional <P.

We can define affine eontinuous mapping T : K --. K,

for whieh there is an invariant ray Le 1 ~ E B.
The function /(g) = <p(g~) is positive and J.l - harmonie. Indeed

(P /)(g) = L p(h)f(gh) = L <p(gh~)p(h) =
hEG hEG

= <p(g L p(h)h~) = <p(gT~) = p.<P(g{) = j..Lf(g).
hEG

7



Ey our assumption, this function is constant on cosets of the commutator subgroup.
In particular, I(g) = 1 if 9 E C' = [C, C]. Thus G' - orbit of the point ebelongs to
the base B.

We can consider the action of G' on the convex closure of the orbit {g~}gEG' and
using the amenability of G' to claim the existence of G' - invariant point Tl E B.

Now let ](' C K be nonempty convex closed cone of G' - fixed points. The cone
K' is G - invariant. Thus thc action of G'on K' induces the action of Gab = G/ G'
on K ' by affine transformations. This action has an invariant ray which is G ­
invariant as well. l2.

Definition 3.2. A group G is ZA - group if G has increasing transfinite central
chain of normal subgroups

(2) ,

where

1 = GI < ... < Go: < ... < G"'( = G

G..\ = Uo:<..\Go:

if A is a limit ordirial and for any a

(as usual Z(H) denotes the center of a group H).

The following statement is similar to the main result of [6] and our proof follows
the one given in [6]. We observe only that the lemma 2 from (6] must be a little bit
corrected either in the part of formulation or in the part of the proof.

Let us eall G a superliouville group iffor any generating probabilistic'distribution
p(g) every positive J.L - harmonic function is constant on cosets of the commutator
subgroup.

Theorem 3.3. Any eountable ZA - group is superliouville.

Corollary 3.4. Any nilpotent group is Tyehonoff and so any loeally nilpotent
group is Tycbonoff as weil.

Remark 3.5. By theorem of A. JvIalcev (51 any finitely generated ZA-group is
nilpotent. Thus ZA is proper sub-dass of tbe dass of loeally nilpotent groups.

Prao! 0/ the theorem S.S. Let p(g) be generating distribution on ZA - group G and
let for some J.L > 0 the set of J.L - harmonie functions be nonempty. '!'le fix this
J.L and denote by ]( the convex cone of positive J.L - subharmonie functions that is
functions with the property PI::; /-L/.

Let V( G) be the space of real valued functions on G endowed with the topology
of pointwise convergence.

If In E K, n E N is a net and In ---i- f then

P f ::; lim P / n ::; J.L lim / n = /-L f.
n n

8



By our assumption, this function is constant on cosets of the commutator subgroup.
In particular, f (g) = 1 if 9 E G' = [G, G]. Thus G' - orbi t of the point ~ belongs to
the base B.

We can consider the action of G' on the convex closure of the orbit {g~}gEG' and
using the amenability of G' to claim the existence of G' - invariant point 7] E B.

Now let K' C K be nonempty convex closed cone of G' - fixed points. The cone
K' is G - invariant. Thus the action of G'on K' induces the action of Gab = GIG'
on K' by affine transformations. This action has an invariant ray whieh is G ­
invariant as weIl. !:::>.

Definition 3.2. A group G is ZA - group if G has increasing transfinite central
chain of normal subgroups

(2)

where

1 = GI < ... < Go: < ... < Gi = G

if A is a limit ordinal and for any 0:

(as usual Z(H) denotes the center of a group H).

The following statement is similar to the main result of (6] and our proof follows
.'.'. '.- the oue given in [6]. vVe observe only that the lemma 2 from [6] must be a little bit

;:;-.~.:. eorrected either in the part of formulation o,r in the part of the proof.
·~f Let us call G a superliouville group if for any generating probabilistic distrihution
~~ p(g) every positive J.l - harmonie funetion is constant on eosets of the eommutator

subgroup.

Theorem 3.3. Any countable ZA - group is superliouville.

Corollary 3.4. Any nilpotent group is Tychonoff and so any locally nilpotent
group is Tychonoff as well.

Remark 3.5. By theorem of A. 1vla1cev [5} any finitely generated ZA-group is
nilpotent. Thus Z A is proper sub-dass of thc dass of locally nilpotent groups.

Proof of the theorem 9.9. Let p(g) be generating distribution on ZA - group G and
let for same J.l > 0 the set of fL - harmonie functions be nonempty. vVe fix this
J.l and denote by !( the convex cone of positive J.l - subharmonic functions that is
functions with the property P f ::; /-Lf.

Let ~/(G) be the space of real valued functions on G endowed with the topology
of pointwise convergence.

Ir f n E ](, n E N is a net and f n -J. f then

P f ::; lim P f n ::; Il lim f n = J1. f.
Tl n

8



Thus the cone K C V(G) is closed.
Let <1> be the functional on V( G) determined by the relation <1>(/) = /(1). Then

the base B = {/ E K : 4>(/) = I} is a compact set becouse from P / ~ J1-/ it is
easy to deduce that

(3)
n

leg) ~ __J1-__
p(g} ) ... P(9n)

where the elements 9i, i = 1,' .. ,n are selected in such a manner that 9 = 91 ... 9n
andp(9i) > 0, i = 1,'" ,n.

From (3) it follows that all functions from B are majorized by the function from
the right-hand side of (3), which gives the compactness of B.

We can introduce the partial ordering on the cone K : x < y, x, Y E K if
y - x E K. Then the cone ]( is a lattice: for any x, y E K there is an infimum
z = inf(x, y) that is the element such that x - z, y - z E K and if x - Zl, Y - Zl E K
for same other z' E ]( then z - z' E K
In our case z is determined by the relation

z(g) = min{x(g), y(g)}.

The following statement follows from theorem of Choquet and Deny and is apart
of a more general statement from [3J (theorem 6.2).

Proposition 3.6. The set E of extremal points of B is a Borel set and any point
bEB is a resultant of some uruque probabilistic measure d v defined on E i.e. b
can be presented in thc form

b = hxdv(x).

If f is J1- - harmonie function then corresponding measure d v is coneentrated on
J..t - harmonie funetions. Indeed, let f be J..t - harmonie and

f = hxdvJ(x).

Then

and

0= PI - J1.1 ~ h(Px - J1.x)dvJ(x).

Eut Px - J..tx ~ 0, so for any 9 E G the set

Fg = {x ~ E : (Px - p,x )(g) = O}

has VI - measure 1 and thus

beeause G is countable.
Now we are going to characterize extremal p, - harmonie functions as characters

of the group G.
Any such funetion will be denoted by k(x).
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Lemma 3.7. Hz E Z(G) then

(4) k(xz) = k(x)k(z).

ß Sinee the left shift of J.L - harmonie funeti~n is again J.L - harmonie and z is an
element of the center we get the relation

k(xz) c(xz)
k(x) = p k(z) + q c(z) ,

where the function c is defined as

c(xz) = k(x) - bk(xz),

the number b is selected to satisfy the inequality

k(x)
O<b<k(xz)

and p = bk(z).
Now we observe that the functions

k(xz) c(xz)
k(z) , c(z)

belong to B and as k is extremal point we get that k coinsides with each of this
functions that leads to (4). ß

Lemma 3.8. Let x, y E G and z = [x, y] E Z(G). Then k(z) = l.

ß If [x}, y], [X2, y] E Z(G) then

[X1X2,y] = [XI,Y][X2,y] E Z(G).

This shows that if [x, y] E Z(G) then

[x n
, y] = [x, y]n E Z(G).

Let K be closed cone generated by functions k(gn x ), n E Z, the base B be defined
as B = {f E !( : J(I) = I} and TlJ be continuous map from K to !(, which preserves
Band is defined as

J(yx)
(TyJ)(x) = J(y)'

Every function h E K satisfies the relation h(xz) = h(x)h(z), when z = Z(G).
By a theorem of Tychonoff there is h E K such that Th = h i~e. h(x)h(y) = h(yx)
for any x E G.

10
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10



Besides this there is a constant b > 0 such that for any n E Z, the inequality

o< b < h(xny)
h(xn )

holds.
But x"y = yx"[xny],

h(xny) = h(yxn)k([x, yD" = h(yxn)k([x, yD,
and we get for any n E Z

" h(x"y) h(x"y) b
k ([x,y]) = h(yxn ) = h(y)h(xn ) > h(y)

that leads to the equality k([x, y]) = 1. ~
Now let us finish the proof of the theorem. For this purpose we will prove by

transfini te induction on Q' that k(x) is constant on eosets of subgroup [G, Ga] < G.
Let (2) be a central series of a group G. If x E C, y E Ga then [x, y] E G2 <

Z(G) and by lemma 3.8 k([x, y]) = 1. So k is equal to 1 on the subgroup [G, Ga]
and by lemma 3.. 7 k is constant on cosets of subgroup [C, Ga]

Let us pass from (1) to the eentral series of "smaller" length:

1 < Ca/[G, Ga] < ... < Ga/[G, Ga] < ... < G/[G, Ga]

After such factorization the distribution p(g) on C will be projeeted on some
distribution p{a)(g) on the group G{a) = G/[G, G3] and the funetion k will be
projected on positive J1. - harmonie with respeet to the distribution p{3>(g) funetion
k(3) on the group C{a). Moreover, k(3) will be extremal point in the base of the
corresponding eone of /-l - harmonie function on G(3).

Let us suppose now, that for some ordinal ..\ every positive J.L - harmonie funetion
on G is eonstant on eosets of any subgroup [G, Go] Q' < ..\. In ease ..\ is limit ordinal
this property can be extended on eosets of subgroup [G, G>.] as weIl.

If ..\ is not a limit ordinal and ;\ = /-l + 1 then let us consider the eentral series

(5) 1 < GIJ/[G, GIJ] < G>./[G, GIJ] < ... < G/[G, CIJ]'

Let p{lJ) (g) and k{JJ) be distribution and /-l - harmonie funetion on G{IJ) = G/[G, GIJ]
that are projeetions of J1. and k respectively.

If x E G{JJ) , y E G>./[G, GIJ]
then

[x,y] E GIJ/[G, GIJ] < Z(G/[G, GIJ])

and so the function k{lJ) is constant on cosets of subgroup

[G/[G, GIJ), G>./[G, GIJ]] < G/[G, GIJ]'

Thus we ean pass from (5) to the series

1 < G>./[G,G>.l < ... < G/[G,G>.]

and to define on the group C{>') = G/[G, G>.] projeetions p{>'}(g) and k{>') of p(g),
k respectively.
This gives the possibility to apply the inductive assumption and to prove the
theorem.~
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Remark 3.9. As pointed out to me by B. Weiss, there is a direct proof shorter
than the one given above oE the fact that every nilpotent group is Tychonoff.

Remark 3.10. There are examples showing that a group, containing nilpotent
subgroup 01 finite index can have extremal J-1. - harmonie functions that are not
characters. Here is the simplest one.

Let G be infinite dihedral group, given by the presentation (1) and the distribution
p be uniform on the set {a, b} of generators: p(a) = p( b) = ~. The elements of G
can be identified with words not containing the subwords aa, bb.

The Cayley graph of G looks like Cayley graph of infinite cyclic group

···bab ba b 1 a ab aba···

and Markovian operator T, acts on functions on G analogously to thc operator T
on the graup z:

- 1
(T f)(n) = 2(f(n - 1) + f(n + 1)).

We can apply theorem 3.3 (or classical results) to the last operator and deduce
that extremal points of the hase of the cone of positive solutions of the equation
Tf = J1-f, J-1. > 0 exist if J1. ~ 1 and have.the form f~(n) = ~n where ~ is some
positive number satisfying the equation

l.e.

~ = J1. ± J p.2 - 1
2

Respeetively the function f~(g) = ~O'(g), where (1(g) is the length of an element
9 taken with the sign + if irreducible form of 9 starts on a and taken with the sign
- in apposite case, is extremal J1. - harmonie function on G hut is not a character.

Remark 3.11. There are groups with Tychonoff property having nonconstant
bounded harmonie funetions. For instance, any group G = Z dwrz k is Tychonoff
(see example 2.14) and has noneonstant bounded harmonie functions when d ~ 3
[4}. Thus the dass TG does not coincide with the dass of superliouville groups.

§4. The Tychonoff property and indicability.
A graup is ealled indicable if it ean be mapped auto infinite eyclic graup.

Theorem 4.1. Any infinite, finite1,r generated Tyehonoff group is indicable.

Praof. Let G be such a graup. The theorem will be proved if wc canstruct an
action of G withaut fixed points by affine transformations on convex cane K with
compact base B. Indeed, then the action of G on any invariant ray L~l eE B:

g~ = /{J(g)e

12
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eompact base B. Indeed, then the action of G on any invariant ray L{l ~ E B:
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determines desired homomorphism cp : G ----+ ~ + with infini te eyelie image.
We are going to prove that the eone K of positive JJ - harmonie funetions satisfies

the need property where JJ is any fixed number greater than 1 and the distribution
p(g) has a finite support that generates G.
The group G aets on !( by left shifts. This action is affine and has no nonzero fixed
poi~ts. The same arguments whieh were given in the proof of theorem 3.3 show
that the base

B = {f E K : /(1) = l}

is compaet in the topology of pointwise convergenee. Thus the only point remaining
is to prove that the cone K is nonzero.

Let p(g) be a distribution on G with finite support A that generates G. Let
p(n, x, y) be the probability of transmission from x to y in n steps in right random
walk on G, determined by distribution p(g): starting from x we can reach xa in
one step with probability p(a). The Markovian operator P corresponding to this
random walk is determined by the relations:

(P f)(x) = L p(y)f(xy) = L p(l, X, y)f(y).
yEG yEG

For any ;\, IAl< 1 the series
co

g;\ (x, y) = L '"n p(n, x, y)
n=O

converges and we can define the generalized Martin's kerneis

k>'(x) = g>'(x,y)
Y g>'(l, y)

and functions
00

rr;(x) = L",i/(i,x,y),
i=O

where f (i, x) y) is the probabili ty of the first getting fro~ x into y on i - th step.
It is clear that

n

p(n, x, y) = L f(i, x, y)p(n - i, y, y)
i=O

and so

because
co co n

L ",np(n,x,y) = L An Lf(i,x,y)p(n - i,y,y) =
n=O n=O i=O

00 n

=L LAi f( i, x, y )'"n-ip(n - i, y, y) =
n=O i=O
00 00

= L ",if(i, x, y) L ",n-ip(n - i, y, y) = rr;(x)g>'(y, y).
i=O n=i

13



Thus
A rr;(X)

ky(x) = rr;(l)"

Lemma 4.2. The following equality

if x -I y

if x = y

holds.
6 In fact we have

A 1 ~ A
P ky (x) = A( 1 ) ~ p(1, x, h)9 (h, g) =

9 , Y hEG

. 1 00

= >'( ) L p(l, x, h) L ,\np(n, h, y) =
9 l,y hEG n=O

1 00

= A(l ) L.,\n L"p(l, x, h)p(n, h, y) =
9 ,Y n=O hEg

1 00

= A(l )L.,\np(n+l,x,y)=
9 ,Y n=O

1 1 A 1
gA (1, y) [>:9 (x, y) - >:p(0, x, y)J.6

We claim that when x and .,\ are fixed the set of numbers {k;(x), y E C} is
bounded.

Really let A be the set of generators of G, Ce be the Cayley graph of a group
G constructed with respect to thc generating set A.
Let us fix for every element x E G a path Ix in Ca that joins 1 and x. Let p(Ir)
be the probability of the path Ix (the product of probabilities of transmission along
links of this path) and let t x be the length of Ix.

If y ~ Ix l then
f (i, 1, y) > p( Ix) . f (i - t x, x, y) .

Therefore

and
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Thus
>. 11;(x)

ky(x) = 11;(1)'

Lemma 4.2. The following equality

holds.
ß In fact we have

if xi Y

if x = Y

>. 1 ~ >.P ky (x) = >. ( ) ~ p( 1, x, h)9 (h, g) =
9 1, Y hEG '

1 00

= A(l ) L p(l, x, h) L Anp(n, h, y) =
9 ,Y hEG n=O

1 00

= A(l ) ~::>n LP(l,x,h)p(n,h,y) =
9 , Y n=O hEg

1 00

= >. ( 1 ) L Anp(n + 1, x, y) =
9 , Y n=O

1 1 >. 1
= 9 >. ( 1, y) [>:9 (x, y) - >:p(0, x, Y)].~

-s.i.' We claim that when x and A are fixed the set of numbers {k; (x ), Y E G} is
bounded.

Really let A be the set of generators of G, Ce be the Cayley graph of a group
G constructed with respect to the generating set A.
Let us fix for every element x E G a path Ix in CG that joins 1 and x. Let p(Ix)
be the probability of the path Ix (the product of probabilities of transmission along
links of this p ath) and let t x be the length of Ix .

If y ~ Ix, then
f(i, 1, y) > p(lx ) . f(i - t x , x, y).

Therefore
Ai -t;l:f(i-i x ,x,y) < 1

)..if(i,1,y) - ;V"'p(lx)

and

k>'( ) = II;(x) = L:~o )..if(i,x,y) <
y x II;(1) L:~o )..if(i, 1,y) -

< L::'o )..if(i,x,y) < 1
- 2::::0 Ai+t", f(i + tx, 1, y) - )..t"'p(lx)
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Thus the set of functions {k;(X)}YEG is majorized by the funetion (;V..:p(lx))-l.
Now we take any sequence Yn E G, Yn -+ 00 and extraet a subsequenee Yn"

such that the sequenee k;nl: eonverges to some positive funetion k>'(x) which is t
- harmonie. Really, beeRuse the distribution p(g) has finite support

passing to the limi t in the relation

if x # Yn"

if x = Ynl:

.'..

we get the relation

Ik~(X) = pe(x).

We have proved that on any infinite finitely generated group for any p. > 1 there
is a positive J.L - harmonie function. The eone of such funetions is nonzero aod
satisfies aU necessary conditions. The theorem is proved.

§5. One fixed-point theorem for actions on cones.
Let a group G aet by affine transformations on a eone K. We shall eall such

action bounded if the orbit of any point e. E K is bounded. Thus the orbits ean
aeeumulate to zero, but not to infinity.

A finitely generated group G is called a group of subexponential growth if

,= Ern yI,(n) = 1,
n-oo

where ,(n) is the growth funetion of the group G with respeet to some finite system
of generators (,(n) is equal to the number of elements of G that ean be presented
as a product of ~ n of generators and its inverses).

T heorem 5.1. Le t a group G oEsubexponen tial growth act by affine transformations
on nonzero convex cone K with compact base in locally convex topological vector
space and this action is bounded.

Then there is a G - fixed point eE K, e=f. O.

Proof. Let p(g) be symmetrie (that is p(g) = p(g-l) for any 9 E G) probabilistic
distribution the support of which is finite and generates G and let P be the
corresponding Markovian operator

(P f)(g) = L p(h)f(gh).
hEG

We ean define continuous map T : K -+ K, where
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By Tychonoff theorem there is a T - invariant ray Le, ~ E B, that is Te = Ae for
same A > O.

We are going to prove that A = 1. Let 4> be a functional, determining the base
B of the cone K and let f be a function on G determined by the relation

Then f is A - harmonie funetion:

(Pf)(g) = L p(h)f(gh) = L p(h)4>(ghe) ~4>(L p(h)ghe) =
hEG hEG hEG

=4>(g L p( h)h~) = 4>(g..\e) = ..\4>(ge) = ..\f(g)·
hEG

.From the relation (pn J)(1) = ..\n J(I) we get the inequality p(n, 1, 1) ~ ..\n where
p(n, 1, 1) is the probabili ty of returning to the uni t after n - steps in the right
random walk on a group G.

It is well-known that any group of subexponential growth is amenable and by
theorem of H.Kesten the spectral radius

r = lim sup ylp(n, 1, 1)
n-oo

is equal to 1 for asymmetrie random walks on any amenable group. Thus..\ 2:: 1
in our case. But beeause the action of G on J( is bounded, one cau find a number
d > 0 such that

<p(f) . ..\n = if!(pn f) ~ d

which leads to the equality ..\ = l.
Thus the funetion f(g) is bounded a harmonie funetion on the group G. By the

theorem of Avez [1] the function f is constant aod so the orbit Oe of the point
eis a subset of the base B. The closed convex hull Oe of the orbit Oe will be a
compact set on which G acts by affine transformations and this action has a fixed
point because G is amenable.
This finishes the proof of the theorem.

Remark 5.2. Tbe statement ofthe theorem 5.1 holds for any group for whieh there
is symmetrie probabilistie distribution with finite support having the property that
every positive bounded harmonie function is eonstant. There are some solvable
groups of exponential growth having this property. The simplest cxample is the
group of the form z ~ A z dwhere not a1l eigenvalues of the matrix A lie on the unit
eirc1e.
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