
SIMPLICIAL CONSTRUCTIONS ASSOCIATED WITH S2

ROMAN MIKHAILOV

Abstract. Certain well-known facts from the theory of homotopy groups of spheres are con-

sidered from the point of view of commutator calculus in free groups and Lie algebras. The

Leibniz analogs of the homotopy groups of the 2-sphere are considered.

1. Homotopy groups of the 2-sphere and group theory

1.1. Milnor’s F [S1]-construction. For the n-sphere Sn there are at least two classical ways
how to associate a simplicial group whose homotopy groups will give the homotopy groups
π∗(S

n). The first one is Kan’s construction GSn, the second one is Milnor’s construction
F [Sn] with geometric realization |F [Sn]| weakly homotopically equivalent to the loop space
ΩΣSn = ΩSn+1. Different cell decompositions of Sn define different simplicial groups GSn,
which are, of course, weakly equivalent. The simplest construction of this kind from the point
of view of simplicial structure is clearly GS2 associated with cell decomposition Sn = ∗ ∪ en.
Recall that, for a given pointed simplicial set K, the F [K]-construction is the simplicial group
with F [K]n = F (Kn \ ∗), where F (−) is the free group functor.

Consider the simplicial circle S1 = ∆[1]/∂∆[1]:

S1
0 = {∗}, S1

1 = {∗, σ}, S1
2 = {∗, s0σ, s1σ}, . . . , S

1
n = {∗, x0, . . . , xn},

where xi = sn . . . ŝi . . . s0σ. The F [S1]-construction then clearly has the following terms:

F [S1] = 0,

F [S1]1 = F (σ), free abelian group generated by σ,

F [S1]2 = F (s0σ, s1σ),

F [S1]3 = F (sisjσ | 0 ≤ j ≤ i ≤ 2),

. . .

The face and degeneracy maps are determined naturally (with respect to the standard sim-
plicial identities) for these simplicial groups. For example, the first nontrivial maps are defined
as follows:

∂i : F [S1]2 → F [S1]1, i = 0, 1, 2,

∂0 : s0σ 7→ σ, s1σ 7→ 1,

∂1 : s0σ 7→ σ, s1σ 7→ σ,

∂2 : s0σ 7→ 1, s1σ 7→ σ.

The above construction gives a possibility to define the homotopy groups πn(S2) combinatori-
ally, in terms of free groups. Since the geometrical realization of F [S1] is weakly homotopically
equivalent to the loop space ΩS2, the homotopy groups πn(S2) are naturally isomorphic to
the homotopy groups of the Moore complex of F [S1]: πn+1(S

2) ' Zn(F [S1])/Bn(F [S1]). Here
1
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Zn and Bn denote the cycles and the boundaries of the Moore complex of the correspondent
simplicial group.

The explicit structure of the cycles and boundaries for F [S1] can be given in terms of certain
normal subgroups in F [S1]. This was realized by Jie Wu. Recall some notation from the work
[4]. For a free group F and its normal subgroups H1, . . . , Hn, denote

[[H1, . . . , Hn]] :=
∏

(i1,...,in)∈Sn

[Hi1 , . . . , Hin],

where the notation used is left-normalized. Let Fn be a free group with basis x0, x1, . . . , xn−1

and x−1 := x0x1 . . . xn−1. Then there are the following natural equalities:

Zn = 〈x−1〉
Fn ∩ 〈x0〉

F0 ∩ · · · ∩ 〈xn−1〉
Fn,

Bn = [[〈x−1〉
Fn, 〈x0〉

Fn, . . . , 〈xn−1〉
Fn]].

Hence, we have

πn+1(S
2) ' Zn/Bn, n ≥ 2.

The main goal of these notes is to make explicit commutator computations, searching generators
of the homotopy groups of S2 inside the Moore complex of F [S1] and related constructions.
The first step n = 2 is almost trivial. One can check that

Z2 = γ2(F2), B2 = γ3(F2),

where F2 is a free group of rank 2. Hence

π3(S
2) ' γ2(F2)/γ3(F2) ' Z

and the generator of π3(S
2) is the commutator of two generators of F2.

1.2. Hopf fibration. The Hopf fibration S3 → S2 has a fibre S1, hence, it induces isomor-
phisms of homotopy groups in dimension greater than 2. By Hopf fibration from the point of
view of Milnor’s F -construction we mean a homomorphism of simplicial groups

η : F (S3) → F (S2),

which induces an isomorphism

η∗ : π2(F (S3)) → π2(F (S2)).

Since π3(F (S3)) can be viewed as a coset of σ, but π3(F (S2)) as a coset of [s0σ, s1σ], we can
define η at the first nontrivial level as

η : F (S3)3 → F (S2)3, σ 7→ [s0σ, s1σ]

and extend it naturally

η : F (S3)4 → F (S2)4, siσ 7→ [sis0σ, sis1σ]

etc. Clearly, the constructed η has the needed property.
Define the words wn, n ≥ 2 in abstract variables y0, y1, . . . by setting w2(y0, y1) = [y0, y1] and

inductively:

wn+1(y0, . . . , yn) = [wn(y0, y1, y2, . . . , yn−1yn), wn(y0, y1, . . . , yn−1)].
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For example, we have

w2(y0, y1) = [y0, y1],

w3(y0, y1, y2) = [[y0, y1y2], [y0, y1]],

w4(y0, y1, y2, y3) = [[[y0, y1y2y3], [y0, y1]], [[y0, y1y2], [y0, y1]]].

It is easy to show that

wn(x0, . . . , xn−1) ∈ Zn, n ≥ 2.

These elements represent η-elements in πn(S2). Consider the element w3(x0, x1, x2) ∈ F3 mod-
ulo B3:

w3(x0, x1, x2) = [[x0, x1x2], [x0, x1]] = [[x0x1x2, x1x2]
(x1x2)−1

, [x0, x1]] =

[[x0x1x2, x2]
(x1x2)−1

[x0x1x2, x1]
x−1

1 , [x0, x1]] =

[[x0x1x2, x2]
(x1x2)−1

, [x0, x1]]
[x0x1x2,x1]

x
−1
1 [[x0x1x2, x1]

x−1

1 , [x0, x1]] ≡

[[x0x1x2, x1]
x−1

1 , [x0, x1]] = [[x0x1x2, x1]
x−1

1 , [x0, x1x2]
x−1

2 [x0, x2]
−x−1

2 ] ≡

[[x0x1x2, x1]
x−1

1 , [x0, x1x2]
x−1

2 ] = [[x0, x1]
x1x2x−1

1 [x1x2, x1]
x−1

1 , [x0, x1x2]
x−1

2 ] =

[[x0, x1]
x1x2x−1

1 [x2, x1]
x−1

1 , [x0, x0x1x2]
x−1

2 ] ≡ [[x0, x1]
x1x2x−1

1 , [x0, x0x1x2]
x−1

2 ] ≡

[[x0, x1], [x0, x0x1x2]
x−1

2 ] ≡ [[x0, x1], [x0, x0x1x2]] =

[[x0, x1], [x0, x1x2]] = w3(x0, x1, x2)
−1.

Hence, the element w3(x0, x1, x2) is of order 2 modulo B3 and we have the well-known result
first due to Whitehead:

π4(S
2) ' Z2.

Analogically, one can prove that wn(x0, x1, . . . , xn−1) has the order 2 modulo Bn.
We know from homotopy theory the following fact.

For n = 3, 4, the group Zn/Bn is cyclic and generated by wn(x0, . . . , xn−1)Bn.

However, the purely algebraic proof of this statement is nontrivial.

1.3. From free groups to free Lie algebras. Clearly, Lie algebras are much more convenient
from the point of view of commutator calculus than groups. It follows from the simplification
of main commutator identities in groups:

[ab, c] = [a, c]b[b, c]  [a + b, c] = [a, c] + [b, c];

[a, bc] = [a, c][b, c]a  [a, b + c] = [a, b] + [a, c];

[a, b−1, c]b[b, c−1, a]c[c, a−1, b]a = 1  [a, b, c] + [b, c, a] + [c, a, b] = 0.

For a given group G, denote by {γn(G)}n≥1 the lower central series of G. Recall that a
simplicial group G (or simplicial Lie algebra) is called connected if G0 = 1 (resp. G0 = 0). The
following result is due to Curtis [2].

Theorem 1. Let F be a connected simplicial group or Lie algebra (over Z) then γr(F ) is
log2r-connected.

Let L : Gr → Lie be the Lie-functor:

L : G 7→
⊕

i≥1

γi(G)/γi+1(G).
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Clearly, this functor can be extended to the functor between categories of simplicial groups and
simplicial Lie algebras.

Theorem 2. Let F be a connected free simplicial group. Then there are natural isomorphisms
of abelian groups:

πi(F ) ' πi(L(F )), i ≥ 1,

where L(F ) is a free simplicial Lie algebra, constructed functorially from F .

Proof. Let us prove by induction on n, that there are the natural isomorphism of abelian groups

(1.1) πi(F/γn(F )) ' πi(L(F )/Ln(F )), i ≥ 1, n ≥ 2.

First, due to Magnus-Witt and Hall’s theorems, we have the natural isomorphsim of abelian
simplicial groups

γn(F )/γn+1(F ) ' Ln(F )/Ln+1(F )

and (1.1) follows for n = 2. Suppose we have the natural isomorphisms (1.1) for a given n. Then
the isomorphism for (1.1) follows from the natural commutative diagram of abelian groups:

πi(γn(F )/γn+1(G)) −−−→ πi(G/γn+1(F )) −−−→ πi(G/γn(G))
∥

∥

∥





y

∥

∥

∥

πi(L
n(F )/Ln+1(F )) −−−→ πi(L(F )/Ln+1(F )) −−−→ πi(L(F )/Ln(F )).

Theorem 1 implies that there are the natural isomorphisms:

πi(F ) ' πi(F/γr(F )), πi(L(F )) ' πi(L(F )/Lr(F )), i < log2r,

�

The same way as for a group, for a given Lie algebra and its ideals I1, . . . , In, define

[[I1, . . . , In]] =
∑

(i1,...,in)∈Sn

[Ii1 , . . . , Iin ].

Let Ln be a free Lie algebra over Z with basis x0, . . . , xn+1. Denote

x−1 = x0 + x1 + · · ·+ xn−1

and Ii the ideal in Ln, generated by xi, i = −1, 0, . . . , n − 1. Define the ideals:

Zn = I−1 ∩ I0 ∩ · · · ∩ In−1,

Bn = [[I−1, I0, . . . , In−1]].

(We use the same notation as in the case of free groups.)

2. Computation of π4(S
2)

Consider a free Lie algebra L3 with basis x0, x1, x2. Curtis Theorem 1 together with Milnor’s
F -construction give the following description of the fourth homotopy group of S2:

π4(S
2) ' Z3/(B3 + L5

3).

Let us compute this quotient.

Theorem 3. Z3/(B3 + L5
3) ' Z2.
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Proof. Let w ∈ Z3. Clearly, w ∈ [[I0, I1, I2]] ∈ L3
5. Suppose w /∈ L4

5. Then w can be written as

w ≡ a1[x0, x1, x2] + a2[x1, x2, x0] mod L4
3.

Taking the quotient of L3 by the ideal I−1 = 〈x0 + x1 + x2〉L3. We get

−a1[x0, x2, x2] − a2[x0, x2, x0] ∈ L4
2, a1, a2 ∈ Z,

where L2 is a free Lie algebra with generators x0, x2. Hence, a1, a2 = 0, since [x0, x2, x2], [x0, x2, x0]
are Hall’s basis commutators. We conclude that w ∈ L4

3.
Hall basis theorem says that L4

3/L
5
3 is a free abelian group freely generated by the following

set of basic commutators:

e1 = [x2, x0, x0, x1], e2 = [x2, x0, x1, x1], e3 = [x1, x0, x2, x2],

e4 = [x1, x0, x0, x2], e5 = [x1, x0, x1, x2], e6 = [x2, x0, x1, x2],

e7 = [[x2, x0], [x1, x0]], e8 = [[x2, x1], [x1, x0]], e9 = [[x2, x1]], [x2, x0]],

e10 = [x2, x1, x1, x1], e11 = [x1, x0, x0, x0], e12 = [x2, x0, x0, x0],

e13 = [x1, x0, x1, x1], e14 = [x1, x0, x0, x1], e15 = [x2, x0, x2, x2],

e16 = [x2, x0, x0, x2], e17 = [x2, x1, x2, x2], e18 = [x2, x1, x1, x2].

It is easy to see that

e7 ≡ e8 ≡ e9 ≡ −e7 ≡ −e8 ≡ −e9 mod B3 + L5
3

and e7 ∈ Z3. Suppose w is not equivalent to e7 modulo B3 + L5
3. Then w modulo 〈e7〉B3 + L5

3

can be written as

w ≡

6
∑

i=1

aiei mod 〈e7〉 + B3 + L5
3, ai ∈ Z.

Observe that

e5 ≡ −e6 mod B3,

e4 ≡ −e5 − e3 mod B3,

e1 ≡ −e2 − e6 mod 〈e7〉 + B3.

Therefore,

w ≡ b1e2 + b2e3 + b3e6 mod 〈e7〉 + B3 + L5
3.

Taking the quotient of L3 by I−1, we get

(2.1) −b1[x2, x1, x1, x1] − b2[x1, x2, x2, x2] − b3[x2, x1, x1, x2] ∈ L5
2,

where L2 is a free Lie algebra with generators x1, x2. The commutators in (2.1) present different
basic commutators, hence b1, b2, b3 = 0 and therefore,

w ∈ 〈e7〉 + B3 + L5
3.

Now let us prove that

[[x0, x2], [x0, x1]] /∈ B3 + L5
3.
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It is easy to check that B3 modulo L5
3 is generated by the following elements:

α1 = [x0 + x1 + x2, x0, x1, x2], α2 = [x0 + x1 + x2, x0, x2, x1],

α3 = [x0 + x1 + x2, x1, x0, x2], α4 = [x0 + x1 + x2, x1, x2, x0],

α5 = [x0 + x1 + x2, x2, x0, x1], α6 = [x0 + x1 + x2, x2, x1, x0],

α7 = [x0, x1, x0 + x1 + x2, x2], α8 = [x0, x2, x0 + x1 + x2, x1],

α9 = [x1, x2, x0 + x1 + x2, x0].

These elements can be written modulo L5
3 in terms of Hall’s basis in the following way:

α1 = e5 + e6,

α2 = e5 + e6 − e8 − e9,

α3 = −e3 + e4 + e6 + e7 + e9,

α4 = −e3 − e4 + e6 + e7 + e9,

α5 = −e1 − e2 + e5 − e8,

α6 = −e1 + e5 − e7 − 2e8,

α7 = −e3 − e4 − e5,

α8 = −e1 − e2 − e6 + e9,

α9 = −e1 + e2 + e3 + e4 − e5 − e6 − 2e7 − e9.

Define the ideal
D := 〈e2, e3, e4, e5, e6, e7 + e8, e8 + e9, 2e7〉L3.

Then B3/(D+L5
3) = 〈α1, . . . , α9〉L3/(D+L5

3) is a free abelian group generated by element e1+e7.
Hence e7 is nontrivial in B3/(D+L5

3) and the needed statement follows, since [[x0, x2], [x0, x1]] =
e7. �

3. Elements vn

The same way as for the words wn(y0, . . . , yn−1) in free groups, we define the words vn(z0, . . . , zn−1)
in free Lie algebras, by setting

v2(z0, z1) = [z0, z1],

v3(z0, z1, z2) = [[z0, z2], [z0, z1]],

v4(z0, z1, z2, z3) = [[[z0, z3], [z0, z1]], [[z0, z2], [z0, z1]]],

vn+1(z0, . . . , zn) = [vn(z0, . . . , zn−2, zn), vn(z0, . . . , zn−1)].

Obviously, in a free Lie algebra Ln:

vn(x0, . . . , xn−1) ∈ Zn, vn(x0, . . . , xn−1)
2 ∈ Bn.

The situation with these elements is very interesting from the algebraic point of view:

v2(x0, x1) /∈ B2,

v3(x0, x1, x2) /∈ B3,

v4(x0, x1, x2, x3) /∈ B4,

v5(x0, x1, x2, x3, x4) /∈ B5,

v6(x0, x1, x2, x3, x4, x5) ∈ B6!
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It seems to be very strange from the algebraic point of view! The reason for that is that the
composition of η-maps:

S7 → S6 → S5 → S4 → S3 → S2

is null-homotopical. This is an algebraic interpretation of the simplest case of Nishida’s Nilpo-
tency Theorem.

4. 3-torsion of π6(S
2)

Let L5 be a free Lie algebra over Z with generators x0, x1, x2, x3, x4. Consider the following
ideals: Ii is the ideal in L5, generated by xi, i = 0, . . . , x4, I5 is the ideal in L5, generated by
the element x0 + x1 + x2 + x3 + x4 + x5. We know from the homotopy theory that

(4.1) π6(S
2) '

I−1 ∩ · · · ∩ I4

[[I−1, . . . , I4]]
' Z12.

The construction of the 3-torsion element in the above quotient seems to be non-trivial. Con-
sider the following element in L5:

Ψ :=[[x0, x1], [x0, x2], [x3, x4]] + [[x0, x3], [x0, x1], [x2, x4]]+

[[x0, x1], [x0, x4], [x2, x3]] + [[x0, x2], [x0, x3], [x1, x4]]+

[[x0, x4], [x0, x2], [x1, x3]] + [[x0, x3], [x0, x4], [x1, x2]].

The fact that Ψ ∈ I0 ∩ I1 ∩ I2 ∩ I3 ∩ I4 is obvious. Let us check that Ψ ∈ I−1. Taking the
quotient by I−1, we have the following image of Ψ:

Ψ̄ = − [[x0, x1], [x0, x2], [x3, x0 + x1 + x2]] − [[x0, x3], [x0, x1], [x2, x0 + x1 + x3]]−

− [[x0, x1], [x0, x2 + x3], [x2, x3]] − [[x0, x2], [x0, x3], [x1, x0 + x2 + x3]]−

− [[x0, x1 + x3], [x0, x2], [x1, x3]] − [[x0, x3], [x0, x1 + x2], [x1, x2]] =

[[x0, x1], [x0, x2], [x0, x3]] + [[x0, x3], [x0, x1], [x0, x2]] + [[x0, x2], [x0, x3], [x0, x1]] = 0.

The element Ψ is the natural candidate for the role of the 3-torsion in (4.1).
One can generalize the construction of the element Ψ and define for a given n ≥ 2 the element

Ψn on 2n + 1 generators x0, . . . , x2n, which is the sum of the elements of the form

[[∗, ∗], [∗, ∗], . . . , [∗, ∗]],

and which lies in the intersection of the ideals

I−1 ∩ · · · ∩ I2n+1

in the free Lie algebra L2n+1. For the prime n+1, such elements are natural candidates for the
generators of the p-torsion of the homotopy group π2p(S

2), which is non-trivial due to Serre.

5. Mod-2 case: unstable Adams spectral sequence

The case of mod-p homotopy groups of connected simplicial groups is much simpler. For that
reason one can use so-called unstable Adams spectral sequence, introduced in [1]. The general
description of E1-term as Λ-algebra in [1] gives a possibility to describe the lower generators
in terms of commutators in free groups. In this section for a given group G, {γn,2(G)} denote
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the mod-2 lower central series of G, where γn2
(G) is defined as the normal closure in G of the

left-normalized brackets [a1, . . . , as]
2t

with s2t ≥ n. The mod-2 Lie functor now is the mod-2
lower central quotient.

Consider the unstable Adams spectral sequence for S2 from [1]. The first term E1(S2) can
be described as the (mod-2) Lie-functor applied to arbitrary free abelian simplicial K(Z, 1) :

E1
p,q(S

2) = πq(L
p(AK(Z, 1))) =⇒ πq+1(S

2, 2).

One can take Lp(AK(Z, 1))) = γ2p,2(GS2)/γ2p+1,2(GS2). By [1] we have the description of the
structure of E1(S2) in terms of generators of the Λ-algebra. In terms of these generators
(denoted by λi) we have:

π3(S
2, 2) is generated by λ1 ∈ π2(γ2,2(GS2)/γ4,2(GS2)),

π4(S
2, 2) is generated by λ1 ◦ λ1 = λ1 ◦ Σλ1 ∈ π3(γ4,2(GS2)/γ8,2(GS2)) (Σ is suspension),

π5(S
2, 2) = E∞

3,4(S
2) ⊕ E∞

4,4(S
2), where E∞

3,4(S
2)(= 0) is generated by

λ1 ◦ λ2 ∈ π4(γ4,2(GS2)/γ8,2(GS2)),

E∞
4,4(S

2) is generated by λ1 ◦ λ1 ◦ λ1 = λ1 ◦ Σλ1 ◦ Σ2λ1 ∈ π4(γ8,2(GS2)/γ16,2(GS2)),

π6(S
2, 2) is generated by λ1 ◦ λ1 ◦ λ1 ◦ λ1 = λ1 ◦ Σλ1 ◦ Σ2λ1 ◦ Σ3λ1 ∈ π5(γ16,2(GS2)/γ32,2(GS2)),

together with λ1 ◦ λ2 ◦ λ1 = λ1 ◦ λ2 ◦ Σ3λ1 ∈ π5(γ8,2(GS2)/γ16,2(GS2)),

λ1 ◦ λ1 ◦ λ2 = λ1 ◦ Σλ1 ◦ Σλ2 ∈ π5(γ8,2(GS2)/γ16,2(GS2))

On the commutator language the elements λ1, λ1 ◦ λ1, λ1 ◦ λ1 ◦ λ1, etc can be presented by
commutators

[x0, x1], [[x0, x1], [x0, x2]], [[[x0, x1], [x0, x3]], [[x0, x1], [x1, x2]]], . . .

These are suspensions over Hopf, therefore, they are nontrivial in π3, π4, π5, π6. Direct compu-
tations give the following structure of the representatives of the above elements:

λ1 ◦ λ2 = [[x0, x1], [x2, x3]] − [[x0, x2], [x1, x3]] + [[x0, x3], [x1, x2]],

λ1 ◦ λ1 ◦ λ2 = [[[x0, x1], [x0, x2]], [[x0, x3], [x0, x4]]] − [[[x0, x1], [x0, x3]], [[x0, x2], [x0, x4]]]

+ [[[x0, x1], [x0, x4]], [[x0, x2], [x0, x3]]].

λ1 ◦ λ2 ◦ λ1 = [[[x0, x1], [x2, x3]], [[x0, x1], [x2, x4]]] − [[[x0, x2], [x1, x3]], [[x0, x2], [x1, x4]]]

+ [[[x0, x3], [x1, x2]], [[x0, x4], [x1, x2]]]

6. Leibniz homotopy groups

Let R be a commutative ring with identity. Recall that a (left) Leibniz algebra is an R-vector
space g equipped with a bilinear map [−,−] : g ⊗ g → g satisfying the identity:

[[x, y], z] = [x, [y, z]] − [y, [x, z]].

Clearly, Lie algebras are Leibniz algebras satisfying [x, x] = 0.
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We shall use the left-normalized notation. First observe that for any x, y ∈ g,

[x, x, y] = [x, [x, y]] − [x, [x, y]] = 0.

However, the identity [x, [x, x]] = 0 does not follow.
Let R = Z. Consider the cyclic Lebniz algebra, generated by single element x:

L1 = 〈x〉.

Proposition 1. The set of right-normalized commutators:

x, [x, x], [x, [x, x]], [x, [x, [x, x]]], [x, [x, [x, [x, x]]]], . . .

form a Z-basis of L1.

Consider the Leibniz analogy Lei[S1] of Milnor’s F [S1]-construction. This is a simplicial
Leibniz algebra with L0 = 0, L1 - the cyclic Leibniz algebra and Ln - the n generated free
Leibniz algebra (all Leibniz algebras we consider over Z). The face and degeneracy maps can
be written naturally, the same way as for the case of simplicial Lie algebra’s analogy of F [S1].
We define Leibniz homotopy groups of S2 as

πLei
i (S2) = πi+1(Lei[S1]), i ≥ 1.

The homotopy groups of Lei[S1] are defined naturally through its Moore complex. It is not
clear, however, that these are abelian groups.

For a given Leibniz algebra L and two its ideals H, K, define the ideal

[H, K] := 〈[x, y], [y, x], x ∈ H, y ∈ K〉.

Then for ideals H1, . . . , Hn in L, define inductively

[H1, . . . , Hn] := [[H1, . . . , Hn−1], Hn] + [Hn, [H1, . . . , Hn−1]]

and

[[H1, . . . , Hn]] = ⊕(i1 ,...,in)∈Sn
[Hi1 , . . . , Hin].

The second term of our simplicial Leibniz algebra is L2, a free Leibniz algebra with two
generators x0 and x1. We have three homomorphisms:

∂i : L2 → L1, i = 0, 1, 2,

∂0 : x0 7→ 0, x1 7→ x,

∂1 : x0 7→ x, x1 7→ x,

∂2 : x0 7→ x, x1 7→ 0.

By definition, the second Leibniz homotopy is

πLei
2 (S2) := L1/im(∂0 : ker(∂1) ∩ ker(∂2) → L1).

Proposition 2.

ker(∂1) ∩ ker(∂2) = 〈x0 − x1〉 ∩ 〈x1〉

is the ideal in L2, generated by brackets

[x0 − x1, x1], [x1, x0 − x1].
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Clearly, both brackets [x0 − x1, x1], [x1, x0 − x1] after applying ∂0, go to the element [x, x].
Thus, we have

πLei
2 (S2) = 〈x〉/〈[x, x]〉 ' Z

That is, the second Leibniz homotopy group coincides with classical one.
Now let us make the next step. Take L3, a free Leibniz algebra with generators x0, x1, x2 and

consider four homomorphisms

di : L3 → L2, i = 0, 1, 2, 3,

d0 : x0 7→ x0, x1 7→ 0, x2 7→ x1,

d1 : x0 7→ x0, x1 7→ x1, x2 7→ x1,

d2 : x0 7→ x0, x1 7→ x1, x2 7→ x0,

d3 : x0 7→ 0, x1 7→ x1, x2 7→ x0.

These homomorphisms naturally correspond to the face maps in F [S1]. By definition,

πLei
3 (S2) :=

ker(∂1) ∩ ker(∂2) ∩ ker(∂3)

im(d0 : ker(d1) ∩ ker(d2) ∩ ker(d3) → L2)
.

Proposition 3. Leibniz cycle

ker(∂0) ∩ ker(∂1) ∩ ker(∂2) = 〈x0〉 ∩ 〈x1〉 ∩ 〈x0 − x1〉

is the ideal in L2, generated by elements

[x0, x1, x0], [x0, x1] − [x1, x0](6.1)

and the ideal [[〈x0〉, 〈x1〉, 〈x0 − x1〉]].

Now consider the ”Leibniz boundaries”. We have the following:

Proposition 4. In L3:

ker(d1) = 〈x1 − x2〉, ker(d2) = 〈x0 − x2〉, ker(d3) = 〈x0〉.

ker(d1) ∩ ker(d2) ∩ ker(d3)

is the ideal in L3 equal to

[[〈x0〉, 〈x1 − x2〉, 〈x0 − x2〉]].

Clearly, the image of [[〈x0〉, 〈x1 − x2〉, 〈x0 − x2〉]] under the map d0 is the ideal

[[〈x0〉, 〈x1〉, 〈x0 − x1〉]]

in L2. Therefore, we have

Corollary 1.

πLei
3 (S2) ' Z ⊕ Z.

The generators of this group in L2 can be written, for example, as [x0, x1, x0] and [x0, x1] −
[x1, x0].

Probably, the general Leibniz homotopy group can be written in style of Wu formula:

(6.2) πLei
n+1(S

2) =
〈x0〉 ∩ . . . 〈xn〉 ∩ 〈x0 + · · ·+ xn〉

[[〈x0〉, . . . , 〈xn〉, 〈x0 + · · ·+ xn〉]]

in the free Leinbiz algebra with generators x0, . . . , xn. Furthermore, we can take (6.2) as a
definition of Leibniz homotopy groups. Note that the concept of Leibniz sphere as a certain
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differential graded Leibniz algebra was considered in [3]. However, the approach described in
[3] is completely different from one given here.

The following question rises naturally: what is πLei
4 (S2)? In any case, we need elements w

from L3, such that

w ∈ 〈x0〉 ∩ 〈x1〉 ∩ 〈x2〉 ∩ 〈x0 + x1 + x2〉 \ [[〈x0〉, 〈x1〉, 〈x2〉, 〈x0 + x1 + x2〉]].

One candidate is the element

w = [[x0, x1], [x0, x2], x0],

which clearly lies in 〈x0〉 ∩ 〈x1〉 ∩ 〈x2〉 ∩ 〈x0 + x1 + x2〉.

7. Problems

1. It is known that 2-torsion of π6(S
2) is Z4 and the generator ν ′ is given by triadic Toda

bracket. It is also known that 2ν ′ = η ◦ η ◦ η ◦ η. That is, there exists an element v ′ of L5, such
that

2v′ ≡ v5(x0, x1, x2, x3, x4) mod B5.

Find v′ (Toda’s bracket (η3, 2i4, η4)).

2. Prove purely algebraically that v6(x0, x1, x2, x3, x4, x5) ∈ B6. It will give an algebraic prove
of the fact that η5 : S7 → S2 is null-homotopical.

3. One can define the Leibniz homotopy groups of Sn, n ≥ 2, changing free groups in F [Sn−1]
by free Leibniz algebras. Do we have an isomorphism πLei

i (S3) ' πLei
i (S2), i ≥ 3. What does

Leibniz analog of Hopf fibration mean?

4. Can one give an algebraic proof of Nishida’s Nilpotency Theorem using only Milnor’s F [Sn]-
construction and Curtis’ Theorem (Theorem 1)?

5. Compute πLei
n (S2) for n = 3, 4, 5.

6. Find an analog of Curtis Theorem for simplicial Leibniz algebras.

7. Does it make sense to define the analogs of homotopy groups of S2 using Jordan alge-
bras, Malcev algebras etc, ”algebras closed to associative”? It seems, that it is possible to
define an analog of πn(S2) for k-Lie (or k-Leibniz) algebras for k ≥ n − 1.

Acknowledgements. The author thanks V. Bardakov, H.-J. Baues, V. Vershinin and J. Wu for
discussions.
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