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Introduction

Nowadays, complex or algebraic ll1anifolds are classified by Kodaira
dilnension. This classification is natural and fruitful, but in the complex
case another point of view is possible. In this approach one starts with
a topological or differentiable manifold X and asks for all complex or
algebraic structures on X. Though this more traditional way of thinking
c:an 't. r~plac:e t.he d;:l$slfic:at.ion hy Kodaira dinlension, it. rema.ins useful
and at.trac:t.ive and it h;:l~ 1ed 1.0 a numher of wellknown if not famOUR
prohlenls. It. sllffic:es 1.0 rec:all Severi'R prohlem: find all c:omplex Rt.ruc:tures
on r 2

, considered a" a topological 4-n1anifold, or the same question asked
for 8 2 x S2 seen eit1)er as a topological or a differentiablc manifold. For
complex dimension 2 the work of Freedman on the topology of 4-folds as
weIl as the work of Donaldson and many of his followers of course put this
point of view very much at the centre of attention [0 IV}, [F IM].

In the past decades progress on the Kodaira classification for dimen­
sion 3 has been enormous ([Mo], [K/MJM], [KoI]), but the same can't
be said ahout t.he relat.ions hetween the topological and differentiable
st.rtJetures of 6-manifolds and the c:omplcx or algehralc structures t.hey
adlnit.

Let 11S restrlct ourselves to t.he simplest. C;:l$e, t.he ea.se of compaet,
orien1.ed, simply-eonneeted 6-manifolds without torsion. Thelf topologi­
cal· classification was carried out by "Vall and Jupp ((W], (JD, who also
determined which of theIn admit a differentiahle structure, and for these
showed that the differentiable c1assification coincides with the topological
classification." This does not hold for the homotopy classification; in many
cases there are even infioitely maoy homeomorphism classes of ooe aod
the same homotopy type. Apart of course from Stiefel-Whitney classes,
Pont.rjagin c1a..c.;s and triangulation da..c.;s the essent.ial invariant is t.he cup
form H2 (X, Z) X H2(X, Z) X H2(X, Z) --t H6 (X, Z) (~ Z). It is not difficult
to characterize those forms which arise as cup forms of a 6-fold in question
(helow), hut it remains very difficult to classify cubic forms up to GL(71)­
equivalence. Relatively few res1JIts are known in this direct.ion, even for t.he
lowest ranks.

The corresponding 4-folds are the sinlply connected Olles, i.e. the 4­
raIds occuring in the \Vork of Freedrnan and most of the papers of the
Donaldson schao!. Here the crucial invariant i5 a unimodular form on
H 2 (X, Z), namely the cup form H2(X, Z) X H 2(X, Z) --t H ....(X, Z). For
differentiable manifolds this form completely dctermines the homeomor-



phism type (this also holds in the topological case if the cupform is eveu,
whereas far acid forms there are two haIl1e0I110rphism types), but by no
nleans for t.hc diffeomorphism type. So considering t.he relation betwcen
the homot.opy, the topologieal allct the differential dassifieation t.here is
a. hig differenee hetween dimensions 4 a.no 6. The next ql1est.lon: whieh
t.opological 4-fo10s earry n. complex st.rlletllre, is eqllivalcnt. 1,0 asking whieh
llnirnodular, Z-valuco symmetric hilinear fonns are realisahle hy eomplex
Of algcbraic surfaces. It i5 related to the well-known inequality ci :::; 3C2

and has heen sohred to a considerable extent.
Though in the case of 6-folds the corresponding question about the

realisability of cubic farms is definitely weaker than the question which
6-folds carry a cOInplex or algebraic structure~ it still remains of much
int.erest. In the second half .of thls paper we say sonlething ahollt algehra.
and arithmet.ic of cuhi'c forms and consloer the apparently largely nntOll­
ched questlon of the realisahility of complex forms hy complex manifolds.
Apart from a considerahle numher of examples some conditions for Kähler
manifolcJs are given. And to show how few 6-folds of the t.ype in quest.ion
actllally carry Käh leI' strllctllreS, we add Cl theorem abollt Käh leI' structll res

on the set of 6-folds with b2 = 1, ~ ~ constant and W2 =f:. O.
The first part of this paper surveys the results of Wall and Jupp

referred to before, and deals with the homotopy classification. By putting
together (for the first time?) all this in a rather systenlatic way we hope
to contribute to the knowledge of complex 3-folds from a topological point
of view.
AcknowlecJgenlent.s: We would like to t.hank the following mathematicians
for very helpfl1l remarks and suggestions: F. Grunewald, G. Harder, F.
Hirzehruch, and R. Sc:hulze-Pillot.. We also want t.o acknowledge support
by the Science project "Geometry of AIgebraic Varieties" SCI-0398-C(Ar,
by the Max-Planck-Institut für Mathematik in Bonn, and by the Schweizer
Nationalfond (Nr. 21-36111.92).
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1. Topological classification of certain 6-manifolds

The topological classification of l-connected, closed, oriented, 6-ditnensio­
nal nlanifolds has been developed· in a sequence of papers by C.T.C. \Vall
[\\T], P. J llpp [J], and A. ZU br [Z1L[Z2}, [Z3]. Roughly speaking, their main
result is that the topological dassification of these 6-manifolds is equivalent
to the arithnletic classification of certain systems of invariants naturally
;t$sociat.ed wit.h thell1.
The ailll of t.his sect.ion is t.o review t.hese resu1ts and t.o refonl1111a.t.e t,he
arithtnetic classification prohlen) in a way \\"hich nlakes it. accessible to
furt her in vestigation.

1.1 Honleonlorphisnl types and COO-structures

Let X be a closed, oriented, 6-dimensional topological manifold; we assuIlle
thaf, X is 1-col1 necteo with torsion-free honlology. The basic invariants
of X are [J]:

i) H2(X, Z), a finitely generated free abelian group;

ii) ~( ..l;) = rkzH3(X:71), a natural nunlber which is even since H3(X,
Z) admits a non-degenerate symplectie form;

iii) Fx : H 2 (X, Z) 0 H2(X, Z) 0 H 2C}l, Z) ~ Z, asymmetrie trilinear
form given by tbe cup-procluct evaluated on the orientation class;

iv) PI (X) E H 4(X, Z), the first Pontrjagin dass whieh is always integral
because the indusion of BQ in BTQ? induees an isomorphis~

H4(BTQP,Z) ~ H4(BO,Z)[J];

v) W2(X) E H 2 (X, 7l/
2

), the second Stiefel-Whitney dass; W2(X) is de­

termined by tbe Steenrod square Sq2 : H4 (X, 7l/2)~ H6 (X,71/2),

Sq2(~) = W2(X) . ~ V ~ E H4 (X, Z/2)[W];

vi) r(X) E H 4 (X, '/..,/2)' the triangulation dass which is the obstruction

to lifting the stable tangent bundle of Y 1.0 a P L bundle [J].

These invariants satisfy one fundan1ental relation

(*) Hf3 = (PI (X) + T) . W(mod 48)

for all integral classes W E H 2(X, 7l), TE H4(X, Z) with W =w2(X)(mod
2), T =T(X )(mod 2).
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For smooth manifolds (*) is simply the Ä-integrality theorem of A. Borel
and F. Hirzebruch fB/HL whereas for topological lnanifolds a.dditional
surgery argtuTIcnts are necessary [J].
In the sequel we shall use Poincare dua.lity to identify H 4(X, Z) with
Homz(H 2

(.\,", Z), ZL so that pdX) can be considered as a linear form on
H2( ..y,Z), and we will write x· y' z instead of Fx(x 0 y 0 z) for elements
:r~ y, z E I{2(X,"Z).

Definit.ion 1: A systelTI of invariant.s is a 6-f"uple (1', H, w, T, F, p) cou­
sl~sting 0/ a non-negative integer r', a finitdy genera/cd free abelian gl'O'UP

H, elenl ent,s tu E H / 2H und T E H V / 2HV, a sym mei.rt:c /.l'ilineal' /o1'1n
F E S'JHv , and a linear forrri p EI/V, The system (H~r,w,r,F,p) is
admissible iff fo1' eve7'y Hf E Hand T E H V with Hf =tv(mod 2) and
T = T(n10d 2) t.he /o//wing cong-nLence holds:

(*) Hf3 =(p +24T)(W)(mod 48).

Two systems of invariants (H, r , w, T, F, p) and (H', r', w', T', F', p') are
equivalent iff 7' == r', and the7'e exists an isorno1'phism Q' : H -+ H'
such that:

a(w) == w' , o·(r l
) == T , o*(F1

) == F , o·(p') == p.

The main classification result can no\\' be forn1ulated in the following way:

Theorem 1 (Jupp): The assignment X ~ (b3~X), H 2(X, JE), w~.z(X), r(X),
Fx, PI (X)) induces a 1-1 correspondence between oriented homeomorphism
c/asses of l-connected, closed, oriented, 6-dimensional topo[ogical mani­
fold..c; with. tor.c;ion-frep, hom,ology, and equivalence c/a,c;ses 01 adm,i.c;sibif~ sy_­

stems 0/ invariants.
Furthermore, a topological mani/old X as above admits a COO-structure
if and only if the triangulation class T(X) vanishes; the COO-structure is
then unique.

Remark 1: The classification theorem is due t.o C.T.C. ""all in the special
case of differentiable spin-manifolds [\V]; the final fonn above was obtained
by P. Jupp [J].
A, Zubr generalized Wall's result in another direction; he proved a clas­
sification theorem for l-connected, smooth spin-manifolds with not neces­
sarily torsion-free homology [Zl]; in two further papers [Z2], [Z3] he also
obtains P. Jupp's classification, and he asserts in addition, that algebraic
isomorphisms of systems of invariants can always be realized by orientation
preserving homeomorphisms (diffeomorphisms in the snl00th case).
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Note that the first invariant b3~X) of the system is completely independent
of the rernaining invariant.s, so that the following splitting theoren1 holds:

Corollary 1: Evel'Y. .1-connecled, ' closedJ orient.ed, 6~dimensional, topo­
logien.l (dlfferent.iablc) n~aniJold ); with t01'810n.Jrce homology adm.its a
topologl:cal (dijJcl'enhable) splitt.ing X = ...\'"o~ b3~\') (53 X S3) as a connected

sum oJ a core "'\0 wÜh b3C~"0) = 0, and b3~X) copies o[ S3 X S3. The oriented
homeom-orphis1T1 (dijJeomorphism) t.YPf: 0/ .\"0 18 u1üque.

Example 1: The l-connectcd, do~p.d, orient.ed 6-rnanlfolds .\ with
H2("\:~ Z) == 0 are 56 and the connected sums ;rS3 x S3 of r ~ 1 copies of
53 x 53(8111].

1.2 Honlotopy types

In order to desc:rihe the homot.opy dcL'\sificaOtion of the 6-nlanifolds above,
we need same more preparations.

Let (H, F) be a pair consisting of a finitely generated free abelian group
H, and asymmetrie trilinear form F; eonsider the following subgroup of

H V
/48H":

Up := {I EI/v /48H,,13u E H with l(x) =24u2
. x(mod 48) Vx EH}.

If (H', F') is another such pair, and 0 : H --+ H' an isomorphism with
a"'(F') = F, then there is an induced. ison10rphism

0'''' : H N
/ 48B'" /uF --+ H V

/ 48H" /up

of tbe quotients. Denote the dass of a linear form I E H V in the quotient
HV

/ 48B" / UF by [I]. ..

Definition 2: TUJo system..c; oJ invariants (r,H,w,T,F,p) and (r',H',w',
T', F', p') are weakly equivalent iff r == r', and there ezists an isomor­
phism Q : H --+ H' sucht that:
O'(w) =w',O'"'(F') == F, and O''''[p' + 24T'] = [p+24T] for all TE HV,T' E

RN with T = r(mod 2), T = r'(mod 2).

V\'ith this definition we can phrase tbe hornotopy classification in the
following way:

Theorem 2 (Zubr): The assignment X -+ (b3~X), H 2(X, Z), Wo2(X), r(X),

Fx ,PI (X)) induces a 1-1 correspondence between oriented homotopy clas­
ses oJ 1-connected, closed, oriented, 6-dimensional topological maniJolds
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with torsio1l-f1'cc h01Hology und weak equivalence c/asses 0/ adrnissible sy­
sterns 0/ i-nVflriants.

Remark 2: Zubr1s theoreln corrects and generalizes the homotopy classi­
fication in the papers by \'\lall [\V) and Jupp [J); he also treats lnanifolds
wit.h not. nece~sarl1y t.or~10n-free hornology, and st.ates withollt proof that.
algehraic isoIll0rphisrns of weak eql1ivaknce <:lasses of syst.enlf; of invariant.s
are always rea.lizahle by orientat.ion preserving h01110tOpy equivalences [Z3].

Exanlple 2: ~1anifolds with b2(.X) = 1.

Let. X be a l-connect.ed, closed oriented, 6-dilnensional manifold with
H 2(X, Z) I"V Z. Splitting off possible copies of 53 x 53 we n1ay assume
b3(X) = O. Choosing a. Z-basis of 1/2 ( ..\;, Z) we see that systenlS of invari­
ants can be identified with 4-tuples (l-F 1 T, d, p) E 7l/

2
x Z/2 x Z x Z where

the 'degree' d corresponds t.o t.he cl1hic form. Such a 4-tllple is adnlisslhle iff
d(2x + Hf)3 =(p +24T)· (2x +Hf)(mod 48) holds for every integer x. This
is equivalent to p =4d(mod 24) if Hf = 0, and to p =d + 24T(mod 48)
wit.h d = O(mod 2) if Hf =! O.

Two admissible 4-tuples (vV,T,d,p) and (W',T,d',p') are equivaient iff
~ -~ -
Hf = Hf,T = T and (d',p') = ±(d,p). Taking the degree d non-negative,
we find:

Proposition 1: There is a 1·1 c07"nspondence bettlleen oriented homeo­
morphism types 0/ cores X o wilh b2 ( ..X"o) = 1, and 4-tuples (W, T, d,p),
normalized so that d 2:: 0, and p ? 0 if d = 0, which satisfy p _ 4d(mod 24)
i/ W = 0, und d =O(mod 2),p =d + 24T(mod 48) i/ W =I- o. ..

In order t.o c1a..qsify t.he a..qsoclated homot.opy types we first have t.o det.er·
mine the sl1hgrol1p UF associated to Cl glven cuhlc form F. Ry definition we

find UF = 0 if d - O(mod 2), UF = Z/.) if d =l(mod 2). Two normalized 4-
- - -=-=--=' ~ ... -

tuples (l-F,T,d,p) and (W ,T ,d',p') are weakly equivalent iff d' = d, IV' =
vi!, and p + 24T =p' + 24T'(mod 48) if d == O(mod 2), p _ p'(mod 24) if
d =l(mod 2).

Putting everything together, we find a single oriented homotopy type for
every odd degree d ? 0, which is necessarily spin, and 3 oriented homotopy
types for every even degree d ? 0; one of these 3 types has W f: 0, the
oiher two are spin, and they are disiiuguished by p + 24T(UIOU 48) l.e.
p =4d(mod 48), or p =4d +24(mod 48).
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2. Realization of cubic forms

In t.be previous seetion the (hOll1otOpy) t.opological classification of 1­
connected, closed, oriented, 6-dilnensional manifolds with torsion-free ,ho­
mology has been transformed into an arithmetical moduli probleln: to
describe the sets of (weak) equivalence classes of admissible systenls of
invariant.s. In t.his ser.t.ion we hegin to invest.igat.e t.he lat.t.er prühlenl; we
give a sinlple c:riterion for the real17,ahility of cl1hic fornls hy smooth mani­
folds, and \"12 describe, at lea$t. in principle, t.he dassincation of hOll101.0py

types of 1l1anifolds with a givell c:ohomology ring.

2.1 Cohon101ogy rings of 6-manifolds

Let (T, H, tu, T, f', p) be a system of invariants as in section 1j recall that
it is adnlissible iff for every }V E H, T E H V with Hf == w(mod 2), T =
T(lTIod 2) the following congruence holds;
(*) Hf3

- (p + 24T)(H1) (mod 48).

Lemma 1: (r l H, W, T, F, p) is admi.ssible if and only if. there eXk,:t
1-Fo E H, To E H V with H1 0 =w(mod 2), T o =T(mod '2), such that

i) H1~ =(p + 24To )(vVo )(mod 48)

ii) p(.'t) =4x3 +6x2 vVo +3xvV;(mod 24) V .L E H.

Proof: ObviolJS sinc:e the set of lntegral11fts of 11) is a coset Wo + 2H.

Definition 3: Let F E S3 H V be asymmetrie trilinear form on a finitely
generated free abelian group H. An element WEH is characteristic for
Fiff

(**) x·y·(x+y+H1)=O{mod2)Vx , yEH.

Lemma 2: WEH is a eharacteristic element for F E S3 H V if and only
if the funetion Iv" : .H --4 Z, lw(x) ;= 4x3 + 6x2W + 3xU12 is linear in x
modulo 24.

Proof: llv(x + y) - lw(x) + lw(y) + 12(x2y + xy2 + xyW), whence the
assertion.

·The existence of characteristic elements is a necessary and sufficient con­
dition for a cubic form F E S3 HV to be realizable by a manifold. In fact,
we have:
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Proposition 2: A given cubic form F E S31/V 071 a finitely genel'ated
fl'ee abelian gl'OUP H is realizable as cup-form of a l-connected) closed,
oricl1f.cd) 6-dim,cl1sional m.anifold with f.01'sioll-frec hornology iJ and only if
it. P088t88C8 (I (;hanu:te1'1~';U(; elem,f1tt.

Proof: If (1', H, w, T, F,p) is an admissible systen1 of invariants, and Hlo E H
any integral lift of w, then we have
p(::r) _ 4.:l:3+6x2Hlo+:3x~'F;(n10d 24) "Ix E J{. i,c. the functioll {wo: H ---+ Z
is linear 1l1od1l1o 24, anel l'Vo is t.he.reforp- c:haracterist.;c: for P. Converse1y~

supposP- H/O E H is a characteristic eleillent for a cu bic form F E S3H V
;

let 'W := ll'o( lnod 2), r := O. .
By the ma.in lelnn1a we have to construct linear [orn15 p, T E H V

, such
that

i) l'V: _ (p + 24TH l'Vo )(n10d 48)

ii) p(x) _ 4:r3 +6x2 vFo + 3xl'V;(m~d 24) V x E H.

The function [wo: H ---+ Z,lwJx) = 4x3 +6x 2 1.vo +3xltV; is linear n1odulo
24 since l'Fo is a characteristic element for F; we therefore choose a linear
forn1 po E H V with Po(x) =lwo(x)(tnod 24) "Ix E H. Substituting x = vilo
we find Po(l'Vo) == 13Mf~(mod 24); hut since lFo is characteristic we have
11f~ =O(mod 2), thus Po(Wo) = W;(mod 24). \Vrite Po(Wo) = W~ + 24k
for some k E Z.

case 1) k =O(mod 2) : define p := Po, T := O.

case 2) k = l(mod 2) : wc must find a linear fonn To E H V with To(Wo) =
1(mod 2); clearly this can be done if and only if Hfo is not divisible by
2. If l.vo were divisible by 2, Wo = 2Vo for some Vo E H, then 2po(Vo) =
Po(ltVo) = W; + 24k = 8V0

3 + 24k would give Po(~) == 4V0

3 + 12k; theI!.,
using Po(Vo) =4Vo3 + 6~2vFo + 3Vo Hf; = 4V0

3 (mod 24) we would find
k == O(mod 2), which is not the case by assumption.
This shows that F E S3 H V is realizable by a topological manifold with
Pontrjagin class po and non-vanishing triangulation obstruction To := T o

(mod 2). In order to realize F by a smooth lllanifold, one can take p :==
po + 24To, and T :== o.

Remark 3: The topological counterpart of the existence of a characteri­
stic element for a given cubic form F E 53H V is the existence of a mod-2
Steenrod-algebra structure, which is a necessary condition for a ring to be
a cohomoJogy ring.

The existence and the da.'tsjfication of characteristic element.s for a given
C:l1bic form is essen1.ially .a linear algehra prahlenlover Z/2' To see this, let
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F E 83H V be a fixed cubic forn1 on a finitely generatecl free abelian ~roup

11. Associated with F we have a linear map
Ft : H -t 52 H V sending an element h E H to the bilinear forn1 Ft( h) :

//011 -t Z, (x, y) -t x· y. h. ~et H := 11/2H~ F ES3H
V

be the reductions
of H anel F lTIodulo 2, and let - : H -+ H be th~ natural epimorphisn1.
The synllnet.ric t.rilinear forn1 F on the Z/2-nlodule H deRnes a natural

-v
symIl1eiric bilinear form Cff E 8 2 H given by q-r(x, y) := x' y. (x +y).

Lemll1a 3: F E 83 H V admit.s chnracterisfic elerntnfs il and only if q-p
lies in thE image 0/ pi E }lom'.L(H,S2H~). The set o/all characf.cn:slic

elernents Jor F is a coset 0/ fhe for'nt l-Fo + I~er(17).

Proof: H/o 15 charact.eristic for F if and onl:/ if ([F = F
t
(I'Vo )'

Tn terms of a Z-basis {et, ... ,Cb} for H the condition ~ E In1(Y) trans­
lates into a simple rank condition over Z/.) : the Z/')-rank of the b x (b~t)_

matrix A representing pt roust. be equal ~o the Z/;-rank of the matrix A

extended by the column (ei' ej . (ei + ej) h~i:5jSb

Example 3: Let H = Zel ffi Ze:1 be free of rank 2, 'F E 53H V given by
e~ = u, eie2 = b, et e~ = c, e~= d with a~ b~ C, dEZ. The rank condition
becomes

2,2 Homotopy types with a given cohonlology ring

Our next task is to describe the set of oriented homotopy types of 1-
'connected, closed, oriented, 6-dim'ensional manifolds with a fixed torsion­
free cohomology ring.
From Zubr's classification theorem we kno\\' t.hat in algebraic terms this
tneans the following: fix a non-negative integer r o , a finitely generated free
abelian group Ho, and a synlnletric trilinear fonn Fo E 53H: which admits
eharad,eristic elements.
Let M(ro, Ho, Fo) be the set of 1-connected, closed, oriented, 6-dimensio­
nal nlanifolds X with ~(X) = 2ro , such that there exists an isomorphism
0' : Ho -+ H 2(X, Z) with 0'- Fx = Fo. Denote by Aut(Fo) the subgroup of
Z-iSOTI10rphisms of Ho which leave Fo E S3H~ invariant; Aut(Fo) acts on
pairs (w, [I]) E Ho x H~f.~8H':/UFo in a na.tural way:
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f . (10, [I]) := (,' (w) ~ (";' -1 ) .. [I]).

Let Aut(F
o

)\lJ 0 x H: / 48H't / UFo be thc set of Aut{ Fo )-orhits.

A manifold X in M(ro, 110 , Fo ) and an iS0I110rphism Q' : 1/0 --+ H 2C"K, Z)
with o:*Fx = Fo yields a. well-defined Aut(Fo)-orbit: (a-1(w2(X)),a*(P1
(..\<)+24T]) (n10dulo Allt(Fo)L where T E H~(.\, Z) is an arbitrary integral
1if.t ingof T ( ..\'") E H 4

( }{, Z/2).

The set of ol'einted hon10topy types .I\tt(ro~ lIo. Fo)/~ of TI1anifolds in /vt(To~

Ho, Fo) can HOW be described in the following \vay:

Proposition 3: The assignmenf}; ~ (0-1(tL'2("\'")), Q'* [PI C~)+24T]) (mo·
dulo'Aut(Fo )) dejine..s an injeciion

I: M(ro,Ho,Fo)~ -+Aut(Fo ) \Ho x JI:/ 48H't/ UFo'

Proof: Suppose X and )(' are manifolds in ,/\-1 (rOl Ho, Fo), 0' : Ho --+

H2(X, Z) and 0' : Ho --+ lI2(X', Z) isomorphisms with 0'''' F.'f. = Fa and
(ol)'" FXI = Fo • X and X' have the same in1a.ge under I iff there exists
an automorphism l' E Aut(Fo ) with {Ü- I (W2(X)) :-' (a')-lw2(X') and
(,-

1 )*a*[P1 (X) +24T] = (Q')*[Pl (X') +24T']. Consider ß := 0 0 I 0 0-
1 :

H2(X,Z) --+ H 2(X',Z);ß is obviously an isomorphism with ß"'PXI =
Pi, ßW 2(X) = W2(X'), and ß'"[Pl(X') + 24T'] = [PI (X) + 24T]; but this
means t.hat. t.he systems of lnvarlant.s Cl!=lsoclated with X and X' are weakly
equlvalent, and t.herefore X and X' orient.ed homotopy equlvalent.

A complete description of the set M(ro, Ho. Fo)/~ i.e. of the image of I ls
only possible if the automorphism group Aut(Fo ) is known; this can be a
serious problem, but we will see that the 'general' automorphism group i'~

finite (and usually smaU), so that the next proposition gives a reasonable
estimate for the number of elements in M(ro , Ho, Fo)/~ :

Proposition 4: Fix 1'0 E N, a finitely generated free a.belian gr01lp HOl
and asymmetrie trilinear form Fo E S3H: which admits eharactenstie

-;::;1

elernents. Set b := rkzHo,s := rkz /2(Fo)' and let t := rkZ /2('FJ be the
- -v -

Z/2 ·rank of the Z/2 -linear square map ''''0 :Ho --.. Ha sending TI' E Ho to
-v bu2 E Ho' Then M(ro, Ho, Fo)/~ contains at most 22 -3-t elements.

Proof: Fix any admissible system of invariants (ro , Ho, Wo, Tal Fo, Po) for
a manifold in M(ra, Ho, Fa). Given (ra, Ho~ Fa), we know from the last

lemma that the possible elements Wo form a coset of Ker(~) in Ho, so
that there exist precisely 2b-" such elements. It remains to count the classes
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[l} E H:148H:luFo' such that the Aut.(F~)-orbit of (wo, [po +24To+ IJ) lies
in the image of 1.
To understand the latter condition we fix integral liftings Hlol E Ho, To E
H: of tOo and To satisfying the admissibility conditions

i) Hl~ =(Po + 241~)( Hlo)( mod 48)

ii) Po(x) =4x3 +6x2 1'Vo+ 3xl-11;(mod 24) Vx E Ho.

Clearly the Aut( Fo)-orbi t. of (wo, [Po + 241~ +In lies in the inlage of I if
and only if

i') Hl; =(Po + 24To+ 1)( Hfo)(ITIod 48),

ii') (Po + IH.T) 4x3 + 6x2 Hl0 + :3xl'V;(mod 24) Vx E Ho,

which is equivalent to /(\1110 ) =O(mod 48), and I - O(mod 24H:) because
ofi) and ii).
Now, by definition of the subgroup UFo c H:148H~ we have the following
commutatlve diagram with exact rows and colllmns:

24
--+

Ker(·F
o

)

1
O--+Ker(24·~JL...+ Ho / 2 Ho

"Fo 1
0--+ H: 12H:

1
0--+ Coker( 'P0) --+

1
o

o
1

H: f.~8H: --+ H: /24H': --+ 0

1 11

H:148H't1UFo --+ H:1"2~H't --+0
1
o

The number of elements [I) E H: 148H': 1UFo to be cout:1ted coincides therefo­
re wi th t he cardinality of the kernel of the map ev (wo): Coker(''P0) --+ z/2

induced by evaluation in wo' This is number is at most 2b-t(2b-t-l if Wo =f 0
and t =f b).

Corollary 2: If the Z/2-mnk s = rkZ/
2
('FJ is maximal) then M(ro, Ho,

Fo)/,::: contains at most one dass.
- -v -=t--v

Proof: Suppose '}'o : Ho --+ Ho is surjective; t.hen F 0 : Ho --+ S2 Ho must

have a trivial kernei, since h:x2 = 0 für all x E Ho implies h = 0 if every
linear form i5 a square. But this means s = t = b, so that M(ro, Ho, Fo)l=::.
has at n10st üne element.
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Exanlple 4: Let Ho .= Zel EB Ze2, e~ = a, eie2 = b, et e~ = c, e~ = d. lf
b =c(1nod2), and Gd - bc =l(mod 2), then M(ro , 110 , Fo )/:;:. cOlltains
preciscly one dass for e\'cry 1'0 ~ O.

3. Algebra and arithmetic of cubic forms

Let H hf> Cl finit.dy generated fl'f~e iZ-tnodule of ra,nk h. Tn this sec1.1on we

want Lo st.udy algebraic and arithnletic properties of sylnnletric trilinear
fOfllls F E 53H V on H which admit eharacteristie e1elnents; ultimately we
would like to describe the classificatioll of those forms under the action of
the general linear group GL(H), i.e. we like to investigate (part of) the
quotient 8 3 J-/

v
/ GL( H)'

Froln what wc have said in seetions 1. and 2., this is dearly equivalen.t
to classifyillg the coholnology riugs of l~connected, closed, oriented, 6­
dimensional 11lanifolds without torsion, and with b2 = b, ~ = O. Further­
nlore, up to finite indeternlinancy, this is also equivalent to classifying the
homotopy types of these nlanifolds.

The proper set.t.ing for this arithmet.ie moduli prohlem ean he faHnd in
C. Seshadri's paper [8]; here we investigate only its set-theoretic aspects.
Let He := H 0z C be the complexification of H, and let 53H~/ SL(Hc)

be the GIT quotient of the reductive group SL(HcJ. We obtain a natural
map c: S3Hv

/ SL(H) -? S3H~/SL(Hc)' whieb allows us to break up ~he

problem into three parts: the description of the quotient S3H~ / SL(He )'

the investigation of the fibers of c, and the study of the remaiIiing.L I ?.:

action Oll 53H V
/ SL( H) which is induced by tbe choice of an arbitra;y

automorphism Ao E GL(H) of determinant detAo = -1.

3.1 Aigebraic properties of cubic forms

Let He = H ®z C be as above, and denote by e[Heh the space of
homogeneous polynomials of degree 3 on He. There exists a linear po­
larization operator Pol : C[Hcb -? 53H~, sending a homogeneous cubic
polynomial f E C[Hch to the symmetrie trilinear form F = Pol(f) E
53H~ which is related to f by the identity F(h,h,h) = 6f(h). We will
usually not distinguish between a cubic polynomiaI fand its associated
form F = Pol(f). On 53H~ therc cxists a polynomial function ß : 53Bi.
-? C, the discrinlinant, which is homogeneous of degree b·2b-

1
, and vanishes
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in a. form F if and only if the associated cubic hypersufacc (f)o C IP( He)
.has a singular point; b. ca.n be defined over Z and is clearly invariant under
the natural action of GL(Hc).

Remark 4: Of course, a discriTninant fllllction b. exists for [orlllS of arhi­
t.rary degree cl; in the general case b. lS hOITIogeneous of degree b· (d - 1)b-l

on SdH~.

Proposition 5: Fix a syrnm.et1'ic trilinear form F E 53H~ and an ele-.
mtnt h E EIe \ {O} with f(h) = O. Thc associafed point< h >E IP(Hc ) is
a singula1' point 0/ the ctlbic hypersu'ljace (f)o C IP( He) ij und only if the
linear form h2 E lI~ is zero. The existenct of al least one such point is
e.qllJva.le.nf, 1.0 the. 1Ja.nishing 0/ the disr:r; min an t..

Proof: From f(h+tv) = f(h)+3th 2 :v+3t2h'v'2+t3v3 for every v EHe, tEe
we find :t 10f(h + tv) = 3h2 • v, Le. h2 E H~ defines the differential of f in
h.

Remark 5: Q-rational points in (/)0 C IPCH:), and Q-rational singulari­
ties of (f)o have geometrie significance if the cubic f is defined by the cup­
form of a 6-n1anifold X. In fact, inLegral classes h E H2 (.."'K, Z) correspond
to homotopy classes of maps to lF~; such a nlap factors over IP~ C IP~ if
and only if h3 = 0; if it factors over Pb C IP~, then clearly h2 = O. The
converse will probably not always be true since, in general, the cohoInolgy
ring does not determine the homotopy type.

In addition to the invariant discriminant /),,(f) of a polynomial f, we
will also need a fundamental covariant HJ~ the Hessian of f. Let F .:.:..
Pol(f) E 53H~ be the polarization of f E e[Heh; the Hessian of f
can then be defined as the ·composition HJ : He ~ 52 H'/, d~e C, i.e.
Hf is the homogeneous polynomial function of degree b on He given by
Hf(h) = disc(Ft(h)). In terms of linear coordinates ~1,'" ,~b on Hone

finds the more familiar expression Hf = det( 8e~;{j f).

Proposition 6: Let F E S3H~ be asymmetrie trilinear form. The Hessian
0/ F is ic.Ientically zero if und only if there Exist no ele1nent h E He for
which thc map ·h : He ~ H~ is an isomo1·phism.

Proof: Hf is identieally zero if and only if the symmetrie bilinear forms
Ft(h) E 52H~ are degenerate for every h EHe. But this means that none
of the Inaps ·h : He ~ H~ is an iSOITIOrphisl11.
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Corollary 3: Let F' E 53H~ be a form whose associated map }'t : He -+­

52 I{~ is not inJeclive. Then we have Hf = O.
Proof: Let k E Ker( F t ) be a nOll-zero elementl and consider an arbitrary
eJelnent h E He. By definition of li we have F( k~ h, v) = 0 for all v E Hc~

i.e. k . h E Hi, i5 zero.

Remark 6: It is not difficult to show that F't is not injective if and only
- - -y

if there exi5ts a proper quotient He of H-::~ alld a forn1 F E 53 I!c whose
puH-ba.ck to He i8 the given fonTI F. This means that thc Hessians of
cuhic polynomials .f E C[Hch whieh 'da not depend Oll all variables' are
RU tonlatically zero.
The converse holds for forms in b~ 4 variables 1 but not in genera] [GIN).

3.2 The GIT quotient 53H~15L(H
c

)

Let V := 53H't. be the veetor space of complex cubie forms. The reduetive
group C; := SL(Hc ) aets rationally on \I, and therefore has a finitely
generated ring C[V]G of invariants [H]. The inclusion C[V]G C C[V] induees
a regular map 1r : V -+ VIG onto the affine variety VI G with eoordinate
ring C[l/]G. It is weIl known that r. is a categorical quotient, whieh is
G-closed and G'-separating, so that VI G parametrizes preeisely the closed
G-orbits in V. Reeall that a point V E lf is semi-stable if 0 (/. ~, and
that v is stable if C . v is closed in V and the isotropy group Cu is finite
[M/F]. Denote the G-invariant, open subsets of selnistable (stahle) points
in V hy VU(Vll).
The eomplement \1 \ V 511 = 1r-I (1l"(O)) consists of 'Nullformen' , i.c. forms
for whieh all polynomial invariants vanish. The open subset of stahle
points, which includes in partieular all non-singular forms, has a geometrie
quotient, given by the restrieted map 1rjVll : Vll -+- 7r(V").

Remark 7: Let Ao E GL(H) be a fixed auton10rphisnl of determinant
detAo = -1, e.g. Ao = -idH if b i8 odd. Ao induces a Z/2-aetion on

S3Hv ISL(H) and on S3H~1SL(!lc) , for ",hieh the map c is equivariant.

Let GC GL(Hc ) be the semi-direct produet of SL(Hc ) and Z/2 generated

by Ao and 5L(Hc ). Thc invariant ring C[V]G has an important topological
interpretation: it consists of all polynomial invariants of eomplex eohomo­
logy rings of 1-eonneeted, closed, oriented 6-dinlensional manifolds with
torsion-free homology.
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Exanlple 5: Binary cubics (b = 2)
Choose linear coordinates X, Y on He, and write Cl cubic polynolnial f E
C(.'\, l'"h in thc fonn f = ao~\,"3 +3al'\'"Z}," + 3a2~'\}'"z + a3 y3.
\Ve use Go, ah az, 0.3 as coordinate's on 53Ht~ ~ so that C[5'3 H~] = 'C(o.o,
(Jl ~ (JZ, Q3]' The discrinünant .0:..(/) of f is a hOlllogeneous polynoDlial of
degree 4 in the coefficients o.u, 0.1,0.2,0.4, explicitly given by .0:..(/) = 0.50.5 ­

3aiQ~ - 6aO<llaZQ3 + 4aoo.~ +4o.ia3' ,
The discriIllinant generates the ring of 5L( H ~ )-invariants, C(5°H~)SL(Hd
= C[.6.), and it is easy to see that .0:.. is also Zj.)-invariant. A cubic form f is

st.ahle if and only if it. is sernist.able, if and only if it is non-singular [N]. The
cone of 1l1111forms 71'"-1 (71'"(0)) is the affine hypersurface (.6.)0 C 53 H~; it has
a 1l1<:e geomet.rie: interpreta.t.ion in terms of t.he Hessian. The Hessian of the

cubic f is the quadratic form HJ = 6Z[(aoo.z - o.i).X'"z + (0.00.3 - o.laZ)XY· +
(0.10.3 - a~)y2]. The set of farms f with vanishing I-Iessians /JJ form the
affine cone over the rational normal curve in r(S3H't); the hypersurface of
nullfonTIs is the cone over the tangential seroll of this curve. There are 4
different types of SL(Hc)-orbits in 5'3H~, represented by the normal forms
XY(X + AY), X 2 y, X 3

, O. The first type is stable, the other8 are nullforms,
the orbits of X 3 and 0 have vanishing Hessians.

Example 6: Ternary cubics (b==3)
The ring of SL( Hc)-invariants of ternary cubic~ i8 a weighted polyna­
mial ring in 2 vari'ables, C[S3 H~]SL(H~) == C[S, T] whose generators S, T
have beeil found by S. Aronhold [A). S is a homogeneous polynomial of
degree 4 in the eoefficients of a cubic /, T Is homogeneous of degree 6,
both polynomials are Z'2-invariant. For a cubic of the form / = o.X3 +
by'3 + cZ3 + 6dXY Z, Sand T are given by S = 4d(d3 - abc) and T :=:=

Scf3 + 20abc(tP - o.bc) respectively [P). Tbe general formulae, whicb take
two pages 1.0 write down, can be found in the book of Sturmfe~s [51.]. The
discriminant of a form / is homogeneous of degree 12 in the coefficients of
/; in terms of Aronhold's invariants S, T it is simply given by I::.. = S3 - T2.
\\Te ohtain the following overall plcture: The GTT quotient for ternary
cubies is an affine plane A2 with coordinates S, T. The complement A2

\

(1::..)0 of the discriminant curve is the geonletric quotient of stahle cubics.
The 71'"-fibers over a point (S, T) '# (0,0) on the discriminant curve (L\)o
consist of 3 types of SL(Hc)-orbits: nodal cubics with normal form X 3 +
y3+60'XY Z, reducible cubics formed by a smooth conic and a transversal
line (normal form:X 3 + 60'XY Z), and c·ubics consisting of three lines in
general position (normal form: 6aXY Z); these cubics are proberly semi­
stable for a =I- 0 with Aronhold invariants S == 4a\ T == S0'6. The fiber of 7r

,over 0 contains 6 orbits with normal fonns },PZ Z-X3 , Y(X 2 _ },TZ), XY(X+



]4

}?), .x- 2}'·, ~_\"3, and 0, üf which the la'5t 4 types have vanishing Hessians. Für
n10re details we· refer to H. Kraft's book [Kr).

Remark 8: The na.tural C· -ad,lo'n f -t /\ . f on cuhic fonns indllces a.

weighted action on thc GIT quotient 53H~ / SL( He)' )'·(S, T) = ().4S, ).BT).

The assaciated weighted prajective space JPl( 4: 6) with hümügeneüus coor­
dina.tes < .ci, T > i5 the good quotient für seIni-stable pla.ne cubic curves.
Hs affine part pI \ (ß)o is the moduli space of genus-] curves. The
PG L( Hc,)-invariant J := S; gives the J-invariant of the corresponding
curvc.

3.3 Arithnletical aspects

Let c : S3 H V
/ SL( If) --+ S3H~ / SL( H) be the map which associated ta the

5L( H)-orbit < F > of asymmetrie trilinear form F E 53H V the SL( lle)­
orhit < F' >e of its c:oTl1plexification. The c-fiher over < F >c can hc
identified with the subset (SL(Hc )' F n S3HV

)/SL(H) of S3Hv
/ SL(H)'

C. Jordan has shown that these subsets are finite pro,vided the cubic forn1
f E C[ lIeh associated to F has a non-vani5hing discriminant [J 1]. Jordan '5

original proof, which i5 only two pages long, is somewhat hard 1.0 fol10w.
The followlng t.heorem of A. Rorel and Harish-.Chandra provides, however,
a ya:-;f, generali7.ation of Jordan 's finiteness result:

TheorelTI 3 (Borel/Harish-Chandra): Let G be a reductive Q-group, r c G
an ariill,1netie subgroup, ~ : G --+ GL(V) a Q-morphism, and L eVa
r -invariant sublattiee of \/Q • If v E \1 has a closed G-orbit in V, the.n
GI) n L/ r is a finite set.
Proof: [B]

Corollary 4: Let F E 53H V be a symmet/je trilinear form on. H. If the
S L(He )·07-bit 01 F in 53H~ is closed, thell the fiber c-1 « F >c) over
< F >c is finite.

To check whether a SL(Hc)-~rbit SL(Hc)' F i5 closed in S3H~, one has a
generalization of the Hilbert-criterion [Kr]: SL(Hc) . F is closed in 53H~
if and only if for every I-parameter subgroup ). : C- --t SL(Hc), for which
1imt_o>"(t) . Fexist in 53H~, this limit is already contained in SL( He) -F.
A sufficient condition for SL(Hc ) . F to be closed follows from another
result of C. Jordan [J2]:
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Theorem 4 (Jo1'dan): Let f E C[Hc]d be a homogeneous polynornial 01
degree d ~ 3. 11 its diserirninant 6.(f) is non-zero, then f has a finite
isotropy group .)L(He )/.

Corollary 5: Let }~ E 53 HV be a form whosf. assoeiated eubic polynomial
[ E C[Hch has Ll(f) f:. O. Then SL(H-c) . F is closed in S3 H~.
Praaf: Standard arguments~ cL [Bo].

Renlark 9: Closedness of t.he SL(H.: )-orbit af F is anly a. sufficient condi­
tion for thc finit.cness of t.he fiber c- 1( < F >c). Thcre exist. othcr finiteness
theorems for special t.ypes of farrns. like e.g. [arms whieh deeompose inta
linea.r fad,ars.
Some of these results are surveyed in volume 111 af L. Dickson 's book [0].

We say that two' forn1s F1 F' E S3H V belong to the san1e (proper) equi­
valence dass if they l~e in t.he salne (SL( H)- )GL( H)-orbit.. Tbe group

Z /2 = GL(H) / S [.,( H) acts on the set 53 H V
/.) [;( H) of proper classes, and

the quotient becomes the orbit space S3H V
/ C;L( lf)-

Tbe Z/2-action is not free in general, but for finitenes~ properties this plays

no rale.

Example 7: Binary cuhics
Let H be a free Z-module of rank b = 2. There exist only finitely many
classes of symmetrie trilinear forms F E 53HV with a given non-zero
discriminant ß. Of course, ß roust be integral, and a square modulo 4,
in order to be realizable by an integral form. For some small values of
ß =f 0 the number of classes is known_ Results in this direction go bac:;~

to a paper by F. Arndt [A]; his tables have been rearranged by A. Cayley
[Cay]. It should certainly be possible to go mueh further using modern
comput.ers.

Example 8: Ternary cubics
Let H be a &ee Z-module of rank 3 with coordinates X, Y, Z. The eubic
polynomials with .closed S L(Hc)-orbits are the non-singular cubies, and
the polynomials in the orbits of 6aX}'·Z for all a E C.
The number of integral classes in these orbits is therefore finite. We have,
however, an even ~t.ronger finiteness theorenl far st.ahle ternary cubics:

Proposition 7: Let H be a free Z-mod1lle of rank 3. There exist only
finiteIy many classes o[ symmetrie trilinear forms F E 53H V with a fixed
discriminanl ß #- O.
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Proof: In terms of Arnhold's invariants Sand T, ~ is given hy ~ = S3_T2 •

By a theorenl of C. Siegel [Si], the diophantine equation S3 - T 2 = ~ has
only finitely 111any integral solution (51 T) for an)' integer ~ =J. O. For each
of these solutions the corresponding point in 53H~ /5L(Hc ) lies outside of

the discritninant curvc, so that the 1T-fiber over it i5 a dosed SL(Hc)-orbit.
The finiteness of the dass numher thcn follows from the Borel/Harisch­
Chandra theorenl.

A fanlous special case of Siegel '5 theorem is Bachet's equation 53 - T 2 = 2;
it has only the two obviotl5 solutions (3, ±.5).

Remark 10: Ta gei. finiten~ss resnlt.s for ternary clIbic farms lt ls not
sllfficient to fix the J-inva.riant (instead of the discriminant): The farms
im = ..X"3 +X Z2 + Z3 +my2 Z, 7n E z" {Ol, all have the same J-invariant,
hut they are not equivalent, even over Q, since they have bad reduction at
different prinles pj7n.

4. Invariants of complex 3..folds

In this sed,;on we hegin to investigate t.he topology of l-connected, com­
pact, complex ::I-folds. After abrief discussion of the possible systems of
ehern numbers of almost complex 6-manifolds, we study the behaviour of
the topological invariants of conlplex 3-folds under" certain standard con­
structions, like e.g. branched coverings, or blow-ups of points and curves.
Then we describe some interesting examples of l-connected, non-Kählerian
3-folds, including a new construction method w~ich generalizes the Calabi=
Eckmann manifolds. These examples will be needed in the next section in
order to realizes complex types of cuhic farms as cup-forms of complex
3-folds.

4.1 ehern numbers of almost complex structures

Let X be a closed, oriented, 6·dimensl0nal differentiable manifold. The
tangent bundle of X is induced by a classifying map tx : X -+ B50(6)
which is unique up to homotopy. By an a~most complex structure on X we
mean the hOlTIatapy dass [ix] of a lifting i x : X -+ BU(3) of tx to BU(3).

Proposition 8: Every closed, oriented, 6-dimenBional Cco-manifold X
withaut. 2-torsion in H3(X, Z) adtnits an altnost complex structure. There
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is a 1-1 correspondence between almost comp/ex structures on X and l:n­

tegl'a/ lifts Hf E HZ(),;, Z) 0/ wzC\"). The ehern classes Ci 0/ the al'most
corn]Jlcx manifold (..\'", I-V) are gl:ven by Cl = lV,cz = ~(Hf2 - pd ..X")) ..

Proof: (cf. [\V]). The obstructions' against lifting t.x to BU(3) lie in the
cohomology groups }li+l (X, 1rj(SO(G)jU(:3)), i = 0,1, ... ,5. Since

50(6)/U(3) = 1F3 has only one nontrivial homotopy group 1r2(SO(6)jU(3))
~ Z in dilllensions -i :::; 5, there is in fact only one obstruction o(tx) E
H3( ).;, Z), and this obstruction can be identified with the iInage of W2(){)

under the Bockstein hOlllomorphism ,:3 : H 2
(.\·, 7l/.)) -t H 3

(){, 7l). Since

JJ3(J""(, 7l) has no 2-torsion by ass~nlption, ß1V2(.I\'·) ~llust bc equal to zero,
so that X hös at least oue ahnost complex structure [ix] E [X, BU(3)].
Standard homot.opy arguments show no\v that the map, which asigns to .
an aln10st cOlnplex structure [ix] its first Chern dass [XCI, induces a
1-1 correspondence bctween integral lifts l,V E H 2 (X, Z) of W2(X) and
homotopy c1asses of liftings of [ix] to BU(3).
The second Chern dass C2 of the almost complex manifold (X, ltV) is
detern1ined by H12 - 2c~ = pdX).

The Chern numbers cr, Cl Cz, C3 of an almost complex manifold X of real
dinlension 6 satisfy the following congruences: c~ =O(mod 2), Cl C2 =
O(mod 24), C3 =O(nlod 2). Conversely. given a tripie (a, b, c) of integers
a =O(mod 2), b =O(mod 24), and C =O(mod 2), there always e~ist an
almost complex manifold X of dinlellsion 6 with ehern mumbers c~ =
a, CIC2 = b, C3 = c.
It is not totally clear, however, that one can find a connected manifold
X with prescribed Chern numbers [Hl].

Proposition 9: Every tripel (a, b, c) E Zffi3 satisfying Q. = O(mod 2), b =
O(mod 24), C . O(rnod 2) is realizable as the ehern numbet·s 0/ an almost
cotnplex 6-maniJold.

Proof: Consider the complete intersection l!(/, g) c ps defined by the

polynomials f(z) = z6 + zr + 2z~ - z~ - z~ - 2zg, and g(z) = z~ + zt +
2z~ - zj - z1- 2z: [Wc]. l!(!, g) is a singular 3-fold witb 90 ordinary double
points, and every small resolution V of these nodes lS a (not neccessarily
projective) Calabi-Yau 3-fold with Euler nunlber 4. Suppose now that
a prescribed tripIe (a, b, c) E Zffi3 is realized by a possibly disconnected
almost complex manifold X = UiE1 Xi. If we fornl the connected surn
X' = ~iEIXj, we obtain a connected alrnost complex manifold X' with
ehern number5 c~ = a, CtCZ = b, but with C3 = c - 2(1/1- 1).
If I/I > 1 take the connected 5Ull1 of 4\-' with j/j - 1 copies of the complex



18

Inanifold \I. Since \1 is Calabi-Yau, the ehern nunlbers c~ and Cl C2 reolain
unchanged, whereas the Euler number of X'tilll-I \I becornes C3 == C.

Ren1ark 11: The above argunlent has been suggested by F. Hirzebrueh
after talk at the MPI, in whieh one of us had sketched a less geooletrie
proof of the proposition.

There is another question which is related to t he result above: Fix a closed,
oriented, 6-ditnensional differentiable manifold ~Y. \Vhich pairs (u, b) of
integers with a == O(ll1od 2) and b =O(nlod 2-i) occur as ehern nUlnbers
cr and Cl C2 of almost coolplex structures on .\'. and in how Inan)' ways?
For manifolds with b2 ( ..\') == 1 the Chern nunlbers determine the alnl0st
complex structure. For nlanifolds with b2 > 1 this is 00 longer true. lt
is possible t.o construet infinit.ely llHlnY dist.inct alJnost. eomplex st.ruet.ures
with tbe same Chern nunlbers on a hypersurface of bidegree (3,3) in IP2 x IP2•

An alrnost cotnplex strueture [lx1on a. differentiable 6-nlanifold X is said
to be illtegrable jf Lx is hUIIlOtopic to the dassifying Inap ur a cOIIlplex
::I-fold. \\Te are not aware of any exampie of an ahnast complex 6-manifold
whieh is known not be integrahle. On the other hanö, it is also un known
whether 01' not the Chern numbers ci, Cl C2 of integrable aln10st. conlplex
manifold are topologieal invariants. The follo\\'ing remark might. therefore
be of some interest:

Proposition 10: TI the ehern number.'i 0/ complex S-Iold.'i are topologir:al
invariants, then there exic;i almosi complex st.ructures which are not inte­
grable.

Proof: Consider a closed, oriented differentiable 6-manifold X without 2­
torsion in H 3 (X, Z). Fix any almost complex structure on .1"( with first
Chern class v{1 E ]{2(X, Z ).

Every element x E H2(X, Z) defines a new aln10st co~plex structure on X
with first ehern dass lV + 2x, and it is easy to see that these two almost
complex struetures have the same Chern numhers if and only lf x satlsfies
the equations PI (X) . x == 0, and 3Uf2 • x +6lF . x 2 +4x3 == O.
Suppose now (X, W) is integrabIe, PI (X) i- O. and choose x E H2(X, Z)
such that PI (X) . x =f:. O. Then dcarly, either none of tbe almost complex
manifolds (X, Hf + 2x) is integrable, or the ehern numbers of complex
3-folds are not topological1y invariant.

Remark 12: Tt is very likely that there exist non-int.egrable almost com­
plex struetures on manifolds X a..c; above, bIlt prohably t.his is hard to
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prove. lt is also not unlikely that the ehern nunlbers of con1plex ::I-folds
are not topological invariants. A possible way to check this would be, to
run a compt1t.f~r search for 3-fo10s given hy c~rt.ain st.andard const.rtlc.t.ions.

4.2 Standard constructions

Por 1ater t1~e we lnvestigate t.he t.opologic:a1 invarlants of cOlllplex 3-fo1d
\vhic:h Gl.1i hc oht.ained by cert.ain sinlple st.andard constrllc:t.ions likc COlll­

piete intersections, siInple cyclic coverings, blow-ups o[ points and curves,
and projective bundles.

Proposition 11: (Libgober/Wood): Let.\' C JF3+r be a slnooth cOlnplete
intcrsection. 0/ m,ultideg1'ce !1. = (dl, ... ,dr ). Choose a nonnalized basis
c E H 2()(, Z), and let c: E H4()(, Z) bc dcfined by c:(e) = 1. Then t.he
invuria.nts 01 .)( are:

fx(xe) = dx 3 where d = rr;=l di~ tv2(X) - (4 + r -2:~=1 dde,
PI (.X") = d( 4 + 1" - 2:;=1 dJ)c:, und
~(.,X) = 4 - ~[(4 + r - L:~=l dd3

- 3(4.+ r - ,2:~=1 di )(4 + r - L:;=1 dl) +
2(4 + 1" -2:;=1 ~)).

Proof: [L/'~').

Proposition 12: [.let X be a .'tm.ooth... l~conneeted, comp/ex projectü,f:. 3­
fold, and let tr : X' -Jo X be a simple cyclic covenng 0/ deg1"ee d branched
along a non-singular ample divisor B E IL0d I.X' is smooth, projective,
l-connected, and 1r* : H 2 (X, Z) -Jo H 2 (X', Z) is an isontorphisl1L The
invariants 0/ X and X' are related by the formulae:

(tr*)*Fxl = dFx , W2(X') -tr*W2(X) =(d - l)tr*Cl(L),
Pl(X') - tr*Pl(X) = (1 - d)(l + d)1f.*CI(L)2, and
b:3(X') = db3(X) + (d - 1)(b2(B) - 2b2(X)).

Proof: X' is elearIy smooth and projective. By a theorem of M. Cornalba
tr : X' -Jo X is a 3-equivalence, i.e. tr ~ : tri(X') -Jo 1ri(X) is bijective
for i ~ 2, and surjective for i = 3[Co]. X' is therefore 1-connected, and
7r* : H 2(X,Z) -Jo H2(X',Z) is an isomorphism. The relation between Fx '
and Fx is obvious, whereas the formula for b3 (.o'X") follows from 1fl (B) = {I}
ano standard properties of Euler nllm bers.

In order to calculate W2(X /) and PI (X') we compute the ehern classes
of X' : Cl (X') - ']j"*CI (X) = (1 - d)1f*Cl (L), C2(X') - ']j"*C2(X) = (1 ­
d)1r*[c} (X)CI (L) - deI (L )2].
The laUer fornlulae follow from the desc:ription of X' as a divisor in t.he
total space of the line bundle L"
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Example 9: Let X be a. d-fold, sinlple cyclic covering of p3 branched
along a snlooth surface B C IP3 of degree dl, I 2:: 1. Let e E 112(X~ Z)
correspond Lo the preimage of a. plane in IF3. The invariants of X are then
given by: F'x(xe) == d.1:3, W2(~\'") =(~+ (1 - d)l)e, pr(X) == d[4 + (1 - d)( 1 +
d)12]c: (c:(e) = 1),b3 (.\'") == (d -l)(ePZ2 - 4dl + 6)dl.

Proposition 13: Let a : jP ~ X be the blow-up of a complex 3-/0Id "Y l:n

n poin t.~ an d leJ e E Jf 2 ( ..\": Z) be the dass 0/ the exceptional dl:visor. Th e
invariants of){ and ); are related by fhe following fOl'mulae:
Fj;(a*h + xc) =:= Fxeh) + x3

fOT every h E H 2
()\, Z), J: E Z, tU2(~t) =

a·w 2 ( ..\'" ) ,]l I (..Xr) = 17 * PI (..\;") + 4(e2 - a·CI (X) . e), b3 ( ..\") .:...- b:3 (); ).

Proof: Standa.rd arguments, see [G/H]. The ehern c1asses are related by
CI(X) == a·cd ..\") - 2e, C2C:(P) == a"'cz(X).

Proposition ~4: Lel a : X ~ X be the blow-up 0/ a comp/ex 3-fold X
alottg a sm,ooth curv€ C of genus 9, and let e E H 2(X, Z) be lhe class
0/ the exceptional divisor. The invariants 0/ X and X are relafed by:
Fj:(u·h+xe) == Fx(h) -3h·Cx2

- degA'c/xx3 /01' every h. E H 2(X, Z), x E

Z, W2(X) = a·w2( ..l:) + e, PI (~~) = a"'PI (X) + (e 2- 2a·,C), b3(X) = b:J(X) +
2g.

Proof: [G/ H]. The ehern classes are given by Cl ( ..t) = (j"'CI (X)-c, C2("Y) =
u·(C2(X) +C) - U·CI (X) . e.

Proposition 15: [.lei F; be a. holomorphir- vector b1lndle 0/ ranh 2 with
Chern classes Ci(E), i :::: 1, 2 over a l-connected, compact complex sur/ace
Y, and let 7r : P(E) -t Y be the projective bundle o/lines in the jibers 0/ E.
The cup-form 01 IF(E) is given by Fp(E)(h + x~) = x[(3h2 ) - (3CI (E)· h)x +
(cI(E)2 - c2(E))x2

], where ~ = CI(Or(E)(l)), h. E H 2 (y,Z), and x E Z.
The other topological invariants 0/ P(E) are: W2(IP( E)) - 7r"'(W2 (Y) +
Cl (E)), PI (P(E)) = 7:"* [Cl (Y? - 2C2(Y) +Cl (E)2.- 4C2( E)J, b-AP(E)) = 0.'
Proof: The Leray- Hlrsch theorem identlfies the cohomology ring
H·(JP( E), Z) with the ring H-(Y, Z) [~]/<€2+C1 (E).e+C2(E»; this determines
the cup-form. In order to calculate the characteristic clac;ses one uses
the exact sequence 0 -t Or(E) -t 1T"* E ® OP(E)( 1) -t Tr(E) ~ 7r"'Ty ~

O. b:3(IP(E)) = 0 follows from b1(Y) == 0 and the Leray-Hirsch theorem.

4.3 Examples of l-connected non-Kählerian 3-folds

Recall that the Hessian of a sY':TImetric trilinear form F E 53H V on a free
Z-n10dule H of finite rank was defined as thc composition



21

HF : !f ~ 52 H V d~c Z. [n tenns of coordinates ~l" .. , ~b on H it is given
by the determinant det( a:;21f.i)' where f E C[H·:h is the honl0geneous cubic

polYI1omial associated with F.
~ .

Proposition 16: Let F be a sym.metr·ic triline.ar form whose Hessian
vanishes idenücally. Then F is not realizabh as cup-form of J'i'ählerr:an
.1-fold.

Proof: Let. .Y h~ a c:onlplex 3-folci wit.h ö hähler rn~t.ric g. Thc T~ii.hlcr

dass [wg ] E H2·(~\'",IR) dcfines a rnultiplication nlap .[wg ] : H 2(X,IR:) -+

H4
()';, IR), which is an isomorphisnl qy t.he Harcl Lefschetz TheorClTI [G/R].

In section 3.1 we haxe seen that this is not possiblc if thc Hessian of the
cup-form vani~hes.

Corollary 6: G'ubic fonns f E C[Hch which depend on strictly less than
b = r'kzH var'iables al'e not realizable as cup-forms 0/ J{ählerian 3-lolds
with b2 = b.

Ry considering the He~sian of a cup-form over t.he ren.ls one o~t.ains further
conditions.

Definition 4: _Let F E 33H V be asymmetrie tri/inear form on a. free
Z-module 0/ rank b.
The Hesse cone 01 F is the subset HF c HA defined by HF := {h E
HBI( -l)b det (Ft(h)) < O}.
The index cone IF of F is the suhset JF := {h E HaIFt(h) E S2H~ has
signature (1, -1, ... , -1)}.

Clearly IF is an open subcone of 'HF which coincides with HF iff b ::; 2.

Theorem 5: Let Fx E 53 H2(X, Z)V be the cup-form 0/ a smooth projective
3-fold with hO.2 (X) ::::: O. Then Fx has a non-empty index cone..

Proof: Let h E H 2 (X, Z) be the dual dass of a hyperplane section Y in some
projective embedding. The inclusion i : Y C-.--+ ..X induees a monomorphism
i- : H2(X, Z) --+ H2(y, Z) by the weak Lefschetz theorem. The symmetrie
bilinear form Fl(h) E S2 H2(X, Z)V is simply the pull-back of the cup­
form of Y under the indusion i-j it is therefore non-degenerate by the Hard
Lefschetz theorem [L]. Applying the Hodge index theorem to Y we see that
the real bilinear form F}(h) E 8 2H 2 (X, IR)V must have one positive and
b - 1 negative eigenvalues. In other words: hElFx '

Renlark 13: This result ha" two applicatiotls: if provides topological
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'upper bounds' for the aInple cone of a projective 3-fold with hO,2 == 0, alld
if gives further restrietions on symmetrie trilinear [orills to be realizable as
cup-fonns of projcctive 3-folds witb hO.2 == 0 if b .? 4.

These applications will he discussetl in section 5.

\Ve will no\\' desc:rihe eXeunples of l-connect,ed, non-Kählerian, c'olllplex

3-folds and fit them into the topologieal dassification.

EXaJllple 10 (Calabi-Eckmann):
E. Calabi and B. EckInann have defined complcx structures )(n depen­
ding on a paranleter T, on the product 83 X 83 [CjE]. TlJeir lnanifolds are
principal fiber bundles over lFI x IF1 whose fiber and structure group is the
elliptiC'curve ET = C/ 71 EB ZT' 1n1(T) > O.
The Calabi-Eckmann manifolds are homogeneous non-Kählerian 3-folds of
algebraic dilnension 2.

Examp1e 11 (Maeda):
H. ~1aeda has generalized thc Calabi-Eckmann construction. He construc­
ted fiber bundles X~ over Hirzebruch surfaces IFn , n ~ 0, whose fibers and
structure groups are an elliptic curve E T and Aut(ET ), respectively [M). X~
is again diffeomorphic to 53 x 53, and therefore noo- Kählerian. Maeda's
manifolds X~ are homogeneous if and only if n == 0 in which case they are
Calabi-Eckmann 3-folds.

The Calahi-Ecknlann const.r~Jct.ion can also be generali7.ed in t.he following
\vay:
Let 82X84 be the non-trivial 54-bundle over 52, i.e. S2 X54 is the unique
l-COllnected, closed, oriented, differentiable 6-nlanifold wi th H2 ( 52 X54, ~)
..:..z and ~ == 0, whose cup-fonn and Pontrjagin dass vanish, but whose
Stiefel-V/hitney dass W2 is non-zero.

Theorem 6: For any ,:nteger b ? 0 there exist compact complei 3-fold,s
X b, and Xb' if b 2:: 1, which are homeomorphic to ßb5 2 X 54~b+l 53 X S3,

2- 4. 2' 4. 3 3and S x5 ~b-1S x 5 ~b+15 x 5 .
Proof: Let Y be a l-connected, compact complex surface with pg(Y) == 0
and ~(Y) > 2, and let E == e/r be the elliptic curve associated to the
lattice r c C. We want to construct the required 3-folds as total spaces
of principal E-:bundles over Y : Let f : H 2 (Y, Z) ---+ r be an arbitrary
epimorphism. The corresponding cohomology dass c E H 2 (y, f) defines a
topological principal bundle over Y with fiber and structure group E =
Cj r as follows immed.iately from the identification of the c1assifying space
BE ~ K(f,2).

)
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Let Qy(E) be the sheaf of germs ,of hololnorphic 111a.pS fronl Y 1.0 E.
'Ve have a short exact sequence 0 --t r --t Gy --t Q},(E) --t 0 and a
corresponcling exact COhOlllOlogy sequence

--t H 1(Y, Gy) --t /11 (V, Oy(E)) ~ '1/2(y, r) --t H 2(y, Gy) --t

By our assumptions 8 is an iS01TIOrphism, so that every topological principal
E-bundle admits a hololTIorphic struct.ure. Let X be the t.otal spacc of
stich a bundle corresponding to a. surjective map f : H2(}'~~ Z) --t f. The
honl0topy sequcnce of thc fibration p : )( --t Y yields the sequence

o--t 7r2 ()() ~ 7r2(}'") --t 7rl (E) --t r.d ..Y) ~ 7rl (}") --t O.
Since }" is l-connected. 7r2( }") can he identified with H2(}'~, Z), and t.hen
the hounclary ITIap iT2(1'~) --t 7rl (E) becolnes the characteristic Inap f :

H2(Y,Z) --t r of the bundle. This implies"7rd ..\") = {I}, whereas H2 ( ..X,71)
is given by: 0 --t H2 ( ..Y, Z) E.+ H2 (Y, Z) ~ r --t O.
I~ particular, H 2(X, Z) is free as a submodule of H2(V, Z), and by dua.lizing
the last. sequence we obtain an identification
H 2(X, Z) = H2(y, Z)/ rvviap·.

The cup-fonn Fx of )( is therefore tri\rial. In order to calculate PI (.IX-)
and W2(.'X), we use the cxact sequence of tangent sheaves: 0 --t Tx /}' --t

Tx ~ p·Ty --t O. Since TXI}' is a trivial bundle, the characterisiic dasses .
of X ar~ silnply the pullhacks of the corresponding da.:~scs of Y. Rut the
Il1ap p. : H4(}?, Z) -7 H4(X, Z) is zero, since < p·(E) U p·(a), [).:-] >=
< € U 0', p. [Xl >= 0 for alt classes € E H 4 (y, Z), and 0' E H2(y, Z).

Thus PI (X) = 0, and W2(X) is the residue of W2(Y) E H 2
( Y, Z/2) modulo

f V
/ 2fv.

The Euler characteristic of X is zero, so that fronl b2(X) = ~(Y)-2 we find
b:3(X) = 2(~(Y) - 1). The system of invariants associated to the manifold
Xis therefore given by (b2(Y)-1, H 2(y, Z)/rv, W2(Y) (modfV /zrv), 0,0, oy,
i.e. X is diffeomorphic to ~~(Y)_252 x S4~~(Y)_1 S3 X 53 if W2(Y) E r v / Zl'V,

and ta S2XS4U~(l')_3S2 x S4~b<!(Y)_153 X 53 if b2(Y) 2:: 3, and W2(Y) tt
r v /2r V •

Exanlple 12 (Kato):
In the two papers [Kl], [K2] M. Kato studies the dass of cOlllpact, complex
3-folds X containing smooth rational" curves with neighborhoods biholo­
morphic to those of projective lines in P3. On this dass of 3-folds, called
dass L, he defines a semi-group structure + with neutral element JP3.
Kato's connecting operation + is defined by removing 'lines' Li C Xi from
3-folds Xi, i = 1,2, and hy idctltifying t.hc complement.s Xi" Li along open
sets lJi " Li obtained fronl suitable neighborhoods lJi C Xi.

Starting with a certain elliptic fiber space Xl over the blow-up of pI x pI
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in a point, he constructs a sequence of 3-falds "-\n := );1 +x n - 1 , n ~ 2.

The 3-folds ~\"n are l-connected spin-manifolds with H 2(Xn, Z) = Z.
Their cup-farIns Fxn , and their Pontrjagin classes PI ("\"n) are in tenns pf a
(nonnalized) generator en E H2(){~, Z) and its dual dass En E H 4 C"Kn , Z)
given by FXn (xe n) == (n. - 1)x3

, and PI ();n) == 4( 11 ~ 1)En (E n ( en ) == 1). The
third Betti-nUlnber of "Xn is 4n.

In particular, ~"Kl is diffeoJnorphic to 52 X S4 p2 S3 X 53, an<! X 2 i5 diffealnor­

pllic ta r 3p4s3 x 8 3
. I t i5 interesting to note that- t.he Chern-nlllnbcrs er, CI C2

of thc X~.s a.re ci == 64( 1- n), Cl C2 == 24( 1- 71 L i.c. thc}' satisfy SCI C2 == 3ci·
For prajeetive nlanifolds of genera.l type this equality i5 eharaeteristic for
ba 11 quotients [YJ.

Exanlple 13 (Twistor spaces):
Let ]J : Z --+- Al be the twistOT fibration of a clo·sed, oriented Riernannian
4-Iuanifold (M,g). Z carries a natural almost cornplex structure whieh is
integrable if alld only if 9 is self-dual [A/H/S].

Exanlples of l-connected 4-Inanifolds whieh adnlit self-dual structures are
84

, ~nfi!l2, and j{3-surfaces.

Tbe total spaces of their twistor fibrations are l-conn~ctedcomplex 3-folds
which nlay be Moishezon for 84 and ~nIP2 [Cl, but which are usually 000­

Kähler [Hi]. We leave it to the reader to calculate the topological invariants
of these 3-fold5. There is an interesting relation between Twistor spaces of
connected Sll111S and Kato's connect.ion operation + for da.'"ls T, nlanifolds
[K2], [O/FJ.

Example 14 (Oguiso):

In arecent preprint [01] K. Oguiso cODstructs examples of l-connected:,
Moishezon Calabi-Yau 3-folds with very interesting cup-forms. He proves
that for every integer d ~ 1 there exists a smooth complete intersection
X~ of type" (2,4) in pS which contains a non-singular rational curve Cd of
degree d with normal bundle N Cd / Xd = OCd( -1 )$2.

The 3-fold Xd cau now be flopped along Cd, i.e. Cd can be blown up
to P(NCd/ Xd ) "J pt x pt, and then 'blown down in the other direction'.
The resulting 3-fold X d is a l-connected Moishezon manifold with trivial
canonical bundle and cup-form FXd given by FxAxed) = (cf - 8)x3

• Here
ed E H2 (Xd, Z) is thc- normalized generator corresponding to the strict
transform of the negative of a hyperplane section of X d. The Pontrjagin
dass of ..Y:d is Pl (Xd ) = (112 + 4d)Ed where Ed E H 4 (Xd , Z) denotes the
generator with Ed(ed) = 1. Since the Euler-nunlber does not change"under
a flop we have b3 (Xd ) = 180 for every d.
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5. Complex 3-folds with small b2

In this section we investigate the following natural problem: \Vhich cubic
forms can be realized as eup-forn1s,of COlTIpact complex ~-folds? For sn1all
bz son1f't.hing GUl he sa.id: Any eorp. of R 1-eonnp.etp.d, dosp.d, orlp.nt.ed
different.iahle 6-manifold with Hz(X, Z) ;?i Z is homotopy equivalent to
the eore of a 1-eonneeted complex 3-fold. In the ease bz = 2, at least
every discrirnillant. .6. is realizahle by a eOlnplex D1anifold. If bz = 3 we
ean reali7,e all t.ypes of c:otnplp.x euhies wit.h 'onp. exc:p.pt.ion, the union of a
sn100th conie and a tangent line. [n addition to these realization results
we prove a finiteness theorem far 3-folds with b2 = 1, W2 =I 0, anel we give
exan1ples whieh show that the condition I Fx f:. 0 for the index cone of a
projective 3-fold wi1.h hO,z = 0 is non-trivial in general.

5.1 3-folds with b2 = 1

Rec.all fron1 se<:t.ion 1.1 1.ho.1. p.vp.ry dosed, orient.ed, l-<:onnp.<:1.ed differen­
tiable 6-manifold X w1th torslon-free homology ha.s a connee1.ed sum de­
composi1.ion X == X otirS3 x 53 where r = b~~X), ",hieh is unique up 1.0
orientation preserving diffeoITIOrphislnSj the mallifold Xc wi1.h b3 (Xo ) = 0
.is the core of ..'-:.

Theorem 6: Let ~\'"o be a. J.connected, cloStd.. oiiented dijJerentiab/e. 6­
manifold with Hz(Xo, Z) ~ Z and ~(Xo) = O. There exists a compact
complex 3-fold X whose core is orientatio7) pnserving homotopy equivalent
to X o .

Proof: The oriented homotopy type of Xc is de1.ermined by the invariant.~

d, wz, and pdmod 48); more preeisely: for d == l(mod 2) 1.here is a single
homotopy type whereas for d == O(mod 2) there are three; one of these 3
types has Wz =I 0, the other two are spin, they are dis1.inguished by PI =
4d(mod 48), PI =4d + 24(mod 48) respeetively. In order to realize these
homotopy types a.s eores of complex 3-folds we first look at sitl1ple cydic
coverings of IP3. Given a positive integer d, let r. : X -+ IP3 be a simple eyclic
covering of p3 branehed along a smooth surface B of degree dl. Then X has
t he correet 'degree' d and the eharaeteris t ic classes W2 = (d - 1)I(mod 2),
and PI = 4d+ (1- d)(l + d)dZZ, see 4.2. For odd d there i5 nothing 1.0 prove.
For even d we can realize Wz = 0 or W2 =I 0 by choosillg I =O(mod 2) 01'

I =l(mod 2). Taking 1=O(mod 4) gives W2 == 0, PI =4d(mod 48), taking
I - 2(mod 4) yields W2 = 0, a.nd PI =4d + 24(1110d 48). It reluains to treat
tbe special case d == 0, where the 3 homo1.opy types are given by W2 =1= 0,
by W2 = O,]Jl =O(mod 16), and by W2 = 0,])1 =8(mod 16). The first two
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homotopy types are realizable as cores of elliptic fiber bundles over the
projective plane blown ur in t\VO points.
The t.hiro honlot.opy t.ype lS reali7,eo hy t.he <:ore of Og1l1S0'S Calahl-Yau
3-fold 'X"2 with vanishing cllp-form'and pd.X2 ) = 120c2.

The result just proven suggests a natural question: given a 111anifold Xc as
above, whieh (even) integers b3 :2: 0 occur as the third Betti numhers of
cOlnplex 3-folds ); whose core is homotopy equivalent to ..\{c?

There will certainly be son1e gaps for algebraic 3-folds. In order to show
this, we prove t.he following finiteness thearern for families of Kähler struc­
tures:

Theorem 7: Fix a positive const.ant c. Then; txist. only finite1y many /arni­
lies 0/ l-connected, sm.oot.h projective 3-folds .\" wilh H2(X, Z) ~ Z, W2(X)
f; 0, and wilh b-J(X) ::; c.

. Proof: Let X be a smooth projective 3-fold with H 1 (X, Z) = {O},
H2(X, Z) '"V Z, and with W2(X) f; O. Clearly Pic(X) ~ H2(X, Z), and
we can choose a basis e E H 2 (X, Z) corresponding to the ample generator
of Pic()().

Let cdX) = Cl e, C2(X) = C2C where e2 = d~~ c( e) ....:. 1. If Cl is positive,
then X is Fano, and there are only finitely 11180ny possibilities [Mu]. The
case Cl = 0 is exc1uded, so that we are left with Cl < 0, i.e. the canonical
bundle of X is 8omple.

Thc Riemann-Roch forrnula X( ..X",Ox) = 1 - h3 (X,()x) = 214C1C2 shows
that the set of possible Chern nun1bers ClC2 is bounded from helow: 24(1­
c) ::; CIC2' Using Yau's inequality 8CI(X)C2(X) ::; 3Cl(X)3 we find that
d!cd 3 < 64(c-l), i.e. thc degree dand the order of divisibility!cd of Cl(X)
is bounded. Now 1<oll8or's finiteness theorem [K 02] yields the assertion..-

Example 15: Let X be a l-c::onnec::ted, smooth projective 3-fold with
H2(X, Z) ~ Z and tv2(X) f; O. lf ~(X) ~ 2, then h3 (X, Ox) ::; 1 and
X must be FanD of index 1 or 3. For ~(X) = 4 we h80ve th80t X is either
Fano, or h3(X, Ox) = 2 and ~X" is of general type with d[cl1 3 ::; 64.

Note that the assumption tlJ2 =J:. 0 WnS on ly used t.o exclude Calahi-Yatl
3-folds.

5.2 3-folds with b2 = 2

Let. X he a l-connected, c1osed, oriented, 6-dinlcnsional differentiahle ma­
nifold with H2 (X, Z) f"'oJ Z2.
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\Ve chaase a basis el,C2 for H 2(X,Z) and set 0.0 = e~,o.l = e~e2,a2 =
el e~, U3 = e~; thc cubic polynomial f associated to the cup-fornl of ~~ is
then given by f = ao~X"3 + 3a I X 2y + 3a2Xy2 + a3}'3. The discrinünant
of f is by definition 6.(/) = o.5a5 ....:. 3aia~ - 6aOai 0.2a3 + 4aoQ.~ + 4a;o.3; up ,
to a. factor it is simply the discriminant of the Hessian Hf = 62

[( 0.00.2 ­

ai)X2 + (aOa3 - ala2)XY + (0.1 a 3 - a~)}/2J of f : .0..(/) = (0.00.3 - (lla2)2 ­
4( 0.00.2 - o.i)(0.10.3 - a~).

The last identity shows that ~Lf) is ah,"ays a square modulo 4, i.e. ~(.f) =
0, l(ITIod 4).

Proposition 17: Every integer ~ - 0, 1(mod 4) 1:8 reahzable as discri1ni­
nant 0/ a compact cornplex 3-fold.

Proof: Consider the projectivization X = lFf"2(E) of a holomorphic rank-2
vector bundle E over the plane. In ternlS of the standard basis of H 2 (X, 7l)
(eI = rr-h, e2 = Cl(Or(E)(l))) the cubic polynomial associated to Xis given
by f = (ci - C2)X3 + 3(-cdX2y + 3.\,,"y2, where Ci = q(E) are the ehern
dasses of F; considered a~" int.egers. Tnserting this int.o the discritninant
formula yields ~(f) = ci - 4C2. Since every pair Cl, C2 occurs aS pair of
ehern classes of a holomorphic rank-2 bundle on 1F2

, every integer ~ _
O,l(mod 4) can be realized -8S discriminant of. a holomorphic projective
bundle Pr2( E).

Recall from section 3.2 that there are 4 different types of SL(2)-orbits of
complex binary cubics: non-singular forms f ( with .0..{/) f:. 0), and three
orbits of singular cubics, represented by the normal {onns X 2 y, X 3

, and o.

Proposition 18: All Jour types 0/ complex binary cubics are realizable by
complex .9-/olds.

Proof: We have seen this already for non-singular cu bics. Clearly the pro­
duct 1F t x IP2 rcalizes the normal form X 2 Y. The cubics of normal forms X 3

or °are degenerate, i.e. their Hessians vanish ldentically. Therefore they
can only be realized by non-Kählerian 3-folds. To realize X 3 one can blow
up a point in an elliptic fiber bundle Qver a surface }/ with b2(Y) = 3; the
trivial form occurs for elliptic fiber bundles Qver a surface with ~ = 4.

More detailed investigat.ions of the possihle homotopy types of real or
conlplex manifolds wit.h h2 = 2 will appear elRewhere.
Here we only want to illtJstrate an lnteresting phcnonlenon which relates
t.he anlple cone of a projective 3-fold with b2 = 2 t.o the Hessian of it.s
clip-form.

Proposition 19: Let X be a sm,ooth p1'ojective 3-fold with b2 {.AI") = 2.
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Tlte ample cone Cx l:S contained in the Hesse cone HF :== {h E 1/2(X, IR)I
det(Ft(h)) < O}-

Proof: This is on I)' a spec:ial eitRe of our general resu1t. in seet.ioll 4.3.

Remark 14: The Hessian of a binary form F E 53H V is identically zero
iff F is degenerate; it is negative semi-definit.e if F is non-degenera.t.e and
Ll(F) :S 0; it i5 indefinite iff tl(F) > O[Ca]. Only in the indefinite case
.6.(F) > 0 ean the closure HF :== {h E Hai det. Ft(h) ~ O} of the Hesse
cone be a proper subset of Hp".

Exarnple 16: Let P == IFr 2(E) be the projectivization of a rank-2 vector
bundle E with ehern classes Ci == Ci( E). The cup-fornl üf P yields thc
cubic polynomial J == (ci - C2 )X2+3( -Cl ))(2 Y' +3..yy'2 whose Hessian is
Hf == (-C2)X 2 + clXY - }'"2, .Rewriting Hf as Hf == -~[(2Y - CI X)2 +
.•\,'"2 ( 4C2 - ci)] == ~l [(2Y - Cl X)2 - ß(f)X2] we find 3 possibilities for the
Hesse cone:

i) ß(J) < 0: 'Hf == H 2 (P,IR) " {O}

ii) ß(f) == 0 : Hf == H2(P, IR) "Lci for areal line L CI depending on
Cl (L ct == IR{2, Cl) in the coordinates ~\. ~ Y')

iii) ß(f) > 0 : 'Hf i8 an open cone whose angle is 'determined by

ß(f) (( Z + Jß(f)X)( Z - J ~(f));·-) > 0 in coordinates X, Z :==
2}," - cIX).

5.3 3-folds with ~ 2:: 3

Let X be a l-connected, compact conlplex 3-fold with H2(X, Z) "" Z EB3.

The cup-form of X gives rise to a curve Cx of degree 3 in the projective
plane IF( H 2

( X, C)) :
Cx :== {< h >E IF{H2(X, C))lh3 == O}.
A first natural question is which types of plane cubic curves occur in this
way?

Recall that there are 10 types of plane cubics, name1y: 1) non-singular
cubics, 2) irreducible cubics with anode, 3) irreducible cubics with a cusp,
4) reducible cubics consisting a 80100th conie and a transversal line, 5)
smooth conics with a tangent line, 6) three lines forming a triangle, 7)
t.hree distinct lines through a common point, 8) a double line with a third
skew line, 9) a tripIe line, 10) the trivial 'cubic~ with equation O.



29

Len1ma 4: If t.he 3-fold X has a non-t.rivial Hodge num.be1' h2,O(X) f:. 0,
then Cx is 0/ type 4), 6) 9) 01' 10).

Proof: Choose basis vectors ek,l E Hk.I(X), so that every h E 1/2 (.,:'(, C)
can be uniquely written as h = xe2,o + yeI;l + zeO,2.
Then clearly 11.3 = y[y2(e 1,1)3 +6xz(e2.0 . e1.1 . €O,2)].

\Ve now rea.lize the cubics of types 7) - 10). These cubics are degenerate,
i.e. they are cones, and therefore their Hessians vanish identically. FrOlTI
sectioll 4.3 we kno\\' that they can not be realized by Kählerian 3-folds.

Proposition 20: The plane cubics 0/ types 7) - 10) can all be realized by
l-connecled, non-/{ählen:an 3~folds.

Proof: ~Cllbicsl of type 10) can be realized by elliptic ~bre bundles over
surfaces }I" with b2( Y) = 5. In order to realize cubics of type 9) 01' 7) one
blows up one 01' two points in an elliptic fibre bundle over a surface with
b2 = 4 01' 3 respectively. The realization of a type 8) cubic is a little trickier:
One starts with an elliptic fibre bundle over a surface Y with b2(Y) = 3,
and blows up one of its fibers. The resulting 3-fold X' has b2(X') = 2
and Fx ' = O. Now choose a line I in the exceptional divisor E of X',
and let X be the blow-up of X' along 1. The cup-fornl of ..\ yields tbe
cubic polynomial x2 [y( -31· E) - x(degl\Tc/x ')] with a non-zero coefficient
-3/· E = 3.

There are foul' types of cOInplex cubics which we have been able to realize
by projective 3-folds.

Proposition 21: Cubics 0/ type 1), 3), 4) and 6) are realizable by 1­
connected projective 3-folds.

Proof: Type 1) occurs for blow-ups of complete interseetions iIi two distinct
points. The product pI X pI X 11'1 realizes a triangle, whereas most projective
bundles over a surface with b2 = 2 lead to a smooth conic union a trans­
versalline.
Irreducible cubics with a cusp can be obtained by blowing-up a line and a
point in JP3. The resulting 3-fold yields the cubic polynomial X 3 - 3Xy2 ­
21r3 + Z3 = (X + y)2(X - 2Y) + Z3.

The remaining two types of cubics are cubics with anode (type 2)), and
smooth conics with tangent a line (type 5)). "'Te do not know if these types
are realizable by projective 3-folds. A non-Kählerian 3-told whose cup-form
yields a nodal cubic can be constructed: one just takes the blow-up of two
:;H1itahle curves in Oguiso's Calahi-Yau 3-fold with bz == ] and vanishing
cup-form.
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Finally we like to sho\\: that the non-emptiness condition on the index
cone of a. projective 3-fold \vith hO,2 = 0 gives non-trivial restrictions for
the possible cup-forms if b2 2:: 4. Further investigations of this condition
will appea.l' elsewhere.

Example 17: Let H be a. [l'ee tE-module of rank 4 with basis (ei )i=1 .... ,4.

Consider a trilinear form F E 53 HV and its adjoint map F t : H ~

S2 HV
. The ilnage Ft(h) of an elelnent h E H is in tenns of the chosen

basis (ei )i=l. ....4 represented by tbe synll11etric. 4 x 4-1natrix [[hei€jlkj:;::I, ... ,4'

Suppose this nlatrix is a diagonal snnl [[heicjltJ=I,2 EB [[hek€dl.l... /:::;:3,4 such
t.hat the det.el'nlinants of bath 2 x 2-nla.t.rices are nega.tive for evcry h E

H " {O}.
In this case Ft(h) were of signature (l,-l,ll-l) for every h EH" {O}~ and
we wDuld have I F = 'HF = 0.
All these conditions can be met, e.g. by setting eie2 = e~ = e5€4 = e~ =
1, ele~ = e3e~ = 2, and ejejek = 0 otherwise. In this particular case th.e
image of h ~ 2::;1 hiej under F t in represented by the matrix

o

o

which has a positive determinant unless h = O.
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