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Introduction

Nowadays, complex or algebraic manifolds are classified by Kodaira
dimension. This classification is natural and fruitful, but in the complex
case another point of view is possible. In this approach one starts with
a topological or differentiable manifold X and asks for all complex or
algebraic structures on X. Though this more traditional way of thinking
can’t replace the classification by Kodaira dimension, it remains useful
and attractive and it has led to a number of wellknown if not famous
problems. It suffices to recall Severi’s problem: find all complex structures
on P2, considered as a topological 4-manifold, or the same question asked
for §7 x 5% seen either as a topological or a differentiable manifold. For
complex dimension 2 the work of Freedman on the topology of 4-folds as
well as the work of Donaldson and many of his followers of course put this
point of view very much at the centre of attention [O/V], [F/M].

In the past decades progress on the Kodaira classification for dimen-
sion 3 has been enormous ([Mo], [K/M/M], [Kol]), but the same can't
be said about the relations between the topological and differentiable
structures of 6-manifolds and the complex or algebraic structures they
admit.

Let us restrict ourselves to the simplest case, the case of compact,
oriented, simply-connected 6-manifolds without torsion. Their topologi-
cal classification was carried out by Wall and Jupp ([W], [J]), who also
determined which of them admit a differentiable structure, and for these
showed that the differentiable classification coincides with the topological
classification. This does not hold for the homotopy classification; in many
cases there are even infinitely many homeomorphism classes of one and
the same homotopy type. Apart of course from Stiefel-Whitney classes,
Pontrjagin class and triangulation class the essential invariant is the cup
form HY(X,Z)x H}(X,Z)x HYX,Z) — H®X,Z) (= Z). It is not difficult
to characterize those forms which arise as cup forms of a 6-fold in question
(below), but it remains very difficult to classify cubic forms up to GL(Z)-
equivalence. Relatively few results are known in this direction, even for the
lowest ranks.

The corresponding 4-folds are the simply connected ones, i.e. the 4-
folds occuring in the work of Freedman and most of the papers of the
Donaldson school. Here the crucial invariant is a unimodular form on
H*(X,Z), namely the cup form H*(X,Z) x H*(X,Z) - H*(X,Z). For
differentiable manifolds this form completely determines the homeomor-



phism type (this also holds in the topological case if the cupform is even,
whereas for odd forms there are two homeomorphism types), but by no
means for the diffeomorphism type. So considering the relation betwecen
the homotopy, the topological and the differential classification there is
a big difference between dimensions 4 and 6. The next question: which
topological 4-folds carry a complex structure, is equivalent to asking which
unimodular, Z-valued symmetric bilinear forms are realisable by complex
or algebraic surfaces. It is related to the well-known inequality ¢} < 3e;
and has been solved to a considerable extent. _

Though in the case of 6-folds the corresponding question about the
realisability of cubic forms is definitely weaker than the question which
6-folds carry a complex or algebraic structure, it still remains of much
interest. In the second half of this paper we say something about algebra
and arithmetic of cubic forms and consider the apparently largely untou-
ched question of the realisability of complex forms by complex manifolds.
A part, from a considerable number of examples some conditions for Kahler
manifolds are given. And to show how few 6-folds of the type in question
actually carry Kahler structures, we add a theorem about Kahler structures
on the set of 6-folds with b, = 1, b3 < constant and w; # 0.

The first part of this paper surveys the resulfs of Wall and Jupp

referred to before, and deals with the homotopy classification. By putting
together (for the first time?) all this in a rather systematic way we hope
to contribute to the knowledge of compliex 3-folds from a topological point
of view.
Acknowledgements: We would like to thank the following mathematicians
for very helpful remarks and suggestions: F. Grunewald, G. Harder, F.
Hirzebruch, and R. Schulze-Pillot. We also want to acknowledge support
by the Science project “Geometry of Algebraic Varieties” SCI-0398-C(A),
by the Max-Planck-Institut fir Mathematik in Bonn and by the Schweizer
Nationalfond (Nr. 21-36111.92).



1. Topological classification of certain 6-manifolds

The topological classification of 1-connected, closed, oriented, 6-dimensio-
nal manifolds has been developed-in a sequence of papers by C.T.C. Wall
(W1, P. Jupp (J], and A. Zubr [Z1], {Z2], [Z3]. Roughly speaking, their main
result is that the topological classification of these 6-manifolds is equivalent
to the arithmetic classification of certain systems of invariants naturally
associated with them. '
The aim of this section is to review these results and to reflormulate the
arithmetic classification problem in a way which makes it accessible to
further mvestigation.

1.1 Homeomorphism types and C*-structures

Let X be a closed, oriented, 6-dimensional topological manifold; we assume

that X is 1-connected with torsion-free homology. The basic invariants
of X are [J]:

1

1) H*(X,Z), a finitely generated free abelian group;

ii) by(X) = rky H3(X,Z), a natural number which is even since H3(X,
Z) admits a non-degenerate symplectic form;

i) Fy : H3(X,Z)® HYX,Z) ® H*(X,Z) — Z, a symmetric trilinear
form given by the cup-product evaluated on the orientation class;

iv) p(X) € H*(X,Z), the first Pontrjagin class which is always integral
because the inclusion of BO in BTOP induces an isomorphism
HY(BTOP,Z) — H*(BO,Z)[J];

v) wy(X) € HZ(X,Z/Q), the second Stiefel-Whitney class; w;(X) is de-
termined by the Steenrod square Sq° : H“(X,Z/'z) — HS(X, Z/Q),
SEHE) = walX) € Y€ € HA(X,2,,)IW;

vi) T(X) € H“(X,Z/2), the triangulation class which is the obstruction
to lifting the stable tangent bundie of Y to a PL bundle [J].

These invariants satisfy one fundamental relation
(%) W3 = (p1(X)+ T) - W(mod 48)

for all integral classes W € H*(X,Z),T € H*(X,Z) with W = wy(X)(mod
2),T = v(z)(mod 2).



For smooth manifolds (x) is simply the A-integrality theorem of A. Borel
and F. Hirzebruch [B/H], whereas for topological manifolds additional
surgery arguments are necessary [J].

In the sequel we shall use Poincaré duality to identify H*(X,Z) with
Homgz(H?*(X,Z),Z), so that p;(X) can be considered as a linear form on
H*(X,Z), and we will write -y - z instead of Fx(z ® y ® z) for elements
z,y,z € ¥ X,Z).

Definition 1: A system of invariants 1s a 6-tuple (v, H,w, 7, F,p) con-
sisting of a non-negative integer v, a finitely generated free abelian group
H. elements w € H/zg and 7 € HY/yv, « symmelric trilinear form
F € S*HY, and a linear form p € HY. The system (H,r,w, 1, F,p) is
admissible iff for every W € H and T € HY with W = w(mod 2) and
T = r(mod 2) the follwing congruence holds:

(*) W3 = (p+24T)(W)(mod 48).

Two systems of invariants (H,r,w,7,F,p) and (H',r",w',7", F',p') are
equivalent iff r = 7', and there ezists an isomorphism o : H — H’
such that:

a(w)=w', o™ (') =71, ™ (F)=F, o*(p)) = p.
The main classification result can now be formulated in the following way:

Theorem 1 (Jupp): The assignment X — (b—“—%ﬂ, H*(X,Z),wy(X), 7(X),
Fx,p1(X)) induces a I-1 correspondence between oriented homeomorphism
classes of 1-connected, closed, oriented, 6-dimensional topological mani-
folds with torsion-free homology, and equivalence classes of admissible sy-
stems of invariants.

Furthermore, a topological manifold X as above admits a C®-structure
if and only if the triangulation class (X ) vanishes; the C*®-structure ts
then unique.

Remark 1: The classification theorem is due to C.T.C. Wall in the special
case of differentiable spin-manifolds [W]; the final form above was obtained
by P. Jupp [J].

A. Zubr generalized Wall’s result in another direction; he proved a clas-
sification theorem for 1-connected, smooth spin-manifolds with not neces-
sarily torsion-free homology [Z1}; in two further papers {Z2], [£3] he also
obtains P. Jupp’s classification, and he asserts in addition, that algebraic
isomorphisms of systems of invariants can always be realized by orientation
preserving homeomorphisms (diffeomorphisms in the smooth case).
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Note that the first invariant b—sg\—l of the system is completely independent
of the remaining invariants, so that the following splitting theorem holds:

Corollary 1: FEvery. I-connecled, closed, oriented, 6-dimensional, topo-
logical (diﬁerentiablc). manifold X with torsion-free homology admits a
topological (differentiable) splitting X = Xoﬁ%l(sa x S§*) as a connected
sum of a core Xo with b3(Xp) =0, and bi(zi\—l copies of S3x S3. The oriented
homeomorphism (diffeomorphism) type of Xg is unique.

Example 1: The 1-connected, closed, oriented 6-manifolds X with
Hy(X,Z) = 0 are 5% and the connected sums £,5% x S of r > 1 copies of
53 x S3[Sm].

1.2 Homotopy types

In order to describe the homotopy classification of the 6-manifolds above,
we need some more preparations.

Let (H, F') be a pair consisting of a finitely generated free abelian group
H, and a symmetric trilinear form F; consider the following subgroup of

HV/43Hv:
Ur := {I € HY /sspv|3u € H with I(z) = 24u*? - z(mod 48) Vz € H}.

If (H', F') is another such pair, and ¢ : H — H’ an isomorphism with
a™(F') = F, then there is an induced isomorphism

a' . HN/43H'V/U}’;- —_ HV/48HV/UF
of the quotients. Denote the class of a linear form !/ € HY in the quotient
HY [4snv [ue by [1].

Definition 2: Two systems of invariants (r, H,w, T, F,p) and (r',H',w',
7', F',p'} are weakly equivalent iff r = r', and there ezists an isomor-
phism a1 H — H’ sucht that:

a(w) =w',a"(F') = F, and o*[p' +24T'] = [p+ 24T for all T € HY,T' €
H" with T = r(mod 2),T = r'(mod 2).

With this definition we can phrase the homotopy classification in the
following way:

Theorem 2 (Zubr): The assignment X — (b—“gﬁ,H2(X,Z),wg(X),T(X),
Fx,pi(X)) induces a 1-1 correspondence between oriented homotopy clas-
ses of I-connected, closed, oriented, 6-dimensional topological manifolds



with torsion-free homology and weak equivalence classes of admissible sy-
stems of invariants.

Remark 2: Zubr’s theorem corrects and generalizes the homotopy classi-
fication in the papers by Wall [W] and Jupp [J}; he also treats manifolds
with not necessarily torsion-free homology, and states without proof that
algebraic isomorphisms of weak equivalence classes of systems of invariants
are always realizable by orientation preserving homotopy equivalences [Z3].

Example 2: Manifolds with b(X) = 1.

Let X be a l-connected, closed oriented, 6-dimensional manifold with
Hy(X,Z) = Z. Splitting off possible copies of S* x §* we may assume
b3(X) = 0. Choosing a Z-basis of I[*(X,Z) we see that systems of invari-
ants can be identified with 4-tuples (W,T,d,p) € Z/2 X Z/2 x Z x Z where
the ‘degree’ d corresponds to the cubic form. Such a 4-tuple 1s admissible iff
d(2z 4+ W)* = (p+24T) - (22 + W)(mod 48) holds for every integer z. This
is equivalent to p = 4d(mod 24) if W = 0, and to p = d 4+ 24T (mod 48)
with d = 0(mod 2) if W # 0.

Two admissible 4-tuples (W,T,d, p) and (W,T,d’,p’) are equivaient iff
W =W,T =T and (d',p') = £(d,p). Taking the degree d non-negative,
we find:

Proposition 1: There ts a 1-1 correspondence between oriented homeo-
morphism types of cores Xo with by(Xo) = 1, and 4-tuples (W,T,d,p),
normalized so thatd > 0, and p > 0 ifd = 0, wh;ch satisfy p = 4d(mod 24)
ifW =0, andd = O(mod 2),p = d + 24T(mod 48) if W # 0.

In order to classify the associated homotopy types we first have to deter-

mine the subgroup Ur associated to a given cubic form F. By definition we
find Up = 0if d = 0(mod 2),Ur = Z, if d = 1(mod 2). Two normalized 4-

tuples (W,T,d,p) and (_W—',T, d',p') are weakly equivalent iff &’ = d, W' =
W, and p + 24T = p’ + 24T'(mod 48) if d = 0(mod 2),p = p'(mod 24) if
d = I(mod 2).

Putting everything together, we find a single oriented homotopy type for
every odd degree d > 0, which is necessarily spin, and 3 oriented homotopy
types for every even degree d > 0; one of these 3 types has W # 0, the
other two are spin, and they are distinguished by p 4+ 247 (inod 48) i.e.
p = 4d(mod 48), or p = 4d + 24(mod 43).



2. Realization of cubic forms

In the previous section the (homotopy) topological classification of 1-
connected, closed, oriented, 6-dimensional manifolds with torsion-free ho-
mology has been transformed into an arithmetical moduli problem: to
describe the sets of (weak) equivalence classes of admissible systems of
invariants. In this section we begin to investigate the latter problem; we
give a simple criterion for the realizability of cubic forms by smooth mani-
folds, and we describe, at least. in principle, the classification of homotopy
types of manifolds with a given cohomology ring.

2.1 Cohomology rings of 6-manifolds

Let (r, H,w,, F,p) be a system of invariants as in section 1; recall that
it is admissible iff for every W € H,T € HY with W = w(mod 2),T =
7{mod 2) the following congruence holds:

(x) W3 = (p+24T)(W) (mod 48).

Lemma 1: (r,H,w,7,F,p) is admissible if and only if. there exist
W, e H,T, € HY with W, = w(mod 2),T, = 7(mod 2), such that

i) W3 = (p+ 24T,)(W,)(mod 48)
i) p(z) = 42° + 622 W, + 3zW?2(mod 24) V z € H.
Proof: Obvious since the set. of integral lifts of w is a coset W, + 2H.

Definition 3: Let F € S*HY be a symmetric trilinear form on a finitely
generated free abelian group H. An element W € H is characteristic for

Fiff ,
(#x) z-y-(z4+y+W)=0(mod 2)Vz,y€H.

Lemma 2: W € H is a characteristic element for F € S3HY if and only
if the function ly : H — Z,lw(z) := 42® + 62*W + 3zW? is linear in z
modulo 24.

Proof: lw(z + y) = lw(z) + lw(y) + 12(z%y + zy® + zyW), whence the
assertion.

The existence of characteristic elements is a necessary and sufficient con-
dition for a cubic form F € S3HY to be realizable by a manifold. In fact,
we have:
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Proposition 2: A given cubic form F € S3HY on a finitely generated
free abelian group H is realizable as cup-form of a I-connected, closed,
oriented, 6-dimensional manifold with torsion-free homology if and only if
if possesses a characteristic element. :

Proof: If (r, H,w, 7, F, p) is an admissible system of invariants, and W, € H
any integral lift of w, then we have

p(a) = 423+ 62?2 W, +3xW2(mod 24) Vz € H.i.e. the function iy, : H — Z
is linear modulo 24, and W, is therefore characteristic for F. Conversely,
suppose W, € H is a characteristic element for a cubic form F € S*HY;
let w := Wo(mod 2),r := 0. o

By the main lemma we have to construct linear forms p,T € HY, such
that

i) W3 = (p+24T)(W,)(mod 48)
i) p(x) = 473 + 62*W, 4+ 3zW2(mod 24) V r € H.

The function lw, : H — Z,lw, (z) = 42> + 622 W, 4+ 3zW? is linear modulo
24 since W, is a characteristic element for F; we therefore choose a linear
form p, € HY with po(z) = ly,(z)(mod 24) Vz € H. Substituting z = W,
we find po(Wo) = 13W2(mod 24); but since W, is characteristic we have
W2 = 0(mod 2), thus po(W,) = W3(mod 24). Write p,(W,) = W2 + 24k
for some k € Z.

case 1) k = 0(mod 2) : define p:=po, T := 0.

case 2) k = 1{mod 2) : we must find a linear form T, € HY with T,(W,) =
1{mod 2); clearly this can be done if and only if W, is not divisible by
2. If W, were divisible by 2, W, = 2V, for some V, € H, then 2p,(V,) =
po(W,) = W32 + 24k = 8V + 24k would give po(V,) = 4V2 + 12k; then,
using po(Vo) = 4V2 4+ 6VIW, + 3V, W2 = 4V (mod 24) we would find
k = 0(mod 2), which is not the case by assumption.

This shows that F € S3HV is realizable by a topological manifold with
Pontrjagin class p, and non-vanishing triangulation obstruction 7o := T,
{mod 2). In order to realize F by a smooth manifold, one can take p :=
Po + 24T, and 7 := o.

Remark 3: The topological counterpart of the existence of a characteri-
stic element for a given cubic form F € S3HVY is the existence of a mod-2
Steenrod-algebra structure, which is a necessary condition for a ring to be
a cohomology ring.

The existence and the classification of characteristic elements for a given
cubic form is essentially a linear algebra problem over Z/2. To see this, let
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F € S3HY be a fixed cubic form on a finitely generated free abelian group
H. Associated with F we have a linear map '

Ft: H — S?HY sending an element h € H to the bilinear form Fi(h) :
H@QH - Z,(z,y)— z-y-h Let H:= H/3y. F € S3H " be the reductions
of H and F modulo 2, and let — : H — H be the natural epimorphism.
The symmetric trilinear form F on the 2/2—n10dule H defines a natural

symmetric bilinear form ¢ € S?HY given by ¢(Z,7) =7 -§- (T + 7).

Lemma 3: F € S3HY admits characteristic elements if and only if ¢p
lics in the image of ' e Homz(H,SZFY). The set of all characteristic
elements for F is a cosct of the form W, + I{er(?—t).

Proof: W, is characteristic for F if and only if ¢z = F-t(W'o).

In terms of a Z-basis {e;,...,¢€,} for H the condition ¢ € lm(—}'ﬁ) trans-

lates into a simple rank condition over Z/,, : the Z/,-rank of the b x (b;])-

matrix A representing T must be equal to the Z,Q-rank of the matrix A
extended by the column (2; - €; - (& + €;))i<i<j<s

Example 3: Let H = Ze, $ Z., be free of rank 2, F € S*HY given by

e} = a,ele; = b,eje2 = c,e3 = d with a,b,c,d € Z. The rank condition

becomes

a b ab 0
T‘kz EE =T1€2 C H 6
b e b ¢ btec

2.2 Homotopy types with a given cohomology ring

QOur next task is to describe the set of oriented homotopy types of 1-
-connected, closed, oriented, 6-dimensional manifolds with a fixed torsion-
free cohomology ring.

From Zubr’s classification thcorem we know that in algebraic terms this
means the following: fix a non-negative integer r,, a finitely generated free
abelian group H,, and a symmetric trilinear form F, € S®HY which admits
characteristic elements.

Let M(r,, H,, F,) be the set of 1-connected, closed, oriented, 6-dimensio-
nal manifolds X with b3(X) = 2r,, such that there exists an isomorphism
a: Hy — H*X,Z) with o*Fx = F,. Denote by Aut(F,) the subgroup of
Z-isomorphisms of H, which leave F, € S®H} invariant; Aut(F;) acts on
pairs (w, [l]) € Ho X HY [4smy/uy, in a natural way:



v (w, [0) = (v (e), (7).

Let Aut(Fo)\F° X HY |ssny[us, be the set of Aut(F,)-orbits.

A manifold X in M(r,, If,, F,) and an isomorphism a : H, — H*(X,Z)
with a*Fx = F, yields a well-defined Aut(F,)-orbit: (a™!(we(X)), o™ [p1
(X)4+24T]) (modulo Aut(F,)), where T € H*{X,Z) is an arbitrary integral
lifting of 7(X) € H"(X,Z/Q).

The set of oreinted homotopy types M(r,, Ho. f,)/~ of manifolds in M(r,
H,, F,) can now be described in the following way:

Proposition 3: The assignment X — (o~ (wy(X)), " [pi(X)+24T]) (mo-
dulo Aut(F,)) defines an injection
I: M(T‘o, HO,FO)_-: —’Aut(F‘,) \Ho X H:/.igy‘y/uﬁ.

Proof: Suppose X and X' are manifolds in M(r,, Ho, Fo), a0 : Hy, —
H*(X,Z) and o' : H, — H?*(X',Z) isomorphisms with a*Fx = F, and
(a')*Fx: = F,. X and X' have the same image under 1 iff there exists
an automorphism v € Aut(F,) with ya™'(w(X)) = (a') 'wy(X') and
(v )ra [p (X) +24T] = (o')*[p1(X’) + 24T"). Consider B :=aovyoa™':
H*(X,Z) — H*X',Z);B is obviously an isomorphism with 8~ Fy, =
Fx, Bwa(X) = wy(X'), and B*[pi(X') + 24T} = [p1(X) + 24T}; but this
means that the systems of invariants associated with X and X' are weakly
equivalent, and therefore X' and X’ oriented homotopy equivalent.

A complete description of the set M(r,, H,. F,)/~ i.e. of the image of 1 is
only possible if the automorphism group Aut(F,) is known; this can be a
serious problem, but we will see that the ‘general’ automorphism group is
finite (and usually small), so that the next proposition gives a reasonable
estimate for the number of elements in M(r,, H,, F,)/~ :

Proposition 4: Fiz r, € N, a finitely generated free abelian group H,,
and a symmetric trilinear form F, € S*HY which admits characteristic

elements. Set b := rky H,, s := rkzlz(:"—i). and let t := rky, (-7,) be the
Z/Q-mnk of the Z/Z-Iinear square map -, : H, — Ho sending @ € H, to
w2 € H,. Then M(ro, H,, F,)/~ contains at most 2%~ elements.

Proof: Fix any admissible system of invariants (rq, Ho,ws, 7o, Fo,po) for
a manifold in M(r,, H,, F,). Given (r,, Ho, F,), we know from the last
lemma that the possible elements w, form a coset of Ker(ﬁ) in H,, so
that there exist precisely 2°* such elements. [t remains to count the classes



[} € HY [1suy /U, , such that the Aut(F5)-orbit of (w,, [po + 2475 + {]) lies
in the image of L.

To understand the latter condition we fix integral liftings W, € H,,T, €
HY of w, and 7, satisfying the admissibility conditions

i) W3 = (po + 247, )(W,)(mod 48)

ii) po(z) = 42° + 622W, + 3zW2(mod 24) Vr € H,.

Clearly the Aut({Fy)-orbit of (w,,[po + 247, + I]) lies in the ima.ge.of Iif
and only if

") W3 = (po + 24T, + 1)(W,)(mod 48),
i) (po + )(x) = 42° + 622 W, + 32W?2(mod 24) Vz € H,,

which is equivalent to I[(W,) = 0(mod 48), and [ = 0(mod 24H/ ) because
of i) and ii).

Now, by definition of the subgroup Ur, C H) /4sny we have the following
commutative diagram with exact rows and columns:

Ker(-7,) 0
! !
. 24-F .
0—Ker(24-7, )— Hofon, —° Ur, — 0

Fo | !

0— HY/amy 3 HY lsry —HY[2any—0

l ! [

0— Coker(-—,,:o) - H:/48H;-'/UF, —’H:,’/MH;/—‘O
l !
0 0

The number of elements (I} € HY /4sny /U, to be counted coincides therefo-
re with the cardinality of the kernel of the map ev(w,) : Coker(-,) — Z/Z

induced by evaluation in w,. This is number is at most 267(26=*~7 if w, # 0

and t # b).

Corollary 2: If the Z/Z-mnk s =rkg, (-F,) ts mazimdl, then M(r,, H,,
F.)/~ contains at most one class.

Proof: Suppose -z, : Ho — F: is surjective; then FZ :H, — Szﬁr must
have a trivial kernel, since Z* = 0 for all £ € H, implies & = 0 if every
linear form is a square. But this means s =t = b, so that M(r,, Ho, F,)/~
has at most one element.
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Example 4: Let Ho = Ze; @ Zey, e = a,eley = bejed = c,ef = d. If
= ¢(mod2), and ad — b¢ = 1(mod 2), then M(r,, H,, F,}/~ contains

precisely one class for every r, > 0.

3. Algebra and arithmetic of cubic forms

Let H be a finitely generated free Z-module of rank b. In this section we
want to study algebraic and arithmetic properties of symmetric trilinear
forms F € S3HY on H which admit characteristic elements; ultimately we
would like to describe the classification of those forms under the action of
the general linear group GL{H), i.e. we like to investigate (part of) the
quotient 53 HV/GL(H) .

From what we have said in sections 1. and 2., this is clearly equivalent
to classifying the cohomology rings of 1-connected, closed, oriented, 6-
dimensional manifolds without torsion, and with b, = b,b3 = 0. Further-
more, up to finite indeterminancy, this is also equivalent to classifying the
homotopy types of these manifolds. .

The proper seiting for this arithmetic moduli problem can be found in
C. Seshadri’s paper [S]; here we investigate only its set-theoretic aspects.
Let H¢ := H ®z C be the complexification of H, and let SSH(\{/SL(HC)

be the GIT quotient of the reductive group SL(H¢). We obtain a natural
map ¢ : SSHV/SL(H) — SSH(Y/SL(HC)’ which allows us to break up the
problem into three parts: the description of the quotient SaHg/SL(HC)’
the investigation of the fibers of ¢, and the study of the remaining Z,Q_-
action on 53HV/SL(H) which is induced by the choice of an arbitrary
automorphism A, € GL{H) of determinant detA, = —1.

3.1 Algebraic properties of cubic forms

Let Hc = H ®; C be as above, and denote by C[Hc|s the space of
homogeneous polynomials of degree 3 on H¢. There exists a linear po-
larization operator Pol : C{H¢|s — S®H{, sending a homogeneous cubic
polynomial f € C[H¢]s to the symmetric trilinear form F = Pol(f) €
S3HY which is related to f by the identity F(h,h, k) = 6f(h). We will
usually not distinguish between a cubic polynomial f and its associated
form F = Pol(f). On S?HY there exists a polynomial function A : S*HY
— C, the discriminant, which is homogeneous of degree 52°~', and vanishes
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in a form F if and only if the associated cubic hypersuface (f), C P(Hc)
has a singular point; A can be defined over Z and is clearly invariant under
the natural action of GL(Hg).

Remark 4: Of course, a discriminant function A exists for forms of arhi-

trary degree d; in the general case A is homogeneous of degree b- (d — 1)~
on SYHY.

Proposition 5: Fir a symmetric trilinear form F € S*H{ and an ele-.
ment h € He \ {0} with f(h) = 0. The associated point < h >€ P(Hc) is
a singular point of the cubic hypersurface ([)o C P(Hc) if and only if the
linear form h* € HY is zero. The existence of at least one such point is
equivalent to the vanishing of the discriminant.

Proof: From f(h+tv) = f(h)+3th®-v+3t%h-v?+t303 foreveryv € He,t € C
we find £|,f(h + tv) = 3h% - v, i.e. h? € HY defines the differential of f in
h.

Remark 5: Q-rational points in (f), C P(H:), and Q-rational singulari-
ties of (f). have geometric significance if the cubic f is defined by the cup-
form of a 6-manifold X. In fact, integral classes h € H%(X,Z) correspond
to homotopy classes of maps to P3; such a map factors over PE C P2 if
and only if A% = 0; if it factors over PL C P2, then clearly h? = 0. The
converse will probably not always be true since, in general, the cohomolgy
ring does not determine the homotopy type.

In addition to the invariant discriminant A(f) of a polynomial f, we
will also need a fundamental covariant H;, the Hessian of f. Let F =
Pol(f) € S®H{ be the polarization of f € C[Hc]s; the Hessian of f

can then be defined as the composition H; : He Lt S?HY dise C, ie.

H; is the homogeneous polynomial function of degree b on H¢ given by
H¢(h) = disc(F*(h)). In terms of linear coordinates &;,---,& on H one
finds the more familiar expression H; = det(é‘é?;_sjf)'

Proposition 6: Let F € S3H be a symmetric trilinear form. The Hessian
of F' is identically zero if and only if there exist no element h € Hg for
which the map -h: He — H{ is an isomorphism.

Proof: Hj is identically zero if and only if the symmetric bilinear forms
F(h) € S*H{ are degenerate for every h € Hg. But this means that none
of the maps -h : Hc — H{ is an isomorphism.
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Corollary 3: Let F' € S3HY be a form whose associated map F' : He —
S2HY is not injective. Then we have H; = 0.

Proof: Let k € Ker(F"*) be a non-zero element, and consider an arbitrary
element h € H¢. By definition of k we have F(k, h,v) = 0 for all v € Hg,
i.e. k-h € HY is zero.

Remark 6: It is not difficult to show that F* is not injective if and only
if there exists a proper quotient He of He, and a form F € 53?7; whose
pull-back to Hg is the given form F. This means that the Hessians of
cubic polynomials f € C[H¢]s which *do not depend on all variables’ are
automatically zero.

The converse holds for forms in b < 4 variables, but not in general [G/N].

3.2 The GIT quotient S°HY/ gy y

Let V := S3HY be the vector space of complex cubic forms. The reductive
group G' := SL(H¢) acts rationally on V, and therefore has a finitely
generated ring C[V )¢ of invariants [H]. The inclusion C[V]®¢ C C[V]induces
a regular map 7 : V — V/¢ onto the affine variety V/s with coordinate
ring C[V]®. It is well known that = is a categorical quotient, which is
G-closed and G-separating, so that V/; parametrizes precisely the closed
G-orbits in V. Recall that a point v € V is semi-stable if o € G - v, and
that v is stable if G- v is closed in V and the isotropy group G, is finite
[M/F]. Denote the G-invariant, open subsets of semistable (stable) points
in V by V*2(V*).

The complement V \ V** = r~!(x(0)) consists of ‘Nullformen’ , i.e. forms
for which all polynomial invariants vanish. The open subset of stable
points, which includes in particular all non-singular forms, has a geometric
quotient, given by the restricted map «|V*: V* — = (V?).

Remark 7: Let A, € GL(H) be a fixed automorphism of determinant
detA, = —1, e.g. A, = —idy if bis odd. A, induces a Z/Z-action on

SSHV/SL(H) and on SaHg/SL(HC)’ for which the map ¢ is equivariant.
Let G C GL(H¢) be the semi-direct product of SL(Hc) and Z/Q generated

by A, and SL(H¢). The invariant ring C[V]® has an important topological
interpretation: it consists of all polynomial invariants of complex cohomo-
logy rings of 1-connected, closed, oriented 6-dimensional manifolds with
torsion-free homology.
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Example 5: Binary cubics (b = 2)

Choose linear coordinates X,Y on H¢, and write a cubic polynomial f €
C[X,Y]3 in the form f = ao X3 + 3a; XY + 3a, XY? + a3Y>.

We use ag, a1, as,a;3 as coordinates on S3HY, so that C[S*HY] = Clao,
ay, az,az]. The discriminant A(f) of f is a homogeneous polynomial of
degree 4 in the coefficients ay, a1, a,, a4, explicitly given by A(f) = a2al —
3a2al — 6agayazaz + 4apad + 4adas.

The discriminant generates the ring of SL(H:)-invariants, C[S®HY]
= C[A], and it is easy to see that A is also Z,,-invariant. A cubic form f is

SL{Hc)

stable if and only if it is semistable, if and only if it is non-singular [N]. The
cone of nullforms 7=!(x(0)) is the affine hypersurface (A), C S*H{; it has
a nice geometric interpretation in terms of the Hessian. The Hessian of the
cubic f is the quadratic form H; = 62[(agus — a?)X? + (a0as — a1a2) XY +
(a1a3 — a2)Y?]. The set of forms f with vanishing Hessians H; form the
affine cone over the rational normal curve in P(S®HY); the hypersurface of
nullforms is the cone over the tangential scroll of this curve. There are 4
different types of SL(Hc)-orbits in S*H, represented by the normal forms
XY (X +)Y), X?Y, X3,0. The first type is stable, the others are nullforms,
the orbits of X and 0 have vanishing Hessians.

Example 6: Ternary cubics (b=3)

The ring of SL({Hc)-invariants of ternary cubics is a weighted polyno-
mial ring in 2 variables, C[S®HY)5*He) = C[S, T} whose generators S, T
have been found by S. Aronhold [A]. § is a homogeneous polynomial of
degree 4 in the coefficients of a cubic f, T is homogeneous of degree 6,
both polynomials are Z/2-invaria.nt. For a cubic of the form f = aX3 +
bY? + c¢Z3 + 6dXY Z,S and T are given by § = 4d(d® — abc) and T =
8d® + 20abc(d® — abe) respectively [P]. The general formulae, which take
two pages to write down, can be found in the book of Sturmfels [St]. The
discriminant of a form f is homogeneous of degree 12 in the coefficients of
f; in terms of Aronhold’s invariants S, T it is simply given by A = §3 -T2
We obtain the following overall picture: The GIT quotient for ternary
cubics is an affine plane A? with coordinates S,7. The complement A? \
(A), of the discriminant curve is the geometric quotient of stable cubics.
The =-fibers over a point (5,T) # (0,0) on the discriminant curve (A),
consist of 3 types of SL(Hg¢)-orbits: nodal cubics with normal form X2 +
Y34+ 6aXY Z, reducible cubics formed by a smooth conic and a transversal
line (normal form:X3 4 6aXY Z), and cubics consisting of three lines in
general position (normal form: 6aX'Y Z); these cubics are proberly semi-
stable for o # 0 with Aronhold invariants S = 4a*, T = 8a®. The fiber of =
over 0 contains 6 orbits with normal forms Y?Z—- X3 Y(X?-Y Z), XY (X +
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Y}, X2Y, X3, and 0, of which the last 4 types have vanishing Hessians. For

more details we refer to H. Kraft’s book [Kr].

Remark 8: The natural C -action f — A - f on cubic forms induces a
weighted action on the GIT quotient SSH%//SL(HC)’ A(S,T) = (A1, \°T).
The associated weighted projective space P'(4,6) with homogeneous coor-
dinates < S,T > is the good quotient for semi-stable plane cubic curves.
its affine part P!\ (A), is the moduli space of genus-1 curves. The
PG L(H)-invariant J = %il gives the J-invariant of the corresponding
curve.

3.3 Arithmetical aspects

Let c : SSHV/SL(H) — Sng/SL(H) be the map which associated to the

SL(H)-orbit < F > of a symmetric trilinear form F € SHY the SL(Hc)-
orbit < F >¢ of its complexification. The c-fiber over < F >¢ can be
identified with the subset (SL(Hc)- F N SSHV)/SL‘(H) of SaHV/SL(H).
C. Jordan has shown that these subsets are finite provided the cubic form
f € C[Hc)s associated to F has a non-vanishing discriminant [J1}. Jordan’s
original proof, which is only two pages long, is somewhat hard to follow.
The following theorem of A. Borel and Harish-Chandra provides, however,
a vast generalization of Jordan’s finiteness result:

Theorem 3 (Borel/Harish-Chandra): Let G be a reductive Q-group, ' C G
an arithmetic subgroup, £ : G — GL(V) a Q-morphism, and L C V a
[-invariant sublattice of V. If v € V has a closed G—orbit in V| then
G, N L/ is a finite set.

Proof: [B]

Corollary 4: Let F € S®HY be a symmetric trilinear form on H. [f the
SL(Hc)-orbit of F in S3HY is closed, then the fiber ¢™'(< F >¢) over
< F >¢ 15 finite.

To check whether a SL(Hc)-orbit SL(H¢)- F is closed in S3HY, one has a
generalization of the Hilbert-criterion [Kr]: SL(Hc) - F is closed in S®HY
if and only if for every 1-parameter subgroup A : C — SL(Hc), for which
lime_oA(t) - F exist in SPHY, this limit is already contained in SL(H¢) - F.
A sufficient condition for SL(H¢) - F to be closed follows from another
result of C. Jordan [J2}:
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Theorem 4 (Jordan): Let [ € ClH¢)s be a homogeneous polynomial of
degree d > 3. If its discriminant A(f) is non-zero, then f has a finite
isotropy group SL{Hc)y.

Corollary 5: Let F € S3HY be a form whose associated cubic polynomial
f € C[Hc]s has A(f) #0. Then SL(Hc)- F is closed in S*H{.

Proof: Standard arguments, cf. [Bo].

Remark 9: Closedness of the SL(Hz)-orbit of F is only a sufficient condi-
tion for the finiteness of the fiber ¢™'(< F >:). There exist other finiteness
theorems for special types of forms. like e.g. forms which decompose into
linear factors. '

Some of these results are surveyed in volume III of L. Dickson’s book [D].

We say that two forms F, F' € S*H" belong to the same (proper) equi-
valence class if they lie in the same (SL(H)-)GL(H)-orbit. The group
Zpy= GL(H)/.S'L(H) acts on the set SSHV/SL(H) of proper classes, and

the quotient becomes the orbit space SSHV/GL(H).

The Zf_z-act.ion is not {ree in general, but for finiteness properties this plays
no role.

Example 7: Binary cubics

Let H be a free Z-module of rank b = 2. There exist only finitely many
classes of symmetric trilinear forms F € S®HY with a given non-zero
discriminant A. Of course, A must be integral, and a square modulo 4,
in order to be realizable by an integral form. For some small values of
A # 0 the number of classes is known. Results in this direction go back
to a paper by F. Arndt [A]; his tables have been rearranged by A. Cayley
[Cay]. It should certainly be possible to go much further using modern
computers.

Example 8: Ternary cubics

Let H be a free Z-module of rank 3 with coordinates X, Y, Z. The cubic
polynomials with closed SL(H¢)-orbits are the non-singular cubics, and
the polynomials in the orbits of 6 XY Z for all o € C.

The number of integral classes in these orbits is therefore finite. We have,
however, an even stronger finiteness theorem for stable ternary cubics:

Proposition 7: Let H be a free Z-module of rank 3. There ezist only
finitely many classes of symmetric trilinear forms F € S°HY with a fired
discriminant A # Q.
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Proof: In terms of Arnhold’s invariants § and T, A is given by A = $3 -T2,
By a theorem of C. Siegel [Si], the diophantine equation §% — T? = A has
only finitely many integral solution (S5, T) for any integer A # 0. For ecach
of these solutions the corresponding point in SSH(\Z//SL(HC) lies outside of

the discriminant curve, so that the n-fiber over it is a closed SL({H¢)-orbit.
The finiteness of the class number then foliows from the Borel/Harisch-
Chandra theorem.

A famous special case of Siegel’s theorem is Bachet’s equation §° - 717 = 2;
it has only the two obvious solutions (3, £5).

Remark 10: To get finiteness results for ternary cubic forms it is not
sufficient to fix the J-invariant (instead of the discriminant): The forms
fn =X+ XZ* 4+ Z2+mY?Z,m € Z~ {0}, all have the same J-invariant,
but they are not equivalent, even over (@, since they have bad reduction at
different primes p|m. '

4. Invariants of complex 3-folds

In this section we begin to investigate the topology of 1-connected, com-
pact, complex 3-folds. After a brief discussion of the possible systems of
Chern numbers of almost complex 6-manifolds, we study the behaviour of
the topological invariants of complex 3-folds under certain standard con-
structions, like e.g. branched coverings, or blow-ups of points and curves.
Then we describe some interesting examples of 1-connected, non-Kahlerian
3-folds, including a new construction method which generalizes the Calabi-
Eckmann manifolds. These examples will be needed in the next section in

order to realizes complex types of cubic forms as cup-forms of complex
3-folds.

4.1 Chern numbers of almost complex structures

[.et X be a closed, oriented, 6-dimensional differentiable manifold. The
tangent bundle of X is induced by a classifying map tx : X — BSO(6)
which is unique up to homotopy. By an almost complex structure on X we
mean the homotopy class [fx] of a lifting £x : X — BU(3) of tx to BU(3).

Proposition 8: Fvery closed, oriented, 6-dimensional C®-manifold X
without 2-torsion in H*(X,Z) admits an almost complez structure. There
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is a 1-1 correspondence belween almost complez structures on X and in-
tegral lifts W € H*(X,Z) of wo(X). The Chern classes ¢; of the almost
complez manifold (X, W) are given by ¢, = W,cp = 2J(W? — py(X)).

Proof: (cf.[W]). The obstructions'against lifting tx to BU(3) lie in the
cohomology groups H™*'(X, n;(SO(6 /U( ) = 0,1,...,5. Since

S 0(6)/(](3) = IP? has only one nontrivial homotOpy group rrz(SO(ﬁ)/U(3))

= Z in dimensions ¢ < 3, there is in fact only one obstruction o(tx) €
H3(X,Z), and this obstruction can be identified with the image of w,(X)
under the Bockstein homomorphism 3 : H*(X Z/)) — H3(X, Z). Since

H3(X,Z) has no 2-torsion by assumption, Bw.(X) must be equal to zero,
so that X has at least one almost complex structure {tx] € [X, BU(3)].
Standard homotopy arguments show now that the map, which asigns to -
an almost complex structure [{x] its first Chern class {%c;, induces a
1-1 correspondence between integral lifts W € HZ(X,Z) of wy(X) and
homotopy classes of liftings of [tx] to BU(3).

The second Chern class ¢; of the almost complex mamfold (X, W) is
determined by W2 — 2¢, = p,(X).

The Chern numbers ¢, ¢;cy,¢3 of an almost comple'x manifold X of real
dimension 6 satisfy the following congruences: ¢ = 0(mod 2),¢1¢; =
0(mod 24),c3 = 0(mod 2). Conversely, given a triple (a,b,c) of integers
a = 0(mod 2),b = 0(mod 24), and ¢ = 0(mod 2), there always exist an
almost complex manifold X of dimension 6 with Chern mumbers ¢ =
a,cica = b,c3 = c.

It is not totally clear, however, that one can find a connected manifold
X with prescribed Chern numbers [H1].

Proposition 9: Every tripel (a,b,c) € Z®® satisfying a = 0(mod 2),b =
0(mod 24),c = 0(mod 2) is realizable as the Chern numbers of an almost
complez 6-manifold.

Proof: Consider the complete intersection V(f g) C P°® defined by the
polynomials f(z) = 23 + 27 + 222 — 22 — 22 — 222 and ¢(2) = 2§ + 2] +
223 — 25— z3 — 223 [Wel. V(f, ¢) is a singular 3-fold with 90 ordinary double
points, and every small resolution V of these nodes is a (not neccessarily
projective) Calabi-Yau 3-fold with Euler number 4. Suppose now that
a prescribed triple (a,b,c) € Z%® is realized by a possibly disconnected
almost complex manifold X = J[;; X;. If we form the connected sum
X' = #;e1X;, we obtain a connected almost complex manifold X’ with
Chern numbers ¢} = a,cic; = b, but with ¢3 = ¢ — 2(|/] = 1).

If [I| > 1 take the connected sum of X’ with |/| — 1 copies of the complex
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manifold V. Since V is Calabi-Yau, the Chern numbers ¢? and c¢;¢; remain
unchanged, whereas the Euler number of X%,V becomes ¢z = c.

Remark 11: The above argument has been suggested by F. Hirzebruch
after talk at the MPI, in which one of us had sketched a less geometric
proof of the proposition.

There 1s another question which 1s related to the result above: Fix a closed,
oriented, 6-dimensional differentiable manifold X. Which pairs (a,b) of
imtegers with ¢ = 0(mod 2) and b = 0(mod 24) occur as Chern numbers
¢} and ¢;c; of almost complex structures on .\, and in how many ways?

For manifolds with b,(X) = 1 the Chern numbers determine the almost
complex structure. For manifolds with b, > 1 this is no longer true. It
is possible to construct infinitely many distinct almost. complex structures
with the same Chern numbers on a hypersurface of bidegree (3,3) in PZx P2.

An almost complex structure [fx] on a differentiable 6-manifold X is said
Lo be integrable il [y is homotopic to the classifying map of a complex
3-fold. We are not aware of any example of an almost complex 6-manifold .
which is known not be integrable. On the other hand, it is also unknown
whether or not the Chern numbers ¢}, ¢ c; of integrable almost complex
manifold are topological invariants. The following remark might therefore
be of some interest:

Proposition 10: If the Chern numbers of complex §-folds are topological
invariants, then there ezist almost complez structures which are not inte-
grable.

Proof: Consider a closed, oriented differentiable 6-manifold X without 2-
torsion in H3(X,Z). Fix any almost complex structure on X with first
Chern class W € H*(X,Z).

Every element z € H*(X,Z) defines a new almost complex structure on X
with first Chern class W + 2z, and it is easy to see that these two almost
complex structures have the same Chern numbers if and only if z satisfies
the equations p;(X) -z =0, and 3W? .z + 6H - 22 4+ 42° = 0.

Suppose now (X, W) is integrable, p;(X) # 0. and choose z € H*(X,Z)
such that p;(X) -z # 0. Then clearly, either none of the almost complex
manifolds (X, W + 2z) is integrable, or the Chern numbers of complex
3-folds are not topologically invariant.

Remark 12: It is very likely that there exist non-integrable almost com-
plex structures on manifolds X as above, but probably this is hard to
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prove. It is also not unlikely that the Chern numbers of complex 3-folds
are not topological invariants. A possible way to check this would be, to
run a computer search for 3-folds given by certain standard constructions.

4.2 Standard constructions

For later use we investigate the topological invariants of complex 3-fold
which carn be obtained by certain simple standard constructions like com-
plete intersections, simple cyclic coverings, blow- ups of points and curves,
and projective bundles.

Proposition 11: (Libgober/Wood): Let X C P**" be a smooth complete

intersection of multidegree d = (dy,...,d.). Choose a normalized basis

e € H*X,Z), and let ¢ € HY(X,Z) bc defined by (e) = 1. Then the

invariants of X are: |

Fx(ze) = dz® whered = [[I_, di,we(X) =4+ 7 - E‘_ d;)e,

p{X)=dd+r -3, &, and

bS(X) =4 - g4 +r - d)P =3 +r - d)d+r =Tl D)+
244+ r -3, d3)). x

Proof: {L/W].

Proposition 12: Let X be a smooth, I-connected, complex projective 3-
fold, and let 7 : X' — X be a simple cyclic covering of degree d branched
along a non-singular ample divisor B € {L®|.X' is smooth, projective,
I-connected, and =* : H}(X,Z) — H*(X',Z) is an isomorphism. The
invariants of X and X' are related by the formulae:

(7)) Fxr = dFx , wo(X') — m*we(X) = (d — D)~ (L),

(X)) —7"pi(X) = (1 = d)(1 + d)r*ci(L)?, and

by(X") = dby(X) + (d = 1)(5a(B) - 2b(X)).

Proof: X' is clearly smooth and projective. By a theorem of M. Cornalba
n : X' = X is a 3-equivalence, i.e. 7, : m(X') — m(X) is bijective
for 1 < 2, and surjective for 1 = 3{Co]. X' is therefore 1-connected, and
™ HY(X,Z) — H*(X',Z) is an isomorphism. The relation between Fx:
and Fy is obvious, whereas the formula for b3( X”) follows from =,(B) = {1}
and standard properties of Euler numbers.

In order to calculate wy(X') and p1(X’) we compute the Chern classes
of X' : ¢i(X') — m™er(X) = (1 — d)mr"cy(L), c2(X') = 7%c(X) = (1 —
d)?T'[C](A,)Cl(L) - dC](L)Q].

The latter formulae follow from the description of X’ as a divisor in the
total space of the line bundle .
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Example 9: Let X be a d-fold, simple cyclic covering of P* hranched
along a smooth surface B C P3 of degree dI,l > 1. Let ¢ € H*(X,Z)
correspond to the preimage of a plane in P3. The invariants of X are then
given by: Fx(ze) = d2®,wo(X) = 4+ (1 =d))e,pi(X) =dd+ (1 = d)(1 +
d)P)e (e(e) = 1),b3(X) = (d = 1)(21* — 4dl + 6)dl.

Proposition 13: Let o : X — X be the blow-up of a compler 3-fold X in
a point, and let e € H*(X,Z) be the class of the exceptional divisor. The
invariants of X and X are related by the following formulae:

Felo®h + z¢) = Fx(h) + z° for every h € H¥(X,Z),z € Z,wy(X) =
o wa(X ), pr(X) = ;i (X) + 4(e? — 07y (X) - €), ba( X ) = by(X).

Proof: Standard arguments, see [G/H]. The Chern classes are related by
cl():’) =0"c)(N) = 2e,c5(X) = a*c(X).

Proposition 14: Let o : X — X be the blow-up of a complezx 3-fold X
along a smooth curve C' of genus g, and let e € Hz();’,Z) be the class
of the ezceptional divisor. The invariants of X and X are related by:
Fi(o"h+ze) = Fx(h)—3h-Cz*— degNc xx? for every h € H*(X,Z),z €
Z,wa(X) = 0" wa(X)+e,p(X) = o"pr (X ) + (€2 = 207C), ba(X) = bs( X} +
2g.

Proof: [G/H]. The Chern classes arc given by ¢ (X) = o¢; (X)—e¢, e3(X) =
o™ (2 X)+ C) =01 (X)) - e.

Proposition 15: Let F be a holomorphic vector bundle of rank 2 with
Chern classes ¢;(E),t = 1,2 over a 1-connected, compact complex surface
Y, and let = : P(E) — Y be the projective bundle of lines tn the fibers of E.
The cup-form of P(E) is given by Fyg)(h+ z€) = z[(3h*) — (3c1(E) - h)z +
(c1(E)? — c2(E))z?], where £ = c1(Opg)(1)),h € HY,Z), and z € Z.
The other topological invariants of P(E) are: wo(P(F)) = n*(wa(Y) +
a(E)),pr(P(E)) = 7°[cs(Y)? - 26a(Y) + c1(E)? — dez(E)), by(B(E)) = 0.

Proof: The Leray-Hirsch theorem identifies the cohomology ring
H*(P(E),Z) with the ring H*(Y, Z)[£]/ <¢24c,(E)-¢+ea(E)>; this determines
the cup-form. In order to calculate the characteristic classes one uses
the exact sequence 0 — Opgy = T E Q Opg)(1) — Tpiy — 7Ty —
0. b(P(E)) = 0 follows from b;(Y) = 0 and the Leray-Hirsch theorem.

4.3 Examples of 1-connected non-Kahlerian 3-folds

Recall that the Hessian of a symmetric trilinear form F € S*HY on a free
Z-module H of finite rank was defined as the composition
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He:HE srpv dgc Z. 1121 terms of coordinates £;,...,& on H it is given
by the determinant det(%a%), where f € C[H:]; is the homogeneous cubic
- polynomial associated with F.

Proposition 16: Let F be a symmetric trilinear form whose Hessian
vanishes identically. Then F' is not realizable as cup-form of Kdhlerian
3-fold.

Proof: Let X be a complex 3-fold with a Kahler metric g. The Kahler
class [w,] € H*(X,R) defines a multiplication map -[w,] : H*(X,R) —
H*(X,R), which is an isomorphism by the Hard Lefschetz Theorem [G/H].
In section 3.1 we have seen that this is not possible if the Hessian of the
cup-form vanishes. ‘

Corollary 6: Cubic forms f € C[H¢|s which depend on strictly less than
b = rhkgH variables are not realizable as cup-forms of Kdhlerian 8-folds
with by = b.

By considering the Hessian of a cup-form over the reals one obtains further
conditions. '

Definition 4: Let F € S*HY be a symmetric trilinear form on a free
Z-module of rank b.

The Hesse cone of F' is the subset Hp C Hs defined by Hp := {h €
Hyg|(—1)® det (F*(h)) < 0}.

The index cone Ir of F is the subset Ir := {h € Hg|F'(h) € S*HY has
signature (1,—-1,...,—1)}.

Clearly Ir is an open subcone of Hp which coincides with Hg iff b < 2. )

Theorem 5: Let Fx € SPH*(X,Z)V be the cup-form of a smooth projective
3-fold with h®*(X) = 0. Then Fx has a non-empty index cone. -

Proof: Let h € H%(X,Z) be the dual class of a hyperplane section Y in some
projective embedding. The inclusion ¢ : ¥ < X induces a monomorphism
i*: HY(X,Z) — H*(Y,Z) by the weak Lefschetz theorem. The symmetric
bilinear form F%(h) € S?2H?*(X,Z)Y is simply the pull-back of the cup-
form of Y under the inclusion ¢*; it is therefore non-degenerate by the Hard
Lefschetz theorem [L]. Applying the Hodge index theorem to Y we see that
the real bilinear form F§(h) € S2H*(X,R)Y must have one positive and
b — 1 negative eigenvalues. In other words: h € IF,.

Remark 13: This result has two applications: if provides topological
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‘upper bounds’ for the ample cone of a projective 3-fold with A%? = 0, and
if gives further restrictions on symmetric trilinear forms to be realizable as
cup-forms of projective 3-folds with h%2 =0 if b > 4.

These applications will be discussed in section 5.

We will now describe examples of 1-connected, non-Kahlerian, complex
3-folds and fit them into the topological classification.

Example 10 (Calabi-Eckmann):

E. Calabi and B. Eckmann have defined complex structures X, depen-
ding on a parameter 7, on the product §3 x $3[C/E]. Their manifolds are
principal fiber bundles over P' x P? whose fiber and structure group is the
ellipticcurve E; = C/z 5 7, Im(7) > 0.

The Calabi-Eckmann manifolds are homogeneous non-Kahlerian 3-folds of
algebraic dimension 2.

Example 11 (Maeda):

H. Maeda has generalized the Calabi-Eckmann construction. He construc-
ted fiber bundles X! over Hirzebruch surfaces F,,n > 0, whose fibers and
structure groups are an elliptic curve E, and Aut(E;).respectively [M]. X!
is again diffeomorphic to S3 x $3, and therefore non-Kahlerian. Maeda’s
manifolds X] are homogeneous if and only if n = 0 in which case they are

Calabi-Eckmann 3-folds.

The Calabi-Eckmann construction can also be generalized in the following
way: ‘

Let 5?xS* be the non-trivial §%-bundle over S?, i.e. $2%S* is the unique
1-connected, closed, oriented, differentiable 6-manifold with Hz(S*x 54, Z)
=Z and b; = 0, whose cup-form and Pontrjagin class vanish, but whose
Stiefel-Whitney class w; is non-zero.

Theorem 6: For any integer b > 0 there exist compact complez 8-folds
Xy, and X7 if b > 1, which are homeomorphic to §,5% x S*§3415° x S,
and S?x S*;,-15% x S*y4, 5% x S5,

Proof: Let Y be a l-connected, compact complex surface with p,(Y') = 0
and 5,(Y) > 2, and let E = C/r be the elliptic curve associated to the
lattice ' € €. We want to construct the required 3-folds as total spaces
of principal E-bundles over Y : Let ¢ : Hy(Y,Z) — T be an arbitrary
epimorphism. The corresponding cohomology class ¢ € H*(Y,T') defines a
topological principal bundle over ¥ with fiber and structure group £ =

C/r as follows immediately from the identification of the classifying space
BE ~ K(I',2).
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Let Oy(E) be the sheafl of germs of holomorphic maps from Y to E.
We have a short exact sequence 0 — [ — Oy — Oy(E) — 0 and a
corresponding exact cohomology sequence

— HYY,Oy) = HU(Y,Op(E)) 5 HX(Y,T) = HYY,Oy) —

By our assumptions é is an isomorphism, so that every topological principal
E-bundle admits a holomorphic structure. Let X be the total space of
such a bundle corresponding to a surjective map ¢ : Ho(Y,Z) — I'. The
homotopy sequence of the fibration p: X — Y vields the sequence

0 - m(X) 5 7y (Y) = 1 (E) = 7 (X) B m(Y) — 0.

Since Y is l-connected. m2(}') can be identified with H,(}Y,Z), and then
the boundary map =2(Y) — m(E£) becomes the characteristic map ¢ :
Hy(Y,Z) — T of the bundle. This implies 7, (X) = {1}, whereas H,(X,Z)
is given by: 0 = Ho(X,Z) 5 Hy(Y,Z) 5 T — 0.

In particular, Ho(X,Z) is free as a submodule of H(Y,Z), and by dualizing
the last sequence we obtain an identification

H¥(X,Z) = H*(Y,Z)/pvviap™.

The cup-form Fy of X is therefore trivial. In order to calculate p;{X)
and wy(X), we use the exact sequence of tangent sheaves: 0 — Ty —
Tx — p*Ty — 0. Since Tx,y is a trivial bundle, the characteristic classes.
of X are simply the pullbacks of the corresponding classes of Y. But the
map p* : HYY,Z) — HY(X,Z) is zero, since < p*(e) U p™(a),[AX] >=
< eUa,p.]X] >=0 for all classes ¢ € H*(Y,Z), and o € H*(Y,Z).

‘Thus p;(X) = 0, and wy(X) is the residue of wo(Y) € H(Y, Z/,) modulo
Y/opv-

The Euler characteristic of X is zero, so that from by(X) = b,(Y)—2 we find
bs(X) = 2(by(Y') — 1). The system of invariants associated to the manifold
X is therefore given by (by(Y )—1, HX(Y,Z)/pv, w2(Y) (modl'V/4rv), 0,0, 0,
re. X 1s diffeomorphic to ﬂb?(y)_gsr‘) X S“ﬂbz(y)_lS:‘ X 53 if wg(Y) € I‘V/gl‘v’
and to 52;(541152()')_352 X S4ﬂ52(y)_153 X S?’ if bg(Y) > 3, and wg(Y) ¢
Fv/zr'v .

Example 12 (Kato):

In the two papers [K1], [K2] M. Kato studies the class of compact, complex
3-folds X containing smooth rational curves with neighborhoods biholo-
morphic to those of projective lines in P2. On this class of 3-folds, called
class L, he defines a semi-group structure + with neutral element P3.
Kato’s connecting operation + is defined by removing ‘lines’ L; C X; from
3-folds X;,7 = 1,2, and by identifying the complements X; \ I; along open
sets U; \ L; obtained from suitable neighborhoods U/; C X;.

Starting with a certain elliptic fiber space X over the blow-up of P! x P!
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in a point, he constructs a sequence of 3-folds X, := X; + X,_y,n > 2.
The 3-folds X, are 1-connected spin-manifolds with H,{(X,,Z)=Z
Their cup-forms Fl,, and their Pontrjagin classes p;(X,) are in terms of a
(normalized) generator e, € H*(X,,Z) and its dual class ¢, € H*(X,,Z)
given by Fx (ze,) = (n—1)z% and py(X,) = 4(n = 1)e, (enlen) = 1). The
third Betti-number of X, 1s 4n.

In particular, X; is diffeomorphic to 52 x §4¢,5° x 53, and X is diffeomnor-
phic to P3§,5% x §3. It is interesting to note that the Chern-numbers ¢3, ¢ ¢
of the X!, arc ¢ = 64(1 —~n),cic; = 24(1 —n), i.e. they satisfy 8cicz = 3cd.
For projective manifolds of general type this equality is characteristic for
ball quotients [Y].

Example 13 (Twistor spaces):

Let p: Z — M be the twistor fibration of a closed, oriented Riemannian
4-manifold (M, g). Z carries a natural almost complex structure which is
integrable if and only if g is self-dual [A/H/S].

Examples of 1-connected 4-manifolds which admit self-dual structures are
S 4,P?, and K 3-surfaces.

The total spaces of their twistor fibrations are 1- connected complex 3-folds
which may be Moishezon for S* and §,P? [C], but which are usually non-
Kahler [Hi]. We leave it to the reader to calculate the topological invariants
of these 3-folds. There is an interesting relation between Twistor spaces of
connected sums and Kato’s connection operation + for class I, manifolds

[K2], [D/F].

Example 14 (Oguiso):

In a recent preprint [01] K. Oguiso constructs examples of 1-connected,

Moishezon Calabi-Yau 3-folds with very interesting cup-forms. He proves

that for every integer d > 1 there exists a smooth complete intersection
(% of type (2,4) in P° which contains a non-singular rational curve Cy of

degree d with normal bundle N¢,/x, = Oc,(—1)%%.

The 3-fold Xd can now be flopped along Cy, i.e. Cy can be blown up
to P(Ne,/x,) = P! x P!, and then ‘blown down in the other direction’.
The resulting 3-fold X, is a l-connected Moishezon manifold with trivial
canonical bundle and cup-form Fx, given by Fx,(zes) = (d&® — 8)z>. Here
eq € H*(X,,Z) is the normalized generator corresponding to the strict
transform of the negative of a hyperplane section of X. The Pontrjagin
class of Xy is p1(Xyg) = (112 + 4d)eq where g4 € H*(X4,Z) denotes the
generator with £4(eq4) = 1. Since the Euler-number does not change under
a flop we have b3(X4) = 180 for every d.



5. Complex 3-folds with small b,

In this section we investigate the following natural problem: Which cubic
forms can be realized as cup-forms.of compact complex 3-folds? For small
by something can he said: Any core of a 1-connected, closed, oriented
differentiable 6-manifold with H,(X,Z) = Z is homotopy equivalent to
the core of a l-connected complex 3-fold. In the case b, = 2, at least
every discriminant A is realizable by a complex manifold. If b, = 3 we
can realize all types of complex cubics with one exception, the union of a
smooth conic and a tangent line. In addition to these realization results
we prove a finiteness theorem for 3-folds with b, = 1,w, # 0, and we give
examples which show that the condition Ir, # @ for the index cone of a
projective 3-fold with %% = 0 is non-trivial in general.

5.1 3-folds with b, = 1

Recall from section 1.1 that every closed, oriented, 1-connected differen-
tiable 6-manifold X with torsion-free homology has a connected sum de-
composition X = X #,5° x S where r = b—“%i\:l, which is unique up to
orientation preserving diffeomorphisms; the manifold X, with b3(X,) =0

‘Is the core of X.

Theorem 6: Let X, be a I-connected, closed, oriented differentiable 6-
manifold with Hy(X,,Z) = Z and b3(X,) = 0. There exists a compact
complez 3-fold X whose core is orientation preserving homotopy equivalent
. to Xo.

Proof: The oriented homotopy type of X, is determined by the invariants
d,ws, and p;(mod 48); more precisely: for d = 1(mod 2) there is a single
homotopy type whereas for d = 0(mod 2) there are three; one of these 3
types has wy # 0, the other two are spin, they are distinguished by p; =
4d(mod 48),p = 4d + 24(mod 48) respectively. In order to realize these
homotopy types as cores of complex 3-folds we first look at simple cyclic
coverings of P°. Given a positive integer d, let 7 : X — P®be a simple cyclic
covering of P? branched along a smooth surface B of degree di. Then X has
the correct ‘degree’ d and the characteristic classes wy; = (d — 1)I(mod 2),
and p; = 4d+(1 —d)(1+d)dI?, see 4.2. For odd d there is nothing to prove.
For even d we can realize w; = 0 or w; # 0 by choosing [ = 0(mod 2) or
[ = 1(mod 2). Taking ! = 0(mod 4) gives w; = 0, py = 4d(mod 48), taking
| = 2(mod 4) yields w; = 0, and p, = 4d + 24(mod 48). It remains to treat
the special case d = 0, where the 3 homotopy types are given by w, # 0,
by wy = 0,p; = 0(mod 16), and by w; = 0,p; = 8(mod 16). The first two
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homotopy types are realizable as cores of elliptic fiber bundies over the
projective plane blown up in two points.

The third homotopy type is realized by the core of Oguiso’s Calabi-Yau
3-fold X, with vanishing cup-form-and p;(X;) = 120¢,.

The result just proven suggests a natural question: given a manifold X, as
above, which (even) integers b3 > 0 occur as the third Betti numbers of
complex 3-folds X whose core is homotopy equivalent to X 7

There will certainly be some gaps for algebraic 3-folds. In order to show
this, we prove the following finiteness theorem for families of Kahler struc-
tures:

Theorem 7: Fiz a positive constant c. There ezxist only finitely many fami-
lies of 1-connected, smooth projective 3-folds X with Hy(X,Z) = Z,wa(X)
# 0, and with b3(X) < c. 7
"Proof: Let X be a smooth projective 3-fold with H,(X,Z) = {0},
Hy(X. Z) =2 Z, and with we(X) # 0. Clearly Pic(X) & H?*(X,Z), and
we can choose a basis e € H?(X,Z) corresponding to the ample generator
of Pic(X).

Let ¢1(X) = cre,c2(X) = cz¢ where €® = dz,e(e) = 1. If ¢ is positive,
then X is Fano, and there are only finitely many possibilities [Mu]. The
case ¢; = 0 is excluded, so that we are left with ¢; < 0, i.e. the canonical
bundle of X is ample. :

The Riemann-Roch formula x(X,0x) = 1 — 2*(X,0x) = ;cic; shows
that the set of possible Chern numbers c;c; is bounded from below: 24(1 —
¢) € ¢1c;. Using Yau’s inequality 8¢;(X)ey(X) < 3¢(X)® we find that
dlc; |2 < 64(c—1), i.e. the degree d and the order of divisibility |c;| of ¢;(X)
is bounded. Now Kollar’s finiteness théorem [K02] yields the assertion. ~

Example 15: l.et X be a l-connected, smooth projective 3-fold with
Hy(X,Z) = Z and wo(X)} # 0. If b3(X) < 2, then R3(X,0x) < 1 and
A must be Fano of index 1 or 3. For b3(X) = 4 we have that X is either
Fano, or A3(X,Ox) = 2 and X is of general type with d|¢;|® < 64.

Note that the assumption w, # 0 was only used to exclude Calabi-Yau
3-folds.

5.2 3-folds with 6, =2

let X be a 1-connected, closed, oriented, 6-dimensional differentiable ma-

nifold with Hy(X,Z) = 22
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We choose a basis ey, e; for H¥(X,Z) and set ap = €3,a; = e?ey,a; =

e1e,az = €3; the cubic polynomial f associated to the cup-form of X is

then given by f = ap X2 4 3a; XY + 32, XY? + a3Y3. The discriminant

of f is by definition A(f) = aZa2 = 3a2a? — 6aga,azu; + 4aoa3 + 4ajas; up -
to a factor it is simply the discriminant of the Hessian H; = 6*((apaz —

a)X? + (apas — a1a2) XY + (araz — a2)Y?} of f: A(f) = (apas — a1az)? —

4(agaz — a?)(ajaz — a3).

The last identity shows that A(f) is always a square modulo 4, 1.e. A(f) =

0,1(mod 4).

Proposition 17: Every integer A = 0,1(mod 4) is realizable as discrimi-
nant of ¢ compact compler 3-fold.

Proof: Consider the projectivization X = Pp(FE) of a holomorphic rank-2
vector bundle E over the plane. In terms of the standard basis of H*(X,Z)
(e1 = 7" h, e2 = ¢;(Op(g)(1))) the cubic polynomial associated to X is given
by f = (¢ = ) X3+ 3(—¢1 ) X?Y 4+ 3XY?2, where ¢; = ¢;(E) are the Chern
classes of F considered as integers. Inserting this into the discriminant
formula yields A(f) = ¢? — 4c,. Since every pair ¢;, ¢, occurs as pair of
Chern classes of a holomorphic rank-2 bundle on P?, every integer A =
0,1{mod 4} can be realized as discriminant of a holomorphic projective

bundle Pp( E).

Recall from section 3.2 that there are 4 different types of SL(2)-orbits of
complex binary cubics: non-singular forms f ( with A(f) # 0), and three
orbits of singular cubics, represented by the normal forms X?Y, X3, and 0.

Proposition 18: All four types of complez binary cubics are realizable by
complex 3-folds.

Proof: We have seen this already for non-singular cubics. Clearly the pro-
duct P! x P? realizes the normal form X?Y. The cubics of normal forms X3
or 0 are degenerate, i.e. their Hessians vanish identically. Therefore they
can only be realized by non-Kahlerian 3-folds. To realize X> one can blow
up a point in an elliptic fiber bundle over a surface Y with 5,(Y) = 3; the
trivial form occurs for elliptic fiber bundles over a surface with b; = 4.

More detailed investigations of the possible homotopy types of real or
complex manifolds with b, = 2 will appear elsewhere.

Here we only want to illustrate an interesting phenomenon which relates
the ample cone of a projective 3-fold with b = 2 to the Hessian of its
cup-form.

Proposition 19: Let X be a smooth projective 3-fold with b;(X) =
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The ample cone Cx is contained in the Hesse cone Hp := {h € H*(X,R)|
det(F*(h)) < 0}.

Proof: This is only a special case of our general result in section 4.3.

Remark 14: The Hessian of a binary form F € S*HVY is identically zero
iff F'is degenerate; it is negative semi-definite if F' is non-degenerate and
A(F) € 0; it is indefinite iff A(F) > 0[Cq]. Only in the indefinite case
A(F) > 0 can the closure Hp := {h € Hg} det F'(h) < 0} of the Hesse
cone be a proper subset of Hp.

Example 16: Let P = Pg:( F) be the projectivization of a rank-2 vector
bundle E with Chern classes ¢; = ¢;(E). The cup-form of P yields the
cubic polynomial f = (¢} — ¢2)X? + 3(—c1) X2} 4+ 3XY? whose Hessian is
Hi = (—c2)X? + . XY — Y2 Rewriting Hy as Hy = —3[(2Y — ¢ X)* +
X?(4cy; — &)} = ZH(2Y — o X)? — A(f)X?] we find 3 possibilities for the

Ilesse cone:
) A(f)<0:Hy = H*(P,R)\ {0}

i) A(f) =0: H; = HY(P,R) \ L, for a real line L dependmg on
¢ (L, = R(2,¢;) in the coordinates X,Y)

iit) A(f) > 0 : H; is an open cone whose angle is determined by
A(f) ((Z + VANHXYNZ - JA(f)X) > 0 in coordinates X, Z :=
2Y — a X).

5.3 3-folds with b; > 3

Let X be a l-connected, compact complex 3-fold with Hy(X,Z) = Z®3,
The cup-form of X gives rise to a curve Cx of degree 3 in the projective
plane P(H*(X,C)) :

Cx = {< h > P(H* X, C))|r® = 0}.

A first natural question is which types of plane cubic curves occur in this
way?

Recall that there are 10 types of plane cubics, namely: 1) non-singular
cubics, 2) irreducible cubics with a node, 3) irreducible cubics with a cusp,
4} reducible cubics consisting a smooth conic and a transversal line, 5)
smooth conics with a tangent line, 6) three lines forming a triangle, 7)
three distinct lines through a common point, 8) a double line with a third
skew line, 9) a triple line, 10) the trivial ‘cubic’ with equation 0.
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Lemma 4: If the 3-fold X has a non-trivial Hodge number h*°(X) # 0,
then Cx is of type 4), 6) 9) or 10).
Proof: Choose basis vectors e*' € H*!(X), so that every h € H*(X,C)

can be uniquely written as h = ze?? 4 ye!'! 4 2¢%2.
Then clearly h® = y[y*(e'!)? + 6zz(e20 - ! - €92)].

We now realize the cubics of types 7) - 10). These cubics are degenerate,
i.e. they are cones, and therefore their Hessians vanish identically. From
section 4.3 we know that they can not be realized by Kahlerian 3-folds.

Proposition 20: The plane cubics of types 7) - 10) can all be realized by
I-connected, non-Kdhlerian 3-folds.

Proof: ‘Cubics’ of type 10) can be realized by elliptic fibre bundles over
surfaces Y with by(Y') = 5. In order to realize cubics of type 9) or 7) one
blows up one or two points in an elliptic fibre bundle over a surface with
by = 4 or 3 respectively. The realization of a type 8) cubic is a little trickier:
One starts with an elliptic fibre bundle over a surface ¥ with b,(Y) = 3,
and blows up one of its fibers. The resulting 3-fold X’ has b;(X') = 2
and Fx. = 0. Now choose a line | in the exceptional divisor £ of X',
and let X be the blow-up of X’ along [. The cup-form of X yields the
cubic polynomial ?[y(—3!- E) — z(degNg,x+)] with a non-zero coefficient
=-3l-F =3.

There are four types of complex cubics which we have been able to realize
by projective 3-folds.

Proposition 21: Cubics of type 1), 8), 4{) and 6) are realizable by 1-
connected projective 3-folds.

Proof: Type 1) occurs for blow-ups of complete intersections in two distinct
points. The product P! x P* x P! realizes a triangle, whereas most projective
bundles over a surface with b; = 2 lead to a smooth conic union a trans-
versal line.

Irreducible cubics with a cusp can be obtained by blowing-up a line and a
point in P2. The resulting 3-fold yields the cubic polynomial X3 —3XY¥Y?%—
N34+ 2= (X + V)X =2Y)+ 25

The remaining two types of cubics are cubics with a node (type 2)), and
smooth conics with tangent a line (type 5)). We do not know if these types
are realizable by projective 3-folds. A non-Kahlerian 3-fold whose cup-form
yields a nodal cubic can be constructed: one just takes the blow-up of two
suitable curves in Oguiso’s Calabi-Yau 3-fold with b, = 1 and vanishing
cup-form.
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Finally we like to show that the non-emptiness condition on the index
cone of a projective 3-fold with h%% = 0 gives non-trivial restrictions for
the possible cup-forms if b, > 4. Further investigations of this condition
will appear elsewhere.

Example 17: Let H be a free Z-module of rank 4 with basis (e;)j=1. 4.
Consider a trilinear form F € S®HY and its adjoint map F' : H —

S?HY. The image F'(h) of an element h € H is in terms of the chosen

hasts (€;)i=1...4 represented by the symmetric 4 X 4-matrix [[hf—'r‘ei”i,j=1,,_,,4-
ij=12 ® llhexer]], g 4 such
that the determinants of both 2 x 2-matrices are negative for every h €
H ~ {0}.

In this case F*(h) were of signature (1,-1,1,-1) for every h € H ~ {0}, and
we would have Ir = Hp = §.

All these conditions can be met, e.g. by setting efe; = €3 = eley = €3 =
1,e1e2 = eze? = 2, and e;e;er = 0 otherwise. In this particular case the
image of h = Z?:l hie; under F! in represented by the matrix

- -

hq hy + 2h,

hy + 2h, 2hy + hy

hy hs+2hg |’

I hs +2hy  2hs+ hy |

which has a positive determinant unless A = 0.
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