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Abstract

Let X be a smooth polarized algebraic surface over the compex number field. We discuss the invariants
obtained from the moduli stacks of semistable sheaves of arbitrary ranks on X. For that purpose, we
construct the virtual fundamental classes of some moduli stacks, and we show the transition formula of the
integrals over the moduli stacks of the J-stable Bradlow pairs for the variation of the parameter d.

Then, we study the relation among the invariants. In the case p, = dim H*(X,Ox) > 0, we show that
the invariants are independent of the choice of a polarization of X. We also show that the invariants can
be reduced to the invariants obtained from the moduli of abelian pairs and the Hilbert schemes. In the
case pg = 0, we obtain the weak wall crossing formula and the weak intersection rounding formula, which
describes the dependence of the invariants on the polarization.
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1 Introduction

1.1 Problems

1.1.1 Construction of the invariants

Let X be a smooth projective surface with an ample line bundle Ox (1) over the complex number field C. We
assume that X is simply connected in Introduction, for simplicity. Let y be an element of the cohomology group
H*(X,Q), which is the Chern character of a torsion-free coherent sheaf F on X. Let a be the first Chern
class determined by y. We take a line bundle £, on X such that ¢;(£,) = a. An oriented torsion-free sheaf
on X of type y is defined to be a coherent torsion-free sheaf E such that ch(E) = y with an isomorphism
p:det(E) ~ L,. Let M**(y) (resp. M?*(y)) denote the moduli stack of the semistable (resp. stable) oriented
torsion-free sheaves of type y. One of our main problems is the following.

Problem 1.1 Construct an invariant from the moduli stack M?>*(y)

A~



Let E* denote the universal sheaf over M (¥) x X. Let @ = P(E“) be a polynomial of the slant products
ch;(E™)/b for elements b € H*(X) and i € Z> . Naively speaking, we would like to obtain the number:

d(y) = /MSS(A) D = deg(@ N [MSS(@]) (1)

Namely, we would like to obtain the 0-cycle by taking the cap product of ® and the fundamental class [M(7)],
and we would like to obtain the number by taking the degree of the 0-cycle.
There are two main problems to make (1) well-defined.

(A) The moduli stack M?*3(y) is not smooth, and hence it does not have the natural fundamental class, in
general.

(B) Even if M**(¥) is smooth, the moduli stack M**(¥) is not Deligne-Mumford, in general. In such a situation,
there are no known satisfactory definition of the degree of 0-cycles, or in other words, the push forward
of cycles.

Remark 1.2 We do not give detail in Introduction about how we consider the cohomology and the evaluation
on the Deligne-Mumford stacks. See the subsection 7.1. |

Remark 1.3 The construction of such invariants was also discussed in [36] for real 4-dimensional manifolds
from the differential geometric view point. |

1.1.2 Virtual fundamental classes

The problem like (A) was well discussed and established in the course of their study of Gromov-Witten invariants
([5], [39], [16]). In this paper, we follow the method of Behrend and Fantechi ([5]). Namely, we will show that
some interested moduli stacks are naturally provided with the perfect obstruction theories in the sense of [5].
(We will review the obstruction theory in the subsubsection 2.4.1.) And, we will obtain the virtual fundamental
classes. Such an obstruction theory may be well known, perhaps. For example, it is a standard fact that the
first cohomology group H'(X, End(E)) gives the space of the infinitesimal deformations, and that the second
cohomology group H?(X, End(E)) gives the space of the obstruction, for any vector bundle E on X. However,
the author does not know an appropriate reference to deal with the obstruction theory in the sense of [5] for the
moduli stacks of reduced oriented L-Bradlow pairs and the master spaces, which is available for our arguments
using the localization. Thus, we give a detailed argument in the section 5.

Remark 1.4 Recently, the theory of “derived stacks” has been developed, which seems to provide us a general
and powerful tool to construct obstruction theories for some stacks. (See [56] for an overview of the theory.) For
example, the results in [57] implies the construction of the obstruction theory of the moduli stack of semistable
sheaves. It is not clear to the author, at the present moment, whether we can directly apply their results to
the moduli stacks of semistable oriented reduced L-Bradlow pairs and the master spaces. But, it would be quite
hopeful to construct the obstruction theory of such stacks and to redo the argument in this paper, from that point
of view. The author would like to come back to this problem in future.

However, the author also expects that we will obtain the same “invariants”, even if we adopt the other way
of the construction of the obstruction theories. (See the subsubsection 1.7.1.) 1

1.1.3 A naive idea for the construction of the invariants

To discuss the problem (B), we recall L-Bradlow pair and reduced L-Bradlow pair. Let L be a line bundle on
X. Let U be a scheme, and let E be a torsion-free sheaf on X, which is flat over U. A morphism ¢ : p% L — E
is called an L-section. Such a pair (E, ¢) is called an L-Bradlow pair.

Let M be a line bundle on U, and let [¢] be a morphism p% L ® pj; M — E such that [¢]|1,)xx 7# 0 for any
uw € U. Such a pair (M, [¢]) is called a reduced L-section, and a pair (E, (M, [¢])) is called a reduced L-Bradlow
pair. We will often omit to denote M, for simplicity.

Let PP" denote the set of polynomials & such that deg(§) < 1 and §(t) > 0 for any sufficiently large ¢. Let
0 be any element of P. Recall that the d-semistability and §-stability conditions are defined for L-Bradlow



pairs and reduced L-Bradlow pairs. (See the subsubsection 3.3.1.) We use the notation M*%(y, L,J) (resp.
M3 (y, L,0)) to denote the moduli stack of the semistable (resp. stable) L-Bradlow pairs of type y. We also use
the notation M?**(y, [L], d) (resp. M*(y,[L],d)) to denote the moduli stack of the d-semistable (resp. d-stable)
oriented reduced L-Bradlow pairs of type y.

We say that ¢ is critical, if M*®*(y, [L],0) = M*(y, [L], ) does not hold. It can be shown that there are only
finitely many critical parameters. For a non-critical parameter ¢, the moduli stack M**(y,[L],d) is Deligne-
Mumford. Moreover, it is naturally provided with the perfect obstruction theory. Therefore, we have the
integrals of cohomology classes on M**(y, [L], d).

Let us consider the case L = O(—m). If § is sufficiently small, it is non-critical, and we have the naturally
defined morphism 7 : M?*$(g, [O(—m)],d) — M?*3(y). It is easy to observe that the morphism 7 is smooth,
if m is sufficiently large. The relative tangent bundle is denoted by Tre;. We put Hy(m) := fx Td(X) -y -
ch(O(m)), which is same as dim H°(X, E(m)) for any (E,p) € M**(3). We regard M**(y, [O(—m)],d) as a
good approximation of M**(y), and we would like to put as follows:

(I) . Eu(Trel)

o) = | Bu(Tzat)
Mg o-me)  Hylm)

(2)

Needless to say, we should ask the following;:
(C) Is (2) independent of the choice of m?

In the case M**(3) = M?(%), the morphism 7 is P#+(™) =L hundle. Hence (2) is independent of the choice
of m, and it is compatible with the ordinary definition. We will obtain the affirmative answer of (C'), in general.

1.1.4 Motivation of the study

The Donaldson invariants for smooth projective surfaces can be obtained from the moduli spaces of semistable
sheaves of rank 2. It is natural to ask what invariants are obtained from the moduli stacks of semistable sheaves
of higher ranks. That is one of our motivations for the study.

Donaldson invariant has been studied intensively since the 1980s, motivated by the application to the
topology of real four dimensional manifolds. Nowadays, it is believed that the topological information contained
in Donaldson invariant can be obtained from only Seiberg-Witten invariant, essentially. Similarly, even if we
obtain the invariants from the moduli stacks of the objects with higher ranks, it is not so reasonable to expect
a new exciting application to topology.

However, it seems interesting to investigate the relation among the invariants. For example, we can ask the
following two problems, which are related with the Kotschick-Morgan conjecture and the Witten conjecture of
Donaldson invariant.

Problem 1.5 Clarify the dependence of ®(y) on the polarization Ox(1). |

Problem 1.6 Reduce ®(y) to the sum of the integrals over the products of the moduli spaces of the objects with
rank one.

As for Problem 1.5, we will show that ®(¥) is independent of the choice of Ox (1) in the case pgy > 0, and we
will obtain the weak wall crossing formula in the case p; = 0. As for Problem 1.6, we will give such a formula
in the case py > 0.

In principle, we can show the existence of the relations of the invariants as above, which are universal in some
sense. Moreover, we expect that they can be described in terms of good functions such as modular forms. The
author hopes that this work would, at least tentatively, provide a part of the foundation for such an interesting
study.

We will explain our main results in the next subsections.



1.2 Transition Formulas in the Simple Cases
1.2.1 The case where the 2-stability condition is satisfied

Let M(¥, [L]) denote the moduli stack of the oriented reduced L-Bradlow pairs of type y. We have the relative
tautological line bundle O,e(1) on M(7, [L]). (See the subsubsection 3.1.5 for the definition.) The restriction
to M*3(y,[L],0) is also denoted by Orei(1). Let w denote the first Chern class of Oyei(1). We consider the
cohomology classes which is described as a sum of cohomology classes of the following form:

® = P(EY) - .

If § is a non-critical parameter, i.e. M*3(y, [L],d) = M*(y,[L],0), we put as follows:

wmmﬁ:/ B
M= (3,[L],9)

Let § be critical. We take parameters _ < ¢ < d4 such that |6, — J| are sufficiently small. We would like to
describe the transition ®(y, [L],d+) — ®(¥, [L],0-) as the sum of the integrals over the products of the moduli
stacks of the objects with lower ranks. Such a description is called the transition formula.

If the following condition is satisfied, the problem is rather simple.

(2-stability condition) We say that the 2-stability condition holds for (y, L,d), if the automorphism group
of (E,¢) € M*35(y, L, 6) is {1} or Gy,.

To state the theorem, we need some preparation. Let 7ype denote the set of cohomology classes of X
obtained as the Chern character of some torsion-free sheaves on X. For any y € Type, the HO(X)-part is
denoted by rank(y). We have the Hilbert polynomial Hy(t) of y which satisfies the following for any integer m:

Hy(m) := /X Td(X) -y - ch(O(m)).

The reduced Hilbert polynomial H,/rank(y) is denoted by P,. When a parameter § is given, we put P?f =
(Hy, + 0)/rank(y). We put as follows:

S(y,0) == {(y1,42) € Type* |y1 +y2 =y, P =P) =Py}
For a given (y1,y2) € Type®, we put r; = ranky;. We put as follows:
M(yla §27 L7 6) = Mss(yla La 5) X MSS(%)

On M(y1,92, L,d) x X, we have the sheaf E}* which is obtained from the universal sheaf on M*%(y1, L,d) x X
via the natural projection. We also have the sheaf E; which is obtained from the universal sheaf on M*%(ga) x X
via the natural projection.

Let G, denote the one dimensional torus. Let e¥* denote the trivial line bundle with the G,-action of weight
w. We have the following element of the K-group of the G,,-equivariant coherent sheaves on M(y1, 92, L, d):

No(y1,y2) = —Rpx . (RHom(Bf-e ™!, By-em=20/72) ) = Rpx . (RHom(By -0/, Bir.e))
+ Rpx .« (Hom (L-e™*, By-en0/r2) ) (3)

Here, we put wy := ¢ (Or(E}))/r1, and et denotes Or(E{)®/™ formally.
As a special case of Theorem 7.12, we obtain the following theorem.

Theorem 1.7 Assume that the 2-stability condition holds for (y, L,d). Then, we have the following equality:

P(EY . et Eu ri(t—wi)/ra .tk
(B0 . ) @

®( [L],64) — @G [L,6-)= ) /M(yh@’L,é)ReS< Eu(Mo(y1,y2))

t=0
(y1,y2)€S(y,8)

In the case pg > 0 and rank(y,) > 1, the contributions from (y1,y2) are 0. |



The following condition is called the i-vanishing condition for (y, L,0):
(i-vanishing condition) We have H’(X,L~! ® E) =0 for any j > i and for any (E, ¢) € M*3(y, L, J).
The problem of the transition is comparatively simple as in the following proposition.

Proposition 1.8 Assume that the 2-stability condition and the 2-vanishing condition are satisfied for (y, L, ).
Then, the transition at ¢ is trivial in the case pg > 0, i.e., the equality ®(y,04) = ®(y,6-) holds. |

If the 1-vanishing condition holds for (y, L, §), we have the smooth morphism of M*®*(%, [L],d) to the moduli
stack M(A) of the oriented torsion-free sheaves of type y. The relative tangent bundle is denoted by Tye;. We

put Np(y) := [y Td(X) -y - ch(L™"), which is same as rank Tye; + 1. We will be interested in the following
mtegral
~ =~ Eu(Trel)
D4 (y, 6 ::/ oy, P, :=PFE") ———=
1( ) Me# (3.(L] 1 1 ( ) NL(y)

For (y1,y2) € S(y,d), we put as follows:
M (Y1, 2, [L], 0) := M (41, [L], 6) x M (1)

On M (41, Y2, [L],9), we have the sheaf E}‘ which is the pull back of the universal sheaf on M?**(y1,[L],d) x X
via the natural projection. Similarly, we have the sheaf Eﬁ‘ which is the pull back of the universal sheaf on
M?*3(y2) x X via the natural projection. Let e*'® denote the trivial line bundle with the G,,-action of weight
w. Let e"* denote the trivial line bundle on M(y1, Y, [L], §) with the G,-action of weight w. We have the
following element of the K-group of the G,,-equivariant coherent sheaves on M (1, Yz, [L],d):

—Rpx « (RHom (E{‘-e‘s/”, E;-es/”)) — Rpx « (RHom (E;-es/”, E{‘-e‘s/”))

Let Q(El . e’s/”,Eg . es/”) denote the equivariant Euler class. As a special case of Theorem 7.15, we obtain
the following.
Theorem 1.9 Assume that the 2-stability condition and the 1-vanishing condition hold for (y, L,d). In the case
pg > 0, we have ®(y, [L],04) = (Y, [L],6-). In the case pg =0, we have the following equality:

8@, [1),64) — @@ (L6 )= ) / Uy, 1)

(y1,y2)€5(y,0) M(Y1,792,[L],6

The cohomology classes W(y1,y2) are given as follows:

N, P(EY . eg—s/m @Eu_ s/ Eu(Ty .

Y(y1,92) = L) g ( 1 ¢ 2 1 © )\ Eu(Tire) )
NLly) =0\ Q(Ey-e~s/m, By - es/r2) Ni(y1)

Here, T} re1 denote the relative tangent bundle of the smooth morphism M?**(yy,[L],0) — M(y1). I

1.2.2 Reduced L-Bradlow pair

Let L = (L1, L2) be a pair of line bundles on X. Let U be a scheme, and let E be a U-torsion-free sheaf on
U x X which is flat over U. Let [@] be a pair ([¢1], [¢2]) of reduced L;-sections [¢;] of E such that [¢;]|(uyxx 7 0
for any u € U. Such a pair (E, [¢]) is called a reduced [L]-Bradlow pair. Let § = (61, d2) be an element of PPr 2.
We naturally have the notion of d-semistability and §-stability for reduced L-Bradlow pairs. Let M**(y, [L], d)
(resp. M*(7,[L],d)) denote the moduli stack of §-semistable (resp. d-stable) L-Bradlow pairs of type y. When
d; are sufficiently small, we have the morphism M?**(y, [L],d) — M**(7).

Let us move 0; by fixing d2. We say that d; is critical, if M?®*(y, [L],d) # M?*(y,[L],d) holds. As in the
subsubsection 1.2.1, we have the notion of 2-stability condition for (y,L,d) (Definition 3.58). When 4, are
sufficiently small, it can be shown that the 2-stability condition is always satisfied even if §; is critical, and we
have a good transition formula.



Assume that d; is critical. We take elements 6_, 4 € PP such that §_ < §; < d; and that |5, — 1| (k = £)
are sufficiently small. We put d, = (dx,02) for K = +. Let 7Y denote the relative tangent bundle of the

rel

smooth morphism of M?*$(y, [L],d,) to the moduli stack M (¥, [L2]) of reduced Ly-Bradlow pairs. We consider
the following cohomology class:

_BuTY) s e
N, (y) PE)W)

Here, w® denote the first Chern class of the line bundle which is the pull back of the relative tautological line
bundle of M(¥y, [Lz]). We put as follows, for k = +:

(7, [L],6,) == / B
M=2(y,[L],6,)

We would like to discuss the transition formula for ®(y, [L],d+) — ®(7, [L],d_). We put as follows:

S(y,8) == {(y1,y2) € Type® | Py, = Py,, 61/rank(y;) = 02/ rank(y)}

For any (y1,y2) € S(y, d), we put as follows:
M(@\la §27 [L]7 5) = MSS(:/U\D [Ll]a 61) X MSS(:/U\27 [L2]7 62)

Let E; denote the sheaf on M (31, 32, [ L], §) which is the pull back of the universal sheaf over M** (s, [Li], 6;) x X.
Let O; yei(1) denote the pull back of the relative tautological line bundles on M?**(y;, [L;],d;). We put w; :=
c1 (Oi7rel(1))~ Let T3 ye1 denote the bundle on M (91,72, [L],d) induced by the relative tangent bundle of the
smooth morphism M?**(y;, [Li], §;) — M(3).

Let €**® denote the trivial line bundle with the G,,-action of weight w as above. We have the following
element of the K-group K (M (1,72, [L], 8)) of Gp-equivariant coherent sheaves on M(71, 72, [L],d):

—Rpx « (RHom (E?-efs/”, E;-es/”)) — Rpx « (RHom (E;-es/rz, Ef-efs/”))

The equivariant Euler class is denoted by Q(EY - e*/™, Ey - ¢%/™). We also have the following element of
K (M(G1, 32, L), 8)): )
Rpx «Hom(Ly, EV) - e=5/m1—s/r2Fw2

The equivariant Euler class is denoted by R(Ls - e—wats/r2, E}‘ . e*S/”). We obtain the following proposition
as the special case of Proposition 7.16 and Proposition 7.17.

Proposition 1.10 In the case pg > 0, we have the equality ®(y,[L],0+) = ®(y,[L],0_). In the case pg = 0,
the following equality holds:
AR BEICAESEED I I 1 (6)
(y1,y2)€S(y,8) Y MF1.42,[L],0)

Here, U(y1,y2) are given as follows:

(7)

U(yr, ) = Nz, (y1) - Res P(Ef.e—s/n D Eﬁ‘.es/m) (wo — S/TQ)k . Eu(Tl,rel)
’ Ni,(y) =0 \ Q(Ey-e=s/m By - es/r2) - R(Ly-e~w2+s/72 E-c=s/m) | Nr,(y1)

As a special case, let us consider the integral of the following cohomology class, assuming that the 1-vanishing
condition holds for (y, Lo):

_Euy) BT g )

Ni, (y) Ng, (y)




Lemma 1.11 Assume that the 1-vanishing condition holds for (y, La). Let ® be as in (8). Then, the cohomology
class ¥(y1,y2) in (6) is given as follows:

s=

" P(EY-e /" @ EY-e5/™)\ Eu(Tira) Eu(Thra)
0 Q(E? . 6_5/“,@% . €S/T2) NLI (yl) NLz(yQ)

1.2.3 Well-definedness of (2)

In the case p; > 0, we can show the well-definedness of (2) by using Proposition 1.10. Assume that Ll_1 is ample,
and that the 1-vanishing condition holds for (y, Ls). If we take a sufficiently large integer m, the 1-vanishing
condition holds for (y, L™). We put L™ := (L™, Ly). Let Tr(ell) denote the relative tangent bundle of the
smooth map M (7, [L(™],8) — M (7, [Ls]). We use the notation Tr(fl) in a similar meaning. We consider the
following number:

Eu(T'Y) Eu(T®)

rel rel

g( ;_naL2761752) ::/ P(EU)

Mo (F,[L0™)],6) Nrp(y)  Nro(y)

We assume that both of §; are sufficiently small. When §; is sufficiently smaller than d4, we have the following;:

Eu(T?)
g(L7n7L2)51752):/ @71&81
' Mé## (5, L2),62) Np,(y)

When 65 is sufficiently smaller than é;, we have the following:

rel

Eu(TY)
G(L7, L, 61,62) = / Euldre)
' M@y Nep(y)

When we move d1, the transitions are trivial, due to Proposition 1.10. Therefore, we obtain the following;:

1 2
/ P - Eu(Tr(el)) _ / P - Eu(Tr(el))
Me@ryLey  NerW) Jae@rae) N ()

In particular, we obtain that (2) is independent of the choice of m. Moreover, we can show the following equality,
assuming the 2-vanishing condition for (y,L) d := [, Td(X)-y-ch(L™') —1>0:

B(7) = / B ()
Mss(g,[L],0)

In the case p; = 0, the problem is more subtle. We can derive it from Proposition 1.10 and Lemma 1.11
that (2) is independent of the choice of m in this case, too. However, we need some more additional argument.

Remark 1.12 Although we do not discuss the parabolic structure in this section, we will consider the invariants
obtained from the moduli stacks of the oriented parabolic torsion-free sheaves and the oriented parabolic reduced
L-Bradlow pairs. And, it is not clear whether (2) is independent of the choice of m, in general. Instead, we can
show the existence of the following limit, for a line bundle L such that L™' is ample:

m—0o0 Mss(§7[Lm],a*75) NLTIL (y)

Here, y denotes a type of parabolic sheaves, and o, denotes a system of weight. Moreover, the limit is indepen-
dent of the choice of L. Hence, we may adopt (10) as the definition of ®(Y, a.). |



1.3 Rank 2 Case
1.3.1 Dependence on the polarizations

In the case rank(y) = 2, the 2-stability condition is always satisfied. Hence, Theorem 1.7 provides us a tool to
discuss the problems 1.5 and 1.6. We explain our result for Problem 1.5 in this subsubsection.

To distinguish the dependence on the polarization H, we use the notation M g (y) to denote the moduli stack
of torsion-free sheaves of type y which are semistable with respect to H. We also assume a? —4n < €2 < 0. We
put Wé := {c € NS(X) ® R|(c,£) = 0}, which is called the wall determined by &. It is well known that the
ample cone is divided into the chambers by such walls, and the moduli M g (3) depends only on the chambers
to which H belongs. We put as follows:

by (y) = / P
M= ()

We would like to discuss how ® (%) changes when the polarizations vary across the wall W¢.
Let a and n be the first and second Chern classes of y. We put as follows:

So(y, &) == {(ap,a1) € NS(X |a0—a1 m-§& (m>0)}
For any (ag,a1) € So(y,§), we put as follows:

X(ap,a1) := H X ol xlml

no+ni=n—ap-ai

On X[l x X[l % X we have the sheaf 7}, which is the pull back of the universal ideal sheaf over Xl x
via the natural projection. Let e* denote the holomorphic line bundle on X whose first Chern class is a;. It
is uniquely determined up to isomorphism, since we have assumed that X is simply connected in Introduction.
Let Q(Z{j‘e“o_s,I{‘e‘““) be the equivariant Euler class of the following element of the K-group of the G,,-
equivariant coherent sheaves on X[m0l x X[ml.

—Rpx. (RHom(Zy - e®™*, Iy - e 7)) — Rpx . (RHom (I} - e, I - e™077))

Theorem 1.13 Let Cy and C_ be chambers which are divided by the wall W&. Let H, and H_ be ample line
bundles contained in Cy and C_, respectively. We assume (H_,&) <0 < (Hy,§).

o In the case py > 0, we have @y (y) = Py_(y). Namely, the invariant does not depend on the choice of
generic polarizations.

o In the case py = 0, we have the following equality:

(I>H+ (27) _ CI)H_ (@\) A Res < (ZU PCT @I? . ea1+s)> (11)

(7 ap—s U, pa1+s
(a0,01 esOys (aon) *=0\ QT -emom, T e )

We call (11) the weak wall crossing formula. |

Remark 1.14 Under the assumption that the wall W€ is good, the weak wall crossing formula was proved for
the Donaldson invariant in [10] and [15], which was refined in [21].

Remark 1.15 Remarkably, L. Géttsche-H. Nakajima-K. Yoshioka established the way to derive the wall cross-
ing formula from the weak wall crossing formula. (See [21].) |

Remark 1.16 K. Yamada proved the independence of the invariants from the polarizations in some cases. |1



1.3.2 Reduction to the integrals over Hilbert schemes

Let us discuss the problem 1.6 in the case rank(y) = 2. Let a and n denote the first and second Chern classes of
y. We also assume p, > 0. For any element a; of the Neron-Severi group NS*(X), we put as := a—ay. Let e
denote the holomorphic line bundle whose first Chern class is a;. Let Z;* denote the universal ideal sheaves over
Xl x X . Let Z; denote the universal 0-scheme over X ™l x X. Let Z; denote PX « ((’)zi ®e‘”). We use the same
notation to denote the pull back of them via appropriate morphisms. In the case (c1(O(1)),a1) < (c1(O(1)), az),
we put as follows:

P(T{ - e®—s Tw . az+s =) . =, . 2s
A(al,y):: Z / Res( (1 @ o "€ )Eu( 1) Eu( 2 € ))

(1] % x[na] §=0 Q(Zu 6“1_5,15‘ . ea2+s) (28)n1+n2—pg

ni+ng=n—ai-az

In the case (c1(O(1)),a1) = (c1(O(1)), az), we put as follows:

U gd1—s ¢y TU . gazts =) - =, . e28
Alay,y) == Z / Res( ( DLy -e )Eu( 1) -Eu(=Zs-e ))

-0 U, ,a1—8 TU ., paz+s ni+nz—p
ni+nz=n—ai-az (ralx Xnal # Q(I et ’I2 ez ) (28) !
niy>nsg

Recall that an abelian pair is defined to be a pair of a holomorphic line bundle £ and a section ¢ : O — L.
Let M(c¢) denote the moduli of abelian pairs (£, ¢) such that ¢;(£) = ¢. We can show the following proposition.

Proposition 1.17 (Proposition 6.29) Assume H'(X,0x) = 0 and p, = dim H*(X,Ox) > 0. Moreover,
we assume that the virtual fundamental class of M(c) is not 0. Then, the expected dimension of M(c) is 0.
We can regard the virtual fundamental class [M(c)] as the number, and then it is same as the following:

d(e)
SW(c) := izi G =py) ;EZ)' Ps)
Here we put d(c) := dim M (c) = dim H°(X, e¢) — 1. |
Then, we put as follows:
SW(X,y) :={a1 € NS(X)| SW(a1) #0, (a1,c1(0x(1))) < (a,c1(0x(1)))/2}

Theorem 1.18 (Theorem 7.28) Assume py > 0 and H'(X,0) = 0. Assume P, > Pk and x(y) —1 > 0,

where K denotes the canonical line bundle of X, and we put x(y) = [ Td(X) for the Todd class Td( ).
Then, we have the following equality:

/ P(EY)+ Y SW(ar)-2XW . Afar,y) =
M()

a1 ESW(X,y)

1.4 Higher Rank Case
1.4.1 The case p;, >0

If p; > 0 is satisfied, the results in the rank 2 case can be rather easily generalized in the higher rank case.
Actually, we have the formally same formula as (4).

Theorem 1.19 (Theorem 7.37) Assume py > 0. Then the following equality holds:

P(EY . ¢t o Eu Cori(t—wi) /T2 . tk
O[], 04) - 0@ [L).o-) = 3 / Res ( GRS B ) (12)
(y1,y2)€S1(y,0) M(y,p2,L) =0 Eu(mo(yh y2))

Here, we put Si(y,0) = {(y1,y2) € S(y75)| rank(y1) = 1}. We use the notation M(y1,y2, L) instead of
M(y1, Y2, L,0), because 0-semistability condition is trivial in the case rank(y;) = 1. |
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As for Problem 1.5, we can show the independence of the invariant from the polarization, by using the
formula (12). Let @ (y) be as in the subsubsection 1.3.1.

Theorem 1.20 (Theorem 7.39) The invariant ® () is independent of the choice of a generic polarization
in the case pg > 0. |

As for Problem 1.6, we obtain an immediate generalization of Theorem 1.18. We do not reproduce it here.
See the subsubsection 7.5.2 for detail.

1.4.2 Transition formula in the case p, =0

The transition formula is comparatively complicated in the case p, = 0. We restrict ourselves to the case where
the 1-vanishing condition holds for (y, L, d), and we discuss the integral of the cohomology class of the following

form: . (T )
e U( L rel

d = P(E"
(E)- NL(Z/)

®(0) := / b.
Me2(g,[L],9)

For each positive integer k we put as follows:

We put as follows:

Se(y,0) == {Y = (y1,...,yx) € Type* | P,, = P}
For each element Y = (y1,...,yx) € Sk(y,9), we put |Y| = Zle yi.- We also put as follows:

k
rank(y;)
wW(Y) :=
) i1 << rank(y;)

We put as follows:

=[I5k®.9),  Sk(y.6) :={(v,Y) € Type x Sk(y, ) | yo+ Y| =y}
k

For any (yo,Y) € S(y,6), we put as follows:
M(Z//\Ov?v[ ]) MSS y07 7 —-) X HMSS yz

Let E&‘ denote the sheaf over M (5o, Y, [L]) x X which is obtained as the pull back of the universal sheaf over
M(@o, [L],0-) x X via the natural projection. We use the notation E} in a similar meaning.
When (yo,Y) € S(y, d) is given, we put as follows:

t; t; t;
TO = — J , T — J + 7
= Zoghq rank(yp ) ! = ZO§h<j rank(y,)  rank(y;)
Here, t1,...,t; are the variables. Let G denote the k-dimensional torus Spec k|1, 7'1_1, e ,Tk,’Tk_l]. Let ew i

denote the trivial line bundle with G-action which is induced by the action of Spec k[r;, Tfl] of weight w. We
have the following element of the K-group of the G-equivariant coherent sheaves over M(9o, Y, [L]):

—RpX*RHom(Ei el Ej -e"’) — Rpx *RHom(Ej el B e™)
The equivariant Euler class is denoted by Q(El el Ej . eTJ). We put as follows:

Q(EO-eTO,El-eTl,...,E’k-eTk) = HQ(El -eTi,E’j-eTj)

1<j

11



Let Ty re1 denote the vector bundle over M (o, i}, [L]) obtained from the relative tangent bundle of the smooth
map M (7o, [L],d) — M(@o, [L]). Then, we put as follows:

P(@?:O Elu ' eTi) . Eu(TO,rel)
Q(Eo-eTO’,,,’Ek~eTk) NL(yO)

U(yo,Y) := 593---}}9@(

In a sense, much part of this paper is devoted to the proof of the following theorem.

Theorem 1.21 We have the following formula:

vo) w0 = Y FMwe) [ wny) (13)
(wov)eSws) 1Y Mo, Y[

1.4.3 Weak Intersection rounding formula

As for the problem 1.5, we easily obtain a generalization of the weak wall crossing formula by using (13). (See
Theorem 7.47.) We do not reproduce it here. The formula itself is not so easy to deal with, partially because
it contains the integrals over the moduli stacks of semistable sheaves with higher ranks. To derive a more
accessible quantity from our invariants, we consider the “intersection rounding formula”. The general case will
be discussed in the subsection 7.8. In this subsubsection, we reproduce the result in the rank 3 case. See the
subsubsection 7.7.4 for more detail.

We take an element & = (£1,&) € NSYH(X)? such that & and & are linearly independent, and we put
W =W N We. A connected component T of W&\ Uy yye; W is called a tile. For each tile T', there exist
four chambers Cy4, C;_, C__ and C_, with the following properties:

e The closure of Cy, ., contains T'.
o Take an ample line bundle Hy, ., € Cx, x,. Then the signature of the pairing (Hy, x,,&) IS ks

Now, we put as follows:
DED(Y) =P, () — Pu, (1) — P, (1) +Pu__ (1)

We would like to express Dg@@) as the sum of the integrals over the products of Hilbert schemes.
Let S(2,1) be the set of @ = (ag,a,as) € NSY(X)? with the following property:

oa0+a1—2a2:A1~£1andao—a1:Ag-ﬁgforsomeA¢>O.
Let S(1,2) be the set of @ = (ag, a1, as) € NS (X)? with the following property:
o 2ap9 — (0,1 + 0,2) = A -& and a1 —as = Ag 'fg for some A; > 0.

For each a, we put as follows:

2 2 2 2 2
) ag+ai +a5 —a
X(y,a) = [ [[x"), N@y.a)=nt+-2" ; 2
no+ni1+n2=N(y,a) i=0

Here, a and n denote the first Chern class and the second Chern class of y, respectively.

Proposition 1.22

. Dg@@) is independent of the choice of a tile T'. Therefore, we can omit to denote T.

12



e The following equality holds:

<P(Iétea0t1 D I}Lea1+t1/2*tz D I;ea2+t1/2+t2)>

D&@(y) = Z Res Res IU ap—1t1 IU a1+t1/2—t2 IU a2+t1/2+t2
X(y,a) QZge v £1€ )y £2€

to t1
aesS(1,2)

(P(deao—tl/Q—w fa Z”iteal—t1/2+t2 D Zg€a2+t1)> ( )
14

+ / Res Res — ” ”
aeSZ(Zl) X(pa) 2 6\ Q(Igewt/2t2 Tem—h/2Ht2 Tyeaath)

The formula (14) is called the weak intersection rounding formula in the rank 3 case. See Theorem 7.52 for the
general case. |

Remark 1.23 The author expects that De®(y) can be described more beautifully like the wall crossing formula
in the rank 2 case ([20], [21]). It may be interesting to see the equality obtained by exchanging the roles of &;
and §2f

1.5 Master Space
1.5.1 The master space of Thaddeus

In this subsubsection, we recall the picture of the master space given by M. Thaddeus, which is one of the most
important tools in this study. Let G be a linear reductive group. Let U be a projective variety with a G-action.
Let £; (i = 1,2) be G-polarizations of U. Then, we have the open subset U®*(L;) of semistable points of U
with respect to £;. It is interesting to compare the stacks M, := U**(L;)/G (i = 1,2).

For that purpose, Thaddeus introduced the idea of the master space. Let us consider the G-variety TH =
P(Ly @ Ly ") on U. We have the canonical polarization Op(1) on TH. We have the canonically defined G-action
on TH, and Op(1) gives the G-polarization. The set of the semistable points is denoted by TH®*. Then we
obtain the stack M = TH** /G.

We have the G,,-action on TH given by p(¢t)([z : y]) = [t - « : y], where [z : y] denotes the homogeneous
coordinate of TH along the fiber direction. The action p commutes with the action of G. Thus we have the
G -action on M, which we denote by p.

We have the natural inclusion TH; = P(L‘;l) — TH. Due to Op(1)|ru, = L, it is easy to observe
TH;® = U(L;)**. Thus we have the inclusion M; — M. Since TH; is a component of the fixed point set with
respect to the action p, the stacks M, are the components of the fixed point set of the action p.

We may have the fixed points of the action p, which are not contained in M; U Ms. Let & be a point
of TH**, which is not a fixed point of the action p. Assume G,, -z C G - z. Then the point m(x) of M is a
fixed point of the action p, where m denotes the natural projection TH*®* — M. The component of such fixed
points is called the exceptional fixed point set. In a sense, the information on the difference of the quotient
stacks M; (i = 1,2) are concentrated at the exceptional fixed point set. We will later explain how to derive the
information by using G,,-localization in our case.

Remark 1.24 When we consider the categorical quotients M; := U®*(L;)//G and Y := TH**(L;)//(G x G),
we obtain the morphisms My — Y «— M. The diagram is called Thaddeus Flip. It also provides us a
significant tool to compare the spaces M;. In particular, if M; are smooth and each morphism M; — Y 1is the
blow up along the smooth center, the flip is quite useful. |

1.5.2 A construction of the master space when the 2-stability condition is satisfied

We explain the way of the construction of the master space for our moduli stacks, when the 2-stability condition
is satisfied (the subsubsection 1.2.1). To begin with, we give a remark. It is known that the coarse moduli
scheme of semistable torsion-free sheaves is obtained as the categorical quotient of the set of the semistable
points of some projective variety provided with a reductive group action. But, we will discuss the moduli
stacks of semistable parabolic sheaves or semistable parabolic L-Bradlow pairs, although we omit to mention
parabolic structure in this Introduction. For such parabolic objects, the author does not know the reference to
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deal with the problem whether the moduli spaces have such descriptions. Hence, we need a modification of the
construction of the master space.

Let y be an element of Type. We put y(m) := ch(O(m)). Let H, be the Hilbert polynomial associated to
y. Let V;,, be an Hy(m)-dimensional vector space. We put V,,, x := V;, ® Ox. The projectivization of V;,, is
denoted by P,,. Let Q(m,y) denote the quot scheme. It is the moduli scheme of the quotient sheaves of V,, x
whose Chern character is y(m). It is easy to construct the moduli scheme Q(m,¥y) of the quotient sheaves of
Vm,x with orientations whose Chern character is y(m). We fix an inclusion ¢ : O(—m) — L. Let § be an
element of PP*. Then, we obtain the subscheme Q**(m,y, [L],d) of Q°(m,y) X P,,, which is the moduli scheme
of the quotient sheaves (q : Vi, x — &) with non-trivial reduced [L]-sections ¢ : L — £(—m) with the following
property:

e The Chern character of £ is y(m), and the pair (£(—m), ¢) is d-semistable.
(

We put Q@**(m, ¥, [L],6) :== Q**(m,y, [L],0) XQ(m,y) Q(m,y).

On the other hand, let det(y(m)) denote the H?(X)-part of y(m). We take a line bundle £, such that
c1(£a) = y(m). We may assume H'(X,£,) = 0 (i > 0). We denote by Z,, the projectivization of H°(X, £,),
which is called the Gieseker space. We put A,, := Z,, X Py,

When a parameter § € PP" is given, the ample Q-line bundle £ is given on A, as follows:

L:= 0z, (P)(m)) ® Op,, (6(m))

We have the naturally defined SL(V;,,)-action on A,,, and £ gives the SL(V;,)-polarization. Let A,,(L) denote
the open subset of the semistable points with respect to £. It is rather standard to show the following proposition.

Proposition 1.25 (Proposition 4.2) We have the SL(V,,)-equivariant closed immersion Q**(m,y, [L],d) —
A25(L). |

We take a large integer k such that £®* is actually a line bundle. We take a rational number v whose
absolute value is sufficiently small. We put £, := LZ* @ Op, (7). Let A%3(L,) denote the open subset of the
semistable points with respect to £,. On the other hand, we take 6_ < § < 04 sufficiently closely. It is not
difficult to observe the following by using Proposition 1.25:

Lemma 1.26 In the case v < 0, we have the closed immersion Q**(m,y,[L],0_) — A*(Ly). In the case
v > 0, we have the closed immersion Q°*(m,y, [L], ;) — A**(L,). |

We take rational numbers 5 < 0 < 71 such that |y;| are sufficiently small. We take a large number k' such
that k" - (y1 —y2) = 1. Let m : A, — P,,, denote the projection. We put B :=P(7*Op,, (0) & Op,, (1)), which
is P1-bundle over A. The tautological line bundle is denoted by Op(1). We put Op(1) := Op(1) @ E??lk/. It
gives the SL(V,,)-polarization of B. Let B*® denote the open subset of the semistable points of B with respect
to 03(1).

We have the natural inclusion By := P(7*Og,, (0)) C B and By :=P(7*Op,, (1)) C B. We remark Og(1) 5, =
E%k/. Let Bf* denote the semistable points of B; with respect to Og(1). Then, we put as follows:

Tﬁss = st(ma:/y\7 [L]vé) XA BSS; Tﬁfs = st(ma:/y\7 [L]vé) XA st

We put M := Tﬁss/ GL(V,,), which is the master space in this case. We also put M; = Tﬁss/ GL(V,,). Due
to Lemma 1.26, we have M; ~ M*(y, [L],d4) and My ~ M2(y, [L],6-).

When the 2-stability condition is satisfied, it can be easily shown that M is Deligne-Mumford and proper.
We have the naturally defined G,,-action on M, as explained in the subsubsection 1.5.1. The fixed point set is
as follows: PN e

My U My U H Mcm(yl,yg)
(y1,y2)€S(y,0)

Here, MG is isomorphic to the moduli stack of the objects (E1, ¢, Fa; p) with the following properties:
o (Eq,¢) is d-stable L-Bradlow pair.
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e F5 is semistable torsion-free sheaf.
e p is an orientation of £y @ Fs.

It is easy to observe that MG is isomorphic to M?®4(y1, L, ) x M?*3(y2) up to etale finite morphisms.

1.5.3 The G,,-localization method in the case where the 2-stability condition is satisfied

We explain how to use the master space M to obtain the transition formula (Theorem 1.7), when the 2-stability
condition is satisfied for (y, L,d). We use the notation in the subsubsection 1.2.1. Let ¢ : M— M(y, [L]) be
the naturally defined morphism. Let 7 (1) denote the trivial line bundle on M(y, [L]) with the G,,-action of
weight 1. We have the naturally defined Gy,-action on ¢*E", ¢ *Orei(1) and ¢*7 (1). Therefore, we obtain the
following G,-equivariant cohomology classes on M:

b, = P(cp*E") - c1 ((p*@rel(l))k, D, =y (cp*T(l))

The master space is naturally provided with the perfect obstruction theory, and hence we have the virtual
fundamental class. Therefore, we can consider the polynomial [77 ®; € Q[t]. Since ¢*T (1) is the trivial line
bundle, the specialization at ¢ = 0 is trivial. We use the localization theory of the virtual fundamental classes
due to Graber-Pandharipande ([24]). We have the following equality in Q[t, ¢~ !]:

fy®-
i

Here, ‘.TI(J\Z) and ‘)1(]\//.7 Gm(y1,y2)) denote the virtual normal bundles. Therefore, we obtain the following
equality:

Z/ t-d, n / t- P,
05 D) T, S 50 ) B (11, 12)))

Dy &, -
i;Q /ﬁ & <m> ’ Z /Mcm (v1,92) R:eOS (Eu(‘ﬁ(M\Gm (?h,zn)))) - 1

(y1,y2)€S(y,9)

It is easy to observe that the first term of the left hand side of (15) can be rewritten as follows:
- [ e+ [ o= -0@lL.6) + 0@ (L1.5)
M, Mo

Note that MGm (y1, y2) is isomorphic to M?**(y1, 42, L, 0) up to etale finite morphisms. By a formal calculation,
it can be shown that the second term is same as the right hand side of (4). Thus we obtain the transition
formula in the case where the 2-stability condition is satisfied for (y, L, ).

In the case py, > 0, the transition problem is rather easy, because of the following proposition.

Proposition 1.27 (Proposition 6.24 and Proposition 6.25)

o In the case rank(y) > 1 and py > 0, the virtual fundamental class of M**(y, L, §) is trivial. (We remark
that the virtual fundamental class of M?*3(y, [L],0) is not necessarily trivial.)

o Fven in the case rank(y) = 1 and py > 0, we have the vanishing [M?®*(y, L,0)] = 0, if the 2-vanishing
condition is satisfied for (y,L,J).

e On the other hand, we have k*([M*(y,L,8)]) = [M?*(y,[L],0)], where k denotes the naturally defined
etale finite morphism M?**(y, [L],0) — M?**(y, L,0) in the case py = 0. 1

Due to Proposition 1.27, we obtain the vanishing of the contributions in (15) from (y1,y2) such that
rank(y;) > 1, when p; > 0. Even in the case rank(y;) = 1, the contributions vanish if L is sufficiently
“negative”.
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1.5.4 The enhanced master space

When the 2-stability condition is not satisfied, M in the subsubsection 1.5.2 is not Deligne-Mumford. So we
need some modification, which we explain in this subsubsection. We use the notation in the subsubsection 1.5.2.
We put as follows:

B :=B x Flag(V;n, N), B, := B; x Flag(V,,, N).
Here, Flag(V,,, N) denotes the full flag variety of V,:

Flag(Vy, N) = {]—'1 CFC o C Fyl| dimFi/Fi ) = 1}

Let Gi(V;,) denote the Grassmannian variety of the [-dimensional subspaces of V,,,. We have the canonical
polarization Og,(1). We have the morphism p; : Flag(V;,,, N) — G(V,,) given by p;(F.) = F;. Take small
positive numbers n; (i = 1,2,..., N), then we obtain the SL(V},)-polarization of B:

N

Oz(1) :=0p(1) ® ®P70Gl(vm)(m)

=1

Let B and gfs denote the set of semistable points with respect to Oz(1). In this case, we put as follows:
Tﬁss = st(ma @\7 [L]7 6) XA gss’ Tﬁfs = st(ma :/y\7 [L]7 6) XA gfs

We use the notation M to denote TH / GL(V;,), and we call it the enhanced master space. We also put

— ——S8

M; = THiS/ GL(V,,). Due to Lemma 1.26, it can be shown that M is the full flag bundle over M? (7, [L],d+)
associated to the vector bundle px . E"*(m). Similarly, M, is the full flag bundle over M* (¥, [L],d_).
We can show the following.

Proposition 1.28 (Proposition 4.21 and Proposition 4.40) M is Deligne-Mumford and proper. |

We have the naturally defined G,,-action on M , as explained in the subsubsection 1.5.1. To describe the
fixed point set, we need some preparation.

Definition 1.29 A decomposition type is defined to be a datum T := (y1,y2, 11, I2) as follows:
e y=y1 +y2 in Type such that Py‘s1 = ny.
o N = I, Ul such that |I;| = Hy,(m), here Hy, denote the Hilbert polynomials associated to y;.

The set of the decomposition types is denoted by Dec(m,y,d). For T = (y1,y2,I1,12) € Dec(m,y,d), we put
¢(J) := min(lz) — 1. |

We introduce the notion of (4, £)-semistability.

Definition 1.30 Let (E, [¢]) be a reduced L-Bradlow pair on X, and let F be a full flag of H® (X, E(m)) Let
¢ be any positive integer. We say that (E,[¢], F) is (6,£)-semistable, if the following conditions are satisfied:

o (E,[¢]) is §-semistable.
o Take any Jordan-Hélder filtration of (E.,[¢]) with respect to §-semistability:
EW cE® c...c EF"D c(ED ¢)c ... c (EW, ¢)
Then we have F, N H°(X, EC~Y(m)) = {0} and F;, ¢ H*(X,EY) (m)) for j < k.

We denote by Mss (y, [L], (4, 6)), the moduli stack of such tuples (E, [¢], F). In the oriented case, we use the

notation M* (¥, [L], i, (8,0)) as usual.
Similarly, we have the notion of (4,()-semistability for a L-Bradlow pairs (E,¢) with a full flag F of
HO(X,E(m)) such that ¢ # 0. The moduli stack is denoted by M?*(y, L, (6,()). |
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Then, the fixed point set is as follows:

]/\4\1 L ]/\4\2 (] H ]/\ZGM (j)
JeDec(m,y,d)

Here, MG (3) is isomorphic to the moduli stack of the objects (E1, ¢, Es, p, FD, F(?)) with the following
properties:

e (Eq,¢) is a d-semistable L-Bradlow pair.

o 7 is a full flag of HO(X, E1(m)) such that (Ey, ¢, FW) is (8, €(J))-semistable.

e F5 is a semistable torsion-free sheaf.

o 7@ is a full flag of H°(X, E5(m)) such that (Es, flfi)n(lz)

where € denotes any sufficiently small positive number.

) is e-semistable reduced O(—m)-Bradlow pair,

e p is an orientation of Fy @ Fs.

Therefore, M (3) is isomorphic to M* (y1, L, (6,8(7))) x M35 (5, +) up to etale finite morphisms, where
M?#*(73, +) denotes oriented semistable sheaf (Fs, po) with a full flag F(*) as in the condition above.

1.5.5 The G,,-localization method

We explain how to use the enhanced master space M to obtain the transition formulas. The argument is
essentially same as that in the subsubsection 1.5.3. Let M(m,¥, [L]) denote the open subset of M(¥y,[L])
determined by the condition O,,. (See the subsubsection 3.1.2.) We have the vector bundle py ,E*(m) on
M(m, 7, [L]). The associated full flag bundle is denoted by M(m, 7, [L]). Let Tpe denote the relative tangent
bundle of the smooth morphism M(m,7,[L]) — M(m,7,[L]). We have the naturally defined morphism
o: M — M(m,7,[L]). Let T(1) denote the trivial line bundle on M (m, 7, [L]) with the G,,-action of weight
1. We have the naturally defined G,,-action on @*E“, ©*Orel(1), go*Tvrel and ¢*7 (1). We consider the following
cohomology classes on M:

k ) Eu(Trel)

m, at = &)t - C1 (QD*T(].))

&, == P(¢*E") - e1(¢* Orar(1))

By the argument in the subsubsection 1.5.3, we obtain the following equality:

Z //\ Res <Lf\> + Z /A Res ( Et — ) = 0. (16)
i1 /00 120 \ Eu(N(M)) eDectm.y.5) ) MEm (@) =0 \ Bu(M(M (7))

Here M(M;) and N(MCE(3)) denote the virtual normal bundles. Since M; are the full flag bundles over
M?®3(g, [L],6,) (k = %), it is easy to observe that the first term of the left hand side of (15) can be rewritten

as follows:
—/A <I>+/A b= (@, [L],5,) + 8, [L],5_)
M, Mo

Let us see the second term in the case p, > 0. Recall that MGm (J) is isomorphic to Mss (71, L, (6,8(7))) x
M?® @2, +) up to etale finite morphisms. Due to the vanishing similar to Proposition 1.27, we obtain the
vanishing of the contributions in (16) from J = (y1,y2, I1, I2) such that rank(y;) > 1. In the case rank(y;) =
1, the (6, €(J))-semistability condition is trivial. Therefore, M**(y1, L, (6,€(J))) is the full flag bundle over
M(y1, L) associated to the vector bundle px . Ej'(m). On the other hand, M**(2, +) is the flag variety bundle
over M?* (72, [O(—m)], €) for any sufficiently small positive number e. (See the subsubsection 4.6.1 for more
detail.) Therefore, we can easily observe that the second term of the left hand side of (16) is same as the right
hand side of (12). Thus, we obtain the transition formula in the case p, > 0.
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On the other hand, we need some more additional argument in the case p; = 0. Due to the equality (16),
we obtain the expression ®(y, [L],d1) — ®(¥, [L],0-) as the summation of the terms of the following form:

/~ \Il(yla yQ)
M (1, [L],6,0) x M=5(F2)

Then, we take the enhanced master space connecting M* (71,[L], (6,¢)) and Mss (1,[L],0-). Such a space
can be constructed by the method in the subsubsection 1.5.4. We have only to choose appropriate numbers n;
(i =1,...,N). Let S(¢) denote the set of decomposition types J() = (ygz),yéz), 11(2)7 12(2)) with the following
property:

o g 4yl — gy
o 1P UL = {1,... Hy(m)} and || = H o (m).

o {1,....0yc1?.

Then, applying the localization method again, we obtain the following;:

2/1792 Z /M \11(2) ( ) y§2)7y2)

3(2)65 Gm 3(2))

/~ U(y1,y2) :/
M3 (G1,[L],6,6) x M=5(F2) Mes(Gu,[L],6- ) x M=5(2)

We can apply this procedure inductively. Note rank(y?)) < rank(y;) < rank(y). Hence, the inductive process

will stop. Thus, we can obtain the general transition formula, in principle, by using a rather easy combinatorial
argument. However, the general formula would be comparatively complicated, and it is less interesting for the
author at this moment. Hence, we restrict ourselves to the transition formula in the special case, as in Theorem
1.21.

1.6 Outline of the Paper
1.6.1 Section 2

In the subsection 2.1, we prepare some notation. In the subsection 2.2, we review basic results from the geometric
invariant theory. In particular, we recall a sufficient condition for a quotient stack to be Deligne-Mumford and
proper. We also recall the numerical criterion and calculate some easy examples. The results will be used in
the section 4.

In the subsection 2.3, we review the basis of cotangent complex. Then, we recall how to calculate some
cotangent complexes of quotient stacks in the subsubsection 2.3.2, which will be used in the section 5 in many
times. We also recall some more examples in the subsubsection 2.3.3, which will be used in the subsections 6.3
and 6.6.

In the subsection 2.4, we review the obstruction theory of Behrend-Fantechi [5]. Then, we explain a naive
strategy to construct the obstruction theory in the subsubsection 2.4.2. We recall the obstruction theory of the
locally free subsheaves in the subsubsection 2.4.3. It gives the obstruction theory of the moduli of torsion-free
quotient sheaves over a smooth projective surface. The result will be used in the subsection 5.6. We also obtain
the smoothness of the moduli of quotient torsion-sheaves over a smooth projective curve, although we do not
use it later. In the subsubsection 2.4.4, we recall the obstruction theory of the filtration of a vector bundle on
a smooth projective curve. It will be used to see the obstruction theory of the parabolic structure.

In the subsection 2.5, we recall some easy results for equivariant complexes on Deligne-Mumford stacks with
GIT construction, which will be used in the subsection 5.9. In the subsection 2.6, we give some elementary
remarks on extreme sets, which are used in the subsections 4.3-4.4. In the subsection 2.7, we give easy remarks
on the twist of line bundles.
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1.6.2 Section 3

In the subsection 3.1, we review the basic notion. In the subsubsections 3.1.1-3.1.3, we recall the definition
of some structure on torsion-free sheaves such as orientation, parabolic structure, L-section, and reduced L-
section. In the subsubsection 3.1.4, we prepare the notion of type and the notation of some moduli stacks.
In the subsubsection 3.1.5, we recall the notion of the relative tautological line bundle of the moduli stacks of
oriented reduced L-Bradlow pair. We also see the relation of the moduli stack of oriented reduced L-Bradlow
pair and the moduli stack of unoriented unreduced L-Bradlow pair.

In the subsection 3.2, we recall the Hilbert polynomials. Then, we have the naturally defined semistability
conditions, which is discussed in the subsection 3.3. We recall the notion of Harder-Narasimhan filtration and
partial Jordan-Hélder filtration in the subsubsection 3.3.2. Then, we introduce the notion of (4, £)-semistability
in the subsubsection 3.3.3, which is useful to control the transition.

In the subsection 3.4, we review boundedness of some families. We recall foundational theorems in the
subsubsection 3.4.1, Then, we recall the boundedness of semistable L-Bradlow pairs when the parameter is
varied in the subsubsection 3.4.2. The important observation is due to M. Thaddeus. In the subsubsection
3.4.3, we see boundedness of Yokogawa family, which will be used to show properness of some morphisms in the
section 4.

In the subsection 3.5, we recall the 1-stability and 2-stability conditions. In the subsection 3.6, we recall
some moduli schemes of quotient sheaves with some structure.

1.6.3 Section 4

In the subsection 4.1, we review a basic result of the geometric invariant theory for the construction of the
moduli stack of J-semistable parabolic L-Bradlow pairs. In the subsection 4.2, we consider the perturbation of
d-semistability condition. Namely, we multiply the full flag bundle to the quot schemes, and we discuss what is
obtained for small perturbation of the semistability conditions.

The results in the subsections 4.3-4.4 are the core of this paper, which are significant to discuss the transition
formula. In the subsection 4.3, we construct the enhanced master space, and we show that it is Deligne-Mumford
and proper. In the subsection 4.4, we see the fixed point set with respect to the torus action.

In the subsection 4.5, we construct the enhanced master space in the oriented case, and we give a description
of the stack theoretic fixed point set with respect to the natural torus action. They are essentially reformulation
of the results in the previous subsections. We give a more convenient description of the fixed point set in the
subsection 4.6, i.e., we observe that they are isomorphic to the moduli stacks of objects with the lower ranks,
up to etale finite morphisms.

In some cases, the problem is much simpler. The statements for such cases are given in the subsection 4.7.

1.6.4 Section 5

In the subsection 5.1, we discuss the deformation theory associated to torsion-free sheaf E on U x X, where
X is a smooth projective surface. We put g(V.) := Hom(V.,V.)V[-1] and Ob(V.) := Rpx .(g(V.) ® wx) for a
resolution V. of E. In the subsubsection 5.1.1, we explain how we obtain the morphism g(V.) — Ly x/x,
and hence Ob(V.) — Ly. In the subsubsection 5.1.2, we see that g(V.) is decomposed into the trace-free part
and the diagonal part, and that the diagonal part is related to the determinant bundle. In the subsubsection
5.1.3, we give some factorization which will be useful in the construction of the obstruction theory of the master
space. In the subsubsection 5.1.4, we give the obstruction theory of some open subset of the moduli stack
of torsion-free sheaves, by directly applying the construction in the subsubsection 5.1.1. In the subsubsection
5.1.5, we discuss the case of the moduli of line bundles, which will be used in the construction of the relative
obstruction theory for orientation in the subsection 5.2.

In the subsection 5.3, we discuss the relative obstruction theory for L-section. In the subsubsections 5.3.1—
5.3.2, we give the construction and show the relative obstruction property. In the subsubsection 5.3.3, we give
some factorization which will be useful to discuss the obstruction theory of the master space. In the subsection
5.4, we discuss the relative obstruction theory for reduced L-section. We need to make some modification to
the construction in the subsection 5.3. In the subsection 5.5, we discuss the relative obstruction theory for
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parabolic structure. By pulling them together, we can easily construct the obstruction theory of the moduli
stacks of parabolic L-Bradlow pairs and some related objects, which is explained in the subsection 5.6.

Then, we discuss the obstruction theory of the master space in the subsection 5.7. Once we have the
factorizations as in the subsubsections 5.1.3, 5.3.3 and 5.4.3, the construction is easy. We also obtain the
obstruction theories for some related stacks. In the subsubsections 5.7.6-5.7.7, we give only the statements in
some easy cases for explanation.

In the subsection 5.8, we discuss the obstruction theory of the fixed point set. In the subsection 5.9, we
discuss the equivariant obstruction theory of the master space and the induced obstruction theory of the fixed
point set. We give the statements for the simple cases in the subsubsections 5.8.7-5.8.8 and 5.9.7-5.9.8.

1.6.5 Section 6

By showing the perfectness of the obstruction theories, we obtain the virtual fundamental classes for some
stacks, which is discussed in the subsection 6.1. We compare the virtual fundamental classes of the moduli
stack of the d-stable oriented reduced L-Bradlow pairs and the moduli stack of d-stable L-Bradlow pairs in
the subsection 6.2. Although the moduli stacks are isomorphic up to etale finite morphisms, the obstruction
theories are not same in general, and we obtain the vanishing of the virtual fundamental class of the moduli of
d0-stable L-Bradlow pairs in the case pg > 0.

In the subsection 6.3, we discuss the virtual fundamental classes of the moduli stack of the objects with
rank one. In the subsubsection 6.3.1, we see the moduli of L-abelian pairs. In particular, we give a detailed
description of the virtual fundamental class in the case where H?(X, Q) # 0 and H!(X, Q) = 0 are satisfied. In
the subsubsection 6.3.2, we discuss the obstruction theory of the parabolic Hilbert schemes. In the rest of the
subsection, we show the splitting given in Proposition 6.34.

In the subsections 6.4-6.6, we discuss the relations of the obstruction theories of some moduli stacks.

1.6.6 Section 7

In the subsection 7.1, we explain how we think the cohomology and the evaluation for our theory. In the sub-
section 7.2, we show the transition formulas in the simple cases. They are sufficiently useful for the construction
of the invariants, which is discussed in the subsection 7.3. They also provide the sufficient tool to discuss the
transition problem in the rank 2 case, which is done in the subsection 7.4.

In the subsection 7.5, we discuss the transition formula for the case p, > 0. It is rather easy to show, and
the formula is formally same as that in the simple case.

Then, we discuss the transition formula for the case py = 0, in the subsection 7.6. By using it, we obtain the
weak wall crossing formula in the subsection 7.7. We write down the weak wall crossing formula and the weak
intersection rounding formula for the rank 3 case in the subsubsection 7.7.3-7.7.4. We also give a transition
formula for a critical parabolic weight in the subsubsection 7.7.5.

In the subsection 7.8, we derive the weak intersection rounding formula from the weak wall crossing formula.

1.7 Some Remarks
1.7.1 Further study

This note is tentative, partially because of the recent intensive development of the theory of stacks. We use
only the rather old results in this paper. The author believes that it should be one of the main themes of the
study of the stacks to make it easy to deal with the subject and the formalism in this work. Hence, he hopes
that our arguments would be replaced with the new ways.

For example, as already mentioned in Remark 1.4, the powerful theory of “derived stack” has been developed
(see [56] for overview). It seems to be applicable to a wide range of similar problems, contrast to our method
in this paper. The author thinks that our method is more elementary. But the theory of “derived stack” will
surely be standard in algebraic geometry in very near future (or, perhaps already?), and hence he hopes that
our construction and argument would be refreshed from that point of view.

Then, it would be desired to compare the obstruction theories. It is not clear for the author whether such
comparison is easy or not. However, he expects that the comparison of the invariants would be easily done,
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at least in the case H'(X,0) = 0, if the new construction would be done appropriately. We should have the
transition formulas as given in the section 7, due to which it can be reduced to the comparison of the invariants
obtained from the moduli stacks of the objects of rank one. We should have the splitting as in Proposition
6.34, and hence it can be reduced to the comparison of the invariants obtained from the abelian pairs. (See the
subsubsection 7.5.2 for such a reduction in the case H?(X,O) # 0. We may also obtain such a reduction in the
case H2(X,0) = 0, although the formula would be more complicated.) In the case H!(X, Q) = 0, the moduli
of abelian pairs is smooth, and the obstruction theory is given by the obstruction bundle which should be as in
the subsubsection 6.3.1. Thus, the comparison of the invariants could be done. The author hopes to clarify the
points somewhere.

One of the important missing for our theory is the blow up formula, i.e., comparison of the invariants for X
and a blow up of X. Originally, the author intended to develop the theory “without blow up”. But it seems to
contain an interesting problem for such a comparison, and the author would like to come back to this problem,
if possible.

1.7.2 Difference from the previous version

In this second version, we obtained the comparatively satisfactory transition formula in the higher rank case,
which made us to obtain the weak wall crossing formula. For that purpose, we introduced the notion of
(6, £)-semistability. The other essential ideas are not changed. The author also hopes that the readability is
improved.
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2 Preliminary

2.1 Notation
2.1.1 Vector bundles

Let Y be a variety. Let g : T — U be a morphism of stacks. Then the naturally induced morphism
T xY — U x Y is denoted by gy or simply by g.

Let V be a vector bundle on Y. The sheaf of local sections of V' is also denoted by the same notation V, if
there are no risk of confusion. But, we use some particular notation in the following case: Let V7, V5 be vector
bundles. We have the sheaf Hom(V1, V2) of the morphisms from V; to Va. The corresponding vector bundle is
denoted by N (V1, Va).

Let F' be a vector bundle on Y. The complement of the image of the 0-section in F' is denoted by F*, i.e.,
F*:= F —Y, and the dual bundle of F is denoted by FV. The projectivization of F' is denoted by P(F") or
Pr.

2.1.2 Coherent sheaves on a product

Let X be a scheme over k, and let U be a stack over k. We denote by px the projection forgetting the
X-component:
px :Ux X —U.
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Similarly, py denotes the projection U x X — X. We often denote {u} x X by X, for any point u € U.

A coherent sheaf E over U x X is called a U-coherent sheaf, if it is flat over U. A U-coherent sheaf FE is
called U-torsion free sheaf, if () x is torsion-free for each v € U. We will often omit to denote “U-", if there
are no risk of confusion.

For any coherent sheaf E on U x X, we use the notation E(m) to denote E®pj;Ox (m) for a given polarization
Ox(1) of X.

2.1.3 Signature

We follow the signature convention in [31]. We recall some of them for later use in our situation.
Let X be an algebraic stack. For two Ox-complexes C" and D', let Hom(C", D") denote the complex whose
i-th term is €@, ;_, Hom(CY, D*) and whose differentials are given as follows:

Hom(Cj,Dk) — Hom(Cj,DkH) D Hom(Cj_l,Dk), a— (dD oa, (—1)* g0 dc).

Let us see some examples. For a complex C", we denote the dual complex Hom(C",Ox) by C'V. The
differential is as follows:

Hom(C™,Ox) — Hom(C" 1 Ox), ar— (-1)""!.qodx

For two term complexes C" = (C~! — C°) and D" = (D! — DY), the complex Hom(C", D) is given as
follows:

Hom(C’O, D‘l) — Hom(C’O, DO) &) Hom(C‘l, D_l), ar— (dD oa,ao dc)

Hom(C’O, DO) &) Hom(C’_l, D_l) — Hom(C‘l, DO), (b1,b2) — —byodc +dp o by
We will often use the dual Hom(C", D)V, which is given as follows:

Hom/(D°,C~*) — Hom(D®,C°) & Hom(D~',C~1), a+—— (—dcoa,aodp)

Hom(D°,C%) & Hom(D~*,C~') — Hom(D~*,C°), (by,by) — —byodp —dc oby

2.1.4 Compatible diagrams
Let A; ; (i=1,2) (j =1,2,3,4) be objects in some category. Assume that we are given morphisms ¢, : A; ; —

A ;. We also assume that we are given commutative diagrams (CD);:

o
A1 —— Aio

d’.
Az —— Aia

We say that (CD); and (C'D)s are compatible with respect to the morphisms ¢; (7 = 1,2, 3,4), if every face of
the naturally obtained cube is commutative. It is equivalent to the commutativity of the following diagrams:

A —— Ao A —— A3 Aip —— A1y Ajg —— Aa

I

Apg —— Ao Apg —— Aoz Aso —— Axy Aoz —— Aoy

2.1.5 Filtrations and complexes on a curve

Let D be a smooth projective curve over a stack S. Let E, (a = 1,2) be coherent Op-modules which are
flat over S. Assume that we are given a decreasing filtration F(E,) = (F;(E,)|i = 1,...,1) of E, such that
Cok;(E,) = E,/F;11(E,) are flat over S.
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Let V,,. = (Va,—1 — Va0) be a locally free resolution of E,. We put Va(l) = V4.0, Va(lH) =V,,—1 and Va(i) =
Ker(Va g — Coki(E,)) (i = 2,...,0). Let f; : V5™ — v ¢ v — v and s - VT — v
denote the inclusions.

Let us consider the complex C(V}*, V5*) given as follows:

Hom(Vl(l), 2<l+1)) a7t b Hom(vl“,vgi)) A @ﬁleom(W“),V;”)

Here the first term stands in the degree —1, The differentials d; are given as follows:
dil(a):(sioaoti‘izl,...7l+l), (17)

do(bl,...,bl) = (—flobl+b20f1,—f20b2+b30f2,...,—flobl—|—bl+1 Ofl) (18)
We have the naturally defined morphism:

¢ = (i) : C1(V{", V5') — Hom (VA,., Va,.) (19)

The morphism ¢y is given by ¢1(a;) = > sit+1 0 a; - t;. The morphism g is the projection by the identification
Vo =V and V_; = VU The morphism ¢, is the identity. It can be directly checked that ¢ is the morphism
of complexes. We put Co(V7*, V5") := Cone(p)[—1]. The following lemma is easy to check.

Lemma 2.1 The complezes C;(V*,V5") and the morphism ¢ : C1(V*,V5) — Hom(V.,V.) depend only on
(E1,F) and (E2, F) in the derived category D(D). |

Notation 2.2 We denote C;(Vy*,V5*) by RHom,(E1«, Ea.). |

When E, and E,/F;(E,) are locally free sheaves, then we have H'(Hom{(E1,Ez)) = 0 (i # 0), and
H°(Hom!| (B, E)) is isomorphic to the sheaf of homomorphisms of Ey to E; which preserve the filtrations.

2.2 Geometric Invariant Theory
2.2.1 GIT quotient and algebraic stacks

Let k be an algebraically closed field with characteristic 0. Let G be a linear reductive group over k. Let Y be
a projective variety over k, provided with a G-action p. Let L be an ample line bundle on Y, such that p can
be lifted to the action on L.

We recall some basic definitions. A point y € Y is a semistable point with respect to L, if there exists a
G-invariant section s of L®" for some n > 0 such that s(y) # 0. A point y € Y is defined to be a stable point
with respect to L, if there exists a G-invariant section of L®"™ for some n > 0 such that s(y) # 0 and that any
orbits of G contained in Y — s71(0) are closed. Let Y*(L) (resp. Y**(L)) denote the set of the stable (resp.
semistable) points with respect to L. The foundational theorem of D. Mumford is the following.

Proposition 2.3 ([48]) There exists the uniform categorical quotient m : Y — Y*5//G. Moreover the
following holds:

e The map 7 is affine and universally submersive.
e Y3 //(G is a projective variety.

o There exists the open subset Y //G of Y*%//G, such that 7=1(Y*//G) =Y* and that 7 : Y* — Y*//G is
the universally geometric quotient of Y.

Proof See Proposition 1.9, Theorem 1.10 and the page 40 in [48]. |

We combine it with some results of A. Vistoli in [58]. Let Y/ denote the set of stable points of Y whose
stabilizers are finite. In this situation, we obtain the quotient stack Y */ /G, which is Deligne-Mumford. See the
sections 2 and 7 of the paper of Vistoli [58] for more detail about such a quotient stack. We recall one of his
results here.
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Proposition 2.4 ([58]) The naturally induced morphism Y*f /G — Y¥ /|G is proper.

Proof The map Y*f — Y/ //G is universally geometric quotient. In particular, it is universally submersive,
and the geometric fibers are precisely the orbits of the geometric points of X. Therefore, Y*/ //G is a quotient
of Y/ by G in the sense of Vistoli (see the page 630 of [58]). Applying Proposition 2.11 of [58], we can conclude
that the map Y*f /G — Y3/ //G is proper. 1

Corollary 2.5 Let Z be a variety over k with a G-action. Let ® : Z — Y be a G-equivariant immersion with
the following property:

o The stabilizer group of any point of Z is finite.

o The image ®(Z) is contained in Y*(L).

o &: 7 — Y*(L) is proper.
Then the quotient stack Z /G is proper and Deligne-Mumford.

Proof We have the closed substack Z/G of Y/ /G. We also have the closed subscheme Z//G — Y*f //G C
Y*¢//G. Since Y*°//G is projective, Z//G is also projective. From the previous lemma, we obtain the properness
of the morphism Z/G — Z//G. Therefore, we obtain the properness of Z/G.

2.2.2 Mumford-Hilbert criterion and some elementary examples

Let Y and G be as above. Let A : G,,, — G be a one-parameter subgroup. We put P(\) := lim;_.g A(t) - P.
Then A-acts on the fiber L|p(y). The weight is denoted by px(P,L). The criterion says that the point P is
semistable (resp. stable) with respect to L, if and only if px(P,L) > 0 (ux(P,L) > 0) for any one-parameter
subgroup A.

Remark 2.6 We use the convention to identify a vector bundle and the sheaf of its sections. Hence the above
definition of p is same as that given in [48]. |

For later use, we recall some elementary examples. Let V' be a vector space over an algebraically closed field
k, with a base u1,...,uy. Let A be the one-parameter subgroup of SL(V') given by A(¢) - u; = i - u;, where
Sw; =0 and w; < wiqq. Let V(@ denote the subspace generated by uq,...,u;. Let V = @@V, denote the

weight decomposition of A, i.e., A preserves the decomposition, and the action on V,, is the multiplication of ¢*.
We put G; := @w<j V.

We denote a point of P(VY) by [v] by using a representative v € V — {0}. Let us consider the right
SL(V)-action on P(VY), given by g - [v] := [¢~!(v)], which can be lifted to the action on Opgvy(1).

Lemma 2.7 ([48]) ux([v], Op(vvy(1)) is same as min{i|v; € G;}. It can be reworded as follows:

pa([v], O(1)) = Zwl - (dim VO A @) —dim VY n (v)) = Zj - (dim G; N (v) — dim G;_1 N (v)).

Here (v) denotes the subspace generated by v.

Proof According to the weight decomposition V' = @ V;, we have the decomposition v = Y v;. In P(V'V), we
have the following;:

AP = )] = [Zt—i : Ul} .

We put i := max{i|v; # 0} = min{i|v € G;}. Then it is easy to see limy_o A(t)[v] = [v;,]. The weight of A
on OP(VV)(l)H%] is 79. Thus the first claim is obtained. The second claim follows from the first one. |

Let G;(V') denote the Grassmann variety of the /-dimensional subspaces of V:
G(V)={c:WcCV|dmW =1}.

We have the Plicker embedding G;(V) — IP’(/\l VV) given by W — AW c A'V. Tt gives the polarization
Oc,(v)(1) of Gi(V). The SL(V) has the right action on G;(V) given by ¢ — g~! o ¢, which can be lifted to
the action on Og, (v)(1).
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Lemma 2.8 For any point W of Gi(V'), we have the following:

N
I (W, Ogl(v)(l)) = Z(rankW NVE — rank W N V(Fl)) cw; = Zj - dim
i=1 jez

wn gj
WnNGj—1
Proof Forany J = (j1 < j2 <---<ji), weput uy = uj, A---Auj,, and wy := Zé:l wj,. Collection of such u s
gives the base of /\l V. We have the naturally induced SL(V)-action on /\l V. Let A denote the one-parameter
subgroup of SL(A'V) induced by A. We have A(t)(u,) =t/ - u,.

Let us take a base vy,...,v; of W such that vy, = u;, + Zj<ih ap,j - uj. Then z = vy A--- A is
expressed as the sum > ay-uy, where ay =1if J =1 = (i1 <--- < i) and ay = 0 if wy > w;. We have
(W, 06,(1)) = p5(2, Opptvvy(1)) = wr due to Lemma 2.7. Then, it is easy to derive the claim of the
lemma. |

We also have the Grassmann variety G} of quotients of [-dimensions:
| = {q:V—>Q|dimQ:l}.

We have the Plucker embedding G} — IE”(/\Nfl V) given by q — /\Nﬁl q: /\Nﬁl V— /\Nﬁl Q. Tt gives the
polarization Og;(1).

Lemma 2.9 ([48], [41]) Let q: V — Q be a point of G}. We put W := Ker(q). Then we have the following:

N al Wng; g
, = C(dim V@ — dim vV @-b 1) = Do dim — /27 i J
1 (g, Og; (1)) ; w; - (dimV® N W — dimV NW—1) ;] <d1rn WAG, dim gj_l) .

Proof We put W :=g; mW/gH NW. Since we have the natural isomorphism G;/G;_1 ~ V;, we regard w®
as the subspace of V;. Tt is easy to see that the limit lim; o A(t)-q is given by the quotient §: V — @ V;/W .
The weight of A on Og;(1)|7 is —i - dim (Vi/W®). Then it is easy to derive the claim.

Remark 2.10 We have the obvious isomorphism Gi(V) ~ G_,;(V). It does not preserve the semistability
conditions on the varieties induced by the Plicker embeddings. |

2.3 Cotangent Complex
2.3.1 Basis

Recall some fundamental properties of the cotangent complexes from [29], [37] and [50]. Let X and Y be
Deligne-Mumford stacks with the etale site. For any morphism f : X — Y of Delinge-Mumford stacks, the
cotangent complex was constructed by L. Illusie [29] as a complex of O x-modules, which is denoted by Ly y or
Ly. Recall that the cotangent complex controls the deformation theory (Section 3 [29]) in the following sense.
Let T be a scheme over ), and let h: T — X be a Y-morphism. Let T be a Y-scheme such that T is a closed
Y-subscheme of T and the corresponding ideal .J is square zero, i.e., J> = {f - g ‘ frgeJr=0.

Proposition 2.11 (Illusie, [29]) We have the obstruction class o(h) in Ext*(h*Ly y,J) with the following
property:

o The morphism h can be extended over T, if and only if o(h) vanishes.

When o(h) = 0, the set of the extension classes is the torsor over the group Ext® (h*LX/y, J). |

The cotangent complex has a nice functorial property. For example, if g : JJ — Z be a morphism, then we
have the distinguished triangle, f*Ly,z — Lx;z — Lx;y — [*Ly,z[1] in the derived category D(X).

As for general Artin stacks with the lisse-étale site, the cotangent complex with some good functorial property
was obtained by G. Laumon, L. Moret-Bailly and M. Olsson (Section 17 of [37] and Section 8 of [50]). For any
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Artin stack X', Olsson introduced the category Dgcoh(.)() of the projective systems K = (- — K>_,_1 —
Ks>_, — -+ — Ksg) in D" (X) such that the morphisms K> _, — 7>_,K>_, and 7> _, K> _,,_1 —
T> _n K> _, are isomorphisms. Here 7> _, denotes the canonical n-th truncation functor. See [50] for the

functorial property of Dgcoh(.)( ). Let f: X — Y be a quasi-compact and quasi-separated morphism of Artin

stacks. Then, we can associate Ly/y =Ly = (--- — Li/_;_l — Li/_; — .- -L;?y) € D .on(X) to f with the

following property (Theorem 8.1 [50]):

o If X and Y are algebraic spaces, L;;; is isomorphic to 7> _, Ly /y in DOTCOh(X ). Here the latter Ly /y
denotes the usual cotangent complex defined by Illusie.

e When we are given a 2-commutative diagram of Artin stacks,

X’#X

L

V' _h hY%
we have the functorial morphism Lf*Ly /5 — Lx+/y. If the diagram is 2-Cartesian, and if one of g or
h is flat, then the morphism Lf*Ly /5 — Lx//y is isomorphic.

e Let f: X — Y be a morphism of Artin stacks. Let g : Y — Z be another morphism. Then we have

the distinguished triangle Lf*Ly,z — Lx;z — Lxjy — Lf*Ly,z[1] in Dg ., (X).

The following properties can be derived directly from the construction. (See Section 8 of [50] for the construction

e Each LE/_; is an object in Dg;:ﬁl] (X).

o If f is smooth and representable, then Ly ,y is quasi isomorphic to the 0-th cohomology sheaf, which is
isomorphic to the locally free sheaves of Kahler differentials Qx /y. In general, if f is smooth, any Li/_;

is of perfect amplitude contained in [0, 1]. In particular, they are isomorphic to L/%?y.

Remark 2.12 M. Aoki ([2]) generalized the deformation theory of Illusie. He showed that a generalization of
Proposition 2.11 holds for the Artin stacks. |

2.3.2 Quotient stacks

Let G be a smooth group S-scheme. Let Y be a smooth S-scheme with a G-action. The quotient stack is
denoted by Yg. Let f : Y — Y be a morphism. We have the corresponding G-torsor P(f) over Y. Since
f is smooth and representable, the cotangent complex Ly is isomorphic to the sheaf 2y of the relative Kahler
differentials.

Lemma 2.13 Qy is isomorphic to the sheaf of the G-invariant sections of Qp(yp)/y -

Proof Let m : Y — Y denote the morphism corresponding to the trivial torsor. We have the following
diagram:

P(f) xy P(f) 2% P(f) —— Y

lfz lfl lf (20)
Y xy, Y 2Py Ty

Then the sheaf Q2 is the descent of Q¢, by the cocycle condition piQy, ~ Qy, ~ p5€y,, where the isomorphisms
are given by the naturally defined differentials. We have P(f) xy P(f) ~ P(f) x G for which p; and py
correspond to the natural projection and the G-action respectively. Then the claim is obvious. |
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Let Z be an Artin stack over S with a morphism F': Z — Y. We have the corresponding G-torsor P(F')
over Z and the G-equivariant map F': P(F) — Y.

pPF) —2 - v
| d!
z v

Let us describe the pull back of the cotangent complex F*Ly,,s on Z. We have the map « : ﬁ*Qy/S —
Qpry/z on P(F), which is the composite of the differential ﬁ*Qy/S — Qp(r)/s and the natural projection
Qprys — Qpr)/z-

Proposition 2.14 F*Ly g is represented by the decent of Cone(—a)[—1] with respect to the natural G-action.

m+1
Proof We recall the construction of Ly, g in this case. We put Y™ =Y xy, - Xy, Y. We have the
natural morphisms Y™ — Yz — S. We have the complexes C(™) := (Qy(m>/s — Qy<m)/yc) on Y (™),
where Qy-(m) /g stands in the degree 0. We have the strictly simplicial structure given by the naturally defined
quasi isomorphisms 7; : 7*C™~) — C(™) (i = 0,1,...,m). Then Ly, s € D{.on(Yc) is obtained as the

gluing of (C(m) | m=20,1,.. ) simplicially.
m—+1
We put P(F)(™ := P(F) xz --- xz P(F). We have the naturally defined morphisms F(™) : P(F)(™) —
V(™). Then F*Ly, s is obtained as the gluing of (F(™*C(™ |m = 0,1,...). We have the following commu-
tative diagram:

F(m) *Qy(m>/s — . Fm) *QY(M)/YG

F(m)*Qy(m>/s —  QprEymyz

Here the bottom morphism is same as the composite F(™) “Qymy s — Qppyom s — Qp(pyom) 1z, Where the
first one is the differential and the second one is the natural projection.

Let ¢ : Y XG™ — Y (i = 0,1,...,m) be a morphism given by ¢;(y,g1,---,9m) = ¥y g1 Gi-
They induce the isomorphism Y x G™ — Y (™) Under the identification, ¢; is the projection onto the i-
th component. Similarly, we have the identification P(F) x G™ ~ P(F)(™), under which F(™) is given by

F™(y,g1,....9m) = (F(y),g1,---,9m). Let p, denote the projection of P(F) x G™ onto G™. We have the

subcomplex (p;‘nQGm d, p;*anm) of F*C(™) Tt is compatible with the simplicial structure. The quotients
are denoted by CA'(’”), and then the gluing of (é(m) m=20,1,.. ) also gives F*Ly,, /s in D(Z). Then, it follows
that F* Ly, /s is given as the descent of cO = (f‘*Qy/s — Qp(r)/z) with respect to the natural G-action. I

Let H denote the composite of F' and the canonical map Yo — Sg. Let P(H) denote the G-torsor over
Z corresponding to h. Since we have the natural isomorphism P(H) ~ P(F'), we do not distinguish them. Let
H : P(F) — S be the lift of H. Let 7 denote the projection P(F) — Z. We have the canonical isomorphism
m*H*Lg,/s[1] ~ PNI*QS/SG ~ Qp(r)/z. We also have the canonical isomorphism 7*F* Ly, /s, =~ ﬁ*Qy/S. We
obtain the following corollary.

Corollary 2.15 The morphism F*Ly, s, — H*Lgs[1] on Z is obtained as the descent of a : ﬁ*Qy/S —
Qpry/z-

Proof We have the distinguished triangle H*Lg, ;g — F*Ly,/s — F*Ly,/s; — H*Lg/s[1]. Due to
Proposition 2.14, we know the morphism H*Lg, /s — F* Ly, s. Then, we know the morphism F* Ly, /¢ —

H*Lg/s[1].
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Example 2.16 Let E be a vector bundle on a variety X of rank R, and let f : X — kg (r) be the corresponding
map. Then we have f*Ly., . /k ~ End(E)[-1]. |

Remark 2.17 The expression in Proposition 2.14 is natural, in the following sense. Let Y; (i = 1,2) be S-
schemes with G-actions, and let g : Y1 — Yo be a G-equivariant morphism. Let g : Y16 — Yag denote
the induced morphism. Let hy : Z — Y1 be a morphism. The composite gg o hy is denoted by ha. We
have the corresponding torsor P over Z and the G-equivariant morphisms h; : P — Y;. We have the natural
commutative diagram of G-equivariant sheaves on P:

%SQYz/S R Qp,z

! !

R Qy, s —— Qpyz

Then the morphism h3Ly, ;s — hiLy, s is the descent of the induced morphism Cone(—az)[—1] —
Cone(—az)[—1]. |

Remark 2.18 Let G be a smooth group scheme over S. Assume that' Y is provided with the G1-action, which
commutes with the G-action. It induces the G1i-action on Yg. Moreover, assume that Z is also provided with
the G1-action such that F is G1-equivariant. Then, we have the naturally induced G1-actions on the complex
Cone(—a)[—1], which commutes with the G-action. It induces the Gi-action on the descent of Cone(—a)[—1]
on Z. In particular, we obtain the G1-equivariant representative of F* Ly, /g.

Let m: Y — Y& denote the canonical projection. Due to Proposition 2.14, LYG/S on Yg is the descent of
(Qy/s — Qy/v,,) given on Y with the natural G-action, where Qy/ g stands in the degree 0. For simplicity, we
consider the case S = Spec(k). Due to Lemma 2.13, we have Qy/y, ~ g" ® Oy, where g denotes the tangent
space of G at the unit element, or equivalently the vector space of the right invariant vector fields, and gV
denotes the dual. Let ©y/g denote the relative tangent sheaf of Y/S. The G-action on Y induces the map
A:g® Oy —>@y/5.

Lemma 2.19 The map a : Qy;s — g” @ Oy is given by the dual of —A. Namely, we have n*Ly, /g =~
Cone(A)[—1].

Proof Letp;:Y xy,Y — Y denote the projection on the i-th component. We have the following factorization
of pla:

Piys — Qyxy vis — Qpo 2 P18y v,
Each morphisms are induced by the natural differential. Let us take the identification ¥ xy, Y ~ Y x G, for
which p; and ps correspond to the natural projection onto Y and the G-action, respectively.

Let y be any closed point of Y, and let e be the identity element of G. We have p1(y,e) = pa2(y,e) = y.
We denote the differential of p; at (y,e) by T(y )pi. Let us consider the specialization of the dual of pja at
(y,e). Then it is the composite of the inclusion of Ker(T{, c)p2) C T(y.¢)(Y x G) and the natural projection
Tiy,e)Y x G — T,Y. Since we have Ker(T(y,e)pg) ~ {(—Av, v) |U € g} ~ g, the map is same as —A. Since «
can be recovered from pja, we are done. |

Remark 2.20 Since f*Ly, /g is obtained as the decent of f* Cone(A)[—1] for a morphism [ : Z — Yg,
Lemma 2.19 can be used in the calculation. |

Example 2.21 Let W; (i = —1,0) be R;-dimensional vector spaces over k. Let N(W_1,Wy) denote the vector
space of linear maps from W_1 to Wy. We have the right GL(W_1) x GL(Wj)-action on N(W_1,Wy) given by
(9-1,90) f = go_1 o fog_1. Hence we obtain the quotient space Y (W.) := N(W_1, Wo)aL(w_,)xGL(Wq) -

Let X and U be stacks over k. Let V; (i = —1,0) be vector bundles on U x X whose ranks are R;. Let
f Vo1 — Vi be a morphism of Oy x-modules. Then we obtain the morphism ®;: U x X — Y (W.). The
pull back of the cotangent complex Q% Ly (w.)/k is quast isomorphic to the following complex:

'Hom(Vo, V,1) =, 'Hom(Vo, Vb) @ Hom(V_1,V_1).
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Here Hom(%, V,l) stands in degree 0, and the map « is given by a(a) = (f oa,—ao f) We remark that it is
isomorphic to Hom(V., V.)\éo[—l], (See the subsubsection 2.1.3.)

Actually, we have only to care the signature. We can see it formally. Let f be an element of N(W_1, Wp).
The differential of the action of GL(W_1) x GL(W}) gives the map:

End(W,l) EBEnd(Wo) I TfN(Wfl,WQ) = N(Wfl,Wo), (a,l,ao) — —aOOf-i-an,l (21)

If we regard W_4 4, Wo as a complex, (21) can be regarded as Hom(W.,W.)>o. Then, Lemma 2.19 says that
the cotangent complex corresponds to ('Hom(W, W.)> O)V[—l], |

Let us consider the following diagram:

¥

Y — §
1l
Yo L N Sc

We have the natural isomorphisms 7* Ly, /s, ~ Ly,s and 7*¢*Lg, s[1] ~ J*LS/SG ~ Ly/y;. We identify
them by the isomorphisms.

Lemma 2.22 Under the identification above, the morphism 7 Ly, /s, — 7*¢* Lg, /s[1] is same as the natural
morphism Ly;s — Ly,v, -

Proof We have the natural isomorphisms:
7 Lyg s = Cone(Ly/s — Ly)y,)[~1], 7*¢*Lsg/s = 9" Lssy|—1]

The morphism n*¢*Lg,/s — 7Ly, /s is induced by @Z*LS/SG — Ly,y,. Hence, the distinguished triangle
T Y*Lgg/s — T Lyg/s — T Ly, /5o — T *Lgg s[1] is the following:

¥ Ls/sg[—1] — Cone(Ly s — Ly;vg)[~1] — Ly/s — %" Lgsq

Then the claim of the lemma follows. |

2.3.3 Some more examples

The result in this subsubsection will be used in the subsections 6.3 and 6.6. The author recommends the reader
to skip here. Let X be a smooth projective surface, and let Us be a quasi compact stack. We consider a pair
of Us-coherent sheaf F and a section ¢ : Op,xx — F. We assume that px .F is locally free. We have the
induced section H(y) : Oy,xx — px «F. Let Uy be a subscheme of Us contained in the 0-set of H(ip).

Assume we are given a datum (V., P, ¢, ¢) as follows:

o A locally free resolution of F:

d—l do

V., Vo Vi —— F

Namely, the sequence 0 — V_; — Vj — Vj is exact, and V;/V; ~ F.
e A morphism ¢ : Oy, xx — Vi such that e o ¢ = ¢. Such a ¢ is called a lift of .
e A resolution P. = (P_; 9, Py) of Ox, i.e., Py/P_1 ~ Ox.
e A morphism ¢; : P, — V; (i = 0,—1) such that the following diagram is commutative:

d—l do

V_1 Vo Vi
b1 T b0 T ¢>T
P, —2.pm o
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We put E(V.,P.,¢,$) := Hom(py, P, Viuixx)Y on Up x X, and we will construct a morphism t(V.,P.,¢,$) :
¢V, P, o, 5) — Ly, xx/u,xx on Uy, which depends only on (F,¢) in the derived category D(U; x X).
We have the vector bundles N(P;, V;) on Uz x X. We have the following smooth morphism:
hy: N(Py, Vo) xx N(P-1,V_1) — N(P_1,V), h(ap,a_1)= foa_1—agod
We put Z1(V., P.) := h=(0). We also have the following morphism:
hg:N(PQ,‘/l)—>N(P,1,V1), hg(a):—aoa.

We put Zy(V., P.) := hy *(0). We remark Z,(V., P.) is naturally isomorphic to N (O, V}).
We have the naturally defined morphism I' : Z1(V.,, P.) — Z5(V., P.). The morphisms ¢ and ¢ give the
sections ®; : U; x X — Z;, and we have the following commutative diagram:

Ui xX -2 Z(V,P) —— X

N L =

Upx X =22 Zy(V.,P) —— X

It is easy to see that ®{Ly (v, p)/z,(v. p) is expressed by ?(V.,P.,(E, ®)<o. The composite E(V.,P.,(E, ¢) —
OILz,(v.p)/z.(v., Py — Lu,xx/u,xx is denoted by t(V., P, ¢, #).

Lemma 2.23 t(V.,P.,g, @) and E(V.,P.,g, @) depend only on (F,p) in the derived category D(Uy x X).

Proof Let (V@W,P® ¢® ¢@®) (i = 1,2) be data as above. Let V1 be the cokernel of (¢(M), —¢(2)) :
Ou,xx — Vl(l) &) Vl(Q). Then €@ (1 = 1,2) naturally induce the morphism e® . Vl(g) — F. We also
have the morphism ¢ : Oy, x — Vl(?’), naturally. We take a surjection A — Ker(e®)), appropriately. We
have the naturally defined morphism Vo(l) ® 1/0(2) — Ker(e(®). We put V =A® V(1 ) VO(2 and then we
have the natural morphism d(g) V(g) — V(g) The kernel of d( ) is locally free and we put V = Ker(d(g))

We put P(g) P(l) @P(Q) and P( ) denotes the kernel of the natural morphism P(l) EBP(z) — OU2><X Then,
we have the followmg compatible dlagrams on Us x X:

v e @ = P PO o

] ] ] -] [ [ |

v vy v —— F P 0

The cokernels of a(i) are locally free. The composite of ¢(*) and a(i) is same as ¢(3). On U; x X, a;i) and &Fj

are compatible. Then we have only to compare t(V®, PM ¢1) 31 and (V) PG ¢3) ().
We give only an indication. We regard V; ™ V(g) and P(l) C P(g) as the filtrations. Let N’( (3 V(?’))
denote the vector bundle corresponding to the locally free sheaves of filtration-preserving homomorphlsms of
(3) to Vk(3) We construct the vector bundles Z/(V., P.) by using N'(P; p® V(B)) instead of N(Pi(B), VJ-(B)). Then,
we have the morphisms: ZZ(V(g), P.(?’)) Z{(V.(?’),P.(?’)) and Z,;(V. 3), P.(?’)) — Zlv(V.(l), P.(l)).
Let Hom/(P.,V.) denote the subcomplex of Hom(P.,V.) which consists of filtration-preserving homomor-
phisms. Let E'(V(g),P(?’),qS(?’),g(i)’)) denote the dual Hom/(P.(S),V.)V. We obtain the following diagram on

U:

b1 b2

eV, PP o), 6) eV PP, 60, 50) eV, PV, 60, 4)

! ! !

L — L

AIUARN VP AAUARN A 2V POz, p®y T Ly o p) g, w0 po)

l l l

Ly, xx/vsxx — Ly, xx/vsxx — Ly, xx/vsxx
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Then, it is clear that the morphisms b; are quasi-isomorphic. |

Now, we use the notation ¢(F, ¢) to denote ¢(V., P., ¢, ¢), in the following argument. We also put as follows:
Ob(F, @) == Rpx « (¥(F, ) @ wx)
Here, wx denotes the dualizing complex of X. Let obgl(]-' , ) denote the composite of the morphisms

ObIL(F,¢) — Rpx «(Lu, xx/v,xx ® wx) — Ly, v,

Let (Fi, i) (1 = 1,2) be as above. Assume we are given a morphism with a morphism f : F; — F5 such
that Y2 = fO ©1.

Lemma 2.24 We have the induced morphism s(f) : €(Fz,p2) — &(F1,¢1) such that ©(Fi,p1) o s(f) =
o(F2,2).-

Proof Before going into the proof, we give a rather canonical construction of a datum for a given (F, ) as in
the beginning of this subsubsection. We take a sufficiently large integer m1, and we put V; := p% (pX *f(m)) ®
O(—m1) ® Ov,x x. The canonically defined morphism p% (pX *f(ml)) ®O0(—mq) — Fand ¢ : Opy,xx — F
gives a surjection € : Vi — F. We also have the lift ¢ : Oy,xx — Vi. Then, we take a sufficiently large
integer mo, and we put Vp := p% (px « Ker(e)(mg)) ® Ox(—myg). Then, we have the surjection Vj — Ker(e),
which induces dp : V) — V;. Since the kernel is locally free, we put V_; := ker(dy). We take a resolution P.
such that Py is a direct sum of O(—my). Then we canonically obtain the morphism @ P —V; (i=0,-1)
on U; x X. Thus, we obtain a datum as above.

We take (V.. P, ¢@, () for (F;, ;) by applying the construction explained above. Then the morphism
f is canonically lifted to f : V. — V@ such that ¢® = fo¢(® and 51(2) =fo 51(.1). Then, we obtain the
following diagram:

Uyx X —— Zo(V),P) —— Z,(Vv? p)

UixX —— z v, Py —— 7,v? . p)
Then, the claim of the lemma, is clear. |

Now,_we assume Ripx .F =0 for i > 0. We put U := px .F. The morphism ¢ : Oy,xx — F induces the
section ¢ of W. We have the following diagram:

U, L) Us

jll 11 (23)

¢

Uy ——
Here 7 denotes the 0-section.

Proposition 2.25 ObZ (F,¢) is isomorphic to JsLu, o ~ BY[1], and the morphism v(F,p) is same as the

rel
morphism k : j5 Ly, — Ly, ju, induced from the diagram (23).

Proof We have the naturally defined morphism a; : p%*0 — F, for which we have ¢ = ¢oaj. Due to Lemma
2.24, we have the following diagram:

(a1) « -
UF,p) — E(pyD, ) —— Ly, xx/vsxx

It induces the following morphisms:

b " T b
ObiL(F, ) —2— Obi(p5xV.p5xd) —— Ly, v,
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Let us see by more closely. In the construction for (p%%,p% @), we can put Vi = piF, Vi = Uy x X
(1=0,-1), Py = Oy, xx and P_; = Uy x X. Then, Z; = Uy x X and Z; = p5U. The diagram (22) is given
as follows: .

Uy x X 22— 7, Us x X

N
Upx X —2 . 7, T

Here i denotes the 0-section. We have ¢ = j7 Lz, /7, ~ p%x D)y, xx[1], and the morphism v : € — Ly, x/u, xx
is same as the pull back of k. In particular, we have the following factorization of by:

* * T * b K
Ob™ (p3 B, pk &) = V(1] ® Rpx « (pi,wx) —>— B[] —"— Ly, v,

It is easy to see that the composite by o ag is isomorphic, under the assumption R'px «F = 0 (i > 0). Thus
the proof of Proposition 2.25 is finished. |

We can obtain a similar result for a smooth projective curve. The argument is similar and simpler, and
hence we omit to give a proof.

Let D be a smooth projective curve. Let F be a Us-coherent sheaf on Us x D such that pp.F is locally
free. Let ¢ be a morphism Opy,xp — F. It induces the section H(p) of ppF. Let Uy be a subscheme of Us
contained in H ()~ 1(0).

Assume that we have a locally free resolution (Vy — V1) of F such that there exists a lift ¢ : Oy, xp — Vi
of . The morphism ¢ : Oy, xp — Vo |u, xp is induced. We put €(V., ¢) := Hom(Ov, xp, V.ju,xp)" -

Let us construct a morphism v(V.,¢) : €(V.,¢) — Ly, xpju,xp- We put Z; := N(O,Vp) and Zy :=
N(O, V7). Then we have the naturally defined morphism Z; — Z5. The sections ¢ and ¢ induces the following
commutative diagram:

U1XD;.>Zl

| |

Uy x D —— 7
It induces the morphism v(V.,¢) : €(V.,¢) ~ j*Lz, 7z, — Ly, xp/u,xp- It can be shown that t(V.,¢) and
£(V., ¢) depends only on (F, ). Therefore, we use the notation t(F, ¢) and &(F,¢). We put as follows:
Obf(F,¢) = Rpp .+ (¢(F,¢) @ wp)

Then, we have the induced morphism ob®,(F, ¢) : ObZ (F,p) — Ly, v,

rel rel
We put U := px.F. We have the induced section ¢. Then, we obtain the diagram (23). It induces the
morphism « : VY [1] — Ly, /v,

Proposition 2.26 Assume R'pp.F =0 for i > 0. Then, we have the following commutative diagram.:

obrel (F,)
—

Objei(F, ¢) Ly, v,
m\/[l] —— LUl/U2
Proof It can be shown by an argument similar to the proof of Proposition 2.25. |

2.4 Obstruction Theory
2.4.1 Definition and the foundational theorem of Behrend-Fantechi

In the study of Gromov-Witten theory, Li-Tian and Behrend-Fantechi introduced the notion of virtual fun-
damental class of moduli stacks with some good structure. (See [39] and [5].) In this paper, we follow the
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work of Behrend-Fantechi. Let us recall their notion of obstruction theory of an algebraic stack with a minor
generalization.

Definition 2.27 Let X' be an algebraic stack over an algebraic stack S. Let E* be an object in D(X) such that
H'(E") are coherent (i = —1,0,1). A homomorphism ¢ : E' — Ly g is called an obstruction theory for X /S,
if H'(¢) (i > 0) are isomorphic and H~=1(¢) is surjective. In that case, E is also called an obstruction theory
for X/S. |

Since we have H(Lxy) = 0 for i > 1, the condition implies H*(E") = 0 for i > 1. If X is Deligne-Mumford,
we also have H'(E") = H'(Ly) = 0.
We will often use the following theorem.

Proposition 2.28 (Behrend-Fantechi, Theorem 4.5, [5]) Let X be a Deligne-Mumford stack over S. Let
¢: B — Ly;s be a morphism in D(X). The following conditions are equivalent.

e ¢ is an obstruction theory.

o Let T and T be S-schemes such that T is a closed subscheme of T whose ideal sheaf J is square 0. Let
g:T — X be a morphism over S.

(A1) g can be extended to a morphism g : T — X over S, if and only if ¢* (o(g)) =0 in Ext! (g*E'7 J),
where o(g) is the obstruction class of g. (See Proposition 2.11.)

(A2) If ¢*(o(g)) =0, the set of the extension classes of g is the torsor over the group Ext® (gE,J). |

We recall the perfectness of the obstruction theory in the sense of Behrend-Fantechi with a minor general-
ization.

Definition 2.29 Let ¢ : E° — Lx /s be an obstruction theory of an algebraic stack X over S. It is called
perfect, if it is quasi isomorphic to a complex of locally free sheaves F~' — FO — F' in the derived category
D(X). |

In that case, the number — rank F'' 4 rank F© — rank F~! is well defined on each connected component of
X. The number is called the expected dimension of X over S with respect to ¢.

If X is Deligne-Mumford, we have H'(E") = H'(Lx) = 0 for the obstruction theory E°. Hence, a perfect
obstruction theory is quasi isomorphic to F~' — F9. The important and foundational theorem of Behrend and
Fantechi is the following. (See also [39].) Let A.(X) denote the Chow group of X with rational coefficient.

Proposition 2.30 (Behrend-Fantechi, Section 5, [5]) Let X’ be a Deligne-Mumford stack over a smooth
scheme S. A perfect obstruction theory ¢ : E* — Ly g induces the virtual fundamental class [X, ¢] € Aq(X),

where d is the expected dimension with respect to ¢.
When X is smooth, [X, @] is given by the Euler class of the vector bundle HI(E'V). |

Let &; (i = 1,2) be algebraic stacks over S with obstruction theories ¢; : E; — Lyx,;s. Assume we have
the following commutative diagram:

Xy !, X
d |
R S

Recall the following definition in [5].

Definition 2.31 We say that ¢; are compatible over h, if we have the following morphism of distinguished

triangles on X :
[PEy —— By —— g'Lyy, ——  [TE3[1]

! ! ! !

9*Lx,)s — Lx,ys —— Lx,jx, — 9" Lx,s[l]
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We recall the following theorem for later use.

Proposition 2.32 (Behrend-Fantechi, Proposition 7.5, [5]) Assume X; (i = 1,2) are Deligne-Mumford,
and the obstruction theories ¢; are perfect. If ¢; are compatible over h, then h'[Xa, 2] = [X1, ¢1], at least if h
is smooth or Y; are smooth over S |

See [5] for more detail about virtual fundamental classes.

2.4.2 Easy example

Let X be a smooth variety over k. We would like to construct an obstruction theory of the moduli spaces M
of some objects on X. Our naive strategy is summarized as follows (See [5], for example):

1. Take the classifying stack Y of such objects over X. It means that such objects over U x X bijectively
correspond to morphisms ® : U x X — Y over X. For example, recall that a vector bundle of rank R
over U x X corresponds to a map U x X — Xqp,(g) over X.

2. For any classifying map ® : U x X — Y, we obtain the morphism ®*Ly,x — Lyxx/x on U x X. Let
wx denote the dualizing complex on X, i.e., it is the canonical sheaf shifted by the dimension of X. Then,
we obtain the morphisms on U:

Oby := Rpx.(®*Ly,x ® wx) — Rpx+(px Lu/k ® wx) — Ly i
In particular, we obtain the morphism Oby; — L g on M.

3. Then we hope that the morphism Obaq — L4 gives the obstruction theory, in some cases. Note that
the property is local, once the morphism is given globally. Thus we have only to check the claim for the
sufficiently small etale open sets of M. The tool for checking is Proposition 2.28.

Remark 2.33 In general, we need some modification for the construction of Ob g to obtain the good obstruction
theory. |

Let us see the easiest example. Let F' and V be vector bundles defined on X. Let U be any scheme over
k, and let f : p{;(F) — p;(V) be a morphism of Oy x-modules over U x X. It is easy to see that such
a morphism f corresponds to a morphism ®; : U x X — N(F,V) over X. Thus we obtain the complex
g(f) == @3 Ly(rv)/x and the morphism 9(f) — Luxx/x in the derived category D(U x X).

Lemma 2.34 The complex g(f) is quasi isomorphic to pj;Hom(V, F).

Proof Let m: N(F,V) — X denote the natural projection. Since the morphism N(F,V) — X is smooth,
the cotangent complex Ly (r,v)/x is quasi isomorphic to Qn g v)/x =~ 7*Hom(V, F'). Thus we obtain the quasi
isomorphism @3 Ly (rv)/x =~ pyHom(V, F). |

We put Ob(f) := Rpx*(g(f) ®wX). Then, we obtain the morphisms Ob(f) — Rpx. (LUXx/X ®wX) —
Ly in the derived category D(U). The composite is denoted by ob(f).

Now, let M (F,V) denote the moduli scheme of the morphisms F' — V' i.e., maps U — M(F,V) cor-
respond to f : pf(F) — p5;(V) on U x X. It is easy to see that M(F,V) is isomorphic to the vector space
H°(X,Hom(F,V)). We have the universal morphism f* Py (F) — Py (V) over M(E,V) x X. It
induces the morphism ob(f") : Ob(f*) — Lar,v)-

Lemma 2.35 The morphism ob(f*) gives the obstruction theory of M(F,V).

Proof It is almost obvious from the universal properties of N(F,V) and M (F,V). But, we give an argument
for the explanation of our later discussion. We have only to check the conditions (A1) and (A2) in Proposition
2.28.

Since the claim is local, we can check the claim for any sufficiently small open subset U of M (F, V). Let
T be an affine scheme over k. A morphism g : T — U induces the morphism gx : T'x X — U x X and
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gx =Pogxy :Tx X — N(F,V) over X. Let T denote a scheme such that T is embedded in T' whose ideal J
is square zero. The deformation theory of the morphisms g and gx is controlled by the groups Ext’ (g*LU Ik )

and Ext’ ('g“}‘(L N(FV)/X> . X) respectively. We have the following commutative diagram:
Ext'(g*Lyk,J)  —2— Ext'(g* Ob(f*), J)

l ]

Ext’ (9% Luxx/x,Jx) ——  Ext'(¢%(9),J) =——= Ext'(§xLnrv)/x,J)

We have the obstruction classes o(g) € Ext'(¢* Ly, J) and o(gx) € Ext'(g%g,J) of the morphisms g and
gx respectively. By the functoriality of the cotangent complex, the obstruction class o(g) is mapped to the
obstruction class o(gx) in the diagram above.

If the image h(o(g)) is 0, the class o(gx) is 0. Thus gx can be extended to a morphism 7' x X — N(F, V),
which induces a morphism of p=(F") — p=(V)) on T x X. By the universal property of M (F,V), we obtain a
morphism 7 — M (F, V), which is the extension of g. Therefore, the condition (A1) is satisfied.

Similarly, we know that the morphism Ext" (g*LU/k, J) — Ext’ (ﬁ}LN(F)V)/X, J) is isomorphic from the
universality of M (F,V) and N(F,V). Hence the condition (A2) is also satisfied. Thus we are done. |

2.4.3 Obstruction theory for locally free subsheaves

Let X be a smooth projective variety over k with an ample line bundle Ox(1). Let V be a locally free sheaf
on X. Let W denote an R-dimensional k-vector space. We denote W ® Ox by Wx. We have the natural right
GL(W)-action on N(Wx, V). The quotient stack is denoted by Yquo(W.).

We consider the deformation theory of locally free subsheaves F' C V of rank R. Let U be any k-scheme.
Any locally free subsheaf f : ' — pj;V on U x X induces the morphism ®(F, f) : U x X — Yq,0(W.) over
X. We put g(F, f) := ®(F, f)* Ly, w)/x, and Ob(F, f) := Rpx.(g(F, f) ®wx ). Then, we have the morphism

quo

9(F, f) — Lyxx/x on U x X, which induces ob(F, f) : Ob(F, f) — Ly on U. The following lemma can be
shown by the argument explained in the subsection 2.3.2.

Lemma 2.36 g(F, f) is represented by Cone(a)[—1] of the morphism o : Hom(p};V, F) — Hom(F, F), where
a is given by a(a) =ao f. |

Remark 2.37 We put V_1 := F and Vy = p§;V, and we regard V. = (V_1 — Vb) as a complex, where Vy
stands in the degree 0. Then, Cone(c) is naturally isomorphic to Hom(V_1[1], V.)V[—1]. |

Let H be a polynomial. We have the moduli of quotients (¢ : V' — Q) of V such that the Hilbert
polynomials of @ are H. Let M(V, H) denote the open subscheme which consists of the points (¢ : V — Q)
such that Ker(q) are locally free. Then, we have the universal family f* : F* — p?w(v, H)(V) defined over

M(V,H) x X. We obtain the morphism ob(F*, f*) : Ob(F™, f*) — L(v,m)-
Proposition 2.38 The morphism ob(F“, f*) gives the obstruction theory of M(V, H).

Proof Let N be a sufficiently large number satisfying the condition Oy for the family F™, ie., we have
HZ(X, F“(N)‘{q}xx) = 0 for any ¢ € M(V,H) and i > 0, and Fﬁq}Xx(N) are globally generating for any
q € M(V,H). We put F* := pypx.(F*(N)) ® O(—N). We have the natural surjection g : F* — F*.

We put F = O(—N)®?, where d = rank F*. We have the Grassmaniann bundle = : Gr(F,R) — X
associated to the vector bundle F, ie., the fiber of m over a point x € X is the Grassmann variety of the
R-dimensional quotient spaces of the vector space I'|,. We denote the universal quotient bundle over Gr(F, R)

by Q. Then, we have the vector bundle ?quo = N(Q, V) over Gr(F, R), which is a variety smooth over X.
We have the natural morphism 7y : ?quo — Yquo(W)).

We would like to check the conditions (A1) and (A2) in Proposition 2.28. Let U be any sufficiently small
open set of M (V, H), on which we can assume that there exists an isomorphism Fu o~ p*UF. Thus, the morphism
Q: p’{]F — F%is given on U x X. From a and f*, we obtain the morphism ®(a, F'%, f*) : Ux X — ?quo over
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X. By the argument in the subsubsection 2.3.2, we can show that the complex ®(«, F'“, f“)*L;,quo/X is quasi
isomorphic to Cone(3)[—1] for the morphism 3 : Hom(p},V, F*) & Hom(F",pj;F) — Hom(F", F*), where
B(b1,b2) = by o f* — f* 0 by. We can also show that the natural morphism Cone(a)[—1] — Cone(8)[—1] —
Ly« x/x corresponds to the factorization ®(F™, f*)* Ly, /x — ®(a, F¥, f“)*L;,q“O/X — Ly x/x associated

toU x X — ?quo — Yquo(W.). We put as follows:
gla, FU, f*) = <I>(a7F",f“)*L)~,quo/X, Ob(a, F“, f*) := Rpx*(g(mF",f") ®wX).

Let T be an affine scheme, and let ¢ : T — U be a morphism. We put gx := ®(F%, f*) o g and
gx = ®(a, F*, f*) o g. For any coherent sheaf J on T, we have the following diagram:

Exti(g* Ly, J)  —— Bxt!(g* Ob(a, F¥, f*),.J) —2— Ext'(g* Ob(F", f*),J)

! 1 | s

Ext' (g% Luxx/x,Jx) —— EBExt'(gko(a, F¥, f*),J) —— Ext'(gka(F", f4),J)

Let T be an affine scheme into which 7" is embedded closedly such that the corresponding ideal J is square zero.
Due to the deformation theory of Illusie, we have the obstruction classes of the morphisms ¢ and gx in the
groups Extl(g*LU/k, J) and Ext! (g}g(oz7 Fu,fv), J) respectively. The classes are denoted by o(g) and o(gx).
Due to the functoriality, the class o(g) is mapped to the class o(gx) in the diagram (24). If hi(o(g)) is 0, then
the morphism gx can be extended.

Note that the cohomology sheaves R'px. (Hom(F uph F) @w X) vanish unless ¢ = 0, because of our choice
of N. Thus, we have the isomorphism Ext’ (9" Ob(a, F*, f*),J) ~ Ext’ (g* Ob(F*, f*),J) for any i > 0 and
for any coherent sheaf J on T. Hence hj o hi(o(g)) = 0 implies h}(o(g)) = 0. Then the morphism gy can
be extended over T x X, and hence gx can also be extended over T x X. Therefore, we obtain a locally free
subsheaf I of p=(V') on T x X, which is the extension of g% F*. Due to the universal property of M (V, H), the

morphism g can be extended over T. Therefore, the condition (A1) is satisfied.
Let us check the condition (A2). We put as follows:

Hy := Ext’ (px* (g}Hom(F“,p}}F) ® wX), J) =H° (T,g*Snd(pX*(F“(m))) ® J)

Hy :=Ext°(¢* Ob(g, F*, [*),J) = Ext’(gx Ly, ,x:Jx), Hz:=Ext’(¢* Ob(F", f*),])

We obtain the exact sequence 0 — Hy — H; — Hz — 0. Due to the theory of Illusie, H; parameterizes
the set of extensions g% : Tx X — Yquo of gx. The natural action of Hy on H; determines the equivalence
relation on Hiy, and it is easy to see that g’ ~ g% if and only if m1 0 g = m1 0g’, because Hy parameterizes the
deformation of the morphisms F' — F*. Thus the set of the extensions of the morphisms 7' x X — Yuo(W.)
over T x X is the torsor over the group Ho.

By the universal property of M(V, H) and Yquo(W.), the set of the extensions of g over T is also the torsor
over Ho. Namely the condition (A2) is satisfied. Therefore we are done. |

Usually, we consider the deformation theory of quotients of V. Let H be a polynomial, and let Quot(V, H)
denote the quot scheme which parameterizes the quotient sheaves of V' whose Hilbert polynomials are H. We
have the universal quotient g% : pauot(V)H)(V) — Q" on Quot(V, H) x X. We denote the kernel of ¢* by F“,
and the inclusion F* — pauot(uH)(V) is denoted by f*.

Let us consider the case dimX = 1. Let Hy denote the Hilbert polynomial of V. Then Quot(V, H)
parameterizes the locally free subsheaves of V whose Hilbert polynomials is Hy — H. Therefore, we have
obtained the obstruction theory ob(f") : Ob(f") — Lquot(v,H)-

Proposition 2.39 In the case dim(X) = 1, the obstruction theory ob(f") is perfect. The scheme Quot(V, H)
is smooth, if H is a constant, i.e., H is a Hilbert polynomial of sheaves of finite length.
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Proof To show the perfectness of Ob(f*), we have only to show that Rpx . (g(F“, f“)v) is perfect of amplitude
contained in [0,1]. Let ¢ be any point of Q(V,H). We put F := F|1~J{q}><X and Q := V/F. The complex
g(F“,f“)I\f{q}XX is Cone(y)[—1] for the natural morphism ~ : Hom(F,F) — Hom(F,V), which is quasi-
isomorphic to Hom(F, Q). Hence we have Hi(X,g(F“,f“)lv{q}XX) = 0 unless ¢ = 0,1 for any point q¢ €
Quot(V, H). Then the desired perfectness easily follows.

Let us show the second claim. When H is a constant, i.e., @ is a torsion sheaf, we always have the vanishing
H'(X,g(F", f“)‘v{q}xx) = 0. Let T be any affine scheme over k, and let g : T — Quot(V, H) be a morphism.
Then we obtain the vanishing Ext’ (g* Ob(f*), J) = 0 for any coherent Op-module J, and hence the vanishing
of any obstruction class. Thus we obtain the smoothness. |

Remark 2.40 Let us consider the case dim X = 2. Let QY (V,H) denote the open subset of Q(F,H) cor-
responding to the torsion-free quotient. It gives an open subset of the moduli stack of locally free subsheaves
of V. Then, F‘\%q}xX are locally free for any q € QY (V,H). Therefore, we obtain the obstruction theory

ob(F*, f*) : Ob(F™, f*) — Lqts v,y i from Proposition 2.38. |

2.4.4 Obstruction theory for filtrations of a vector bundle on a curve

Let S be a scheme over k, and let D be a smooth projective curve over S provided with an ample line bundle
O(1). The projection D — S is denoted by p. For any point s € S, the fiber over s is denoted by Ds. Let V
and F' be a locally free sheaf on D provided with an injective morphism f : F — V. Assume that the quotient
is S-flat.

Let H; be polynomials. For an S-scheme 7', let F'(T') denote the set of the data (g, V*) as follows:

e ¢ is a morphism T' — D over S.

e V* denotes a filtration ¢*V = V1 5 V@ 5 ... 5 Vv 5 v+ = g*F We assume that the quotients
Cok; := VI /V+1) are T-flat.

e The Hilbert polynomials of Cok; p, are H; for any i =1,...,l and s € S.

The functor is representable by a scheme, which can be shown by the standard technique using the quot schemes.
Let M(H,) denote the moduli scheme. Let pys(z,) denote the projection M(H,) xs D — D. We have the
universal filtration on M (H,) x g D:

p}FW(H*)V — V(l) D) V(2) DR V(l) O V(lJrl) :p}FW(H*)F

To discuss an obstruction theory of M(H,), we introduce some stacks. Take vector spaces W; (i = 2,...,1)
over k such that rank W; = rank V@ =: r;. We put W = W; @ Op (i =2,...,1). We put wh = vy
and WD = F. We put Yy := N(WEHD WM and Ry = [[_, N(WED W), We put G(W,) :=
]_[222 GL(W;). We have the natural right G(W,)-action on R;. Let Y; denote the quotient stack of Ry by
the G(W,)-action. By the composition of the maps, we obtain the morphism ¢ : Ry — Y, which induces
Y1 — Yy. We also put Ys := D. Then the morphism FF — V induces the morphism Yo — Y. We put
Y = Yl XY, ng

Let V* denote the above filtered vector bundle on T x g D. We have the naturally defined morphism:

G(V*): ®g(V*) Ly, jp — @ ®;(V*)* Ly, /p
i=1,2

We use the notation in the subsubsection 2.1.5. We put g(V*) := Cao(V*,V*)¥V[—1]. We obtain the morphism
®;(V*) : T xgs D — Y;. By the argument in the subsubsection 2.3.2; the cone of G(V*) is expressed by
the complex g(V*). Thus, we have the naturally defined morphism g(V*) — Ly, p/p. We put Ob(V*) :=
Rp.(3(V*) ® wp,s), and then we obtain the morphism ob(V*) : Ob(V*) — L.

Lemma 2.41 The morphism ob(V*) gives an obstruction theory for M (H.,).
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Proof Let us take locally free sheaves J (i = 2,...,1) on D such that H'(D,, Hom(J, V‘(gs)) = 0 for any
s € D. For any S-scheme T, let F(T) denote the set of the data (g, V*,,) as follows:

e g denotes a morphism 7" — D, and V* denotes a filtration as above.
e ¢, denotes a tuple of surjections of g*J@ onto V@),

The functor F is representable by the scheme which is denoted by M (H,). It is easily described. We have the
locally free sheaf N; = Hom (p}*w(H*)J(i),V(i)) on M(H,) xsD. Then M(H*) is isomorphic to an open subset
of @ p«N;. On M (H,) xs D, we have the universal filtration V* with the tuple of surjective morphisms @¥.

Let Gr(J@,r;) be the Grassmannian bundles of r;-dimensional quotient spaces associated to the vector
bundles J*). We have the universal quotient bundle Q;. We put Z := Hé:z Gr(J ), r;), where the fiber product
is taken over D. The pull back of Q); via the projection Z — G?"(J(i r;) is denoted by wo (i=2,...,1). The
pull back of V and F via the prOJectlon 7 — D are denoted by WM and WD) respectively. Then we put
Yy = N(W(”l) W(l)) Y, = H N(W(”l) W(l)) and Y, := Z. We have the natural morphlsms Y, — Yo
(i = 1,2) as above, the fiber product Y; X3, Y, is denoted by Y. The inclusions Y — Y; are denoted by j;.
On Y, we have the natural morphism Joly,p — D._, 2]l i Ly, jp- The cone of the morphism is denoted by
Ob(Y). Then we have the naturally defined morphism ob(Y) : Ob(Y) — Ls p, and it gives an obstruction
theory for ¥ over D. (Basic example in [5]).

Let T be an S-scheme. From (V*, @), we obtain the morphism ®;(V*, ¢.) : T'xgD — Y;. Therefore, we
obtain ®(V*, ,)* Ob(Y ) — Ly yps- We put Ob(V*,p,) := Rp, (Ob( ) @ wp/s), and then we obtain the
morphism S\B(V*,go*) Ob( *0x) — Lyg.

Let us describe the complex Ob(V*, ¢.). We have the morphism Hom (V) JD) — Hom (VO , VD) given
by a; — @i o a;. It induces the morphism of the complexes o : @L_, Hom(V®, JD)[-1] — g(V*). We
put g(V*) := Cone(e). By using the argument in the subsubsection 2.3.2, we can show that g(V*) expresses
B(V*,0.)* Ob(Y).

Applying the above construction to (V*, o), we obtain the morphism gvb(V*, K 6vb(V*, ) — Lit/s-

Lemma 2.42 The morphism gf)(V*, ©¥) gives an obstruction theory of M(H*) over S.

Proof Let h : T — M(H*) be a morphism, and let J be a coherent sheaf on 7. The pull back of J via
T xg D — T is denoted by Jp. We put hp := ®(V*, o%) o hp. We have the following commutative diagram:

Ext' (W Lz s0 /) ——  Ext!(h*Ob, J)
Ext' (h* M(H,)xsD/D’ JD) —— Ext! (h’{;ﬁ(v*), JD)

Let T be an S-scheme such that 7' is embedded as a closed subscheme and that the corresponding ideal J is
square 0. We have the obstruction classes o(h) and o(hp) in Ext? (h* Ly M(1.)/50 J) and Extl(hi‘DLf,/S, Jx). It

is easy to see that z/J(ob(h)) € Bxt! (h*(/)vb, J) is same as the image of o(hp) via the composite of the following
morphisms:
Ext! (5 Ly 5, Jp) —2 . Ext! (hpa(V*), Jp) —2— Ext!(h*Ob,J)

Hence the vanishing of z/J(o(h)) implies by (O(ﬁp)) = 0. Since Ob gives the obstruction theory for Y, it implies
that h can be extended to a morphism T xsD — Y. Then we obtain the extension of h to the morphism
T — M(H,) due to the universal property of M (H,). Therefore, the condition (A1) of Proposition 2.28 is
checked. The condition (A2) can also be checked easily, and the proof of Lemma 2.42 is finished. |
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Let 7 denote the projection M (H.) — M(H,), which is smooth. We have the following commutative
diagram:

M(H,) xs D 20700, Y;

M(H,) xsD 2y,

Then, we obtain the following morphism of the distinguished triangles on M (H.) x5 D:
PGV s BV, OB(T) —— B, Hom(VD,J0) ——  wr G

! ! ! !

T L (H.) % sD/D Liictyxsp/m LSty x sD/M(H ) xsD 7 L) xsp/pll]
Hence, we obtain the following morphism of the distinguished triangles:

™ Ob(V*) ——— Ob(V*,¢*) —— @, (p.Hom(JD, V)Y —— 7 Ob(V*)[1]

I l d l

™ Ly — Lijpys — L —— 7 Lrca,y/s(l]

M(H.)/M(H.)
It is easy to see that both of LM(H*/S) and P, (p*'}'lOTrL(J(i)7 V(z‘)))\/ are isomorphic to the 0-th cohomology
sheaves, and that the morphism ¢ is isomorphic. Then, the claim of Lemma 2.41 immediately follows from
Lemma 2.42. |

2.5 Equivariant Complexes on Deligne-Mumford Stacks with GIT Construction

The results in this subsection will be used when we discuss the equivariant obstruction theory of the master
space in the subsection 5.8.

2.5.1 Locally free resolution

Let G; (i = 1,2) be a linear reductive group over k. Let U be a quasi projective variety over k provided with
G1 x Go. We assume that there exists a G x Gp-embedding into some projective space PY. The closure of
U in PV is denoted by U. The G; x Ga-equivariant polarization is denoted by O(1). We assume that U is
contained in the open subset of the stable points of U with respect to the polarization O(1) and the Ga-action.
We assume that M = U/G; is a separated Deligne-Mumford stack. The projection U — M is denoted by .

Lemma 2.43 Let F be a G1-equivariant quasi coherent sheaf on M. Then there ezists a G1-equivariant locally
free sheaf V on M and a G1-equivariant surjection ¢ :V — F.

Proof There exists a coherent sheaf G on U such that Gy = m*F. There exists a large number N such that
G(N) is globally generating. Then 7*F(N) is also globally generating. We may take a G1 x Ga-equivariant
subspace W of H*(U,7*F(N)) such that W ® O(—N) — 7*F is surjective. Then we have only to take the
descent of W @ O(—N) and the morphism. |

Corollary 2.44 Let F. be a bounded G1-equivariant complex of coherent sheaves on M. Assume that there
exist integers My and Mo such that the following holds:

e For any point of M, there exists a neighbourhood U such that F.y is isomorphic to a Gi-equivariant
coherent locally free complex GY in D(U) where GY = 0 unless My < i < M.

Then there exists a global G1-equivariant coherent locally free complex G. ~ F in D(M), where G; = 0 unless
My <i < M. 1
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2.5.2 Equivariant representative

We recall that the morphism of M to the coarse scheme is finite (Proposition 2.4).

Lemma 2.45 Let C;. (i = 1,2) be G1-equivariant bounded complezes of coherent sheaves on M. We assume
that Cy. is perfect. Let ¢ be an element of the Gi-invariant part of ExtO(Cl.,Cg.), Then, we can take a

G1-equivariant perfect complexr Cy. with a Gi-equivariant morphism ¢ : C;. — Ca, such that Ci. is Gi-
equivariantly quasi isomorphic to C1., and that ¢ represents .

Proof We give only an indication. We may assume that Cy; = 0 unless |i| < N. We take a sufficiently

large number N7, and we replace C7. with a Gi-equivariant quasi isomorphic complex C, . with the property
Ext” (Cl)i,CQJ‘) = 0 for any £k > 0 and ¢ > —Ni, and for any j. Then, ExtO(Cl,Cg) ~ ExtO(Cl,Cg) is
isomorphic to the first cohomology of the following;:

@ EXtO(al,i,ngj)—> @ EXtO(éLi,OQ,j)—> @ EXtO(al,i,ngj)

—itj=—1 —i+5=0 —itj=1
Since G is assumed to be reductive, the claim is clear. |

Let B® (i = 1,2) be G-equivariant bounded complexes on M. We assume that B™) is perfect. Let ¢
be an element of the Gy-invariant part of Ext® (B(l), B(z)). We take a Gi-equivariant perfect complex B
with G1-equivariant morphisms a; : BW — B such that a1 is quasi isomorphic, and that the diagram
B 2 p() 22, B(2) represents ¢. We have the natural Gi-equivariant structure on the cone Cone(as).
Assume we have other Gp-equivariant complex B(Y) with Gi-equivariant morphisms @; : B®Y) — B® such
@ with
G1-equivariant morphisms with morphisms f : E(l) — BW and g: E(l) — BW such that the following
diagrams are commutative up to homotopy for i = 1, 2:

that the diagram B() A By 22, ) represents ¢. Then, there exists Gi-equivariant complex B

E(l) / BW
QJV aiJ,
B _%_, B@)

Due to an argument similar to the proof of Lemma 2.45, we may assume that the homotopy is also Gi-
equivariant. Then, we have the G1-equivariant quasi isomorphisms:

Cone(az) «+— Cone(ag o g) =~ Cone(az o f) — Cone(ag)

In this sense, the Gp-equivariant complex Cone(as) is uniquely determined up to Gi-equivariant quasi isomor-
phisms. We denote it by Cone(yp).

2.6 Elementary Remarks on some Extreme Sets

The results in this subsection will be used when we discuss the geometric invariant theory for the enhanced
master space in the subsections 4.3-4.4.

2.6.1 Preparation for the proof of Proposition 4.21

Let us consider a vector space U = @~ , Q - ¢;. We put f; == (j — N) 2oi<j €+ J 2 ¢i- The following
lemma is well known and easy to prove. a

Lemma 2.46 Take any element p = Zi\;l a; - e; € U satisfying Z;\;l aj =0and a; <azx <--- <an. Then
there exist non-negative rational numbers b; such that p="b; - f;. |
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Let r1,...,rs be positive integers such that Z;:l r; = N. We put R; = ZKJ- r;. We put as follows:

vj = Z e, (J=1,...,s).

R;_1<i<R,;

For an integer j such that 1 < j < s, we put as follows:

y(G):==~(N=Rj) Y on+R;- Y vn.

h<j h>j

For a pair of integers (i1,42) such that 1 <i; < iz < s, we put as follows:

x(il,ig) = —(N — Rig) Z vp, + Ry Z Vp, .

h<iy i2<h

For an integer i¢ such that 1 < iy < s, we put as follows:
Slio) = {(il,ig) € 72 ‘ 1< iy <ip<is< s}.

Lemma 2.47 Let v = Z§:1 aj - v; be an element of U satisfying the following:

S
ay<ap < <ag, Yy ri-a;=0.
j=1

Take an integer 1g such that 1 <ig < s.

o Assume a;, > 0. Then there exist the non-negative rational numbers b(i1,i2) € Qx¢ for (i1,42) € S(io)

and the non-negative rational numbers c; (1 < j < ip) such that the following equality holds:

ig—1

v = Z b(i1,i2) - x(i1,42) + Z ci - y(j)-
j=1

(i1,i2)€S(0)

(26)

o Assume a;, = 0. Then there exist the non-negative rational numbers b(i1,i2) € Qxo for (i1,i2) € S(io)

such that the following holds:
v = Z b(il,ig) 'x(il,ig).

(il ,iz)es(io)

One of b(i1,i2) is not 0.

o Assume a;, < 0. Then there exist the non-negative rational numbers b(i1,i2) € Qo for (i1,i2) € S(io)

and the non-negative rational numbers c; (io < j < N) such that the following holds:

N
v= Y b)) a(ini) + Y ¢ey(i)
(i1,i2)€S(0) Jj=io+1

Proof We use an induction on the number d(v) := #{i ‘ a; # a;41}. In the case d(v) = 0, the claim is obvious.

Let v be as in the lemma such that d(v) = m + 1. Take the integers hy and ho satisfying the following;:
ag=az=+-=ap, <ap+1, 0Gs=0s_1 =" "+ = Ahyt1 > Ahy-
We remark the following:
e In the case a;, > 0, we have h; < io.

e In the case a;, = 0, we have h; < ig < hs.
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e In the case a;, < 0, we have ig < hs.

Let us discuss the case a;, > 0. If we have ig < hg, we put as follows:

Ah14+1 — Ahy;  Ahy41 — Ap
v i=v—f-z(h,ho) = E a;-v;, f:=min { Lt L, Ehs 2}
N — Ry, Ry,

If we have ig > ho + 1, we put as follows:

Ay — Apy

!
=v—g-ylh =
vi=v—g-ylh), g T

It is easy to see that the numbers a} satisfy the condition (25), and that we have d(v’) < d(v) — 1. Due to the
hypothesis of the induction, we have the expression for v’ as in (26) with the non-negative coefficients. Then
we obtain the desired expression for v.

The cases a;, = 0 or a;, < 0 can be discussed similarly. |

2.6.2 Preparation for the proof of Proposition 4.35

Let N(®) (e = 1,2) be positive integers. Let us consider a vector space as follows:

N

U=UD au®, Yy = @ Q- ega)

Let r%a), L (o« = 1,2) be positive integers such that Z 0‘) (a) N We put Rg-a) = h<; 7“20‘). We

’ s(a)

put Q@) = > ega). We also put as follows:
v](a) = Z ega), (j=1,....s(0)).
R, <i<R'

For each integer j such that 1 < j < s(2), we put as follows:

y(z)( ) =—(N — R| 2) ZU +R(2 ZU}(LQ).
h<j h>j
For each integer j such that 1 < j < s(1), we put as follows:

21(j) = N "oV + BV @), N® .3 ol 4 (RY, - NO) . ),
h<j h>j

Lemma 2.48 Let v = Za:172 Zj ag-a) -vj(»a) be any element of U satisfying the following conditions:

Sl s YA <o )

a=1,2 j

Take an integer ip such that 1 < zo < 3(1) Then, there exist non-negative rational numbers c(j) > 0 (j
1,...,8(2), di(d) >0 (i = 1,...,40), d2(i) > 0 (i =dp+ 1,...,5(1)) and a rational number A such that the
followmg holds:

s(2)

0=3"c(i) y20G) + 3 dili) - 21(0) + 3 dali) - 25(6) + A- (NOQW = ND .0, (28)

j=1 <10 >0
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Proof Due to Lemma 2.46, we may assume agz) == ag;) from the beginning. We use an induction on the

number d(v) = #{i| agl) # al(i_)l}. In the case d(v) =0, we have v = A - (N(Q) QW — NO QW) for some A,
and hence the claim is clear. Let v be an element as in the lemma such that d(v) = m+1 > 0. Let us take the

integer h; satisfying agl) = aglll) < aglll)ﬂ. In the case ig > h1, we put as follows:

of ol
11/ =V — 14__]\7(2) L X1 (hl)

In the case ig < hi1, we put as follows:

T

r_

v =0 — W 'ﬂfg(hl).

Then v satisfies the condition (27) and d(v') < d(v). Due to the hypothesis of the induction, we have the
expression for v” as in (28). Hence we obtain the desired expression for v. |

2.7 Twist of Line Bundles

This subsubsection is a preparation for the subsection 4.6.

2.7.1 Construction

Let Y be an algebraic stack over a field k. Let G, denote the one dimensional algebraic torus Spec k[t,t~1].
Let I denote the trivial line bundle on Y. A point of I is denoted by (y,u) where y € Y and u € I},,. For each
integer n, 7 (n) denote the line bundle I with the G,,-action by t - (y,u) := (y,t"-u).

Let L be any line bundle on Y. Let L* denote the complement of the image of the O-section, i.e., L* := L—-Y.
Let 7w : L* — Y denote the naturally defined projection. A point of L* is also denoted by (y,v), where y € Y
and v € T 1(y).

Let us fix an integer . We consider the G,,-action on L* given by ¢ - (y,v) := (y,t"-v). We have the
naturally defined G,,-action on 7*7 (n). It induces the line bundle Z,, on the algebraic stack L*/G,,. Let
¢ : L*/Gy — Y denote the naturally induced morphism.

Lemma 2.49 We have the canonical isomorphism I, @ Ly, ~ Tpym and I_, ~ I;l and Ty ~ Oy/Gm. We
also have the canonical isomorphism T_, ~ ¢@*L.

Proof The first claim is obvious. Let us show the second claim. Let us denote a point of 7*L by (y,v,u’),
where y € Y, v € 7 (y) and v/ € Ly,. The trivial Gy,-action on L induces the G,,-action on 7*L over L*,
which is given by ¢ - (y,u,v’) = (y,t" - u,v’).

On the other hand, let us denote a point of 7*7 (—r) by (y,v,u) wherey € Y, v € 7 (y) and u € T(—7)},.
The action is denoted by ¢ - (y,v,u) = (y,t"v,t "u).

We have the naturally defined isomorphism 7*7 (—r) — 7«*L given by (y,u,v) — (y,u,u - v), which is
G -equivariant. Therefore, we obtain the isomorphism Z_,. ~ ¢* L. |

2.7.2 The weight of the induced action

We use the notation in the previous subsubsection. Let GSJ;) denote the torus Spec klt;, t; ']. Let us consider
the action of G4 x G2 on L given by (t1,t2) - (y,v) :== (y,t1-t2-v).

Let 7 (n1,n2) denote the trivial line bundle I with the G x G given by (t1,t2) - (y,u) = (y, t7* 152 ).
Then we have the G&) x G'2-line bundle 77 (n1,n2) on L*. We obtain the line bundle Z,, on L*/GS,ZL)7 and
we have the induced Gg)—action on Z,,.

Lemma 2.50 The weight of the Gg)-action on Ly, is N1 — na.

Proof We put C?g,? := Spec k[s;]. Let us consider the morphism (NL(%) X CNJSTZL) — GS}L) X GS,ZL) given by (s1, s2) —
(s1, syt s2). The induced G x GP-action on L* and T (n1,n2) is given by (s1,s2) - (y,v) = (y,s5 - v) and

ny—n2

(s1,82) - (y,u) = (y, s} - 52 - u). Therefore, the weight of the G -action on I, is given by ny — na. 1
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3 Parabolic L-Bradlow Pairs

In this section, we recall some definitions. All of them are more or less familiar. The purpose is to fix the
meaning in this paper. In the following of this section, X will denote a smooth irreducible projective variety
over an algebraically closed field k of characteristic 0. Let Picx denote the Picard variety of X. We fix a base
point zg € X, due to which we have the Poincaré bundle Poinx on Picx xX.

3.1 Sheaves with some Structure and their Moduli Stacks
3.1.1 Orientation

Let E be a U-coherent sheaf on U x X. Then we have the morphism dety : U — Picx induced by the
determinant line bundle det(£) of E, which satisfies the condition det(E)|{u}xx =~ Poinx | {detp(u)}xx- The
morphism will be denoted by simply det, if there are no risk of confusion. In general, the line bundles det}, Poinx
and det(FE) are not isomorphic.

Example 3.1 Let ¢ be an element of the second cohomology group H?(X), and let Picy (c) denote the Picard
variety of the line bundles whose first Chern classes are c¢. Assume H*(X,L) = 0 (i > 0) for any line bundle
L € Picx(c). Then, px.(Poinx) gives the vector bundle on Picx (¢). We obtain the associated projective space
bundle P, = P(px.(Poinx)") on Picx (c).

Let 7w denote the natural projection P. x X — Picx xX. We have the line bundle L(a) = 7#*Poinx ®
% Op.(a) for each a € Z. Here Op,(1) denotes the tautological bundle of the projective space bundle P, —
Picx (c), and Op,(a) = Op,(1)®®. The determinant bundle det(L(a)) is obviously L(a) itself. On the other
hand, dety,, is given by the projection 7. Thus, L(a) and detz(a) Poinx are not isomorphic, if a # 0. |

Definition 3.2 (Orientation) An orientation of a U-coherent sheaf E on U x X is defined to be an isomor-
phism p : det(E) — dety; Poinx on U. A tuple (E,p) is called an oriented U-coherent sheaf.
An isomorphism of two oriented sheaves (E, p) and (E’, p') is defined to be an isomorphism x : E — E’

satisfying p' = x*(p) == pox. 1

The restrictions (dety, Poinx) and det(E) |, xx are isomorphic for any point u € U by definition of

H{u}xX
detg, so that the push-forward px.Hom (det(E), dety, Poinx) is the line bundle on U.

Definition 3.3 (Orientation bundle) The line bundle px.Hom(det(E), det}; Poinx) is called the orienta-
tion bundle of E. We denote it by Or(E). |

If E is oriented, then the orientation bundle Or(E) is naturally isomorphic to the trivial line bundle Oy,
i.e., an orientation is equivalent to a trivialization of Or(E).

Example 3.4 Let L(a) be given in Example 3.1. The orientation bundle Or(L(a),P.) induced by L(a) is
isomorphic to px. (Hom(L(a)7 det z(a)Poin)) ~ pxs ok (Op,(—a)) ~ Op, (—a). |

We have the following additive property of the orientation bundles.

Lemma 3.5 Let E; (i = 1,2) be U-coherent sheaves on U x X. Then we have the natural isomorphism
O’I"(El () EQ) >~ OT(El) X OT(EQ)

Proof The natural isomorphism det(E; @& Ez) ~ det(E;) ® det(E) is given, and hence dety, Poinx ®
dety, Poinx ~ dety, o, Poinx. It induces the following isomorphism:

Hom (det(El @ Es), det *El@EQ’PoinX) ~ Hom(det(Ey), det I, Poinx ) @ Hom(det(Ey), det f, Poinx).

Therefore, we obtain the natural morphism Or(E;) ® Or(Es) — Or(E; & E3), which is isomorphic. |
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3.1.2 Parabolic structure

See [41] and [61] for detail on the notion of parabolic sheaf. Our terminology slightly differs from theirs. We
remark that it is different from that in the author’s other papers ([46], for example.) Let D be a Cartier divisor
of X. A U-parabolic sheaf, or simply parabolic sheaf, on U x (X, D) is defined to be a tuple (E, F.(E), oz*):

e F is a U-coherent sheaf on U x X.
e F.(F) denotes a filtration of E:
E=F(E)DF(FE)D>---DF(FE)DF4.(FE)=E(-D).
Here E(—D) denotes E ® p;;O(—D). We assume that Cok;(E) := E/F;y1(F) are flat on U.
o a, = (aq,...,qp) is a tuple of numbers 0 < a1 < ag < -+ < ay < 1. It is called a system of weights.

A tuple(E, Fy, o) will be often denoted simply by E.. The filtration F, is called a quasi-parabolic structure.
Isomorphisms of parabolic sheaves are defined naturally.

The number [ is called the depth of the parabolic structure. The tuple a, will be called a weight of the
parabolic structure. For any parabolic sheaf E,, we put Gr;(E) := F;(E)/F;11(F), which are the U-coherent
sheaves on U x D.

Remark 3.6 We will often use the word “parabolic” even when a system of weights is not given. |

(Subobject and quotient object)

Let E. be a parabolic torsion-free sheaf defined over U x (X, D). For any subsheaf E’ C F and any quotient
sheaf E — E”| we have the induced parabolic structures on E’ and E”. Namely we put F;(E’) = F;(E)NE’,
and F;(E") = Im(F;(E) — E"). The parabolic structures are called the induced parabolic structures. We
always consider the induced parabolic structures on the subsheaves and the quotient sheaves.

(The Condition O,,)
Let (E, Fy) be a U-quasi-parabolic sheaf on U x (X, D). Let m be a positive integer. We say that (E, F})
satisfies the condition O,,, if the following holds:

o Fi(E)(m)fuyxx and Cok;(E£)(m)|{u}xx are generated by its global sections, for all i = 1,...,1+ 1 and
for all u e U.

e The higher cohomology groups of F;(E)(m)|{u}xx and Cok;(E)(m) fu1xx vanish, for alli =1,...,1+1
and for all u € U.

When we are given a U-quasi-parabolic sheaf (E, F.) on U x (X, D), the open subset U’ is determined by
the condition O,,.

(Twist)

Let m be an integer, and let E be a U-coherent sheaf defined over U x X. Recall that E(m) denotes the
coherent sheaf F ® p;;Ox(m). If E has a quasi parabolic structure F,(E), we have the naturally induced
parabolic structure Fy (E(m)) of E(m). The tuple (E(m), F.(E(m))) is denoted by E, (m).

3.1.3 L-Bradlow pairs and reduced L-Bradlow pairs

Let L be a line bundle over X.

Definition 3.7 (L-section) Let E be a U-coherent sheaf on U x X. A morphism ¢ : pj;L — E is called an
L-section. An Ox-section is simply called a section. |

Definition 3.8 Let (E,¢) be a pair of a U-coherent sheaf on X and an L-section. We say that ¢ is non-trivial
everywhere, if ¢y« x # 0 for every point u € U. |

Definition 3.9
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(L-Bradlow pair) A parabolic L-Bradlow pair (E.,$) on U x (X, D) is a pair of a U-torsion-free parabolic
sheaf E. and an L-section ¢ : nj;L — E.
An isomorphism between two such pairs (Ex, ) and (E., ¢) is defined to be an isomorphism x : E, — E.,
satisfying ¢' = x«(¢) = x © ¢.

(Oriented L-Bradlow pair) An oriented parabolic L-Bradlow pair (E., ¢,p) on U x (X, D) is a pair of a
parabolic L-Bradlow pair (E., ¢) and an orientation of E. An isomorphism of two such pairs is defined
naturally. |

Remark 3.10 We are mainly interested in parabolic L-Bradlow pairs (E., ¢) such that ¢ is non-trivial every-
where. Sometimes, we will assume it without mention. |

Definition 3.11 Let (E., ¢) and (E.,¢’) be parabolic L-Bradlow pairs on X. We say that (E., ¢') is a subobject
of (Ey, @) if the following conditions hold:

e E’ is a subsheaf of E, and the parabolic structure is same as the induced one.
e If the image of ¢ is contained in E, we have ¢' = ¢. Otherwise, ¢' = 0. |
We also introduce the notion of reduced L-section.

Definition 3.12 (Reduced L-section) Let L be a line bundle over X. Let E be a U-coherent sheaf on
U x X. A reduced L-section of E is defined to be a pair (M,[¢]) of a line bundle M on U and a morphism
[¢] : px (M) ®@ p; (L) — E.

A reduced L-section is often denoted simply by [¢] instead of (M, [¢]), if there are no risk of confusion. 1

Definition 3.13 Let (E,[¢]) be a pair of a U-coherent sheaf on U x X and a reduced L-section. We say that
(@] is non-trivial everywhere, if [@]|(uyxx 7 0 for each u € U. |

Let (M,[¢]) be a reduced L-section of E which is non-trivial everywhere. Then, (M, [¢]) induces the

morphism [¢] : M — px.Hom(L, E). Under the vanishing H*(X, Hom(L, E){u1xx) = 0 (i > 0) for each
u € U, we obtain the naturally induced section U — P(px «(Hom(L, E))"). On the other hand, such a section
U — P(px «(Hom(L, E))¥) induces a reduced L-section which is non-trivial everywhere.

Definition 3.14 (Parabolic reduced L-Bradlow pair)

o A parabolic reduced L-Bradlow pair (E., M,[¢]) on U x (X, D) is defined to be a pair of a torsion-free
parabolic sheaf E. on U x (X, D) and a reduced L-section (M, [¢]) which is non-trivial everywhere. It is
often denoted by (Ey,|[@]) instead of (E., M, [d)]).

An isomorphism of two reduced L-Bradlow pairs (E; ., My, [d;]) (i = 1,2) is defined to be a pair (x,n) of
an isomorphism x : Fh . — FEa, and n: My ~ Ms such that the following diagram is commutative:

M @phL —2 s B
n®idLJ, XJ,
piMy @ py L —2 B,

e An oriented parabolic reduced L-Bradlow pair is defined to be a tuple of a parabolic reduced L-Bradlow
pair (Ex, [¢]) with an orientation p of E.

An isomorphism between two oriented reduced L-Bradlow pair is naturally defined. |

Remark 3.15 In the definition, we assume that [¢] is non-trivial everywhere, contrast to the definition of
non-reduced L-Bradlow pair.

Remark 3.16 In the case U = Spec(k), a parabolic reduced L-Bradlow pair is just a parabolic L-Bradlow pair
whose L-section is non-trivial, up to isomorphisms. |
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Remark 3.17 We will often use the word “L-Bradlow pair” and “reduced L-Bradlow pair” instead of “parabolic
L-Bradlow pair” and “parabolic reduced L-Bradlow pair”, if there are no risk of confusion.

We will also use the word “quasi-parabolic L-Bradlow pair” and “quasi-parabolic reduced L-Bradlow pair”,
if a system of weights is not given. |

We will use the following notion subordinately.

Definition 3.18 Let L = (L1, L2) be a tuple of line bundles on X.

e A parabolic L-Bradlow pair on U x (X, D) is defined to be a tuple (E., ) of a U-parabolic torsion-free
sheaf E, on U x (X, D) and a pair ¢ of L;-sections ¢; (i = 1,2).

e An oriented parabolic reduced L-Bradlow pair on U x (X, D) is defined to be a tuple (E.,[¢],p) of a U-
parabolic torsion-free sheaf E. on U x (X, D), a pair [¢] of reduced L;-sections [¢;] which are non-trivial
everywhere, and an orientation p. Isomorphisms are defined naturally. |

3.1.4 Type and the moduli stacks

Let H* denote an appropriate cohomology theory with the appropriate Chern class for vector bundles. We put
He(X) := @™ H?(X). If D is a smooth divisor, we put as follows:

Type = {(y,yl,yg, ~~~~~~ )€ HY(X @@Hev )‘ Zyi:y\D}'

i>1

In general, we put as follows:

’]{g;p/w:: {(y,yl,yg, ...... )EHEV(X)GBéHev ‘ Zyz—y (l—ch((’)(—D)))}.

=1 1>1

In the following, y - (1 — ch(O(—D))) is denoted by y|p for simplicity of the notation, even when D is not
necessarily smooth.
For any quasi-parabolic sheaf (E, F,) on X of depth I, we obtain the element of 7 ype:

type(E, F.) = (ch(E), h(Gri(E)),...., ch(Gri1(E)),ch(Gri(E)),0,...) € Type

Let 7ype denote the subset of ’Z{y?/me which consists of type (E, F*) for some quasi parabolic sheaves (F, F).

Let y = (y,91,Y2,-- - - - ) be any element of Type. The number depth(y) := max{i|y; # 0} is called the
depth of y. The element y is called the H®V(X)-component of y, and (y1,¥s,...,) is called the parabolic part
of y. The HY(X)-component of y is called the rank of y, and it is denoted by rank(y) or ranky. We put
Type, = {y € Type| rank(y) = r}. We denote by Type® the set of types whose parabolic components are
trivial, i.e., y1 = y)p and y; = 0 for i > 1. We often identify y and y in that case, and we regard 7ype® as the
subset of H*(X). We put Type, := Type® N T ype,.

We have the sum y + y®) of two elements y*) € Type (i = 1,2) by taking the component summation.

For any quasi-parabolic sheaf (E, F,) on X, we obtain the element type(E, Fy) of Type. In general, let
(E, F\) be a U-quasi-parabolic sheaf on U x X. When we have the element y € 7ype such that type(E,|,) =y
for any closed point u € U, then F, is called of type y. When U is connected, such an element always exists.

Definition 3.19 The type of an (oriented) parabolic L-Bradlow pairs is defined to be the type of the underlying
quasi-parabolic sheaf. |

We introduce the following notation.

Notation 3.20 In each line, the left hand side denotes the moduli stack of the object in the right hand side:

M(y): Parabolic sheaves of type y.
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Y): Oriented parabolic sheaves of type y.

): Parabolic L-Bradlow pairs of type y whose L-sections are non-trivial everywhere.

(
M(
M(@, ): Oriented parabolic L-Bradlow pairs of type y whose L-sections are non-trivial everywhere.
M(y, [L]): Parabolic reduced L-Bradlow pairs of type y.

(

M(y,[L]): Oriented parabolic reduced L-Bradlow pairs of type y. |

The condition O,,, determines the open substack of each moduli stack. They are denoted by M(m,y), M(m,y),
M(m,y,L), M(m,y,L) M(m,y,[L]), M(m,y,[L]) and M(m,¥y, [L]) respectively. When the parabolic part
of y is trivial, we often use the notation M(y), M(y), M(m,y), M(m,7), etc.

3.1.5 The tautological line bundle and the relations among some moduli stacks

Let y be an element of 7 ype, and let L be a line bundle on X. Let £" (L), &“(L) and gu [L] denote the universal
sheaves over M(g, L) x X, M(y,L) x X and M(3, [L]) x X respectively. The universal L-sections of £"(L)
and £¥(L) are denoted by ¢* and ¢“, respectively. The universal reduced L-section of £*[L] is denoted by [¢"].

We have the G,,-action p; on M(y, L) given by p1(t) - (E, Fy, ¢, p) := (E, Fy t- o, p). It is easy to observe
that the quotient stack is isomorphic to M(¥y,[L]). Therefore, we can regard M(y, L) as the G,,-torsor over
M(3,[L]). The associated line bundle is denoted by Oyei(—1). We put Opei(1) := Ora(—1)Y, and we obtain
Orei(n) in the obvious manner.

Definition 3.21 The line bundle Oyei(1) is called the relative tautological line bundle of M(y,[L]). It is also
called the tautological line bundle. |

We can obtain the same line bundles by the way of the subsubsection 2.7.1. Namely, let 7 (n) denote the
trivial line bundle on M(y, [L]) provided with the G,,-action of the weight n. Let 71 : M(y, L) — M(y,[L])
denote the natural projection. Then we obtain the G,,-line bundle 77 (n). By taking the descent, we obtain
the line bundle Z,,. Then we have Z,, ~ O,e1(n).

We remark that O.e(—1) appears in the domain of the universal reduced L-section [QAS"] Namely, [QAS"]

is the morphism of pj\/l@ [L])L ® pi Orei(—1) — gu [L]. To see that, we have only to observe that W*[@“] :
P @, L)L®7r>f’ xT(=1) — 7} XSA“ [L] is equivariant with respect to p1, and they give the universal objects over
M(B.L) x X.

Remark 3.22 For example, we have the projective space bundle such as M(m,y, [O(—m)]) — M(m,y), and
the restriction of Orel to M(m,y, [O(—m)]) is the relative tautological line bundle of this bundle. |

On the other hand, we have the G,,-action py on M(y, L) given by pa(t) - (E, Fy, ¢, p) := (E, Fx, ¢, t - p).
It is easy to observe that the quotient stack is isomorphic to M(y, L). Thus, we can regard M(y, L) as the
Gm-torsor on M(y, L). The associated line bundle is clearly isomorphic to the orientation bundle Or (£*(L)).

Let r be the rank of y. The obvious multiplication of E gives the isomorphism (E,t~! - ¢,t"p) ~ (E, ¢, p).
To see it, note the following: Let f : F4 — F5 be an isomorphism. Then the orientation p of Es induces the

orientation of E as follows:

det(F1) Aettd), det(Ey) —2— det* Poin.

On the other hand, the L-morphism ¢ of Fy induces the L-morphism of E; as follows:

—1
L—* . g 1 g

Therefore, we have p1(t) = p2(t"). Hence we have the naturally defined morphism & : M(y, [L]) — M(y, L),
which is etale and finite of degree r~!. However, the morphism x does not preserve the universal object. We
have the relation k%" (L) ~ E'[L] ® Orei(1), and hence k*Or(E%(L)) = Oyl (r).
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3.2 Hilbert Polynomials
3.2.1 Hilbert polynomials of coherent sheaves

Let Ox (1) be an ample line bundle on a projective variety X. Let F be a coherent sheaf on X. In this paper,
the non-reduced Hilbert polynomial of E is denoted by Hg, i.e., Hg is the unique polynomial of Q-coefficients
such that Hg(m) is same as the Euler number > (—1)’ dim H*(X, E(m)). In the case rank(E) > 0, the reduced
Hilbert polynomial of E is denoted by Pg, i.e., Pg := Hg/rank(FE).

We also use the notation h°(E) to denote dim H°(X, E).

3.2.2 Hilbert polynomials of parabolic sheaves

We recall the parabolic Hilbert polynomials and the parabolic degree, which were introduced by Maruyama and
Yokogawa in [41]. See [41] for more detail.

Let E, := (E, F,, o) be a parabolic sheaves of depth I. We put ¢; := a;41 —a; (i = 1,...,1). Recall that
the non-reduced parabolic Hilbert polynomial Hg, is defined to be as follows:

! 1
Hp,(t) == Hp(p)(t) + > ai - Harm) = He(t) = Y € - Hoox,(m)-
i=1 =1
The reduced parabolic Hilbert polynomial Pg, () is defined to be Pg, (t) := Hp, (t)/ rank(E).
Since we have the equality Hg = Hg(_p) + 22:1 Heg:,(E), we obtain the following lemma.

Lemma 3.23 We have the inequality Hg, (t) < Hg(t) and Pg, (t) < Pg(t) for any sufficiently large t. |

The parabolic degree is defined to be as follows:
par-deg(E,) = deg(F) + (dim X — 1)! x (the coefficient of t4™ X =1 of the polynomial >'_, o - Ha, (t))

Note that we have the inequality deg(E) < par-deg(E.).

The parabolic slope p(FE,) is defined to be par-deg(E.)/rank(E). Then we have the inequality u(E) <
w(Ey) < u(E) 4 deg(D) for the usual slope u(E) of a torsion-free sheaf E.

We also put h%(E,) := a1h?(E(—=D)) + 3 €;h° (Fiy1(E)).

3.2.3 Hilbert polynomial for parabolic L-Bradlow pairs
We recall the Hilbert polynomials for Bradlow pairs, following [54].

Notation 3.24 Let P" denote the set of polynomials & of R-coefficients such that deg(§) < dim X — 1 and that
5(t) > 0 for any sufficiently large t

For any element 6 € PP, the coefficient of t~1 in & is denoted by Siop, which may be 0.

The total order < on the set PP* is defined as follows: Let 6 and &' be elements of PP*. Then 6 < &' if and
only if 6(t) < 8'(t) for any sufficiently large t. |

Let (E., ¢) be a parabolic L-Bradlow pair on (X, D). For any § € P, the non-reduced §-Hilbert polynomial

H (5E*7 o) Of (B, ¢) is defined as follows:

H(JE*@) = Hg, +€(E.,0) 0, €(By,¢):= { (1) Eiig; (29)

The reduced §-Hilbert polynomial is defined to be Py 4 := Hlp ,/rank E. Similarly, the slope ufy , is
defined by pd(E., ¢) := u(Ey) + €(¢) - dtop/ rank(E).

Let L = (L1, L2) be a pair of line bundles on X. We take § := (41,02) € (’Pbr)2. Let (E., ¢) on (X, D) be a
parabolic L-Bradlow pair. The d-Hilbert polynomial is defined by H?E*’d)) = Hp, + 21:1,2 e(Ey, ¢;) - 0;, where

€(Ey, ¢;) are given as in (29). We also put P(%*@) = H(‘sEM@/rank E.
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3.2.4 The Hilbert polynomials associated to a type

Let z be any element of P,-, H i(X). Since we have z¥ = 0 for a large integer k, we have the polynomial

exp(t-z) = Yoo (K) 7t - 2)*. In the case ¢ = ¢1(Ox(1)), it will be denoted by ch(Ox(t)) in the following.
When we substitute ¢t = m for some integer m, it is same as the ordinary meaning.
Let y = (y,y1,¥2,--.,) be an element of 7ype. We put as follows:

Hy(t) ::/XTd(X)-ch((’)X(t))-y, Hy,(t) :z/ Td(X) - ch(Ox(t Zyj

X 71<i

When D is smooth and we regard y; as an element of H*(D), we put H, = [, Td(D)-ch(Ox (t)) Di<iYi-
When the parabolic part of y is trivial, we use the notation H,(t) mbtead of Hy(t). B
If we are given a system of weights a., we put €; := a;11 — ay. And we put as follows:
He
ranky’

Hg :=Hy =Y €-Hy;, Py =

We also put as follows:

d ) Oty
deg(y, o) ::/ y cl OX Zel / Zyj 01 OX w(y, ay) = 7eg(y o)

rank
71<4 Y

If we are given an element 6 € PP", we put as follows:

)

0t
Hoz*é — O 5 Poc*(; = Y y 5) = . op
Y +9, Py e (Y, o, 0) == p(y, o) + rank(y)

3.3 Semistability
3.3.1 Semistability and the moduli stacks

Let (E.,®) be a parabolic L-Bradlow pair on (X, D), and let § be an element of P"". Recall that (E.,¢) is
called d-semistable, if the following inequality holds for each sub-objects (E., ¢') of (E, ¢):

P((SE;,W)(t) < P(‘SE*’@ (t) (t is sufficiently large) (30)

If the strict inequality holds in (30) for each subobject, (E., ¢) is called d-stable.

Since parabolic reduced L-Bradlow pairs on X are just parabolic L-Bradlow pairs whose L-section is non-
trivial, the notion of J-(semi)stability of parabolic reduced L-Bradlow pairs is also given. The ¢-(semi)stability
of oriented parabolic (reduced) L-Bradlow pairs on X is defined by the J-(semi)stability of the underlying
parabolic (reduced) L-Bradlow pairs.

Remark 3.25 Let E be a torsion-free sheaf on X. We can regard it as the parabolic sheaf E, canonically. The
quasi-parabolic structure is given by Fo = E(—D) C Fy = E. The weight is given by an = 1. Then we have
Hpg, = Hg, and hence the semistability of (E., ¢) is equivalent to the semistability of (E, ).

If the weight is given by oy = 0, then we have Hg, = Hp_p), and hence the semistability of (E.,¢) and
(E, ¢) are not equivalent, as remarked in Remark 1.1.1 in [41]. 1

We also have the §-p-semistability in the standard way. Namely, a parabolic L-Bradlow pair (E., ¢) on (X, D)
is called 6-p-semistable, if the inequality pd(E’, ¢') < u®(E., ¢) holds for any sub-objects (E.,¢') C (E., ¢). If
the strict inequality holds for any subjects, (E., @) is called d-u-stable. It is easy to check the implication:

0-p-stable = §-stable == J-semistable = §-pu-semistable
Similarly, we have the notion of §-u-semistability and d-u-stability of parabolic reduced L-Bradlow pairs.

In the family case, a U-parabolic L-Bradlow pair (Ex,¢) on U x X is called é-(semi)stable, if (Ex, ¢)|{u)xx
is ¢-(semi)stable for each w € U. We obtain the J-(semi)stability in the oriented case and in the reduced case
similarly.
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Remark 3.26 As usual, we have only to consider sub-objects (E7,,¢") C (Ex, ¢) such that E' is saturated, when
we check the §-(semi)stability of (E., ¢). |

Let L; (i = 1,2) be line bundles on X, and let ¢ : L1 — Lo be a non-trivial morphism. Let (E., ¢) be
a parabolic Lo-Bradlow pair on (X, D). Then we obtain the parabolic Li-Bradlow pair (E,¢ o ¢). When we
consider the semistable condition for a parabolic L-Bradlow pair, the choice of L is not essential in the following
sense.

Lemma 3.27 A pair (Ey, @) is §-semistable, if and only if (E«, ¢ o) is §-semistable.

Proof Let F be a saturated subsheaf of E. The image ¢ o ¢(L1) is contained in F' if and only if the image
¢(L2) is contained in F'. Thus the claim is clear. 1

Lemma 3.28 Let (E; ., ¢;) (i = 1,2) be §-semistable parabolic L-Bradlow pairs with P(‘sE1 Lon(®) = P(6E2*,¢>2)(t)'
Let f: (Er«, 1) — (E24,$2) be a non-trivial morphism. We have the induced L-Bradlow pairs (Ker(f)., d'),
(Im(f)«, ¢") and (Cok(f)«,¢""). Then they are also §-semistable.

A similar claim holds for §-p-semistability.

Proof We put (Es.,¢3) := (Im(f).,¢”). From the §-semistability of (Ei.,¢;) (i = 1,2), we obtain the
inequality for sufficiently large ¢:

s s 5
P(El *7¢1) (t) é P(E3 *7¢3) (t) é P(EZ * :¢2) (t) (31)
Due to the assumption P(5E1*7 on(t) = P(;Eg*, 4) (1), the equalities hold in (31). Then, it is easy to derive the
claims of the lemma by definition of semistability. |
Corollary 3.29 Any automorphisms of stable objects are constant multiplication. |

We introduce the following notation. In each line, the left hand side denotes the moduli stack of the object
in the right hand side:

a): stable parabolic sheaves of type y with weight .

Y, au): stable oriented parabolic sheaves of type y with weight ..

M3 (y, L, a,d): d-stable L-Bradlow pairs of type y with weight av., whose L-sections are non-trivial everywhere.

M*(y,
M:(y
ME(

M3(y, L, ., d): d-stable oriented L-Bradlow pairs of type y with weight a.., whose L-sections are non-trivial
everywhere.

M?(y, [L], cx, 0): d-stable reduced L-Bradlow pairs of type y with weight a,.

M?5(y,[L], s, 8): d-stable oriented reduced L-Bradlow pairs of type y with weight c,.

For the moduli stack of semistable objects, we use the notation M**(y, a.), M*(y,a.), M**(y, L, a.,0),
M*3(y,[L], s, d), etc.. ~ When the parabolic structure of y is trivial, we often use the notation M*(g),
M*(y, [L],9), M*(y, L,9), etc..

Similarly, we also have the notion of §-(semi)stability for (oriented, reduced) L-Bradlow pairs. We also
have §-u-(semi)stability. We denote by M?*(y, [L], a, §) the moduli stack of (1, d2)-stable oriented reduced
L-Bradlow pairs of type y with weight «.,, for example.

When any E, € M*(y, oz*) satisfies the condition O,,, we denote by MS (Y, i) the full flag bundle associated
to the vector bundle py . E*(m), where E* denotes the universal bundle over M3 (§, ) x X. We use the
notation ./an@, [L], s, 6) and ./\775”@, [L], s, 6), ete. in similar ways. If there are no risk of confusion, we will
often omit to denote m.
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3.3.2 Harder-Narasimhan filtration and partial Jordan-Hé6lder filtration
Let (Ey, ¢) be a §-semistable parabolic L-Bradlow pair. In this paper, a filtration

(El*a(bl) C (EQ*;¢2) c.--C (Ek*;d)k) - (E*;d))

is called a partial Jordan-Holder filtration with respect to d-semistability, if each (E; ., ¢;) is d-semistable such
that P(SEi b)) = P(‘s,E*7¢). Each Gr;(E) := E;/E;_1 has the induced parabolic structure and the L-section Gr;(¢),

and the parabolic L-Bradlow pair (Gr;.(E), Gr;(¢)) is é-semistable with P(‘SGU*(ELG“(@) P(‘SE*7¢).

If each (Gr;.(E),Gri(¢)) is é-stable, the filtration is called a Jordan-Hélder filtration with respect to 0-
stability. It can be shown that the length of Jordan-Holder filtration and the collection of graded objects
{(Gr;«(E),Gri(¢)) } are independent of the choice of Jordan-Hélder filtration.

Similarly, we have the notion of partial Jordan-Hoélder filtration with respect to §-p-semistability and Jordan-
Holder filtration.

Lemma 3.30 Let (E.,¢) be a parabolic L-Bradlow pair. There exists the unique increasing filtration F =
(FZ(E) [i=1,2,.. ) of E with the following properties:

o The induced objects (Grf(ELqS’i) are §-semistable.

(t) > P?

e The inequalities P, (G (B),6L,y)

(GrF (E).6!) (t) hold, for any sufficiently large t.

The filtration is called the Harder-Narasimhan filtration with respect to the §-semistability.
We also have the unique Harder-Narasimhan filtration with respect to the §-p-semistability.

Proof We give only an outline. We use an induction on rank(FE). In the case rank(E) = 1, the claim is trivial.
Take a sufficiently negative number C. We know that the family of saturated subsheaves E’ of E such that
deg(E’) > C is bounded (Proposition 3.34). Therefore, the family of saturated subsheaves E’ of E such that
P(‘SEL@,) > P(‘SE*’@ is bounded, where (E., ¢') denotes the subobject of (E., ¢). Hence we obtain the finiteness
of the set S of the polynomials P with the following properties:

e P(t) > P, ¢)(t) for any sufficiently large ¢.

e There exist a saturated subsheaf E’ of E such that P?, = P.

(BLd")
We say P <’ Q if P(t) < Q(t) for any sufficiently large ¢. It gives the total order of S. Let Py be the maximum.
Let T'(Py) denote the family of saturated subsheaves E’ of E such that P(éE;7 #) = Po- Then it is easy to see
that (E.,¢) is d-semistable for any E’ € T(F). It is also easy to see that E{ + Ej € T(P) for E] € T(Fp).
Therefore, we have the maximum E; in T'(Py) with respect to the inclusion.

We put E = E/E;, and let 7 : E — E denote the natural projection. Let E' c E be any saturated

subsheaf. If P((;E,’qp) > P(6E1, y)> then we have P? P(‘sEh 1) Which contradicts our choice of E;.

~ >
(r=1(E"),9¢") —
Therefore, we have P(‘sﬁ/ ) < P(‘sE1 1) By applying the hypothesis of the induction, we have the Harder-

Narasimhan filtration of (E*, A) with respect to d-semistability. Together with the above remark, we obtain the
Harder-Narasimhan filtration of (E., ¢) with respect to d-semistability. |

3.3.3 (4, ()-Semistability
Let P be a polynomial, and let r be a positive integer. Let m be a sufficiently large integer satisfying the

following condition:

e Let (E,,¢) be a d-parabolic L-Bradlow pair with P?

(Ba ) = P and rank E < r. Then E, satisfies the
condition O,,.

Definition 3.31 Let (E.,[#]) be a parabolic reduced L-Bradlow pair on X with P(‘SE* 6 = P, and let F be a full

flag of H® (X, E(m)) Let £ be any positive integer. We say that (Ex,[¢], F) is (8, £)-semistable, if the following
condition holds:

52



o (E.,[¢]) is d-semistable.

o Take any partial Jordan-Hélder filtration of (E., [¢]) with respect to d-semistability:
EVcEP c...c BV c(EY, ¢)c---c(BW, ¢)
Then we have F, N H° (X, E¢~Y(m)) = {0} and F, ¢ H°(X,EY) (m)) for j < k.

We denote by ./\7;“'5 (y, [L], as, (0, €)), the moduli stack of such tuples (E.,[¢],F). In the oriented case, we
use the notation M3 (9,[L), v, (6,0)) as usual.

Similarly, we have the notion of (,£)-semistability for a L-Bradlow pair (E«,¢) such that ¢ # 0 and a
full flag F of H°(X, E(m)). The moduli stack is denoted by /K/lvfj (y,L, o, (8,0)). When there are no risk of
confusion, we omit to denote m. |

Remark 3.32 When ¢ is sufficiently large, the second condition is trivial. The first condition is equivalent to
i =1 for any J-H filtration. Therefore, (q, Ex, ¢, F) is (0,¢)-semistable if and only if (Ex, ¢) is I_-semistable
for a parameter 6_ < § such that |6 — 0_| is sufficiently small. |

Lemma 3.33 Let (E.,[¢],F) be a reduced L-Bradlow pair with a full flag F of H® (X, E(m)) We assume that
it is (9, 0)-semistable. Then the automorphism group of (E.,[¢], F) is Gp,.

Proof Let f be an endomorphism of (E., [¢], F). We have the generalized eigen decomposition (E., [¢], F) =
(Brs, (1], FO) @ @fzz(Ei*,}'(i)). But, the condition of (4,¢) is not satisfied if k¥ > 2. Therefore, f has the
unique eigenvalue. Let N be the nilpotent part of f. Let h be the integer such that N* # 0 and N1 = 0.
Assume h > 0, and we will derive the contradiction. We put E; := Im N and E := Ker N*. We have the
naturally induced parabolic structures and the L-sections ¢, of F;. Since we have N(¢) = 0, ¢1 = 0. Then,
we obtain the partial Jordan-Hélder filtration E; . C (Ea4, ¢2) C (Ex, ¢) with respect to d-semistability, due to
Lemma 3.28.

We have the induced filtrations () on H*(X, E1(m)) and F® on H°(X, E/E1(m)). We have the induced

isomorphism H°(X, E/E (m)) — H°(X, E1(m)), which has to preserve the filtration F() above. However,

we have _7:!51) =0 and .7-'53) # 0 due to the (0, ¢)-semistability. Thus we arrive at the contradiction, and hence
we have h = 0. 1

3.4 Some Boundedness

3.4.1 Foundational theorems

Let Ox(1) be a very ample line bundle. Let D denote a Cartier divisor of X. We recall several foundational
theorems, by following D. Huybrecht-M. Lehn ([28]).

Proposition 3.34 (A. Grothendieck, Lemma 2.5, [25]) Let D be a bounded family of coherent sheaf F on
X. Let C be any positive number. Then we have the boundedness of the family of torsion-free coherent sheaves
F" with the following property:

e deg(F") < C.
e There exists a member F' € D such that F" is a quotient sheaf of F. |

For any torsion-free coherent sheaf E on X, we have the Harder-Narasimhan filtration with respect to the
standard semistability. We denote the slope of the first (resp. last) term of the Harder-Narasimhan filtration

by pmax(E) (resp. fimin(E)).

Proposition 3.35 (M. Maruyama [40]) Let H be a polynomial, and let C be a constant. We have the
boundedness of the family of torsion-free coherent sheaves F' on X satisfying pimax(F) < C and Hp = H. |

We use the notation [z]+ = max{z,0} for any real number x.
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Proposition 3.36 (C. Simpson [53]) Let r be a positive integer. Then there is a positive constant ¢ such
that the following inequality holds for every u-semistable sheaf F' satisfying rank(F') < r and u(F) < p:

) 1

rank(F) - gd—ld! ([/1' + C]i)

Here d denotes the dimension of X, and g denotes the number ¢y (Ox(l))d N[X]. 1

3.4.2 Boundedness of semistable L-Bradlow pairs

Let y be an element of Type, and let o, be a system of weights. Let L be a line bundle over X, and let 69
be an element of P"*. Let SS(y, L, oy, 6(9) denote the family of parabolic L-Bradlow pairs (E,, ¢) such that
¢ # 0 with the following properties:

e The type of E, is y, and the weight of the parabolic structure is given by ..
o (E.,¢) is 6-p-semistable for some § < §(°) in PPr.
Lemma 3.37 The family SS(y, L, o, 6(0) is bounded.

Proof Let (E,,¢) be a member of SS(y, L, a,, 5(?)). Assume that it is §-p-semistable for § € PP*. Let E’ be
the first member of the Harder-Narasimhan filtration of £ with respect to the standard semistability. Then we
have the following inequalities:

(0)
E' ¢)- 6 €(E, ) -0 0
_ "N < / 6( ) o ) P ~ : op '
Nmax(E) ILL(E) —IU’(E*)—’_ rankE’ 7IU’(E*)+ rankE 7/'6( )+ rankE
The last term depends only on (y, 5(0)). Thus we obtain the boundedness from Proposition 3.35. |

Recall the following important observation due to Thaddeus [54].

Proposition 3.38 Take an element y € Type and a line bundle L on X. Assume r = rank(y) > 1. Let § be
an element of PP" satisfying the following condition:

btop > —— (ly, @) — deg(L)). (32)

Then, there does not exist §-semistable parabolic L-Bradlow pair (E., ¢) of type y such that ¢ # 0.

Proof Let (E.,®) be a d-semistable L-Bradlow pair such that ¢ # 0. The L-section ¢ generates the subsheaf
E’ of E with rank £’ = 1. Due to the stability, we have the following inequality:

dto
1(EL) + Stop < p(Bx) + %

We also have u(E%) > u(E’) = deg(E’) > deg(L). Therefore, we obtain the following:
1
(1-3) 6y < () — de(2).

Thus we are done. 1
Corollary 3.39 The family SS (y, L, a*) = Usepor SS(y, L, ., (5) is bounded.
Proof It follows from Proposition 3.38 and Lemma 3.37. |

Let L = (L1,Ls) be a pair of line bundles on X. Let 60 = (5§0),5§O)) be an element of PP, Let
SS(y, L, ay, 6(0)) denote the family of parabolic L-Bradlow pairs (E., ¢) of type y with weight «. such that
¢; # 0, which is (1, d2)-p-semistable for some §; < 5§0). By an argument similar to the proof of Lemma 3.37,
we can show the following;:
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Lemma 3.40 The family SS(L, as, d) is bounded. 1
By an argument similar to the proof of Proposition 3.38, we can show the following lemma.

Lemma 3.41 There exists 550) such that the following holds for any do > 550) and for any 01:
e There does not exist any (61, 02)-semistable L-Bradlow pair (E., 1, d2) of type y such that ¢o # 0.
In particular, we obtain the boundedness of the family SS(L, v, 61) == s, SS(L, as, (01, 52)). |

3.4.3 Boundedness of Yokogawa family

Let y be an element of 7ype, and let L be a line bundle on X. Let us fix a system of weights a., and we put
€ = 41 — ;. For each positive integer m, let us take an H, (m)-dimensional vector space V,,,. Let P,, denote
the projectivization of V,,, i.e., Py, := P(V,}). We also take an inclusion ¢ : O(—m) — L.

Definition 3.42 A Yokogawa datum of type (y, m) is defined to be a tuple (q,E*,¢, W, [(75]) as follows:
o (E.,¢) is a parabolic L-Bradlow pair over X, such that type(FE.) = y.
e ¢ is a generically surjective morphism Vi, x — E(m), where we put Vi, x ==V, @ Ox.

o W, = (Wh,...,W;) is a tuple of subspaces of V,, such that dim W; = Hy(m) — Hy ;(m). We assume that
HO(q)(W;) is contained in H (X, Fi11(E)(m)).

. [5] is a point of Pp,, and there exists a non-zero scalar ¢ such that H(q)(¢) = c- u(¢), where u(¢) denotes
the section of E(m) induced by ¢ and ¢. |

Definition 3.43 Let § be an element of PP*. Let K be any non-negative number. Let f(\)_I/{(m7K,y7L76)

denotes the set of Yokogawa data (q,E*,(b, W, [qz~5]) such that the following inequality holds for any subspace
W C Vpy,:

l
Py (m) - rank Ew — e(W,[9]) - 6(m) — > € - dim(W; N W) — ay - dim(W) + K > 0. (33)

Here, Ey denotes the subsheaf of E(m) generated by W and q, and e(W, [§)) is defined to be 1 ([¢] € Pw) or 0
([¢] & Pw). We remark e(W,[¢]) = e(Ew (—m), ¢), where e(Ew (—m),¢) is given as in (29). 1

For each positive integer N, we put W(N, K,y,L,0):=U,,>n m(m, K,y, L,J). Following Yokogawa
[61], we consider the family YOK(N, K, y, L, §) of quasi-parabolic L-Bradlow pairs (F, F, ¢) of type y such that
there exists a lift (q, E,F,, ¢, W,, [(75]) € YOK(N, K,y, L,0). The family will be called the Yokogawa family.

Proposition 3.44 There exists a small positive number Ko = Ko(y, L, §) and a large integer No = No(y, L, )
such that the following holds:

o The family y(’)IC(NO, Ko,y, L, 5) is bounded, and it satisfies the condition O,, for any m > Ny.

e For any (q, Ex, ¢, W, [4]) € yOIC(NO,KO,y,L,(S), the morphism q is surjective. In particular, H°(q) :
Vi — H°(X, E(m)) is isomorphic.

o All members of YOK(Ny, Ko,y, L, ) are §-semistable.
Proof We follow the argument of Yokogawa [61]. We begin with the following lemma.
Lemma 3.45 Let (E*, (b) be a parabolic L-Bradlow pair contained in the family YOK(N, K, y, L, ) with a lift

(q,E, 6, W.,[8]). Let E' denote a quotient sheaf of E. Then the following inequality holds:

_ BO(ELm) + e(E',0) - 3(m) + K

rank(E’) (34)

3, s
Py (m)
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Proof Let W denote the kernel of the composite of the morphisms:

Vi, 9 gO(X, B(m)) —— HO(X,E'(m))

Let Ew denote the subsheaf of E(m) generated by the image of W via ¢g. Due to (33), we obtain the following
inequality:

Py (m) - rank(Ew) + (W, @) - 6(m) — Y e; dim(W; N W) — o dim(W) + K > 0.

We have the inequalities dim(W; "\W) > dim(W;) —h° (F;41(E')(m)) fori = 1,...,1. We also have the equalities

e(W,[#]) + e(E', [¢']) = 1, where ¢’ is the induced L-section of E’ by ¢. Since ¢ is generically surjective, we
have rank(E’) + rank(Ey ) = rank(E). Thus, we obtain the following inequality:

0< P;j’o‘* (m) -rank B — §(m) — Z € - dim(W;) + Z € - h*(Fip1(E')(m)) — ay dim(W)

_ P;}O‘*(m) -rank E' + €(E',¢") - 6(m) + K. (35)

We have the following equality:
Py (m) - rank E — §(m) — Y _ € - dim(W;) — oy dim (W)

=H(m) - & Hi(m) =Y € dim(W;) — a1 dim(V) + ay dim(V/W). (36)
Since we have the equalities dim(W;) = H(m) — H;(m) and dim(V) = H(m), the right hand side equals
to ay dim(V/W). We have the inequality dim(V/W) < dim H°(X, E'(m)). Hence we obtain the following
inequality:
0 < —rank(E’) - P> (m) + h°(EL(m)) + e(E', ¢) - §(m) + K.
Then (34) immediately follows. |

Lemma 3.46 There exists an integer N1 such that the Yokogawa family YOK (N1, K,y, L,d) is bounded.

Proof We put d ;== dim X and g := ¢ ((’)X(l))d N [X]. Take a sufficiently negative number C satisfying the
following inequality for any sufficiently large ¢:

1
W(C +tg+c) +6(t) + K < PP ().

Take a large integer N; such that the following inequalities hold for any m > N:

(C+mg+ c)d
g1 d!

Then we will show that YO (N1, K, y, L, §) is bounded.

Let (E*,QS) be a parabolic L-Bradlow pair contained in the family YOK(Ny, K,y,L,5). Let E’ denote
the last member of the Harder-Narasimhan filtration of E with respect to the standard semistability. Assume
w(E") < C, and we will derive the contradiction. Due to Proposition 3.36, we have the following inequality:

C+mg+ec>0, §m)>0, +0(m) + K < P (m).

RO(BLm) _ BO(E (m)) _ [W(E") +mg + ]
rank(E’) — rank(E') — gd-1d!

By the assumption p(E’) < C, we obtain the following inequality:

RO(ELm)) + €. 0) - 6(m) + K _ (C+mg+ )"
rank(E’) - g4-1d!

+3(m) + K < P%*(m). (37)
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However, it contradicts with (34). Thus we obtain p(E’) > C. It implies pmax(E) < C’ for some constant C”,
and thus we obtain that the family YOK (N1, K, y, d) is bounded due to Proposition 3.35. |

Then, there exists an integer Na such that the family YOK(Na, K, y, L, §) satisfies the condition O, for any
m Z NQ.

Lemma 3.47 Assume K1 is strictly smaller than oy. Then, the map H%(q) : Vin — H°(X, E(m)) is isomor-
phic for any (q,E,F*,(b, W, [qz~5]) € YOK (N3, K1,y,L,6). In particular, q is surjective.

Proof We have only to check that H°(q) is injective. Let W denote the kernel of H%(g). Then we obtain the
following inequality from (33):

= e - dim(W; N W) — ay - dim(W) + K1 > 0.

Since K is strictly smaller than oy, we obtain dim(W) = 0, i.e., H(q) is injective. |

Let us finish the proof of Proposition 3.44. Let us consider the family &7 of parabolic L-Bradlow pairs
(E.,¢') with the following property:

e There exists some (Fy, ¢) € YOK(Ny, K1,y, L, §) such that (E.,¢') is isomorphic to the last member of
Harder Narasimhan filtration of (E., ¢) with respect to -semistability.

Since &7 is bounded, the number of the Hilbert polynomials of members in Sy is finite. Therefore, there exists
a small positive number Ky < K and a large integer Ny > Ny such that the following holds for any m > Nj.

e Let (E.,¢) be a member of YOK(Ny, Ko, vy, L,d), which is not d-semistable. Let (E.,¢’) denote last
member of the Harder-Narasimhan filtration of (E,, ¢) with respect to -semistability. Then, the inequality

P(‘sg;’qy)(t) + Ko < P307°‘* (t) holds for any ¢t > m.

e The family S; satisfies the condition O,,.

Let (E,,$) be a member of YOK(No, Ko, y, L, ), and let (q, Ex, ¢, Wi, [4]) be its lift in YOK(No, Ko, y, L, §).
Assume (Ey, ¢) is not d-semistable, and let (E., ¢') be the last member of the Harder-Narasimhan filtration of
(Ex, ¢) with respect to the d-semistability. Then, we obtain the following inequality from (34) and the second
condition:

- hO(EL(m)) + e(E', ¢) - 6(m) + Ko

5,0
By (m) rank(E’)

It contradicts with the first condition. Thus we are done. |

3.5 1-Stability Condition and 2-Stability Condition
3.5.1 Parabolic sheaf
Let y = (y,y1,.-.,y) be an element of Type, and let . = (a1,...,q;) be a system of weights.
Definition 3.48
o We say that the 1-stability condition holds for (y,a.), if M®(y, a.) = M*5(y, a.) holds.

o We say that the 2-stability condition holds for (y,a.), if the automorphism group of E, € M®*(y, ) is
G,, or G,Qn. |

Lemma 3.49 The 2-stability condition for (y, ) is equivalent to the following condition:

e Let E, be a parabolic sheaf of type y with weight c., which is polystable but not stable. Then we have the
unique decomposition B, = E1,. @ Fa., where E;, are stable parabolic sheaves with weight o, such that
El * ;£ E2 *
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Proof Assume that the 2-stability condition holds. Let E. be a polystable parabolic sheaf of type y with
weight a,. We have a decomposition F, = F1 . @ Fa .. If one of E; . is not stable, then by taking the graduation
of a Jordan-Hélder filtration, we obtain a polystable parabolic sheaf E, = E}, & Ej, @ E5, of type y with
weight a... However, the automorphism of E’, is G2, which contradicts with the 2-stability condition.

Assume that the condition above holds. Let E, be a semistable parabolic sheaf of t%pe y with weight a... Let
f: E, — E, be an endomorphism. The eigenvalues of f are constant. Let E, = @@;_; E; « be the generalized
eigen decomposition of f. We have the decomposition f = @fil fi- If N > 3, the length of a Jordan-Hélder
filtration is longer than 3, and hence we have a polystable object which has more than three stable components.
Hence N < 2.

In the case N = 2, it can be shown that F;, are stable by the same argument. Hence the automorphism
group is G2,.

Let us consider the case N = 1. If F, is stable, the automorphism group is G,,. In the case E, is not
stable, the length of the Harder-Narasimhan filtration is 2. Moreover, the graded components are not mutually
isomorphic. Hence the automorphism group is G,,. |

In the above argument, the following corollary is proved.

Corollary 3.50 Assume that the 2-stability condition holds for (y,c.). Let E, be a semistable parabolic sheaf
of type y with weight o.. Then one of the following holds:

o I, is stable.

o E, is uniquely decomposed into E1. ® Es ., where E; . are stable such that Eq. % Eo ..

o We have the non-split exact sequence 0 — E;, — E, — Ey, — 0, where E;, are stable such that

B # By, 1

3.5.2 Parabolic L-Bradlow pair
Let L be a line bundle on X, and let § be an element of PPr.
Definition 3.51

o We say that the 1-stability condition holds for (y,au, L, ), if M*(y,[L], ax, §) = M*(y, [L], o, d) holds.

o We say that the 2-stability condition holds for (y,ax,[L],d), if the automorphism group of (E.,¢) €
M3 (y, [L], o, 8) is Gy, or G2,. 1

Definition 3.52 Fiz a type y € Type, a system of weights a, and a line bundle L. A parameter 6 € PP* is
called critical for (y,ax, L), if the 1-stability condition does not hold for (y,au., L,d). The set of such critical
parameters is denoted by Cr(y, ax, L). |

Lemma 3.53 The set Cr(y, L, a) of critical values is finite.

Proof We may assume rank(y) > 1 and p(y,a.) > 0. Recall Proposition 3.38. We can take a sufficiently
negative number C such that there does not exist §-semistable L-Bradlow pairs for any d:, > —C.
Let 81 denote the family of L-Bradlow pairs (E., ¢') with the following property:

e There exists a member (E,, ¢) of SS(y, L, ) such that (E., ¢') is a saturated subobject of (E., ¢).
o deg(E;) > C.

Since S; is bounded (Proposition 3.34), we obtain the finiteness of the set 77 of the polynomials H such that
There exists a member (E.,¢’) € S satisfying Hg: = H.

Let 6 be an element of Cr(y, L, ). Then there exists a d-semistable (E., ¢) such that ¢ # 0, which has a
non-trivial partial Jordan-Holder filtration (E”, ¢') C (Fx, ¢). We have the following equality:

deg(E.) +e(E',¢') - 0top  deg(Ey) + dtop
rank E’ o rank F/
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Since we have d;,, < —C, we obtain the following inequality:
deg(E.) > rank(E") - u(Ex) — 6top > C

Hence, (E.,#') is a member of S;. We have the equality P(‘sE, o) = P(‘sE*’ 4)- Hence there exist H € Ty, an
integer r1 and an integer € satisfying the following:

1 H H
<__i) =" 2 0<r<r e=0orl
r ™ r 1
Thus we obtain the finiteness of Cr(y, L, o) from the finiteness of 7q 1

Corollary 3.54 If 6’ # § is sufficiently close to some element § € PP*, the 1-stability condition holds for
(y,L, ., d"). If 6 is sufficiently close to 0, the 1-stability condition for (y, L, a.,?'). |

Lemma 3.55 Let 0y be an element of PPT. If 6, € P is sufficiently close to &g, any 61 -semistable L-Bradlow
pair is also §g-semistable.

Proof Let S, §; and 77 be as in the proof of Lemma 3.53. Let r; and € be integers such that 0 < r1 < r and
e=0,1. We put P(H,r1,¢€,0) := rfl (H—l— €- (5) for any 6 € PP" and H € T;. If §; is sufficiently close to dy, the
following holds:

(A) P(H,r1,€61)(t) > 0 implies P(H,r1,€,60)(t) > 0 for any sufficiently large ¢.

Let 01 be as above. We may assume that the 1-stability condition holds for (y, L, a., d1). Let (Ey, ¢) be
d1-stable L-Bradlow pair of type y, and we assume that it is not J-semistable. Then there exists a saturated
subobject (E.,¢") of (E., ¢) with the following property:

1
* Plg e

(t) > P(‘Slg*’ 4 (t) for any sufficiently large ¢.
° P(‘s,é;7¢,)(t) < P(%*7¢) (t) for any sufficiently large .

Then (E,, ¢') is a member of S; due to the first inequality. Therefore, the two inequalities contradict with the
condition (A) above. Thus we are done. |

By a similar argument, we can show the following.

Lemma 3.56 Let y be an element of Type, and let a, be a system of weights. Assume 6 is sufficiently small.
Then, E, is semistable if (Ex, ¢) be a 0-stable L-Bradlow pair.

Proof Let S be a family of u-semistable parabolic torsion-free sheaves of type y. Let S denote the family of
parabolic torsion-free sheaves E’, with the following property:

o There exists E, € S such that E’ is a saturated subobject of E,. Moreover, we have u(E?) = u(y, o).

Let 7 denote the set of the polynomials P such that P # Py~ and P = Pg; for some E] € S. Since the families
S and S are bounded, the set 7 is finite. We take a positive number ; satisfying the following:

1
0<é ———— min{|P — P
S0 rank(y) min| v

PeT}

We regard 47 as the polynomial of degree 0.

Let (E., ¢) be a d1-semistable L-Bradlow pair of type y with weight a.. It is easy to observe that F, is
p-semistable. Let E} be a subobject of E,. In the case u(E}) < u(Ey), we obviously have Pg; < Pg,. Assume
w(E,) = n(Ey) and Pg: # Pg,. Then E; is a member of S, and P is a member of 7. Due to §;-semistability
of (Ey, ¢), we have the following:

(B, 9) 01 _ P o1
rank B/ —

Pg: +
It implies Pr; < Pg, due to our choice of d;. |

By an argument similar to the proof of Lemma 3.49, we obtain the following lemma.
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Lemma 3.57 The 2-stability condition for (y, ., L, ) is equivalent to the following:

o Let (E., ) be a parabolic L-Bradlow pair of type y with weight a.. such that ¢ # 0, which is §-polystable
but not d-stable. Then we have the unique decomposition (E.,¢) = (E1.,01) ® Ea, where (E1 4, ¢1) is
d-stable and Es5 . is stable.

Moreover, when the 2-stability condition holds for (y, ., L, §), one of the following holds for any §-semistable
parabolic L-Bradlow pair (E., $) of type y with weight o, such that ¢ # 0.

o (E,,¢) is d-stable.
o (E,, ) is uniquely decomposed into (Ey, @) = (E1 4, $1)® Ea ., where (E1 «, §) is §-stable and Fs . is stable.

o We have the non-split exact sequence 0 — (E14,¢1) — (Fx,¢) — E2. — 0 or 0 — FEy, —
(Ey, @) — (E14,¢01) — 0, where (E1 «, ¢) is §-stable and Es ., is stable. |

3.5.3 Parabolic L-Bradlow pair

Let L = (L1, L2) be a pair of line bundles on X, and let § = (01, J2) be elements of (Pbr)2. Similarly, we have
the notion of 1-stability and 2-stability conditions.

Definition 3.58
o We say that the 1-stability condition holds for (y,a., L, §), if M*(y,[L], ax, 8) = M*3(y, [L], o, 8).

o We say that the 2-stability condition holds for (y, o, L,d), if the automorphism group of any (E., @) €
M?*$(y, [L], ., 8) is G or G2,. 1

Definition 3.59

o Fiz a type y € Type, a system of weights o, and a pair of line bundles L. A parameter & € PP ? is called
critical for (y,a., L), if the 1-stability condition does not hold for (y,a., L,8). The set of such critical
parameters is denoted by Cr(y, s, L).

o We also put as follows:
Cr(ya Oy, La 51) = {62 S Pbr | (517 62) € Cr(y, Qs L)}
Any element 02 € Cr(y, a, L, 1) is called critical for (y,a., L, d1). |

We can show the following lemma by using Lemma 3.41 and an argument similar to the proof of Lemma
3.53.

Lemma 3.60 The set Cr(y, L, a, 1) is finite. |
By an argument similar to the proof of Lemma 3.55, we can show the following lemma.

Lemma 3.61 If &, are sufficiently close to d2, any (61, 8%)-semistable L-Bradlow pair is also (81, 02)-semistable.
If 6} is sufficiently close to 0, the Ly-Bradlow pair (E.,¢1) is d1-semistable for any (01, 02)-semistable L-
Bradlow pair (E., $1, d2). |

Lemma 3.62 Assume that 01 + o is sufficiently small as in Lemma 3.56. Then, if (Ey, ¢1,¢2)is a (01,02)-
semistable L-Bradlow pair, E, is semistable. |

Lemma 3.63 If both of §; are sufficiently small, the following claims hold:
o [f the 1-stability condition holds for (y,a.), then the 1-stability condition holds also for (y,ax, L, d).

o Even if the 1-stability condition does not hold for (y, aw), the 2-stability condition holds for (y,au., L, §).
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o If the 1-stability condition does not hold for § = (61,02), the equality §1/r1 = d2/r2 holds for some
decomposition r1 + r2 = rank(y).

Proof We take §; as in the proof of Lemma 3.56. The first claim is clear. Let us see the second claim. Let
(Ex, ¢1,92) be a (01, 0d2)-polystable (L1, Lo)-Bradlow pair of type y with weight «. such that ¢; # 0. We
remark that F, is semistable. Since §; are sufficiently small, the number of stable components are at most
2. If it is decomposed, it is of the form (E; ., ¢1,0) ® (Fa4,0, d2), where (E; ., ¢;) are §;-stable with ¢; # 0.
The components are not isomorphic. Hence the 2-stability condition holds. The third claim also immediately
follows. |

3.6 Quot Schemes
3.6.1 Preliminary

Let y be an element of H®V(X). We will denote y - ch(O(m)) by y(m) for any integer m. We also have the
element det(y) = y1, where 3; denote the H?(X)-component of y.

Let H, be the associated Hilbert polynomial to y (the subsubsection 3.2.4). Take a large integer m such
that H,(m) > 0. We also assume that any line bundles M with c;(M) = det(y(m)) satisfy H'(X,M) = 0
(1> 0).

We take an H,(m)-dimensional vector space V,, over k. We denote V;,, ® Ox by Vi, x.

3.6.2 Quotient sheaves

A pair of U-coherent sheaf £ on U x X and a surjection ¢ : pj;Vin,x — &€ is called a U-quotient sheaf of
Vim,x, which is denoted by (¢, &) or simply by ¢. A U-quotient sheaf (¢,&) with an orientation p is called an
oriented U-quotient sheaf of V;,, x. The type of (¢,&) or (g, &, p) is defined to be the type of E(—m). (See the
subsubsection 3.1.4 for the type.)

Recall that the moduli functor of quotient sheaves of V;, x with type y is representable, and the moduli
scheme is projective. ([25]). We denote it by Q(m,y). Let (¢*,E") denote the universal quotient sheaf of V,,, x
on Q(m,y) x X. A point of Q(m,y) is denoted by the corresponding quotient (q, 5). We have the right action
of GL(Vm) on Q(m, y) given by g - (q,g) = (q o g,g).

Let (q,&) be a U-quotient sheaf of V,, x with type y defined over U x X. We say that (q,S) satisfies the
(TFV)-condition, if the following holds for any u € U:

(TFV): The sheaf £ ,}xx is torsion-free, the induced map V,, — H®(X,&(u}xx) is isomorphic, and
i (X, 5\{u}xx) vanish for any i > 0.

In general, the condition determines the maximal open subset of U on which the (TFV)-condition holds. In
particular, it determines the open subset of Q(m,y), which is denoted by Q°(m,y).

Let Or(E") denote the orientation bundle, which is the line bundle on Q(m,y). The moduli functor of
oriented quotient sheaves of V,,, x with type y is representable by Q(m,y) := Or(E¥)*. We have the induced
right action of GL(m) on Q(m,¥). We put Q°(m,¥) := Q°(m,y) XQ(m,y) @M, 7).

3.6.3 Quotient quasi-parabolic sheaves and the Maruyama-Yokogawa construction

Let D be a Cartier divisor of X. Let y and V;,, x be given as above. A U-quasi-parabolic quotient sheaf (¢, £, Fy)
of Vip,x on U x (X, D) is defined to be a U-quotient sheaf (¢,&) of Vi, x with a U-quasi-parabolic structure
F, of £ at D. The type of U-quasi parabolic quotient sheaf (q,€&, Fy) of V,;, x is defined to be the type of the
underlying U-quasi-parabolic sheaf (5 (—m), F*) (See the subsubsection 3.1.4 for the type.)

Let y be an element of 7ype, whose H*(X )-component is y. Let (q, g, F*) be a U-quotient quasi-parabolic
sheaf of V,;, x with type y on U x (X, D). We say that (q, g, F*) satisfies the (TFV)-condition for quasi-parabolic
shaves, if the following holds for any w € U and for any i:

(TFV): (q,&) satisfies the (TFV)-condition. Moreover, the sheaves F;(€)|ru}xx and Cok;(€)|{u}xx are gen-
erated by global sections, and the higher cohomology groups of F;(€)|tu1xx and Cok;(€)|fu}xx vanish.
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In general, the condition determines the maximal open subset of U on which the (TFV)-condition holds.

We put H; := Hy ;. Let ), ; denote the scheme representing the moduli functor of the quotient sheaves of
Vim,x whose Hilbert polynomials are H;. We have the natural right GL(V,,,)-action on @, ;. We have the open
subset Up, i of Qi given by the conditions that HY(X,&;) = 0 for any j > 0 and that V,, — H%(X,&) is
surjective. Let G, ; denote the Grassmannian variety, which is the moduli of H;(m)-dimensional quotient space
of the vector space V;,,. We have the GL(V,,)-equivariant morphism of U,, ; to G, ; by the correspondence:

(@i, &) — (HO(%') : Vi — HY(X, Ez(m)))

Let Q'f(m,y) denote the open subset of Q(m,y) consisting of the points corresponding to the torsion-
free quotients. For the construction of the moduli of semistable parabolic sheaves, Maruyama and Yokogawa
constructed the scheme I' which is obtained as the subscheme of Q' (m,y) x Hi Upm,i- (See section 3 of [41].)
The scheme T' is the moduli of quotient quasi-parabolic sheaves (g, &, Fy) of V,,, x with type y satisfying the
following conditions: (i) £ is torsion-free. (ii) The higher cohomology groups of Cok,(€) vanish, and V,,, —
HO(X,Cok;(£)) are surjective for any i.

Moreover, the (TFV)-condition determines the open subset of I', which is denoted by Q°(m,y). The scheme
Q°(m,y) represents the moduli functor of quotient quasi-parabolic sheaves of V,,, x with type y satisfying
(TFV)-conditions. We have the universal objects on Q°(m,y) x X, which is denoted by (¢*, &, F*). We have
the right GL(V;;,)-action on Q°(m,y) given by g - (¢,&, Fy) := (g0 g,&, Fy).

Let Picx (c) denote the component of the Picard variety of X such that any line bundle M € Picx (c) satisfy
c1(M) = c. Let Poinx (c) denote the Poincaré bundle on Picx (¢) x X. Then we obtain the locally free sheaf:

rank y

m = px*Hom( /\ Vm7x,730inx(dety(m))). (38)

The projectivization Z,, is called the Gieseker space. We have the natural right action of GL(V,,,) on Z,,.

It is known that the correspondence (¢, ) — H(A\" q) gives the GL(V;,)-equivariant morphism of Q°(m, y)
to Zp, which is known to be an immersion. Therefore, we obtain the morphism Q°(m,y) x [[, Un; —
Zm X [1; Gm,i- By the composition of the inclusion Q°(m,y) — Q°(m,y) x [[; Un.i, we obtain the GL(V;,)-
equivariant morphism Q°(m,y) — Zy x [[, Gim,i- The following lemma was shown in [41].

Lemma 3.64 ([41], Proposition 3.2) The morphism Q°(m,y) — Zmy X [ [, Gm,i is an immersion.

Proof We give only some remarks. Since the morphism Q°(m,z) — Z,, is an immersion, we have only to
care the morphism of Q°(m,y) to Q°(m,y) X [[ Gm,i- Recall the precise result of Maruyama and Yokogawa:
Let a, be a system of weights. Let I'** denote the open subscheme of I' such that the corresponding parabolic
sheaves (€, F, o) are semistable. We may assume that the (TFV)-condition holds for each member I'*®.

They showed that the morphism of I'** to Q°(m,y) X [, G, is immersion. Their argument can be sum-
marized as follows:

(i) Construct a subscheme Z of Q(m,y) X [[; @m,i X [[; Gm,i such that the projection of Z to Q(m,y) x[[; Gm.i
is immersive. (Z is denoted as A xg XAy x¢g -+ xg A in [41].)

(ii) The morphism I'** — [, G, ; gives the graph G, which is a subset of Q(m,y) x [[; @m,i X [[; Gm.i- It
can be shown that G is contained in Z. Then the projection of G to Q(m,y) x [[;, Gm, is immersive.
Hence the morphism I'** — Q' (m,y) x [[; Gm,; is immersion.

For the argument, we need the only fact that each member of I'*® satisfies the (TFV)-condition. (It is given as
the conditions (3.0.1) and (3.0.2) in [41].) Thus the morphism Q°(m,y) — Zp, X [[; G, is immersive. See
[41] for more detail. 1
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3.6.4 Quotient parabolic L-Bradlow pair

Let L be aline bundle on X. Fix a non-trivial morphism ¢ : O(—m) — L. Let ¢ : pj; Vs x — & be a U-quotient
sheaf with type y defined over U x X satisfying (TFV)-condition. We have the morphism £(—m) ® L=! — &
induced by ¢. Let ¢ be an L-section of £(—m). Then ¢ and ¢ induce the O-section ¢(¢) of €.

Definition 3.65 (Quotient L-section) Let (¢q,&) be a quotient sheaf of Vi, x defined over U x X. An Ox-
section ¢ of i Vm,x is called a quotient L-section of (q,E) with respect to v, if there exists an L-section of
E(—m) such that 1(¢) = qo ¢.

The condition means that the element qo ¢ € F(U x X, 5) is contained in F(U x X,E(—m) ® L‘l), where
the inclusion E(—m) ® L~ — & is given by t. |

Definition 3.66 A quotient U-quasi-parabolic L-Bradlow pair of Vi, x with type y on U x (X, D) is defined to
be a pair (q, &, Fy, (b) of quotient U-quasi parabolic sheaf (q,&,Fy) of Vi, x with type y over U x (X, D) and a
quotient L-section 5 with respect to t. |

Let us construct the moduli scheme Q°(m,y, L) of quotient quasi-parabolic L-Bradlow pairs of V;,, x with
type y satisfying (TFV)-condition, whose L-section is non-trivial everywhere. We put Q°(m,y,O(—m)) =
Q° (m, y) xV*. Let m denote the projection of Q° (m, Y, (’)(—m)) x X onto Q° (m, y) xX. OnQ° (m, Y, (’)(—m)) X
X, we have the quotient quasi-parabolic sheaf 7*(¢%, £¥, F}*) of V,,, x with type y. We also have the canonical
O x-section 5“ of pz)"(m,y70(fm))‘/"n’x7 which is induced by the identity of V,,.

We have the composite A of the following morphisms on Q° (m,y, O(—m)) x X, where the last quotient
sheaf is induced by ¢:

—u - 71'*5"
OQa(mayO-m) = Do (am y,0(-my V. x 0 w7E — o (—m) @ L1

Recall the following result (Lemma 4.3 of [60]) due to Yokogawa.

Lemma 3.67 Let f : X — S be a proper morphism of Noetherian schemes and ¢ : I — F be an Ox-
morphism of coherent sheaves. Assume that F is flat over S. Then there exists a unique closed subscheme Z
of S such that for all morphism g: T — S, g*¢ = 0 if and only if g factors through Z. |

Remark the following easy lemma.

Lemma 3.68 Let E be a U-coherent sheaf on X x U such that E|x is torsion-free for any uw € U. Let D be a
Cartier divisor of X. Then E ® Op is flat over U.

Proof Let f be any local section of Ox, and let F be any Oy-coherent sheaf. We have only to show the
injectivity of the endomorphism of £ ®e, F induced by f. By considering the support of mx (Ker( f )), we can
reduce the case U = Spec(K) and F = Oy for some field K. In the case, the claim is trivial.

Due to the above two lemmas, the vanishing condition of A gives the closed subscheme of Q° (m, Y, (’)(—m)),
which is Q°(m,y,L). By the construction, it is easy to see that Q°(m,y, L) has the desired property. We
denote the universal pair on Q°(m,y, L) x X by (¢*, ", F}*, Eu) We remark that we have the unique L-section
¢" of £%(—m) such that u(¢") = ¢,(").

The right GL(V;,,)-action on Q°(m, y, O(—m)) is given by g-(¢,&, Fi, ¢) = (q0g,&, Fi, g~ ' 0¢). The action
can be naturally lifted to the action on the universal object. Note that @Q° (m, Y, L) is a closed GL(V,,)-stable
subscheme of Q°(m,y, O(—m)).

3.6.5 Quotient reduced L-Bradlow pair

Let ¢ : O — L(m) be the fixed non-trivial morphism. Let g : pf;Vin, x — & be a U-quotient sheaf of Vi, x

defined over U x X. A reduced Ox-section [¢] of p};Vyn x and ¢ induce the reduced Ox-section ¢, ([¢]) of £.
On the other hand, a reduced L-section [¢] of £(—m) and ¢ induce the reduced O x-section ¢([¢]) of £.
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Definition 3.69

o A reduced Ox -section [¢) of p{;Vim,x 1s called a quotient reduced L-section if there exists a reduced L-section

of E(~m) such that 1([6)) = q.([4]).

o A quotient U-quasi-parabolic reduced L-Bradlow pair of Vi, x with type y on U x X is defined to be a tuple
(q,S,F*, [(;5]) of quotient U-quasi-parabolic sheaf (¢, &, Fy) of Vi x with type y and a reduced L-section

[@] of E(—m). We also assume that [p] is non-trivial everywhere. 1

Let us construct the scheme Q°(m, y, [L]) representing the moduli functor of quotient quasi parabolic reduced
L-Bradlow pair of V,, x with type y satisfying (TFV)-condition. We have the free G,,-action on the scheme
Q°(m,y, L) defined by t - (¢,&,F.,8) = (¢,&, Fi,t- ¢). Then we put Q°(m,y, [L]) := Q°(m,y,L)/Gp,. It is
the closed subscheme of Q°(m,y) x P,,. Due to the naturally defined morphism 7 : Q°(m,y,[L]) x X —
Q°(m,y) x X, we have the quotient quasi parabolic sheaf (LT“,EA“, ﬁj‘) = (m*q", m*EY, m* F*). The morphism
#" naturally induces the reduced Ox-section [¢"] : Poe (muy, (1) Ox @ Op,,, (=1) — DHo (g (1) Vim.x - We also
have the reduced L-section [¢"] : Poe (moy, L @ Op, (-1) — pgo(my)m)g(—m).

Lemma 3.70 Q°(m,y,[L]) has the desired universal property, and (@“,EA", ﬁf, [qb“]) 18 the universal object.

Proof We give only an outline. Due to Lemma 3.67, we can reduce the case L = O(—m) and ¢ is the identity.
Let (¢, &, Fy, [¢]) denote a U-quotient quasi-parabolic reduced L-Bradlow pair, satisfying (TFV)-condition. We
have the map F : U — Q°(m,y) corresponding to (q,&, Fy).

We have the locally free sheaf px € and px .&% on U and Q°(m,y) respectively. Let P; and Py denote the
projectivization of them. We have U*Py ~ P;, and we have the natural morphism U P; — Py. We remark

that Py is naturally isomorphic to Q° (m, Y, [(’)(—m)]) =Q° (m, y) X P,,,. The pull back of the naturally defined

reduced L-section [(;5“] on Py x X is same as the naturally defined reduced L-section on Py x X. _
On the other hand, the reduced L-morphism [¢] induces the section f : U — P;. It is easy to see that [¢]
is the pull back of the naturally defined reduced L section on P; x X. Thus we are done. |

Since the above G,,-action and the GL(V;;,)-action on Q°(m,y, L) are commutative, we have the induced
right GL(V,y,)-action on Q°(m, y, [L]) and the universal object. We also have the GL(V,,,)-equivariant immersion
of Q°(m,y,[L]) to Zy, x [[; Gm,i x P(V,Y).

3.6.6 Quotient reduced L-Bradlow pair

Let L = (L1, L) be a pair of line bundles on X. Quotient quasi-parabolic reduced L-Bradlow pairs of V,,, x
with type y can be given as in Definition 3.69. It is easy to construct the scheme Q°(m,y, [L]) representing
the moduli functor of quotient quasi-parabolic reduced L-Bradlow pairs of V;,, x with type y satisfying (TFV)-
conditions. In fact, we have only to take the fiber product of Q°(m,y, [L;]) (i = 1,2) over Q°(m,y). We have
the natural right GL(V,,,)-action on Q°(m,y,[L]) and the GL(V,,)-equivariant immersion Q°(m,y,[L]) —
Zm X 11, Gm,i X Py X Py,

3.6.7 Oriented objects

We put Q°(m,y,[L]) = Q°(m,y,[L]) Xqo(m.y) Q°(m,y), which represents the moduli functor of quotient
oriented quasi-parabolic reduced L-Bradlow pairs of V;,, x with type y satisfying (TFV)-condition. We naturally
have the universal object. Similarly, the schemes Q°(m,y), Q°(m,y, L), Q°(m,y,[L1],[L2]), etc. are given,
which represent appropriate functors respectively.

Let Z,, be as in (38). We have the following naturally induced Cartesian diagram:

~

Qo(m’:/y\) ——— Zm

l I

Qo(may) - Zm
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The morphisms are GL(V,,)-equivariant. Hence, we obtain the GL(V,,)-equivariant morphism:

Qo(m,ﬂ) — Z\m X HGm,i

3.6.8 Quotient stacks

We have the universal quotient quasi-parabolic sheaf (q“,S“,F*) of pge(m,y)Vm,x over Q°(m,y) x X. The
GL(V)-action on Q°(m, y) is naturally lifted to the action on (¢“, €, F). Then, we obtain the quasi-parabolic
sheaf (E“, F,) on (Q°(m,y)/ GL(V;n)) x (X, D) by taking the descent of (£€*(—m), F.). The following lemma
is well known.

Lemma 3.71 Let y be an element of Type. The quotient stack Q°(m,y)/ GL(V,,) is isomorphic to M(m,y),
and the quasi parabolic sheaf (E*, F) is the universal one.

Proof Let g : T — M(m,y) be a morphism. Then we have the corresponding T-quasi-parabolic sheaf
(E,F,) on T x X of type y, satisfying the condition O,,. Then we obtain the vector bundle V := px .E(m)
on T. Let P denote the associated principal GL(V,,)-bundle, and let # : P — T denote the projection.
On P, we have the equivariant trivialization 7%V ~ V;,, ® Or. Thus we obtain the equivariant morphism
q: PpVim,x — mx E(m). Therefore, we obtain the quotient quasi-parabolic sheaf (¢, 7% E(m), F.) on T x X
which is naturally GL(V,,,)-equivariant. It also satisfies the (TFV)-condition. Therefore, we obtain the GL(V;,)-
equivariant morphism P — Q°(m,y), in other words, the morphism T' — Q°(m,y)/ GL(V,,). In particular,
we obtain M(m,y) — Q°(m,y)/ GL(V;,).

On the other hand, let g : T — Q°(m,y)/ GL(V,,). We have the corresponding GL(V,,)-torsor P(g) over
T. On P(g) x X, we have the quotient g% (¢"*) : p5Vin,x — g%E" with a quasi parabolic structure t% F', which
is GL(V,;,)-equivariant. By taking the descent with respect to the action, we obtain the T-quasi parabolic sheaf
(£%(—=m), F.) on T x X. It satisfies the condition O,,. Therefore, we obtain the morphism of T' to M (m,y).
In particular, we obtain Q°(m,y)/ GL(V,,) — M(m,y).

It is easy to check that they are mutually inverse. |

By the same argument, we obtain the description of the moduli stacks M(m, y), M(m,y, L), M(m,y,
M(m,y,[L]), M(m,y,[L]), etc. as the quotient stacks of Q°(m,y), Q°(m,y, L), Q°(m,y,[L]), Q°(m,¥y,[L]),
Q°(m,y,[L]), etc.. The universal objects are constructed by the same procedure.

4 Geometric Invariant Theory and Enhanced Master Space

4.1 ¢-Semistability and Numerical Criterion
4.1.1 Statement

Let X be a smooth d-dimensional projective variety over an algebraically closed field k of characteristic 0, and
let Ox (1) be a very ample line bundle. We denote the number c¢;(Ox(1))? N [X] by g. Let D denote a Cartier
divisor of X. We do not have to assume the smoothness of D in this section. We use the notation in the
subsection 3.6.

Let y = (y,y1,Y2,---,41) be an element of Type. (See the subsubsection 3.1.4.) We have the associated
Hilbert polynomials Hy . = (Hy, Hy1,Hya,...,Hy;). (See the subsubsection 3.2.4.) Let V,,, be an Hy(m)-
dimensional vector space over k, and let V,, x denote V,, ® Ox. Let Z,, denote the Gieseker space over
Pic(det(y(m))), and let Gy, ; denote the Grassmann variety of Hy(m) — Hy ;(m)-dimensional quotients of V,,,.
We put as follows:

An(y) = Zom ¥ [[ Gy Am(ys [L]) := A (y) X Pray  A(y, [L]) 1= An(y) x PR x PG

Here L denotes a line bundle on X, and L = (L1, Ls) denotes a pair of line bundles on X. We also put
]P’sfl) = P,,. Recall that we have obtained the SL(V,,)-equivariant immersions ¥,, of Q°(m,y) to A, (y).
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(See the subsubsection 3.6.3). We take an inclusion ¢ : O(—m) — L. Then we have the closed immersion
Q°(m,y,[L]) — Q°(m,y,[0(-m)]) = Q°(m,y) x Py,. Therefore, we obtain the equivariant immersion of
Q°(m,y,[L]) to A (y,[L]). Similarly, we can obtain the equivariant immersion of Q°(m,y, [L]) to A (y, [L])
by taking an inclusion ¢; : O(—m) — L;. The immersions are denoted by U,,.

Since Z,, is the projective space bundle on Picx (det(y(m))), we have the relative tautological bundle
Oz, (1). We also have the canonical polarizations Og,, ,(1) and Op,, (1) of G;,,; and P,, respectively. They are
SL(Vy,)-equivariant line bundles.

For a positive number A and a tuple of positive numbers B, = (B;|i = 1,...,1), we formally consider the
line bundles on A,,(y) given as follows, although it is not precisely a line bundle when the numbers are not
integers:

l
Ly(A, B.) =03, (4) @ Q) O, ,(Bi).
=1

Similarly, for positive numbers C' and C; (j = 1,2), we formally consider Ly (4, Bs,C) := Ly(A, B.)®0p,, (C)
on Ay, (y, L) and Ly (A, B, C1,Cs) := Ly(A, B,) ® Opn) (C1)® Ope) (C9) on A, (y, L).

When the numbers are positive rational numbers, £ (A, B,) gives SL(V;,)-equivariant Q-polarizations of
A (y). Even if the numbers are not rational, the Hilbert-Mumford criterion formally provides us the semista-
bility condition with respect to Ly4(A, B.). So, let A%3(y, A, B,) denote the set of semistable points of the
SL(V,,)-action on A, (y) with respect to £y (A, B,). Similarly, A%%(y, L, A, B,,C) and A3 (y, L, A, B,, C1,C5)
are given.

The semistability (resp. stability) condition with respect to the system of weights a. determines the open
subset Q%% (m, y, o) (resp. Q°(m,y, aw)) of Q°(m,y). Namely, it is the maximal open subset of Q°(m, y) which
consists of the points (¢, &, F.) such that the parabolic sheaf (£(—m), F, o..) is semistable. Similarly, we have
the open subset Q**(m,y, [L], o, d) (resp. Q%(m,y,[L], ax,0)) of Q°(m,y,[L]) determined by the semistability
(stability) condition with respect to the system of weights o and a parameter 6. We also have the open subsets
Q% (m,y, [L], ax, §) and Q°(m,y, [L], ax, d) of Q°(m,y, [L]) in a similar way.

The first claim of the following proposition was proved by Maruyama-Yokogawa [41] and the second claim
was proved by Yokogawa in [61].

Proposition 4.1 There exists an integer N(y, a.) such that the following holds for any m > N(y, a.):

1. The image of Q*°(m,y, ) via the morphism V., is contained in A%° (m,y, Py (m), e*), Thus we obtain

the morphism U, : Q*(m,y, ) — A% (m, y, Py~ (m), e*).
2. The morphism \Tlm above is proper. In particular, it is a closed immersion. |
By the same argument, we can show the following proposition.

Proposition 4.2 There exists an integer N1(y, L, s, ) such that the following claims hold for any m >
Nl(yaLaO‘*a(S)"

1. The image of Q**(m,y,[L], ax,0) via the morphism W, is contained in A3 (Pyo‘“‘;(m),e*,(S(m)). Thus
we obtain the morphism U, : Q**(m,y, [L], as, §) — A (Pg=2(m), €., 6(m)).

2. The morphism \/I\/m above is proper. In particular, it is a closed immersion.

Similarly, there exists a large integer N1(y, L, a, §) such that we have the SL(V,,)-equivariant closed immersion
for any m > Ny(y, L, a., d):

(I}m : st(mvya [L]v Qs 6) - Afrf (yv [L]7 P;*76(m)1 €x, 5(m))

Here, we put 8(m) := (61(m), d2(m)).
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Although we need only a minor modification, we will later give a rather detailed proof of the claims for
(y, L, a, ) in Proposition 4.2, for the convenience of the reader. We closely follow the arguments of [41] and
[61]. We also use the argument in [28]. Since the claim for (y, L, o, d) can be shown similarly, we omit to give
the proof of it.

We also obtain the following.

Proposition 4.3 The image of Q*(m,y,[L], ax,0) via ¥, is contained in A (y,[L], ax,0). Similar claims
hold for Q*(m, y, o) and Q*(m, y, [L], v, 6).

The claim for Q*(m,y) was proved by Maruyama-Yokogawa in [41]. Since the argument is similar to the proof
of the first claim of Proposition 4.2, we give just some remarks in the proof of Proposition 4.2.

Remark 4.4 When «; and the coefficients of 0 and 0; (i = 1,2) are rational, it is standard to obtain the
projective coarse moduli scheme of d-semistable parabolic L-Bradlow pairs or d-semistable parabolic L-Bradlow
pairs from Proposition 4.2.

Even if the numbers are not rational, we can obtain the coarse moduli schemes of d-stable parabolic reduced
L-Bradlow pairs, if the 1-stability condition holds for (y, L, a.,d). Take a sufficiently large N > 0, and take
rational numbers A, B, = (B;|i = 1,...,1) and C which are close to N - Py*<(m), N - e, and N - §(m)
respectively. If a point of A(m,y,[L]) is stable with respect to E%L(Pg""*(m), €x, 5(m)), then it is stable with
respect to Ly 1.(A, By, C). Thus we can obtain the coarse scheme by the geometric invariant theory (Proposition
2.3). Therefore, when the 1-stability condition holds, we obtain the projective coarse moduli scheme of semistable
ones. |

Before going into the proof of Proposition 4.2, we give some consequence about the property of the moduli
stacks.

Corollary 4.5 When the 1-stability condition holds for (y, ), the moduli stack M*(y, «.) is Deligne-Mumford
and proper.

Proof Under the assumption, we obtain Q*°(y, a.) = Q°(y, ax). It is easy to see the finiteness of the stabilizer
of any point z € Q*°(y, ) with respect to the SL(V},)-action from Corollary 3.29. Then, the quotient stack
Q*(y, )/ SL(Vy,) is Deligne-Mumford and proper, due to Proposition 4.1, Proposition 4.3 and Proposition
2.4.

Since we have the etale finite morphisms Q*®(y, a.)/SL(V,,) — Q*(y, ax)/ PGL(V,,) and M(y,a.) —
Q*(y, o)/ PGL(V,,), it is easy to derive the claimed property of M (¥, a.). |

Similarly, we obtain the following.
Proposition 4.6

o If the 1-stability condition holds for (y, L, ax,d), the moduli stacks M*(y, [L], ax,d) and M*(y, L, a, 6)
are Deligne-Mumford and proper.

o If the 1-stability condition holds for (y,L, ., d), the moduli stack M?*(y, L], o, ) is Deligne-Mumford
and proper. |

4.1.2 The numerical criterion

Let us start the proof of Proposition 4.2. Let (g, Ex, ¢, Wi, [¢]) be a Yokogawa datum of type (y, m) (Definition
3.42). From W., we obtain the tuple of the quotients (V,,,/W;|i =1,...,1), which gives the point of [T, G,
We denote the point by V/W,. Then we obtain the following element of A,, (y, [L]):

U (g B, 6, W, [3]) = (H (Aa). Va/ W, [a) € An(y, 1)) (39)

Let W be a subspace of V,,,. The number (W, [¢]) is given as in Definition 3.43. Let &y denote the subsheaf
of E(m) generated by the image of W via q.
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Lemma 4.7 The point \I/(q, E., o, W,, [5]) is contained in A>3 (P;j*";(m), Exs 5(m)), if and only if the following
inequalities hold for any non-trivial subspace W C Vi, :

P;*7‘s(m) -rank(Ew ) — (W, [@]) - 6(m) — Z € - dim(W; " W) — ay - dim(W) > 0. (40)

In other words, V(q, E., §, W*,N[qg]) is semistable point, if and only if (q, Ex, &, Wi, [(;5]) € f@f((m, 0,y,L,0).
The point \I/(q, E., o, W,, [(b]) is contained in A3, (P;*75(m), Exs 5(m)), if and only if the strict inequalities
hold in (40) for any subspace W C V,,.

Proof We give only an indication. We put £ := Oz (Pg*(m)) ® ®i:1 Og,,.(€) and Ly := Oz (r~'-6(m)) @
Op,, (6(m)). Then we have L(Pg=°(m),e.,8(m)) = L1 ® Ls.
We put N = dimV,,. Let uq,...,un be the vectors satisfying the following:

At) -uw; =t cwyy, wp <ws <o <y, Zwl—o (41)

We remark that we can regard (41) as the condition for A, when we fix uq, ..., uy.
The number py (P, L) is calculated in [41] (see also [6]):

N l N
ux(P, L1) = —PO‘* Z rank £ —rank 5@*1))% — Z €; Z (rank W; AVE=1 _rank W; NY@ 4+ 1) ‘w
i=1 j=1 i=1
(42)

Here, £ denote the subsheaves of E(m) generated by uq,...,u; via ¢, and V() denote the subspaces of V;,
generated by u1,...,u;. The number uy (P, L2) is as follows:

N

1 ~ ,

o(m) - < . E (ranké’ — rank £0~ 1) cw; + E (dlm #) NV — dim(¢) N V(l_l)) wz> (43)
=1 i=1

Here, (¢) denotes the subspace of V,, generated by ¢. The number 1 (P, £) can be obtained as the sum of (42)
and (43). We write it as the reference for the later argument:

N ! N
pA(P.L) = —Pg=(m)- 3 (rank €@ — rank £6-1) Zejz(rankwjmv“—l)—rankwjrwv(“ﬂ) “w
i=1 j=1 =1
1 , , N ~ .
+d(m) (—— Z(rank gD — ranké'(l_l)) Sw; + Z(d1m<¢> NY® — dim(p) N V(Z_l)) : wi> . (44)
r
i=1 1=1

The right hand side of (44) is linear with respect to (wi,...,wy). Therefore, ux(P, L) > 0 holds for any A
k

satisfying (41), if and only if puys (P, £) > 0 for any k =1,...,N —1, where fr = (k—N,...,k— N, k... k).
Due to the calculation of Maruyama and Yokogawa, we have the following:

l
pg (P, L) = H(m) - (P;j* (m) - rank EX) — 3 "¢ - dim Wi N VH) — oy - dim v<’€>.> (45)
i=1
By a direct calculation, we have the following:
rank &%) ~
s £2) = H(m) () - ("5 (v, 3] ) (46)

Hence pf, (P, £) depends only on V() Therefore, we obtain the function F(p,ry on the sets of the non-trivial
subspaces {0 # W C V'}, and P is semistable with respect to £ if and only if Fp »)(W) > 0 for any subspace
W. Since F(p ) (W) is the left hand side of (40) multiplied with the positive number H(m), we are done. |
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4.1.3 A lemma
Following Huybrecht-Lehn [28], we show the following lemma.
Lemma 4.8 Let y be an element of Type. There exists an integer Ny with the following property:

o Let (Ey,¢) be a d-semistable parabolic L-Bradlow pair of type y such that ¢ # 0. Then the following
inequality holds for any integer m > N4 and for any subsheaf FF C E:
WO (F,(m)) + e(6, F) - 6(m)
rank(F')

< Plp, 4)(m)- (47

o If the equality holds in (47), (Fy, @) is d-semistable with P(‘sF*7¢,) = P(‘s,E*7¢),

o If (E., ¢) is d-stable, the strict inequality holds in (47).

Proof We have the inequality u(F) < pd(F,) < p’(E,) for any subsheaf F C E, and hence pipax(F) <
1(Ey) 4 0top = Coy. On the other hand, we have the inequality pmin (F') < p(F') by definition. Hence we obtain
the following inequality by using Proposition 3.36 ([28]):

hO(F(m)) 1 1
rank(F) = g?=1d! <(1 ~ rank(F)

1
rank(F")

)[Co+mg+c}i+ [,u(F)+mg+c]i>.

We can take a sufficiently negative number C' with the following property:

e For any positive integer r’ such that 7 < rank(E) and for any sufficiently large ¢t > 0, the following
inequalities hold:
1
g4—1d!

1 1 o
((1—F)(Co—l—tg—&—c)d—FF(C—ktg—kc)d)+ 2 < e (1), (48)
Note that the coefficient of ¢ of the both sides are same by the construction, and thus we can take such C. Let
N5 be a large number such that —C' 4+ mg + ¢ > 0 for any m > Ns.

Let S be the family of the sheaves F' with the following property:

e There exists a d-semistable parabolic reduced L-Bradlow pairs (E., ¢) of type y with weight a.,. such that
F' is a saturated subsheaf of E.

We divide S into two families by the following conditions: (i) u(F) < C or (ii) pu(F) > C. If F is contained
in the family (i), then the desired inequality holds for any m > N5 because of our choices of C' and N5. On the
other hand, the family (ii) is bounded (Proposition 3.34). Thus we can take a large number Ng such that the
family (ii) satisfies the condition (O,,) for any m > Ng. Then the desired inequalities hold for any m > N,
because of the d-semistability of (Ey, ¢). Thus we have only to put Ny := max{Ns, Ng}.

4.1.4 Proof of the claim 1 in Proposition 4.2
Let Ni(y, L, 0) be an integer larger than Ny in Lemma 4.8 and Ny(y,L,d) in Proposition 3.44. Let

(g, E(m), F., [5]) be a point of Q% (m,y,[L],a.,8). The reduced L-section [¢] of E is induced by [¢] and
t. By definition, H%(q) gives the isomorphism V,, ~ H° (X,E(m)). Let W be a subspace of V,,, which

generates the subsheaf Ey of E(m) via q. Due to Lemma 4.8, we have the following inequality:

RO (Ew,) + e(é‘W(—m)7 (;5) -6(m)
rank(Ey )

We have the equalities €([¢], W) = €([¢],Ew) and the inequalities dim(W) < h%(Ew) and dim(W N W;) <
hO(F;(Ew)). Thus we obtain the following inequality:

ap dim(W) + Y e dim(Wi N W) < ag - h%(Ew) + Y _ € - hO(Fi(Ew)) = h°(Ew). (50)

< Py (m). (49)

By substituting (50) to (49), we obtain the inequality (40). Hence ¥,,(q, E(m), F, [¢]) gives the point contained
in Ass (Pg=2(m), €x,6(m)). |
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Remark 4.9 We obtain Proposition 4.3 by using the same argument and the second claims in Lemma 4.7 and
Lemma 4.8. |

4.1.5 Proof of the claim 2 of Proposition 4.2

Take a discrete valuation ring R over k. We denote the quotient field by K. Assume that we have the following
diagram:
Spec(K) AN Q% (m,y, L], ax,0)

| 1 o

)
Spec(R) —%— A3 (Pg+°(m), ., 6(m))

We have only to show the existence of a lift Spec(R) — Q*®**(m,y, [L], o, d). Let Xx and X denote X x Spec K
and X x Spec R respectively.

The morphism f corresponds to the tuple (g, Ex«(m), [¢x]) of the quotient parabolic sheaf (4, Ex«(m))
and the quotient reduced L-section [¢x] defined over X . The tuple (g, Ex.(m)) satisfies the (TFV)-condition.
The L-section [¢x] of Ex is induced by [(;K] and ¢, and the parabolic L-Bradlow pair (Fk , ¢x ) with weight
Qv 18 -semistable.

As in [61] pp. 502-503, Ex.(m) can be extended to the parabolic torsion-free sheaf FEr.(m) over Xpg.
The morphism gx can be extended to the morphism gr : V;,, ® Ox,, — Epr(m) such that the restriction of
qr to the closed fiber is generically surjective. Since P,, is proper, we can extend [(;K] to [(753] over R. We
put Wg,; :== H°(X ® K, F;11(E(m))) (i = 1,...,1) which give the subspaces of V;,, ® K. Since [[; Gp,,; are
proper, we obtain the subbundle W ; of V,,, ® R over Spec R. We put Wgr, = (Wg;|i=1,...,1). The family
(ar, Er+ Wr, [qZR]) induces the morphism Spec(R) — A, (y, [L]) as in (39). By separatedness of A, (y, [L]),
it coincides with g in the diagram (51).

Let (qo, Eov, Wo, [560]) denote the specialization of (qR, Ery, Whps, [&FR]) to the closed point of Spec R. We
also have the induced L-section ¢g of Ey. The tuple (qo, Eos, ¢o, Wox, [50]) is the Yokogawa datum such that
\I/(qo, Eo«, $0, Wo s, [560]) is contained in A%$ (P;*7‘s(m), €x, 5(m)) Due to Lemma 4.7, (qo, Eo., ¢o, Wos, [(Eo]) is
contained in f@f((m,O,y,L,&). Recall m > Ni(y, L, a.,0) > No(y, L,0), where Ny(y, L,d) is as in Propo-
sition 3.44. Hence, we know that go is surjective, that Ey .(m) satisfies the TFV-condition, and that the
parabolic L-Bradlow pair (Ey «, ¢o) is d-semistable. Hence (qR, ER ., Whgs, [¢R]) gives a map fg : Spec(R) —
Q*° (m, Y, [L], a, 5), whose restriction to Spec(K) is f. It is clear that fr gives the lift of g. Hence the claim 2
of Proposition 4.2 is proved. |

4.1.6 Complement
We give a consequence of the proof. We put V :=V,,,, Q := Q**(m, y, [L], a., d). We also put as follows:
L= £y7L(P5’O‘* (m), €x,0(m))

Lemma 4.10 Let z = (q, E, Fy,[¢]) be a point of Q. Let V.= V' & V" be a decomposition, and let \ be
the one-parameter subgroup of SL(V) given by ¢t~ ank V" idys @tk V' Lidys . Let E'(m) denote the subsheaf
generated by V'. We have the induced parabolic structure and the L-Bradlow pair ¢' of E'. Then (E.,¢') is
0-semistable with P(lSE;,dﬂ) = P?‘j‘*"s, if and only if ux(z, L) =0 hold.

Proof Assume py(z,£) = 0. We put W := H°(X, E’'(m)). Let W; denote the kernel of H°(X, E(m)) —
HO(X,Cok;4+1(m)). From the calculation in the proof of Lemma 4.7, we have the following:

0= ux(z, L) = H(m) - (P;**s(m) rank E' — e(E',¢) - 5(m) — 3 ¢ - dim(W; N W) — a - dim(W)) . (52)
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Let Ew denote the subsheaf of E(m) generated by W via g. Therefore, we obtain the following inequality from
(52):

ap -dim(W) 4+ > € - dim(W; N W) + e(E’, ¢') - §(m) < RO (Ew «) + €(Ew, B) - 6(m)
rank £’ - rank Eyy
< M(EL(m)) + e(E', ) - 6(m)
- rank £’

(o) _

< Pe3(m) (53)

Here, the first inequality is obtained in (50), the second inequality follows from £y C E’(m), and the third
inequality follows from Lemma 4.8. We can conclude that the equality holds in (53). Then (E., ¢') is §-semistable
due to the second claim of Lemma 4.8.

Assume (E,, ¢') is 6-semistable. Note that the condition O,, holds for (E?, ¢'), because it holds for (E’, ¢')®
((E/E")+,¢"), where ¢ denotes the induced L-section on the quotient E/E’. Hence we have h(E.) =
ap - dim V' + > ¢ - dimW; N V', Then px(z,L£) = 0 follows from the calculation of uy(z,£) in the proof of
Lemma 4.7. See (45) and (46). We remark A = f;, and V/ = V(¥ in this case. |

Corollary 4.11 Let z = (q, E, Fy,[#]) be a point of Q. Let X\ be a one parameter subgroup of SL(V). Let
V =@V, be the weight decomposition of A, i.e., X preserves the decomposition, and the weight on V; is i. Let
EW be the subsheaf of E(m) generated by V; (j < i) via q. We have the induced L-section ¢; and the parabolic
structure of £ (—m). Then all (E(i)(—m)*,(bi) are §-semistable with P(ég(i)(,m)*7¢,i) = P(‘sE*’@, if and only if
ux(z, L) = 0 holds.

Proof We put U; = ,; V) and U] := €D, ; Vi. Let A; be the one-parameter subgroup of SL(V) given by
¢~ rank U7’ “idy; @ grank U; -idyy . Tt is easy to see that A can be expressed as [TAY with a; € Qso. The condition
ux(z, L) = 0 implies py,(z, L) = 0. Therefore, the claim immediately follows from Lemma 4.10. |

4.2 Perturbation of /-Semistability

4.2.1 Preliminary

We continue to use the notation in the subsubsection 4.1.1. We put V := V,,, Q := Q**(m,y, [L], o, ) and
L= Ey,L(P;j""* (m), €x,0(m)). For simplicity, we assume that «; and the coefficients of ¢ are rational.

Take a sufficiently large number k such that £®* is a line bundle on A. For a rational number +, we put
L= L%k @ Op, (7). Let A%$(L,) (vesp. A%(L,)) denote the set of the semistable (resp. stable) points of A
with respect to L.

Let Flag(V, N) denote the full flag variety:

{ﬁ:(chlcfgc---ch:V)}dimfi/fi,lzl}. (54)
Let Gi(V') denote the Grassmann variety of I-dimensional subspaces of V. We have the natural morphism

p1 : Flag(V,N) — Gi(V). Let Og,(v)(1) denote the canonical polarization of G;(V). For a tuple of positive
rational numbers n, = (n1,na,...,ny), we put as follows:

N
OFlag (Tl*) = ® p:OG1(V) (le)
=1

We put Q := Q x Flag(V, N) and A= Ax Flag(V, N). We have the induced map VU,, : Q — A. For a
tuple n, and a rational number ~, let us consider the following Q-line bundle:

Z(W@”*) = EV & OFlag(n*) = E®k & OlP’m (7) & OFlag(n*)'

Let A%*(v,n,) denote the set of the semistable points with respect to £(7,7.). We will be interested in the
open subset W, 1 (A% (y,n.)).
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4.2.2 §,-semistability and J_-semistability

Let 0, and 6_ denote elements of PP with §_ < § < §, such that §, and 6_ are sufficiently close to §. The
following lemma is clear from Lemma 3.55.

Lemma 4.12 When 04 (resp. 0_) is sufficiently close to §, a parabolic L-Bradlow pair (E., ¢) is d4-semistable
(0_-semistable) if and only if the following condition holds:

o Take any partial Jordan-Holder filtration of (E., @) with respect to §-semistability:
(B, ¢W) c (BP, @) .- c (EP, W) = (E., ¢).
Then we have ¢ (0) = 0 for i < k (resp. ¢V #0).
Moreover, any 0-semistable (resp. 0_-semistable) L-Bradlow pair is also 0 -stable (resp. 0_-stable). |

We put Q4 = Q**(m,y,[L],ax,6;) and Q_ := Q% (m,y, [L], o, d_). They are independent of choices of
04+ and d_ when §4 and J_ are sufficiently close to § due to the previous lemma. We denote the signature of
by sign(y). The absolute value of v is denoted by |v]|.

Proposition 4.13 Assume that |y| is sufficiently small, and that n; are sufficiently smaller than |vy|. Then,
we have U, ! (.ASS('y,n*)) = Qsign(y) X Flag(V,N). In particular, we have the closed immersion Qggn(y) X
Flag(V,N) — A% (v,n«). Moreover, the image is contained in A%(y,ny).

Proof Let us begin with the following lemma.
Lemma 4.14 Assume that the absolute value of v # 0 is sufficiently small.
e Then, we have W' (A% (L,)) = Qin(y)-

o The induced morphism ¥, : Q
in A%(Ly).

Shen(y) A% (L) is a closed immersion. Moreover, the image is contained

Proof Let us show the first claim. Let z denote a point (g, Fx,¢) € Q. As a preparation, we consider the
following two cases:

(A) There exists a partial Jordan-Holder filtration E. C (F., ¢) with respect to d-semistability.
(B) There exists a partial Jordan-Holder filtration (EY, ¢) C (Ex, ¢) with respect to J-semistability.

In the case (A), we put V' := H°(X,E'(m)), and take a complement V" of V' in V. We consider the
one parameter subgroup A given by ¢~ a0k V" idy, @ kY .idy.. Since we have ux(z, L) = 0, the equality
pa(z,Ly) =7+ pa(z,0p,, (1)) = v rank V' holds.
In the case (B), we put V" := H%(X, E”(m)), and take a complement V' of V" in V. Let us consider the
one parameter subgroup A given by ¢~ V" .idy @2k V" idy.,. As before, we have u(z, L,) = —v - rank V"',
From the above considerations, we easily obtain ¥, 1(A**(L,)) C Q% an(y)"

Let us show the reverse implication. We use the argument in the proof of Lemma 4.7. Let uq,...,ux be
any base of V. Let (w1,...,wx) be an element of Z" such that w; < w;+1 and Zi\;l w; = 0. Let X be the one
parameter subgroup of SL(V') given by A(t) - u; = t“i - u;. We have px (2, L) = k- pa(z, L) + 7 - ux (2, Op,,. (1)).
As seen in the proof of Lemma 4.7, uy(z, £) is linear with respect to (w1, ..., wy). It is also well known that
pia(z,Op,, (1)) is linear with respect to (wy,...,wn). (See Lemma 2.7, for example.) Therefore, we have only
to show i, (2,£,) > 0for any h=1,...,N — 1.

In the case pf, (2, £) > 0, we have k-jup, (2,£) > 1. On the other hand, the absolute value of i, (z, Op,, (1))
is dominated by dim V. Therefore, if «y is sufficiently small, we have p, (z, E,,) > 0.

Let us consider the case iy, (2,£) = 0. Let W denote the subspace of V' generated by u1,...,un. Let Ew
denote the subsheaf of E(m) generated by W and ¢q. We put ¢’ := ¢ if the image of ¢ is contained in &y, and
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¢’ := 0 otherwise. Then (£'(—m), ¢') is -semistable (Lemma 4.10). Due to the considerations (A) and (B), we
obtain py, (2,£,) > 0 in the case (Ex, ¢) is dgign(y)-semistable. Thus the first claim is proved.

In the above argument, we showed px (¥ (2),L,) > 0 for any point z of Qggn(). Thus we have already
obtained W, (Qgign(y)) C A*(Ly). Since the morphism ¥, : Q — A**(Ly) is proper (Proposition 4.2), the
properness of Qgign() — A**(Ly) follows from the first claim. Thus the proof of Lemma 4.14 is finished. |

Let us return to the proof of Proposition 4.13. Let z be any point of @ x Flag(V, N). Let A be the one
parameter subgroup as in the proof of Lemma 4.14. Due to Lemma 2.8, u (z, OFlag(n*)) is linear with respect
to wi,...wy. Hence py(z, L£(v,n.)) is also linear. Therefore, we have only to show g, (z,L(y,n.)) > 0 for
any h =1,..., N — 1. We have the following:

Hfn (Zv‘C’Y) + Znh “Hfn (Z, p;OGj(V)(l))'
J

If we take a large integer &’ such that Ei’f’k/ is a line bundle, then we have iy, (z, E?}’ k/) > 1, because p g, (z, E?}’ k/)
is a positive integer. On the other hand, iy, (2, p}Og,(v)(1)) is dominated by 2dim V2. Therefore, if n; are
sufficiently small, the contribution of Opiag(ns) to py, (2, £(v,ny)) is sufficiently small. Thus we are done. |

4.2.3 (0, /)-semistability

Let ¢ be a positive integer. Let @55(5, £) denote the maximal subset of C~2, which consists of the points
(¢, E.,[¢], F) such that (E.,[¢], F) is (6, ¢)-semistable. (See the subsubsection 3.3.3 for (4, £)-semistability.)

Proposition 4.15 There exist negative rational number v and a tuple of positive rational numbers n., for
which the following holds:

o We have Q*5(8,0) = U} (/TSS('y,n*)).

o The induced morphism éss(é, ) — ./ZSS(’)/,TL*) 15 a closed immersion. The image is contained in

A* (77 n*) :
Before going into the proof of Proposition 4.15, we give a consequence.

Corollary 4.16 The moduli stack M>* (y,[L], v, (6,0)) of the (8, €)-semistable objects is Deligne-Mumford and
proper.

Proof From Lemma 3.33, Proposition 4.15 and Proposition 2.4, the quotient stack Q**(8, £)/ SL(V,,,) is Deligne-
Mumford and proper. Since we have the etale and finite morphisms Q**(8,£)/ SL(Vy) — Q*%(6,£)/ PGL(V,,)
and Mv(@, (L], s, (6,0)) — Q*(,¢)/ PGL(V,y,), we easily obtain the desired properties for MV(Q, [L], i, (6, 0))
by using the valuative criterion. |

Let us start the proof of Proposition 4.15. We put N := dimV,, = Hy(m). When ¢ is larger than N,
(0, ¢)-semistability is same as d_-semistability (Remark 3.32). Hence the claim follows from Proposition 4.13.
Therefore, we will assume £ < N in the following argument.

We take v and n, satisfying the following condition:

Condition 4.17 Let K(y, L, 0) be the number as in Proposition 3.44. Take a small rational number € satisfying

the following:
KO (y7 L7 5)

100 - V100
Take an irrational number a > 0 satisfying the following:

1
(€—Z>-a<e<€-a.
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Take mutually distinct prime numbers py, ..., pe such that p; > 100 - N1 and p; > 100- N0 . p, ;. We also
assume the following:

Z}%<min{‘€-a—e|, le—(—¢7")al}

Take rational numbers q1, - ..,qe such that the following holds:
; 1
G 82 i=1,...,0).
b g 23
We put v := —€ and n; :=q;/p; (i=1,...,0). We remark ny > ng > -+ > ng and the following inequalities:

¢
Y4 imi >0, v+ > ienitng-(ig—1)<0
i=1 1<i<e
i#i0
We also take prime numbers p; (i =€ +1,...,N) satisfying p; > 100- N .p, | (i=0+1,...,N) and the
following:

, ‘Z i-ni—l—nio-(io—l)—e

N . ¢
7
3 1100 N < min ‘Zi-ni—e
i i=1

i=+1 1;21504
Weputnizpfl (i=£L+1,...,N). |
We remark the following elementary fact.
Lemma 4.18 Let py,...,pn be mutually distinct prime numbers. Let q; # 0 be an integer which is coprime to

pi, for each i. Then the sum sz\; qi/pi cannot be an integer.

Proof Assume that Zf\il qi/pi = a is an integer. Then we obtain the relation:

N N
Q1'Hpj+p1' a'HpH-qu-Hpi = 0.
i=2 j=2

i>1 i>j,
i#]

It contradicts with the assumption that ¢; and p; are coprime. |

Let us start the proof of Proposition 4.15. Let z = (g, Es, ¢, F) be a point of Q. We give preliminary
considerations.

(A) If there exists a partial Jordan-Holder filtration E, C (E., ¢) with respect to d-semistability, we put
V' := H(X,E'(m)), and we take a complement V" of V' in V. Let A denote the one parameter subgroup of

SL(V) given by ¢~ rank V"idys @225V idy. Then we have the following:

pa (2, L(y,na)) =k - pa(z, £) +7 - pia (2, 0p(1)) + p1a (2, OFrag (1))
= xank V' + " n; - (= dim(F 0 V) - rank V" 4 dim (F;/F; 0 V') - xank V)

¢ ¢
= <’Y+ an -dim (F; /F; N V/)> -rank V' — an ~dim(F; N V') - rank V"

=1 =1
N
+ Y ni (- dim(F N V') - rank V7 + dim(F;/F; N V') -rank V') . (55)
i=0+1

Due to our choice of € and n., the right hand side is larger than 0, if and only if Fy N V{ = {0}. Moreover, if it
is larger than 0, it is strictly larger than 0 due to Lemma 4.18.
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(B) Let us consider the case where there exists a partial Jordan-Holder filtration (EY,¢) C (E.,$) with
respect to d-semistability. We put V" := H°(X, E”(m)) and take a complement V' of V" in V. Consider the

one parameter subgroup A given by {¢~ rank V" 54, ggrank V' idy~ }. Then we have the following:

N
73y (z, Z(’y, n*)) = —-rank V' + Z n; - (— dim(.ﬁ N V”) -rank V' + dim(]—"i/.’ﬂ N V”) - rank V”)

i=1

¢ ¢
= <—7 — an . dim(.ﬁ N V”)) -rank V' + Z n; - dim(.ﬁ/}"i N V”) -rank V"

i=1 i=1

N
+ 3 (— dim(F; N V") - rank V' + dim (/7 1 V") - rank V”) . (56)
i=0+1

Due to our choice of v and n., it is strictly smaller than 0, if and only if F, C V”. Namely, it is larger than 0
if and only if F; ¢ V. Moreover, if it is larger than 0, it is strictly larger than 0 due to Lemma 4.18.

From the above preliminary consideration, we obtain Ef*l(jss (6,n4)) C Q*5(8,0). Let us show the reverse
implication. We use the standard argument as in the proof of Lemma 4.7. Let z = (q, F«, ¢, F) be a point of
@55(5, ). Let uq,...,un be a base of V, and let (w1, ...,wy) be an element of Z" such that w; < w;;1 and
> w; = 0. Let A be the one-parameter subgroup of SL(V) given by A(f) - u; = t"% - u;. Then pux (2, L£(y,ny)) is
linear with respect to (w1, ..., wx). Hence we have only to show sy, (2, £(7,n.)) > 0 for any h.

First, let us consider the case g, (z,£) > 0. We have puy, (2, L2*) > 1. Since |y| and n; are smaller than
10071 - (dim V) 719, we have puy, (2, Op(7) ® Oplag(ns)) < 1071 Hence we obtain i, (2, £(v,n.)) > 0. Next,
let us consider the case pf, (z, L) = 0. Let & denote the subsheaf of F(m) generated by ui,...,u;. We put
¢' = ¢ if the image of ¢ is contained in &'(—m), and ¢’ := 0 otherwise. Then (£'(—m).,¢') C (E,¢) is
a partial Jordan-Holder filtration as in (A) or (B). Therefore, we have fi, (z, £(7,n.)) > 0 in this case, too.
Hence the first claim of Proposition 4.15 is obtained.

Since we have shown that 1, (2, £(v,n.)) > 0 for any h, we obtain that the image W(Q*5(6,¢)) is contained in
A*(7,n,). Let us show the properness of W : Q**(8, ) — A**(v,n.). We use the argument in the subsubsection
4.1.5. Assume that we have the following diagram:

Spec K AN Q% (5,0)

l |

Spec R —2L— A*(y,n,)

Let X and Xg denote X x Spec K and X x Spec R respectively. We denote the projection A— A by .
Let (qK,EK*, [¢K],.7-'K7*) be the objects on Xk corresponding to f. As in the subsubsection 4.1.5, we
obtain the objects (qr, Er«, ®r, Wr «, [qZR]) on Xg. It induces the morphism f; : Spec R — A, which is same
as mo g. We also obtain the Yokogawa datum (qo, Eo «, ¢o, Wo «, [560])
Since |y| and n; are sufficiently small, the tuple (qo, Eos, ¢, Wo «, [560]) is contained in the Yokogawa family
YOK(No, Ko,y,L,6) for Ng = No(y,L,6) and Ko = Ko(y,L,5). Hence (qo, Eox, [(E]) gives a point of Q =
Q% (m,y, [L], ax, d), due to Proposition 3.44. It implies the image of f; = 7 o g is contained in A4°°(Lp). Then
the desired properness immediately follows from the first claim. |

4.3 Enhanced Master Space
4.3.1 The construction

We use the notation in the subsection 4.2. Take a rational number v, < 0, whose absolute value is sufficiently
small. We will consider the following two situations:

(I) = is a sufficiently small positive rational number, and n; are sufficiently smaller than ~;.
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(II) 71 and n. are as in Condition 4.17.

In the both cases, we assume |v1] is sufficiently smaller than |y2|. We also assume the following:

K3

Here Ko(y, L, §) denotes the constant in Proposition 3.44.
Let k' be a number such that k" - (73 —v2) = 1. We consider the following Q-line bundles on Q:

21 = Z(Vl,m)®k/, Lo := E(V%”*)®k/-

Then we have Ly = £1 ® Op, (—1).

Let m : Q — P, denote the projection. We put B := P(7;Op,,(0) ® 71 Op,, (1)) over Q. We put
O5(1) := Op, (1) ® L1, where Op,, (1) denotes the tautological bundle of P(1Op,, (0) & 77O, (1)) over Q. Let
B** (resp. B*) denote the set of the semistable points (resp. the stable points) with respect to Og(1).

We put By := P(7;Op,,(0)) and By := P(n;Op,,(1)). We naturally regard B; as the closed subscheme of B.
The following lemma is clear from the construction.

Lemma 4.19 The restriction of Og(1) to B; is same as L;. The Q-line bundle Og(1) gives a GL(Viy,)-
equivariant polarization. |

We put TH := gx;@, TH; := B; Xjé and TH* := TH —(TH; UTH;). We remark that TH* is isomorphic
to Q**(m,y, L, ax,d) x Flag(V,N). We also put TH* = Bss X 3 C~2 The following lemma is obvious from
Proposition 4.13, Proposition 4.15 and our choice of the constants.

Lemma 4.20

e In the case (1), we have TH*® x1y TH; = Q3° x Flag(V, V).

e In the case (II), we have TH*® x1g TH; = Q(4,4).
e In the both cases, we have TH*® xpy THy = Q%% x Flag(V, N). |

The quotient stack TH** /SL(V') is called the enhanced master space. In the rest of this subsection, we will
show the following proposition.

Proposition 4.21 The stack TH*® / SL(V) is Deligne-Mumford and proper.

Due to Corollary 2.5, the proposition is obtained from the following three lemmas.

Lemma 4.22 Let us consider the SL(V)-action on TH®*®. The stabilizer of any point z € TH®® is finite and
reduced. As a result, TH*® / SL(V') is Deligne- Mumford.

Lemma 4.23 If m is sufficiently large, then the morphism TH*® — B is proper.

Lemma 4.24 The image of TH*® — B is contained in B°.

4.3.2 Proof of Lemma 4.22

The claim is obvious for any point z € THSSO(THl UTHg). So we discuss the stabilizer of a point z =
(¢, Bx,[¢], Fi,u) € TH** N'TH". Let g € SL(V) be any element such that g-z = z. Let V = @V denote the
generalized eigen decomposition of g. Correspondingly, we have the decomposition:

l

(. Exs [0, F) = (¢, BY, 6], FO) & @D (¢, B, 7).
1=2
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Lemma 4.25 [ < 2.

Proof Assume [ > 2, and we will derive a contradiction. Let us consider the one parameter subgroup A given
by t~ rank V) idy () @ grank V& idy ). It is easy to see that A fixes the point z. Since we have py(z,£) =
pia(z,Op,, (1)) = 0, we have the following equality:

N
pa(z,05(1)) = an . (— rank V3 -rank}"i@) +rank V@ -rank}"i(B)). (58)
=1

Due to our choice of n., the right hand side of (58) can be 0, if and only if the following equality holds for any
%
—rank V® . rank ]:1(2) + rank V® . rank ]:1(3) =0.

However, there exists a number 7 such that rankfi(fj_l = rank]—'i(f) + 1 and rankfi(ggj_l = rank]—'i(f). Thus
pa(z,05(1)) # 0. Let A™! denote the one-parameter subgroup given by A~'(t) = A(t)"'. Then one of
pia(z,05(1)) or py-1(z,05(1)) is negative. Hence z cannot be semistable. |

Lemma 4.26 Let N be a nilpotent endomorphism of (E.,[¢],F). Then N = 0.

Proof Assume N # 0, and we will derive a contradiction. There exists the integer such that N7 # 0 and
NJT = 0. It is easy to obtain N(¢) = 0. We obtain the subsheaves Im N7 and Ker(N7) of E. Then we obtain
the naturally induced parabolic L-Bradlow pairs (Im Ny, ¢') C (Ker N{,¢") C (E., ¢), which gives the partial
Jordan-Holder filtration with respect to d-semistability, due to Lemma 3.28. We take subspaces K; (i = 1,2, 3)
of V satisfying the following condition:

Ky =H°(X,InN7), Ki®Ky=H"(X,KerN’), Ki®Ky®Ks=V.

We remark that N7 induces the isomorphism K3 — K;. From the inclusion K; C V, we have the induced
filtration Fi,. From the isomorphism K3 =~ V/(IC1 @ Kq), the filtration Fi, is induced. We remark N(}';g3 h) -
Fic, n- Let us consider the one-parameter subspace A given by t~lidx, @ tidi,, for which we have uy(z, £) =
pia(z,0p,, (1)) = 0. From N (Fic,n) C Fic, n and n; > ni1, we obtain p (2, Oplag(n.)) < 0. Thus the point z
cannot be semistable. |

From the lemmas 4.25 and 4.26, we obtain the following lemma.

Lemma 4.27 Let (g, E., [¢], F) be a point of Q such that z = (q, E., [¢], F,u) € TH*N'TH*. Then, either one
of the following holds:

1. The automorphism group of (Ex,[¢],F) is Gp,.

2. There exists the unique decomposition (q, Ex, [¢], F) = (q(l),Eﬁl), (W], FO) & (q(2),E£2),.7-'(2)), and the
automorphism group of (q, Ex, [¢],F) is G2,. 1

In the first case, the stabilizer of (g, E., [¢], F, u) with respect to the SL(V)-action is trivial. In the second
case, we put V) := H(X, E®@(m)) C V. Then the intersection G2, N SL(V') consists of the elements p(t) =
t% - idy ) @t - idy 2 satisfying a - rank V) 4+ b - rank V(2 = 0. By considering the action along the direction of
the fiber TH /Q, which is given by p(t)u = t* - u, we obtain that the stabilizer is finite. |

4.3.3 Proof of Lemma 4.23

Let (g, Ex, ¢, Wi, [¢]) be a Yokogawa datum. Recall that we obtain the element ¥(q, E., ¢, Wy, [4]) € A.

Lemma 4.28 Assume that m is largerjhan the constant N(y, L, ) in Proposition 3.44. Let z be a point of
B* such that w(z) = ¥(q, B, [¢], W.,[¢]), where 7 denotes the naturally defined projection B — A. Then,
(E, [¢]) is 0-semistable, q is onto, and the condition Oy, holds for (E.,[¢)]).
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Proof Let W be any subspace of V. Take a complement W’ of W in V. Consider the one-parameter subgroup
of SL(V) given by ¢t~k W"idy, @22k W idy,. We have the following:

pa (2, 05(1)) = kK pa (2, L) kY nj-pa(z, Og, vy (1)) +K ma’X{’Yl'ﬂ)\(zvoﬁnm(l))a 72'%(27(9%(1))}- (59)
The first term in the right hand side is as follows:
k-k - H(m)- (Pa*ﬁ(m) rank & — Y dim(W; N W) — oy dim(W) — e(W, [¢]) - 6(m)).

The absolute value of the second term can be dominated by &’ | n; -i-dimV. The absolute value of the
third term can be dominated by k' - |y2| - dim V. Recall dimV = H(m). Since we have assumed that |v;| and
n; are sufficiently small as in (57), we obtain the following inequality:

Pge®(m) - rank Ew — Y _ € - dim(Wi N W) — ay dim(W) — e(W, [¢]) - 6(m) + K > 0. (60)

Here K = Ky(y,L,d) denotes the constant in Proposition 3.44. Namely, (q, E., ¢, Wi, [(75]) is contained in
YOK(m, K,y, L,d). Therefore, the claim of the lemma follows from Proposition 3.44. |

Now, we use the same argument as the last part of the proof of Proposition 4.15. Assume that we have a
diagram:

Spec K SE AN < B

| |

SpecR —2— B — . A
Then we can show the composite 7 o ¢g is contained in A**(Ly), by using Lemma 4.28. Then the desired
properness follows from the definition of TH**. |
4.3.4 Proof of Lemma 4.24, Step 1

Let us show that the image of TH®® is contained in B, Let z = (g, Ex,[¢], F,u) be a point of TH*. We have
only to consider the case u # 0.

Let uy,...,ux be abase of V, and let (w1, ..., wy) be an element of Z" such that w; < w;;; and Y w; = 0.
Let A be the one-parameter subgroup of SL(V) given by A(t) - u; = t*i - u;. We will not distinguish the elements
w = (wi,...,wy) and A. We have the following:

pa(2,05(1)) = k- K - pa(2, L) + & pa (2, Otag (1)) + {g%}g{% (2 Op,, (1) }
J
—_—

Recall that we have the expression A = ) a; - f; for a; > 0, where f; = (j —N,...,7—N,j... ,j).
Lemma 4.29 If ux(z,L£) =0, then py, (2, L£) =0 for any h such that aj, # 0.
Proof Since (E.,[¢]) is d-semistable, the claim immediately follows. |

We put S; := {j‘,ufj(z,/l) =0} and Sy := {j|ufj(z,£) > 0}.
Lemma 4.30 For any element 0 # p = ZjES2 a; - fj, we have the following:

k- pip(z, L) 4 pp(2, Oplag(ns)) + E%nz{% TR ER Opm(l))} > 0.

Proof We put Fi(p) ==k - puy(2, L) + 1p(2, Ortag(ns)) +7i - pip(2, Op,, (1)) for i = 1,2. We have only to show
F;(p) > 0. Since Fj are linear with respect to p, we have only to show F;(f;) > 0 for any j € S3. We remark

kg (z,£) > 1. The number py, (2, Oplag(n«)) is dominated by dim(V') and n; (i = 1,...,N). The number
i - s, (2, Op,, (1)) is dominated by dim(V') and 7;. Since n; and +; are sufficiently small, the claim is clear. |
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Lemma 4.31 To show puy (z, (’)g(l)) > 0 for any A, we have only to show the following inequality for 0 # p =
Zjesl aj - fj:
k- pp(2, £) + p1p (2, Optag (1)) + im:?)g{% “hp(2, OPm(l))} > 0. (61)

Proof We have the decomposition A = A() + X2, where A = Y. ¢ a; - f;. Assume (61) holds for AV
Then we obtain the following:

1
gﬂp(zaog(l)) = (’f‘ﬂpm (2, L)+ o0 (2, OFlag(”*))) +jH:1§1D§{A/j'Mp(l)(’z?Ole(l))—"_’Yj'Mp(2) (2, Op,, (1))}
i=1,2 ’
>k ) (2, L) + ppo) (2, OFlag(n«)) + jrililnz{%' iy (2,08, (1))}
+ k- Hp() (Z, ﬁ) + Hp2) (Z, OFlag(n*)) + jnzléll);{’yj e (Z, Opm(l))} >0. (62)
Thus we are done. 1

4.3.5 Proof of Lemma 4.24, Step 2
To show (61), we give some preliminary consideration.

(A) If there exists a partial Jordan-Holder filtration E! C (E., ) with respect to d-semistability, take a
decomposition V = V' @ V" such that V' = H°(X,E'(m)) and V = V' @ V”. Consider the one parameter

subgroup A given by ¢~ "% V" idy, @ ¢k V" idy. Then we have iy (2, £) = 0, ux(z,Op,, (1)) = rank V' > 0,
and the following equality:

F.
pr (2, Ortag(n)) Zn] (— rank V" - dim F; NV’ + rank V' - dim 7 ﬁ]V’)'

From the semistability of z, we have the following:

_7.'.
1 - tank V' + Z n, - (_ rank V" - dim(F; N V') + rank V' - dim 7 mJV/) > 0. (63)

We remark that the strict inequality holds in (63). In the case (I), it is obvious. In the case (II), it follows from
our choice of n, and Lemma 4.18. Hence ux(z,0g(1)) > 0 in this case.

(B) If there exists a partial Jordan-Holder filtration (EY, ¢") C (E., ¢) with respect to §-semistability such
that ¢ # 0, let us take a decomposition V' = V' & V" such that V" = H°(X,E”(m)). Consider the one-

parameter subgroup A given by ¢t~ "%V idy., @ 72k V" idy,,. We have (2, £) = 0, px(z, Op, (1)) = — rank V’
and the following;:

LA (2, OFlag(n+)) an <— rank V' - rank(F; N V") + rank V" - rankf = V”) )

From the semistability of z, we obtain the following:

>0 (64)

-2 - dlm V/ + Z Tl,j . (— rankV rank(f M V”) =+ rank V” rank W) =

In the both cases of (I) and (II), the strict inequality holds in (64). Hence we have ux(z,0z(1)) > 0 in this
case.

(C) Let us consider the case that there exists a partial Jordan-Holder filtration E, C (EY, ¢) C (Ex, ¢) with
respect to J-semistability. We take a decomposition V = V' @ V" @ V" such that V' = H°(X, E'(m)) and
V'@ V" = H(X,E"(m)). Consider the one-parameter subgroup A given by ¢~k V™" . idy, @k V" . idy..,.
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Then we have pux(z, £) = pa(z,0p,, (1)) = 0. Hence, we obtain the following inequality from the semistability
of the point z:

Z n; - (_ rank V" - rank(F; N V') 4+ rank V' - rank <%)> > 0. (65)

Due to our choice of n. and Lemma 4.18, the strict inequality holds in (65). Therefore, we have ux(z, Og(1)) > 0
in this case.

4.3.6 Proof of Lemma 4.24, Step 3

For p = ijesl a; - f;, let V.= @ V; be the weight decomposition. We have the number iy such that ¢ €
Gio — Gip—1- We put r; = dim V;.

We use the notation in the subsubsection 2.6.1. We regard p as an element of U = @, Q- ;. Then we
have the expression p = > aj - v; such that a; <aj <--- <aj and > r; - a; = 0.

Assume a; > 0. Then we have the expression, due to Lemma 2.47:

io—1

p= > blini)alini)+ Y] y()

(i1,42)€S(40)

Here the coefficients b(i1,2) and ¢; are non-negative, and one of b(i1,42) or ¢; is positive. We remark that we
have the following linearity:

io—1
gfffg{% “Hp(2,0p,,, (1)} =71 - Zl ¢j  Hy(j) (2, O, (1))
J:
Hence the following holds:
io—1
1y (2, 05(1)) = Zb(il,iz) Ma(inia) (2, 05(1)) + Z ¢j - by() (2, 05(1)).
j=1

We have the positivity (i, ,) (2, O5(1)) > 0 and g, (2, O5(1)) > 0 from (C) and (A), respectively. Therefore,
we obtain the positivity p,(z,0z(1)) > 0.
By similar arguments, we can show the desired positivity in the cases ago =0 and ago < 0. Thus the image

of TH* is contained in B°. Therefore, we obtain Lemma 4.24 and hence Proposition 4.21. |

4.4 Fixed Point Set of the Torus Action on Enhanced Master Space
4.4.1 Preliminary

We continue to use the notation in the subsection 4.3. We have the G,,-action p on B = P(Op,,(0) ® Op,, (1))
given by p(t) - [u1 : ug] = [t - u1 : ug]. It induces the G,,-action on TH, which is also denoted by p. Since it
commutes with the SL(V)-action, we obtain the induced action p on TH*® / SL(V).

We would like to discuss the fixed point set of the enhanced master space. The stack theoretic fixed point set
(see [24]) is given in our case, as follows: We have the SL(V') x G,-equivariant closed immersion TH* — B*.
Therefore, we have an open neighbourhood U of TH** /SL(V) in B*/SL(V), which is G,,-invariant, Deligne-
Mumford and smooth. The embedding TH** / SL(V) — U is G,-equivariant. The fixed point set %™ of U
is defined to be the 0-set of the vector field induced by the G,,-action. Then, the stack theoretic fixed point set
MEm of M is defined to be the intersection M NUE™.

However, we restrict ourselves to the set theoretic fixed point set in this subsection. In other words, we will
consider only the closed points of the fixed point set, although it is not difficult to prove the result for the stack
theoretic fixed point set. We will later discuss the stack theoretic fixed point set of the enhanced master space
in the oriented case.
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Let 7 be the projection TH** — TH®* /SL(V). We will use the notation (g, E;, [¢], F,u) to denote a

point of TH, where (g, E., [¢], F) denotes a point of @, and u denotes a point of the fiber of TH — @ over
(¢; Ex, [¢], F).

Lemma 4.32 Let z = (g, E., [¢], F,u) be a point of TH**. The point (z) is contained in the fized point set if
and only if one of the following holds:

1. z € TH; UTH,.
2. We have the unique decomposition (q, Ex, [¢], F) = (¢!, Eﬁl), D], FD) @ (¢, E£2),.7:(2)).
Proof We have only to consider the case z € TH* N TH*. Assume that the condition 2 holds. We put V@ :=

HO(X, E®(m)), and we consider the one parameter subgroup A of SL(V') given by ¢~ rank V' idy ) @trank V.

idy 2. It fixes (q, E,, [(b],}'), and it acts non-trivially along the direction of the fiber TH — C~2, as A(t)u =

¢=rank V- Therefore, the action 7 fixes [2].

On the other hand, if 7(2) is a fixed point with respect to p, then we obtain the one-parameter subgroup of
SL(V') which fixes (g, Ex, [¢], F) due to Lemma 4.27. Hence, it has the decomposition. The uniqueness follows
from Lemma 4.22. |

Let z = (q, E.,[¢],F) be a point of TH** N TH* such that 7(z) € M%". We have the decomposition

as in Lemma 4.32. Then, we obtain the types y; = type(Eﬁl)) and yy, = type(EiQ)). We also obtain the
decomposition Iy U, =N ={1,...,N}:

L= {ie N|FP/FD, # 0}
The datum (y;,ys, I1, I2) is called the decomposition type of z. Thus, we prepare the following definition.
Definition 4.33 A decomposition type is defined to be a datum T := (yq,Ys, 11, I2) as follows:
e y =1y, +yy in Type such that Pyo‘l*“; = P;*v‘s.
o N =1, U, such that |I;| = Hy,(m).
The set of the decomposition types is denoted by Dec(m,y, s, d). |

We remark that the condition O,,-holds for M*®%(y,, L, as,d) and M?**(y,, o) for a decomposition type
(yla y2; Ila 12)7 lf Mss(yla La Qe 5) X Mss(y27 O[*) 7é @

4.4.2 Statement

Let J:= (y,,Ys, I, I2) be a decomposition type. Take a decomposition V = V1) ¢ V(2 such that dim V® =
Hy, (m). We put PO := P(V(®V). Then, we put Q) := Q**(m,yy, [L], as,d) and QP := Q**(m, y,, o). We

put as follows:

Flag") = Flag(V), 1;) := { 71"

filtration indexed by N, dim Grjf(i) =1(el),or =0(j¢& Ii)}.

Clearly, Flag(i) are isomorphic to the full flag varieties of V(). We put Q(l) = QW x Flag(l), @(2) =
Q® x Flag(z), and @Spm(j) = Q(l) X @(2). Then, we have the naturally defined morphism C?spm () — @
We put THsplit (3) =TH XQQSPM (3), TH:plit (3) = TH* XéQsplit (3) and THi,Split (j) = THi XQQSPM (j) We
have the closed immersion ¢ : THgp(3) — TH.

Let z = ((q1, EM. [0, FV), (g2, EiQ),f(2)), u) be a point of THgpli¢(J). Let min(Z>) denote the minimum
of Ir. We will prove the following lemma, later (the subsubsection 4.4.5).

Lemma 4.34 In the case (II) (the subsubsection 4.3.1), if 1(z) is contained in TH*®, then we have min(Iy) > £.
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1 = 0, and dim F, (2) '— 1. We also remark that the pair

min

We put FA = @ We remark F2)

min ° min(l2)" min —
(Ei2 ,fr(fm) can be regarded as a reduced Ox(—m)-Bradlow pair on X. We will also prove the following

proposition.

Proposition 4.35 1(z) is contained in TH®®, if and only if the following conditions hold:
e 2 € TH;

split

o (E. E® .7-'(2) ) is an e-semistable reduced [O(—m)]-Bradlow pair for any sufficiently small € > 0.

min

. (E!El)7 (0], FV) is (6, min(I) — 1)-semistable.

4.4.3 Step 1
Let G denote the subgroup of GL(V;) x GL(V3) determined by det(g) = 1, i.e., G = {(g91,92) € GL(V4) x
GL(V2) | det(g1) - det(g2) = 1}.
Lemma 4.36 The following two conditions are equivalent:

e ux(u(2),05(1)) = 0 for any one parameter subgroup A of SL(V).

e ux(u(2),05(1)) =0 for any one parameter subgroup X of G1.
Proof The first condition clearly implies the second condition. Let us show the reverse implication. Assume
the second condition holds. Let A : G,,, — SL(V') be a one-parameter subgroup. We have the decomposition

A =AM 4+ X2 such that pya) (2, £) = 0 and pye (2, £) > 0. By the same argument as the proof of Lemma
4.31, we have only to show the following inequalities:

k- Ly (1) (Z E) + max{vj JINE, (Z O[P } + o (Z OFlag(Tl*)) > 0. (66)

k- pae (2, L) +jH:111112{7j tae (2, 0p(1))} + pae (2, Oplag(n)) > 0. (67)

Since n; and ~; are sufficiently small, we can show that the inequality (67) always holds by the same argument
as the proof of Lemma 4.30. So we may and will assume py(z, L) = 0.

Let V. = @, V; denote the weight decomposition of \. We put G; = @Kj V;. We have the number i
determined by ¢ € G;, — Gi,—1. We have only to show the following:

F;iNng;
max{fyj zo}+Zn]Zd1m}_ Yo > 0.

We put Ho = V) and H; = V, which gives the filtration of V. We have the natural identification
GrH(V) ~ V. Since F is compatible with the decomposition V = V1) @ V(? | the induced filtration by F is
same as F. Let G’ denote the induced filtration by G on Gr™(V) ~ V:

Gi

=gnvWagnv® gnvl=gnv® gGnvA®=__T__
G, =¢6 &G, g g g =G v

Because of ¢ € V(1) we have ¢ € Gio — Gio1-
Let us take any decomposition V(“) = @/CS” (a = 1,2) such that G} N v — Di<; /c§“>. We put
K = ICEU ® ICEQ). Then we obtain the one parameter subgroup A of G; whose weight decomposition is € K;.

Lemma 4.37 We have pys (2,13) =0.
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Proof Let &;(m) denote the subsheaf of E(m) generated by F;. Each &; has the induced parabolic structure and
the reduced L-section [¢;]. Then the filtration - - - C (&4, [¢s]) C (Eix1+, [Pix1]) C -+ is a partial Jordan-Holder
filtration due to Corollary 4.11.
Let us consider the filtration H of E given by Ho = E™) and H; = E. On Gr(&; ) we have the induced
parabolic structure and the reduced L-section [Gr’(¢;)]. Then, the tuple (Gr’*(&;)., Gr’*(¢;)) is 6-semistable.
We have the canonical isomorphism Gr’*(E) ~ E. We regard Gr™(&;)(m) as the subsheaf of F(m). Then,
G/ generates Gr’*(&;)(m). Then, we obtain juy/ (2, £) = 0 from Corollary 4.11 |

Let us return to the proof of Lemma 4.36. Since we have assumed the second condition in the lemma, we
have (2, O5(1)) < 0. Then, we obtain the following inequality from Lemma 4.37:

. . Fing
. ] ~J Tt >,
sl + S S 2L
Hence we have only to show the following inequality:

mg Fing;
szlm J sz -:Fmgzl

It can be shown by the geometric argument on the SL(V)-action on the Grassmann variety of N — H;(m)-
dimensional quotients of V. But, we give a more elementary proof. We put M := max{i | V() # 0}, and we put
H := F;. Then we have the following:

HnNG; HnNG; - . .
7-dim ———— 7-dim ——— i-dim(H NG;) — 1+ 1)dim H NG;
Z HOGia Z H0Gia i;\:/[ ( : i<%;l( )
=dimH-M—- Y dimHNG. (68)
i<M—1

Hence we have only to show dim H N G; < dim H N G, for each i. But we have the equality H N G; N v =
HnNg:n V1) and the following inclusion:

HNG;

A / (2)
Hngnym CHNGNVE.

Hence, we obtain the desired inequality, and we are done. |

4.4.4 Step 2

We give some preliminary consideration.

(O1) Assume that there exists a partial Jordan-Holder filtration Eﬁ) - Eé ). We take a decomposition
v® =v? &V such that V,* = HO (X, E®(m )), and we consider the one-parameter subgroup A given by
¢~ rank vy idv<2> @ trank v idy (2. In the case, we have the following:

1
S (2) 2 2 (2) 5
2) 5. 2 2 2) . j
pa(z,051) = > n;- (— rank V) - dim 73~ N ;) + rank V;~ - dim W) (69)
j=min(I2) J 1
Since nuyin(r,) is sufficiently larger than n; (j > min(/2)), (69) is larger than 0, if and only if .7-'r(nm(1 ) (2) = {0}.
We also remark that (69) cannot be 0.

In particular, we obtain the following:

Lemma 4.38 If (z) is contained in B, then the reduced O(—m)-Bradlow pair (Eiz),}'min) is e-stable for any
sufficiently small number € > 0. |
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4.4.5 Step 3

We give some preliminary consideration.

(O2) Let us consider the one-parameter subgroup A of G; given by grank V@ idya) @t~ rank V(" idy 2). Let
m; denote the projection of THgpiy onto THgpie N TH;. Let us consider points z; := m;(z) which are fixed with
respect to A. We have px(z;,£) = 0 for i = 1,2. We have py(22,0p,, (7)) = 72 - rank V(). Since n; are
sufficiently smaller than |2, we always have the inequality px (22, Ogspm(l)) < 0.

Let us consider the condition (21, Og(1)) > 0. It is equivalent to the following inequality:

pia (21, Op,, (1)) + pia (21, OFlag (ns)) > 0. (70)

In the case (I), we have v; > 0, and n; are sufficiently smaller than ~;. Hence, the inequality (70) always
holds. More strongly, the strict inequality holds.
In the case (IT), the inequality (70) can be rewritten as follows:

F.
. @ 4 § (1) (2) _ g ¢ . (1)
1 - rank V n; - (dlm F:nV) - rankV dim < A (1)) rank V >

¢
= (’71 + Z(dimﬂ NV ) 'm> -rank V() — Zdlm <%) -rank V)

i=1 =1

+ Z n; - <d1rn FinvVW)y . rank v —dim(

) -rankV(1)> >0 (71)
i>0+1

Fnv®

The inequality (71) is equivalent to the condition F, C V) due to our choice of v; and n,. Moreover, if the
inequality holds, the strict inequality holds due to our choice of n..

Now, we give a proof of Lemma 4.34. If 1(z) is contained in B, we have 11y (2,05(1)) > 0 for X as above.

Therefore, we obtain the inequality g (zl,(’)g(l)) > 0, and hence F; ¢ V. It means min(l3) > ¢. Thus
Lemma 4.34 is proved.

4.4.6 Step 4

We put k := min(l2) — 1 in the following argument. We give some more preliminary considerations.
(03) Assume there exists a partial Jordan-Holder filtration E; (1) C(E EM. ¢) with respect to J-semistability.
We take a decomposition V) = V) & V! such that V) = HO( ,E@(m)), and we consider the one-

parameter subgroup A given by ¢~ rankV® iy, @ prank Vi idy). We have py(z,£) = pr(z,0p,, (1)) = 0

for such one parameter subgroups. Therefore, the condition puy (z, (’)5(1)) > 0 is equivalent to the following
inequality:

0 < 1r (2, Oplag(ns)) Zm (—rankv<2> -dim(FY V) + rank ;Y -dimﬁ@))

k—1
== ni-rank V@ - dim(FY V) 4 - (— rank V® - dim(FY 0 V) + rank V(Y - dim f,f))

=1

+ Z N4 - (— rank V(2 . dim(}'i(l) N Vl(l)) + rank Vl(l) . dim]—'i@)) . (72)

Recall that n,; are sufficiently smaller than n;_;. Hence the inequality (72) holds, if and only if F ,gi)l ﬂVl(l) = {0}.

(O4) Assume that there exists a partial Jordan-Hélder filtration (Eél*), ) C (Eil),qb) with respect to J-
semistability. We take a decomposition V1 = V" @ V") such that V" = H(X, Eél)(m)), and we

. . o
take the one-parameter subgroup A given by t”’mkv(2) 1dV1<1> @ ¢~ rank v -idy 2. Then, we have py(z, L) =
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pia(z,Op,, (1)) = 0 for such one-parameter subgroups. Therefore, the condition (2, Og(1)) > 0 is equivalent
to the following conditions:

F
0 S an (rank V(Q) - rank <W> — rank Vl(l) . I“ank]:i@))
i NV,

k—1 (1) 7
= an rank V® rank (‘7:7> + ng <rank V) . rank (*) — rank Vl(l) ~rank.7-",§2)>

1 1 1 1
F 1 2
+ an rank V® . rank ﬁ - ranle( ) -rank]—'i( )
i>k Fi NV,
(73)
Since n; is sufficiently smaller than n;_1, the inequality (73) holds if and only if ]:kl)l ¢ V(l)
We obtain the following claim from the above preliminary considerations.

Lemma 4.39 If 1(z) is contained in gss, the tuple (E., ¢, .7:(1)) 18 (5, min(I3) — 1) -semistable. |

4.4.7 End of the proof of Proposition 4.35

When ¢(z) is contained in B*, it is easy to see z € TH
satisfied (Lemma 4.38 and Lemma 4.39).

Let z € THgpiie be a point which satisfies the conditions in Proposition 4.35. Let uy,...,uya) be a base of
V(l), and let uya)y,...,un be a base of V. Let (w1,...,wyn) be an element of Z"N such that w; < w41 and
> w; = 0. Let A be the one-parameter subgroup of G, given by A(t) - u; = t¥# - u;. We do not distinguish A and
(w1, ...,wn). We have the following:

(2, 05(1)) =k -k - px(2, £) + K px (2, Orrag(ns)) + K g%ﬁg{% - pa(z, OPm(l))}-

split- We have already seen the other two conditions are

h

We put S; := {h‘ufh(z,ﬁ) = 0} and Sy := {h|ufh(z,ﬁ) > 0}, where f;, = (h— N,...,h—N7h,...7h). Since
n; and v; are sufficiently small, we can show that the following inequality holds for any i € Sy by the same
argument as the proof of Lemma 4.30:

k- 1253 (Zv E) + g, (Z, OFlag(n*)) + Z.ril%%{% “Hf (27 OlP’m(l))} > 0. (74)

By the same argument as the proof of Lemma 4.31, it can be shown that we have only to show the following
inequalities, for any 0 # p = Zjesl aj - f;j with a; > 0:

P(p) i= kgl £) + 1y (2, Orragln.)) + ma{yi -y (2, Op,, (1)} > 0. (75)

Let us show (75). We have the weight decomposition V(®) = @j(a) Vj(-a) of p. We put N := dim V(®). We

put rg-a) = dim V](a). We use the notation in the subsubsection 2.6.2. Then p can be expressed as ) | ay") e
satisfying (27). Let i be the number determined by ¢ € @,., V; — @Kig_l V;. Due to Lemma 2.48, we have
the expression: -

s(2)
p=> ci) - yPG) + D dii) - z1(i) + Y dali )+ A (NPQW - N1 . @), (76)
j=1

1<10 i>10

i<ig

Here ¢(j), d1(7) and dz(i) are non-negative numbers, and A is a rational number. One of ¢(j), di (i), d2(i) or A
is not zero. Due to p(z, Op, (1)) = 0 for & = 3 (§), 21 (i), 22(i), we have the following linearity:

s(2)
p)=> c(G)- Fy® () + D di(i)- F(z1(i)) + > dali) 2(i)) +F(A- (N®QW —N<1>-Q<2>)).
j=1

<10 i>10
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We obtain F(y®(j)) > 0, F(z1(i)) > 0 and F(z2(i)) > 0 from the preliminary considerations (O1), (O3)
and (O4) respectively. We have F(A S (N@QW — NO) . Q(Z))) > 0 in the case A # 0, from the preliminary
consideration (O2). Therefore, we obtain the desired positivity, and the proof of Proposition 4.35 is finished. I

4.5 Enhanced Master Space in the Oriented Case

4.5.1 The construction

We put @ = Q*(y,[L], as,d) and Q = CA) x Flag(V,N). Then, we put TH := TH XQ@ and TH :=
TH* XTHT—ﬁ. We remark that TH  is isomorphic to Q**(m,y, L, ., ) x Flag(V, N). We also put ™ =
TH* xpgTH. We have the natural GL(V)-action on TH . The quotient stack is called the enhanced master
space in the oriented case, and it is denoted by M. It is also called the master space for abbreviation.

Proposition 4.40 M is Deligne-Mumford and proper.

Proof From Proposition 4.21, the stack TH*® / PGL(V) is Deligne-Mumford and proper. We have the naturally
defined morphism M — TH?®® / PGL(V), which is etale and finite. Then, we obtain that M is also Deligne-
Mumford and proper. |

We have the universal quotient objects (q“,é’“,F*7 [¢¥], p“) on @ x X. It induces the oriented reduced
L-Bradlow pair 7% (£%(—m), F\, [¢"], p*) on TH x X, where 7y : TH x X — Q x X denotes the natural
projection. By taking the descent with respect to the GL(V')-action, we obtain the oriented reduced L-Bradlow
pair (Eﬁ, Fj/[\, [qﬁﬂ] ) We also have the induced full flag FM of Dx *EM( ).

/T\he G, action p on TH induces the G,,-action on TH7 which is also denot/e\d by p. It induces the G,,-action
on M, which is denoted by p. Let us see the stack theoretic fixed point set of M in the following subsubsections.

4.5.2 The obvious fixed point sets

We put ﬁfs = TH; xtuTH . We have the substacks M; := ﬁjs/GL(V) (i = 1,2). The stack M, can
be easily described. By construction, My gives the moduli stack M? (Y, [L], o, 0—) of the tuples (E., [¢], p, F),
where (E., [¢], p) is an oriented §_-stable reduced L-Bradlow pairs of type y, and F is a full flag of H*(X, E(m)).
It is easily related with the moduli stack M?*(y, [L], o, ) of d_-semistable oriented reduced L-Bradlow pairs.
We have the universal sheaf E* over M*(g, [L], ., 6_) x X. We obtain the locally free sheaf px »E*(m) on
M (Y, [L], o, 6, ). The associated full flag bundle is isomorphic to M.

Let us see My. In the case (I), M is isomorphic to the moduli stack of the tuples (E., (@], p, F), where
(E.,[¢], p) is a d4-semistable oriented reduced L-Bradlow pair of type y, and F is a full flag of H (X, E(m)).

It is related with the moduli stack M?® ( [L], v, 6+) as in the case of M2 In the case (II), M1 is the moduli
stack of (, £)-semistable tuples (E., [¢], p, F).

We have the restriction of the oriented reduced L-Bradlow pair (EM FM [6M), pM) to M; x X. We also have
the universal objects on M x X by the moduli theoretic meaning of M It is clear that they are isomorphic,
by the construction of BEM . Tt is also easy to observe that the weight of 5 on E‘M ‘X is 0.

4.5.3 Fixed point sets associated to decomposition types

Let us describe the components of the fixed point set contained in M* := M — (J/W\ 1U J/W\Q) We use the notation
in the subsubsection 4.4.2. Let J = (y, Y5, I1, I2) be a decomposition type. In the case (II) (the subsubsection
4.3.1), we assume ¢ C I;. We put k := min(l3) — 1. Let @(1)(5, k) denote the maximal open subset of @(1)
determined by the (d, k)-semistability. (It is open due to Proposition 4.15.) Let @f) denote the maximal
open subset determined by the condition that the reduced O(—m)-Bradlow pair (Eig) Fry1) is e-stable for

any sufficiently small € > 0. We have the naturally defined morphism Q") (4, k) x @Sr — Q. Let Qspht( )
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denote the fiber product of QM) (6, k) x Q( and Q over Q. We also put THSpht( ) = TH o @Spm(j). We
)

have the natural GL(V®) x GL(V(®)-action on THSpht(ﬁ). The quotient stack is denoted by M (3). Due
to Proposition 4.35, we have the naturally defined morphism 75 : MGm () — M.

Lemma 4.41

1. MGm (3) is isomorphic to the moduli stack of the objects ((Eil), ¢, FV), (Eﬁz),f(z)),p) as follows:

° (Eil), p) is 8-semistable parabolic L-Bradlow pair of type y,, and FY) is a full flag of px +E® (m)
such that (Eil), ¢, FV) is (6, k)-semistable.

° E( ) is semistable parabolic sheaf of type y,, and FP is a full flag of px+E®(m) such that
(E@, ]:1(1121)11) is a reduced O(—m)-Bradlow pair.

e p is an orientation of EM & E(2),
2. We have the decomposition cp*:}Ef//f = E{/VT S3) Eé‘/j and go*:}}'ﬁ = F{VT S3) fgﬁ, The pull back of the reduced
L-section [¢™M] of EM naturally gives the L-section oM of EM.
Then, the object ((E{‘//[;, {‘7,.7-'17\4\), (E%,fy),cpépﬁ) gives the universal object over MGn x X in the
moduli theoretic meaning above.

Proof We recall the fibration TH* — Q@ is Op,,(—1)*. Then, the claim is clear by construction. |

We will later give a more convenient description of M= (J) and the restriction of (Eﬁ ,F., [¢],p) to MG (3).

4.5.4 Statement

We put as follows:

Dec(m,y, as, d) (the case (1))

S(m,y) :=
{TJ = (Y1, Y, [1,12) € Dec(m,y, ax,d) |£C Il} (the case (II))

Proposition 4.42 Let MG denote the stack theoretic fized point set of M with respect to the action p. Then
we have the following isomorphism:

]/\ZGmﬁM\lLlM\QU H M\Gm(j).
JeS(m,y)

We will prove the proposition in the following subsubsections.

4.5.5 Ambient stack

We have the Poincaré bundle Poin on Pic(det(y(m))) x X. Then, we obtain the vector bundle T =
px «(Hom(A" Vi, x, Poin)) on Pic(det(y(m))). Recall that the Gieseker space is the projectivization of Zm.

We have the natural projection B— Zm. Thus, we put B = Zn Xz, B*5. We have the naturally defined

=~

GL(V,,)-action on B . The quotient stack is denoted by B’. The G,,-action p on B** induces the action on

B . Since it commutes with the action of GL(V), we obtaln the Gm-action p on B’

We have the naturally defined closed immersion TH — B , which is GL(V;,) X Gpp-equivariant. Therefore,
we obtain the closed G,-equivariant immersion M — B Slnce M is Deligne-Mumford and separated, we can
take an equivariant open neighbourhood B of M in 9B’ which is Deligne-Mumford and separated. We remark
that B is also smooth. Let B denote the fixed point set of B with respect to G, i.e., the 0-set of the vector
field induced by the G,,-action. Recall that M MG is defined to be BEm X3 M.
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4.5.6 Fixed point set of the ambient space
We also put gi = gi ng . The quotient stack gi is denoted by ;. It gives an open subset of PBCEm Tt is
easy to see M; = B, xou M.

We put N = Hy(m) Let N = (Nl,NQ), T = (Tl,’l"g), k* = (kl,j,kg,j |] = 1,...7l), I .= (Il,IQ) be a
datum as follows:

e N, are positive integers such that N; + No = N.

e 1, are positive integers such that rq +ry = r.

o k; ; are positive integers such that ki ; + ko j = Hy(m) — Hy ;(m).
e [;Uly,=N.

Such a tuple Q := (N, r, k., I) is called a decomposition type for A. We remark that a decomposition type
J = (yy,Ysy, [1, I2) induces the decomposition type (J) for A, as follows:

Ni = L], r;=rank(y;), ki;=Hy,(m)— Hy, ;(m).
We put A=A Xz, Zm. For a decomposition type Q = (N,r, k., I) for .,Z, the locally closed regular
subvariety €;(Q) of A is the set of the points (f, K., [¢], F) satisfying the following conditions:
e There exists the unique decomposition V = V1) g V@),

e § € Z,, is contained in H° (X, Hom (/\T1 vV e NPV, L)) for some line bundle L € Pic(det(y(m))),
where V)(;) =V O0x.

K, = (Ki ‘ 1=1,..., l) € [, Qm,i is compatible with the decomposition V' = VO V@ ie. we have
the decomposition K; = KJ(-l) &) Kj@) such that KJ(-i) are quotients of V(). We also assume dim K](i) =k ;.

e [¢] is contained in the projectivization of V1),

We have the decomposition F = F W e F@ compatible with the decomposition V = VgV (2. Moreover,
FOJFD, £ 0if and only if j € I,

We put B* := B —J B;. We put €,(Q) := B* x 7 €1(9Q). We have the natural GL(V')-action on €3(Q), and
the quotient stack is denoted by €4(9), which is the closed substack of B’. We put €3(Q) = €4(Q) NB. The
following lemma can be checked easily.

Lemma 4.43 &3(Q) are open subsets of BEm. 1

4.5.7 Proof of Proposition 4.42

We put as follows:

B = [ Q@)

JeS(m,y)

We have the natural morphism MG (J) — €3(2(3)). Therefore, we have the morphism MGm (3) — B
We obtain the following morphism:

1 s [ MO (3) — M xo B
Lemma 4.44 ;1 is isomorphic.

Proof Let g:T — M xp B5™ be a morphism. Then we have the GL(V )-equivariant torsor P(g). We also
obtain the following data from g : T — %g .
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e We have the GL(V)-equivariant decomposition V1 & Vz of pp ) Vx over X x P(f).
e f: A"V — det” Poin, which is contained in Hom(A"™ V1 ® A" Vs, det” Poin).

The composite T© — M X 3 %gm — M is contained in M\*, and hence in Q*(m,y, L, ax,0)/ GL(Vy,).
Therefore, we obtain the following data:

e The oriented quotient parabolic L-Bradlow pair (q, E.(m),p, qb)
® ¢ :Pprg)Vm.x — E(m) satisfies (TFV)-condition.

We have po A" ¢ = f. Then, we obtain the decomposition E = E®) @ E? = ¢(V) @ ¢(V@). The claim is
clear on the open subset where FE is locally free. Since FE is torsion-free and ¢ is surjective, the decomposition
is obtained on the whole space.

By taking the decent with respect to the GL(V')-action, we obtain ((ql, ES), 1, FM), (go, EiQ), FQ), p) on
T. We remark that the decomposition data is determined on each connected component of 7. The conditions
in Proposition 4.35 is satisfied for the specialization of (q1,E£1),¢1,}'(1)) and (q2,E£2),f(2)) to any closed
fibers {u} x X. Hence we obtain the morphism 7" — ]_[]/\4\ Gm (7). In particular, we obtain the morphism
Py M xom BG™ — [] M (3). It is casy to see that 1, and ¢y are mutually inverse. |

Then, we obtain the following:
]/\4\1 |_|]/\4\2 (] HﬁGm(j) = ]/\ZG"I X 53 (%1 UBy U %gm) = ]/\ZG"I X3 BCm

In particular, M; U M, U 11 MGm (7) is the closed substack of M. Since B(Q) and B; are open in B it
is easy to see that M; and M %™ (J) are unions of connected components of the fixed point set. Thus, the proof
of Proposition 4.42 is finished. 1

4.6 Decomposition into Product of Two Moduli Stacks
4.6.1 Statement

Let 3 = (y,9Ys, I1, 1) be a decomposition type. We would like to decompose M S (3) into the product of two
moduli stacks up to etale finite morphisms. We put k := min(l3) — 1. We use the notation in the subsubsection
4.5.3. We introduce some more moduli stacks.

Let M**(yy, [L], o, (6, k)) denote the moduli stack of the objects (E*(Fl)7 (0], pM), FA)Y as follows:

o (B [6M], pMV) is a §-semistable oriented reduced L-Bradlow pair of type y,, and F1) is a full flag of
px «EM (m) such that (E,(Fl)7 [p(V)], F) is (6, k)-semistable.

The universal object over M** (g, [L], o, (6, k)) x X is denoted by (EY,, ¢}, pt, F1).
Let M> (y1, L, v, (8,k)) denote the moduli stack of the objects (B, M, 7MY as follows:

° (Ey(ﬁl)7 #M) is a -semistable L-Bradlow pair of type y, such that ¢(!) is non-trivial everywhere, and F()
is a full flag of px . E™M (m) such that (Eil), oM, F) is (6, k)-semistable.

The universal object over Mss (yl, L, a,, (0, k)) x X is denoted by (EY,, o%, Fi).
Let M® (@2, Qe —|—) denote the moduli stack of the objects (E£2),p(2), F ) as follows:
o (E£2), p?)) is semistable oriented parabolic sheaf of type y,, and F®) is a full flag of px . E® (m).

.« (B?, F®

min

) is an e-semistable reduced O(—m)-Bradlow pair for any sufficiently small € > 0.

The universal object over MVSS(QQ, o, +) x X is denoted by (Eﬁ‘, Py, FY).
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Proposition 4.45 We put r; :==ranky,. There exists the algebraic stack S with the following properties:

o There exist the following diagram:

F G

S

MG (3) MO (G, [L], v, (6, k) X M (G, v, +) (77)
The morphisms F and G are etale and finite of degree (r1-12)~1 and 7“2_1, respectively.

o Let Oy re(l) denote the tautological line bundle of M*$(Gy, [L], as, 8).  There exists the line bundle
O1re1(1/72) on S such that O1 re1(1/72)™ = G*O1 rel(1), and we have the following relations:

F*EM ~ G*EY @ O1,a(1), F*EM ~ G*EY © Oy pa1(—r1/72) (78)

The weight of the G, -action p on E{/VT and Eé‘/j are —1 and 11 /ra, respectively.
Corollary 4.46 We have the following diagram:

F G’

MGn(3) S M3 (yy, Ly s, (8,k)) % M55 (G, v, +) (79)

1

Here G' is etale and finite of degree (r1 -ro)~t. We have the following relations

F*EM ~ G*Ey, F*EY ~G"Ey @ Or(By) Y/
Here, we put Or(E#)~Y7"2 .= Oy ye1(—71/72). I

Before going into the proof, we give some remark on the inductive process to investigate the transition of the
moduli stacks, heuristically. Let § be an element of Cr(y, L, ). Let 6 and § be sufficiently close to § such that
d_ < < ;4. We will be interested in the difference of M**(y, [L], o, 0—) and M**(y, [L], o, d+). We make
the enhanced master space. Then M; are isomorphic to the full flag variety bundles over M®® (Y, [L], s, 6_) and
M?®3(y, [L], ax, d4+). So we can derive some information from the fixed point sets MGm (3) by the localization
technique, and J/W\GT"(J) is isomorphic to ./T/l/“(@l, [L], cve, 8, £) X ./T/l/“@z, i, +) up to finite and etale morphisms,
where ¢ = min(I3) — 1.

The structure of M? (@, as, +) can be easily related with the moduli stack M = M? (g, [O(—=m)], ax, €),
where € is a sufficiently small number. We have the universal oriented sheaf E" over M x X with the universal
reduced section [¢¢]. Then we obtain the vector bundle py , (E*(m)) with the line subbundle Q C px . (E"(m))
induced by [¢"]. We put C := px.(E“(m))/Q. Then the associated full flag bundle to C is isomorphic to
M= (Gg, [O(—=m)], v €). N

On the other hand, the structure of M?#® (@1, [L], a, 0, 8) is not so easy to describe. However, we can make
the enhanced master space MO again, so that 1\71(1) and ]\72(1) are isomorphic to Mo @1, [L], ax, d, E) and the
full flag variety bundle over Mss (91, [L], ax,6-). Thus, we can proceed inductively.

We remark rank(y;) < rank(y). Therefore, the process will stop, and we will arrive the description of
the difference of M*3(y, [L], o, d+) and M*5(y, [L], s, 0_) in terms of the products of the moduli stacks of
semistable objects with lower ranks. We use such an argument in the subsection 7.6.

4.6.2 Preliminary

~(1)
We use the notation in the subsection 4.4. Let @  denote the maximal open subset of Q°(m, ¥y, L) x Flag(l)
~(2)
determined by the (d, k)-semistability. Let @  denote the maximal open subset of Q°(m,y,) x Flag®, which

consists of the points (ga, Ea«, p2, F?)) such that (Es,, ]:1(1121)11
~1) =22
Ty := Spec k[t1,t;']. We have the Ty-action on Q  x Q , given as follows:

) is e-semistable for any small € > 0. We also put

ty - ((El *a¢7paf(1))a (E2*7¢7p7f(2))) = ((E1*7¢7 tl'pa f(l)); (E2*7¢7 til'pa f(Q)))
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55 21 =22
By construction, we have the isomorphism TH,;; (J) ~ (Q  x@Q )/T1. We have the naturally defined actions
2(9) 2(9)
GL(V;) on Q@ . We put M, :=@Q /GL(V;). Then we obtain the following description:

~(1) 5(2) M x M
— X 1 X Mo
MG (3) ~ ~
()= GLv) < GLOA) < T T

Let us see the right hand side more closely. The stack M is isomorphic to the moduli stack of the objects
(Eﬁl), oM, pM) FD)) as follows:

. (E,El)7 #M, pM) is a §-semistable oriented L-Bradlow pair of type y,, and F1) is a full flag of px . E™M) (m)
such that (Eil),¢(1),.7:(1)) is (9, ko)-semistable.

The quotient stack My is isomorphic to the moduli stack Mss @2, O, +).
The T}-action on M, is given by ¢, - (E,El), o, pV FL)) = (E,El), oW, t1-pM, FL)). The Ty-action on My
is given by ¢; - (E£2), p(2),.7-'(2)) = (Eiz),tl_l-p(z),f(z)).

4.6.3 Construction of S

172

We put Tl := Spec k[sq, sfl]. Let Tl — T be the morphism given by t; = s7'"?, where r; = ranky,. We have
the naturally induced Ty-action on M; x Ms. Let S denote the quotient stack (M7 x My)/ T;. Then, we have
the following morphism:

S —I 0 (My x M) /Ty ~ MG (3)

Here F is etale and finite of degree (ry - r9) L.

Let us see the Ty-action on M; (i = 1,2). The induced Ty-action on My is trivial, i.e., s1- (Eg), p@, ]-"(2)) =
(Eg), 57712 p) F2)) ~ (Eﬁz), p, F?)). The isomorphism is given by the following diagram:

T T1T2,(2)
E® det(E®@) 21— det* Poin
st l s 172 J/ idJ{ (80)
@
E® det(E®) L —  det* Poin

The induced fl—action on M; is given as follows:
S1- (Eil), ¢(1),p(1)7_7:(1)) _ (Eil), ¢(1), 8;17‘2 _p(1)7]_-(1)) ~ (Eil), ng '¢(1)7P(1),f(1))-

The isomorphism is given by the following diagram:

STITQ (1)
L —— EW det(EM) 22 det* Poin
idJ/ s? J{ sIlT2 J{ idJ{ (81)
sT2¢ L L ey .
L —— g det(EM) L —  det* Poin

In particular, since Tl—action on My is trivial, we obtain the following morphism G:
S = (My/Th) x My —%— (My/Ty) x My = M (G, [L], e, (5, ko)) X M5 (yy, s, I2)

The morphism G is etale and finite of degree 1/rs.
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4.6.4 The universal sheaf

We put M, := ./T/l/“@l, [L], o, (8, ko). We remark that 7 : My x My — M; x My is isomorphic to
Ot rel(—1)" — Mj x My, and the Tl—action on O1 yei(—1)* is given by s - v = s™v on each fiber. We use the
argument in the subsection 2.7. Let 7 (n) denote the trivial line bundle on M; x M, with the Ty-action of
weight 7. It induces the Tj-line bundle 77 (n) over M; x M. By the descent, we obtain the line bundle Z,,
over Ml/ﬁ x Ma. We put O re1(1/r2) := Zy. It satisfies O1 re1(1/72)™ =~ G*O1 rei(1), due to Lemma 2.49.
Let E and E denote the pull back of E“ via the morphlsm Mix My x X — M; x My x X. By
the construction, we have the Ti-equivariant sheaves E’ TH g E’ TH on M; x My x X, which is induced by

the sheaf on TH as in the subsubsection 4.5.1. When we take it into account of the G,-action p, we have
E|™ ~ B @ 7*T (ry) and E4™ ~ B} @ 7T (—r1) due to the diagrams (80) and (81). Therefore, we obtain
(78).

We put Ty = Spec k[SQ,sg ], and let Ty — G,y is a morphism given by ¢t = s52. We have the induced
~1) =22
action p of T, on TH . On Q x@Q ,theinduced action is given as follows:

s2- (E1v, ¢, p1, F1, Ba v, p2, F2) = (E1x, 5520, p1, F1, Baw, p2, Fa).

Therefore, the actlon of T1 and Tg on My X My are same. On the other hand, the mduced bundles over
M1 x Mg x X are E and E with respect to the p-action. Therefore, the weight of p on gp*E“ ®7I,, is —ra,
and the weight of p on p*EY ®Z_,, is r1, due to Lemma 2.50. Thus, the proof of Proposition 4.45 is finished. I

4.7 Simple Cases
4.7.1 The case where the 2-stability condition is satisfied

We give some indication about what happens when the 2-stability condition is satisfied for (y, L, ., ), without
proof. In this case, we do not have to consider the enhanced master space and (, £)-semistability. Hence the
problem is simpler.

We use the notation in the subsubsections 4.1.1 and 4.2.1. We take a positive rational number v; and a
negative rational number 2 such that |v;| are sufficiently small. We take a large rational number k' such that
k' (1 —42) = 1. We put £; := L2¥ . We have L5 = L1 ® Op,, (~1).

Let us consider B := P(Op,, (0) & Op,, (1)) over A. We put By = P(Op,, (0)) and By = P(Op,, (1)), which
are naturally regarded as the closed subscheme of B. We have the tautological line bundle Op(1), and we put
0p(1) := Op(1) ® L1. We have the natural SL(V)-action on B, and Og(1) gives the equivariant polarization.
Let B®® denote the set of the semistable points of B with respect to Op(1l). We put TH*® := Q x 4 B*. We
have the natural SL(V')-action on TH®*®. The following proposition can be shown by an argument similar to the
proof of Proposition 4.21. In fact, it is much simpler.

Proposition 4.47 The quotient stack TH*® / SL(V') is Deligne-Mumford. |

We put TH = TH* xQ@, where we put Q := Q*(y,[L], ax, ). We put M = Tﬁss/ GL(V), which
is called the master space in the oriented case. = We have the G,,-action p as in the enhanced case. From
Proposition 4.47, we obtain the following.

Proposition 4.48 M is Deligne-Mumford and proper. |

We put Tﬁss = B{* x4 ﬁss and we put M; = Tﬁfs/ GL(V). We put M* = M — M, U M,. Tt is easy
to observe that M* is an open substack of M(m,y,L).

Due to Lemma 4.14, M; and M, are isomorphic to M** (Y, [L], o, 04) and M*3(y, [L], o, 0_) respectively.
They give the obvious fixed point sets of M with respect to p.

Let us see the other components of the fixed point set. A decomposition type is defined to be J := (y,y,) €
Type? satisfying Yy, +y, =y and P?‘j‘“‘s = P;1*75 = P;j‘z*. For such a decomposition type J := (y1,¥y,), we

consider the moduli stack M (3) of objects (Eil), ¢, E?, p) as follows:
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° (E!El)7 @) is d-stable L-Bradlow pair of type y;.
° E£2) is stable parabolic sheaf of type y,.
e pis an orientation of E(M @ E®),

Note that the 2-stability condition for (y, L, a«,d) implies the 1-stability conditions for (y;, L, ., d) and
(Yg, ) if M®¥(yy, L, ay, 6) x M**(yy, i) # 0. We have the naturally defined morphism MGm 3) — M as
in the subsubsection 4.5.3.

Let S(y, ax,0) denote the set of decomposition types. Then we can show the following by the same argument
as the proof of Proposition 4.42.

Proposition 4.49 ]/\4\1 U ]/\4\2 U Hjes(%a*’é) M (3) is the stack theoretic fived point set of M with respect to
p- !

We naturally have the oriented reduced L-Bradlow pair (E{‘7 , [qu\7 1, ,oﬂ ) on M x X, as in the subsubsection
4.5.1. The restriction of (Ei‘//f, [(bﬁ],pﬁ) to ]\//.71 x X has the universal property with respect to the moduli
theoretic meaning above. Let ¢ : M — M(m,y,[L]) denote the naturally defined morphism Then the
restriction of ¢*Orel(1) to M~ is canonically trivialized. Therefore, the restriction of [¢M ] to M~ gives the

L-section, which we denote by ¢M Then, the restriction of (EM (bM ,pM ) to M MGom m(J) has the universal
property with respect to the moduli theoretic meaning above. Correspondingly, we have the decomposition
oM _ M M.
E‘ Ri6m (3) =E" ® E;
It is convenient to decompose MGm m(J) into the product of two moduli stacks up to etale finite morphisms.

By the same argument as the proof of Proposition 4.45, we obtain the following description of M GM( J) up to
etale finite morphisms.

Proposition 4.50 We put r; :=ranky,. There exists the algebraic stack S with the following properties:

o There exists the following diagram:

F G

MG (3) S

Mss @1, [L], cus, 5) X M3S @2, oz*)

The morphisms F and G are etale and finite of degree (r1-r2)~ ! and 7‘2_1, respectively. We also have the
following diagram:

MCEn(3) L & s M3 (y,, L, 0, 8) x M (G5, 00, (82)

Here, G’ is etale and finite of degree (r1r9)~ L.

o Let O1 1ei(1) denote the tautological line bundle of M**(y,, [L], a, ). We use the same notation to denote
the pull back via an appropriate morphism. Then, there exists the line bundle O1 re1(1/r2) on S such that
O1rel(1/r2)™ = G*O1 rel(1), and we have the following relation:

F*EM ~ G*E' @ O1,40(1), F*EY ~ G*EY ® Oy ya1(—11/12) (83)

Here E* and EY are induced by the universal sheaves over M* (g, [L], o, 0) x X and M®*(yy, i) X X,
respectively. We also have the following relation:

FEM ~ G py, FEM ~ GEY @ Or(BY) Y

Here, By denotes the pull back of the universal sheaf over M**(yy, L, a,8) x X, and Or(E)~/"2 denotes
Ol,rel(_rl/r2)~

o The weights of the G, -action p on Elﬂ and EQM\ are —1 and r1/ra, respectively. |
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4.7.2 The case of oriented reduced L-Bradlow pairs

Let L = (L, Ls) be a pair of line bundles on X. Let § = (1,2) be an element of (’Pbr)z. We can discuss the
transition of the moduli stacks M?**(y, L, a, ), when 07 is moved. For simplicity, we restrict ourselves to the
case where both of §; are sufficiently small. Recall the results in the subsubsection 3.5.3. Then, the 2-stability
condition is always satisfied, and the problem is simple as in the subsubsection 4.7.1. We give only an indication
without proof.

Let § = (01,62) be an element of PP 2 such that §; are sufficiently small. Assume that the 1-stability
condition does not hold for (y, L, a., d). In that case, we have the positive integers r; (i = 1,2) satisfying the

following:
01 02
rL+ T2 =T, " = o

We take 61, and d1 4 such that 01— < d1 < 1,4, which are sufficiently close to d1. We put d,, := (01, d2) for
k = . We would like to compare the moduli stacks M?**(y, L, ., d_) and M**(y, L, s, ).

We use the notation in the subsubsection 4.1.1. We put A := Ay, (y, [L]) and £ := Ly (Pg=°(m), ., 8(m)),
which gives a GL(V')-polarization on A. We put £, := L ® Op) () for rational number . Let A®*(L,) denote
the set of the semistable points of A with respect to L.

We put Q := Q**(m,y, [L], s, §). We have the GL(V')-actions on A and Q. We also have the equivariant
morphism ¥,, : Q — A. The d,-semistability condition determines the open subset Q%°. The following lemma
can be shown by the same argument as the proof of Lemma 4.14.

Lemma 4.51 Assume that the absolute value of v # 0 is sufficiently small.
e Then, we have Wt (A (L)) =

sign(y)”

o The induced morphism U, : :‘isgn(v) — A% (L) is a closed immersion. Moreover, the image is contained

in A%(Ly). |

We take a positive rational number 7, and a negative rational number 75 such that |y;| are sufficiently small.
We take large number &’ such that k'(y; —v2) = 1. We put L; := E%k/. We have Lo = L1 ® OlP’Si) (—1).

Let us consider B := P(OPE}Q 0) & Op) (1)) over A. We put By = P(OPE) (0)) and By = P(OP%) (1)), which
are naturally regarded as the closed subscheme of B. We have the tautological line bundle Op(1), and we put
0p(1) = Op(1) @ L1. We have the natural SL(V)-action on B, and Op(1) gives the equivariant polarization.
Let B%¢ denote the set of the semistable points of B with respect to Op(1l). We put TH*® := Q x 4 B*. We

have the natural SL(V)-action on TH®*®*. As in the case of Proposition 4.47, the following proposition can be
shown easily.

Proposition 4.52 The quotient stack TH®® / SL(V) is Deligne-Mumford. |

We put TH .= TH* xQ@, where we put CA) = Q(y, [L], ax,d). We put M = Tﬁss/ GL(V), which is
called the master space. We have the G,,,-action p as usual. From Proposition 4.52, we obtain the following.

Proposition 4.53 M is Deligne-Mumford and proper. |

We put Tﬁfs =B X4 ﬁss, and we put M; = Tﬁfs/ GL(V). We put M* = M — M, U M,. Tt is easy
to observe that M* is an open substack of the moduli stack M(m, ¥y, L1, [L2]) of the tuple (E.,p, ¢1,[p2]) as
follow:

e F, is a parabolic sheaf with an orientation p satisfying the condition O,,.
e ¢ is an Lji-section of E, such that ¢; # 0.

o [¢2] is a reduced Lo-section of E, such that [¢2] # 0.
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From Lemma 4.51, M; and M, are isomorphic to M*3(y, L], ax, 84 ) and M**(y, [L], v, 6 ) respectively.
They give the obvious fixed point sets of M with respect to p.

Let us see the other components of the fixed point set. A decomposition type is defined to be a datum
J:= (y,,y,) € Type® satisfying the following:

Y1 +y =y, DI :P;jl* :P;j;a r; = rank(y;)

For a decomposition type J := (y;,¥y5), let MGm (3) be the moduli stack of the objects (Eil), o1, EiQ), [@2], p)
as follows:

° (E,(Fl)7 ¢1) is 01-stable Li-Bradlow pair of type y;.
° (E,EQ)7 [#2]) is d2-stable reduced Lo-Bradlow pair of type y,.
e pis an orientation of E(M @ E®),

Note that d; are sufficiently small, and hence the 1-stability conditions for (y;, L1, s, 61) and (yq, Lo, s, d2)
are satisfied. We have the naturally defined morphism M (3) — M, as in the subsubsection 4.5.3.

Let S(y, o, 6) denote the set of decomposition type. Then, we can show the following by the same argument
as the proof of Proposition 4.42.

Proposition 4.54 ]T/I\l U ]\//.72 U Hjes(y a..8) MSm(3) is the stack theoretic fived point set of M with respect to
p- !

We naturally have the oriented reduced L-Bradlow pair (Ei‘/j , [¢{V7 L1 gVT ],p) on M x X, as in the subsubsection
4.5.1. The restriction of (Ef:w\ , [(;5{‘7 1, [(;52ﬁ l,p) to M; x X has the universal property with respect to the moduli
theoretic meaning of ]\//.71

Let OEQ (1) denote the line bundle on M (m, ¥y, [L]) which is the pull back of the relatively tautological line
bundle on M(m,y, [L;]) via the natural morphism M(m, y, [L]) — M(m,y,[L;]). Let ¢ : M — M(m, g, (L))
denote the naturally defined morphism. The restriction of gp*(’)gl) (1) to M* is canonically trivialized. Thus, the
restriction [d){\? ]‘ 77~ induces the L;-section of EM , which we denote by ¢{‘7 . We put 7 := (p*(’)gl) (—1). Then,
[ gVT] gives the morphism Z(? @ Ly — EM . The restriction of (Eﬁ, (b{‘//i, [ y], p) to MGm (J) has the universal
property with respect to the moduli theoretic meaning above. Correspondingly, we have the decomposition
EM =EMaoE}.

[MGm () L 2
It is convenient to decompose MGm (7) into the product of two moduli stacks up to etale finite morphisms.

By the same argument as the proof of Proposition 4.45, we obtain the following description of MGm (3) up to
etale finite morphisms.

Proposition 4.55 We put r; :==ranky,. There exists the algebraic stack S with the following properties:

e There exist the following diagram:

F G

MGn(3) S

MSS(@l, [Ll],oz*,(Sl) X M?*3 (@2, [LQ],Q*,52) (84)

The morphisms F and G are etale and finite of degree (r1-r2)~ ! and 7‘2_1, respectively. We also have the
following diagram:

M\GM(j) F_g G’ Mss(yl,LhOé*,(Sl) % Mss(@Q’ [LQ],OC*,(SQ) (85)

Here G' is etale and finite of degree (rqr2)~1.
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o Let O;re1(1) denote the pull back of the relative tautological line bundle of M**(y;,[Li], ax,d). There
exists the line bundle O1 re1(1/r2) on S such that O1 ve1(1/12)™ ~ G*O1 re1(1), and we have the following
relation:

F'EM ~ B} ©O01a(l), F'EY ~G'Ey@01,a(-r1/r2), F'T? =G Oy,a(~1) @Oy aa(—r1/r2).
(86)
Here E} denotes the pull back of the universal sheaf over M**(y,;, [Li], ax, ;) x X. We also have the
following: _ _
F*EM ~G'*EY, F*E}! ~G*Ey®Or(Ey)~Y"
Here, EY denotes the pull back of the universal sheaf over M**(y;, L1, .,61) x X, and Or(E¥)~1/r2
denotes O1 ye1(—11/72).

o The weights of p on E{‘//[\, EgVT and T2

\7Tom (3) are —1, r1/ro and r1/ra, respectively. |

5 Obstruction Theory of the Moduli Stacks and the Master spaces

In this section, we discuss the obstruction theory of the moduli stack of parabolic reduced Bradlow pairs on
a smooth projective surface X. We also assume the smoothness of the divisor D, which is the support of
the parabolic structure. The naive strategy is explained in the subsubsection 2.4.2. We will also discuss the
obstruction theory for the master spaces.

Notation Let S be a scheme, Z be a stack over S, and G be a smooth group scheme over S. When G acts on
Z, the quotient stack is denoted by Zg.

5.1 Deformation of Torsion-free Sheaves
5.1.1 Construction of the basic complex

Let U be any algebraic stack over k, and let E be a torsion-free U-coherent sheaf defined over U x X. Assume
that we have a locally free resolution V. = (V_1; — Vj) of E on U, i.e., V; are locally free sheaves of finite ranks,
and we have the surjection Vj — E whose kernel is V_;. The inclusion V_; C V; is denoted by f. We put as
follows (see the subsubsection 2.1.3):

g(V.) :=Hom(V.,V.)"[-1]

Let W_; and Wy be vector spaces over k such that rank W; = rankV;. We denote W; ® Ox by W, x.
We put GL(W.) := GL(W_1) x GL(W,). We have the natural right GL(W.)-action on the vector bundle
N(W_1 x,Wy x) given by (9-1,90) - [ = go_1 o fog_1. Here g; denotes an element of GL(W;), and f denotes
an element of N(W_q x, Wy x). The quotient stack is denoted by Y (W.).

Then, we have the classifying map ®(V.) : U x X — Y(W.) over X, and thus ®(V.)* Ly w ), x — Luxx/x-
As explained in Example 2.21, ®(V.)*Lyw.),x is represented by the complex g(V.)<1. We have the naturally
defined morphism g(V.) — g(V.)<1, and hence g(V.) — Ly x/x-

Let wx denote the dualizing complex of X, and we put as follows:

Ob(V) = Rpx. (alV) © wy)
Then, we have the naturally defined morphism ob(V.) : Ob(V.) — Ly.

Lemma 5.1 The object Ob(V.) and the morphism ob(V.) depends only on E in the derived category D(U), in
the sense that it is independent of the choice of a resolution V..

Proof Let V') be another resolution. We would like to compare the two morphisms ob(V.(l)) and ob(V.) in
the derived category D(U). We put VO(Z) =WVe Vo(l) and V£21) = ker(VO(Q) — FE). We have the morphism
V. — V. and V. — V). Therefore, we have only to compare the morphisms ob(V.(z)) and ob(V.). Note
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that V; is a subbundle of V;(Q), i.e., we have the filtration V. C V® . Let Hom’(‘/;@),vj(z)) (i,7 = 0,—1)
(2) (2)

denote the sheaf of Ox-morphisms V""" — V" preserving the filtrations. They naturally form the complex of

sheaves Hom' (V.?, V.?). We put g(V., V?) := Hom!(V.®, V.¥)V[=1]. We have the naturally defined quasi
isomorphisms Hom'(V.(z), V.(Q)) — Hom(V., V.) and Hom'(V.(z)7 V.(Q)) — Hom(V.(z), V.(z)). They induce the
quasi isomorphisms v, : g(V.) — g(V., V.(Q)) and 7o : g(V®)) — g(V, V.(Z)).

Let Wi@) be vector spaces such that rank Wi(z) = rankV;(Q) (¢ = 1,2). We fix inclusions W; C Wi(z).
We denote Wi(z) ® Ox by Wi(i(). We have the filtration W, x C Wi(i(). Let Hom'(ng,Wﬁg) be the sheaf
of Ox-morphisms WS() — j(ig preserving the filtration. The corresponding vector bundle is denoted by
N’(Wi(i), Wﬁg) We have the natural morphisms N’(Wi@), Wj()g) — N(W; x,W; x) and N’(Wi(i), ;2)2) —
N(ng,Wﬁg). Let GL’(W;Z)) be the subgroup of GL(WZ-(Q)), which consists of the elements of GL(W;Z))
preserving the filtration. Then we have the natural right GL'(W?) x GL/(Wi?)-action on N’(Wj(?), VVI(Q)).
The quotient stack is denoted by Y’ (W.(z)). We have the homomorphisms GL’(WZ.(Z)) — GL(Wi(Z)) and
GL'(W®) — GL(W;). Thus we have the morphisms Y’(W®)) — Y/(W.) and Y'(W®) — Y (W.?).

From the tuple (V.,V.(2)), we obtain the morphism @(V.,V.(Q)) cU x X — V' (W'?). Then, it can be

shown by the argument in the subsubsection 2.3.2, that the complex ®(V, V.(Q)) is represented by g(V., V.?)).

We also have the following commutative diagram:

S(V) Lyw ) x —— SV, VIV Ly, o —— ®VI) Ly o)«

! w w &

V)  —2o gV, v, L g(V )<

Then, we obtain the following diagram:

Lyxx/x — Lyxx/x — Lyxx/x

I I I

| I |

o) a(V., V%) —— eV
We put Ob(V.(Q), V.) := Rpx « (g(V.(z), V) ® wx). Then we obtain the following diagram in D(U):

LU - LU — LU

[ [ I

Ob(V)) —— ob(V®,v)) —=— ob(v?)

Thus we are done. |

If F is a vector bundle of rank R, we may take Vy = E and V_; = 0. In this case, the construction can
be reworded as follows: We have the classifying map ®(E) : U x X — Xgp(g). It induces the morphism
Q(E) Lxgny,x — Luxx/x. We have the expression ®(E)*Lx, ) x =~ Hom(E,E). We put Ob(E) :=
Rpx «(Hom(E,E) ® wx), and we obtain the morphism ob(E) : Ob(E) — L.

5.1.2 The trace-free part and the diagonal part

We have the homomorphism GL(W.) — Gy, given by (f_1, fo) — det(f—1)~! - det(fy). It induces the
morphism w : Y (W.) — X¢,,. The composite v o &(V.) : U x X — X, is same as the classifying map of
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the determinant bundle det(E) ~ det(Vy) @ det(V_1)~!, which is denoted by ®(det(E)). Then, we obtain the
following commutative diagram:

@(det(E))*LXGm/X —— ®(V)*Lyw,)/x — Luxx/x

| I

O[-1] ——  a(V)
Here, the map i : O[—1] — g(V.) is given as follows:
O — Hom(Vo, Vo) & Hom(V_1,V_1), fr— (f-idy,,—f-idv.,)
On the other hand, we have the trace map tr : g(V.) — O[—1]:
Hom(Vo, Vo) & Hom(V_1,V_1) — O, (fo, f-1) — tr(fo) + tr(f-1)

We put Ker(tr) := g°(V.), and g4(V.) := Im(i). We have the decomposition g(V.) = g°(V.) @ g%(V.), which
induces the decomposition Ob(V.) = Ob°(V.) & Ob%(V.). The complexes g°(V.) and Ob°(V.) (resp. g?(V.) and
Ob%(V))) are called the trace-free part (resp. the diagonal part).

The determinant bundle induces the morphism detg : U — M(1). We also have the following commutative
diagram:

Uvxx 29 yw)

el
M) x X —— Xg,.

The composite w o ®(V.) is same as the classifying map ®(det(E)) of det(E). Thus we obtain the following
commutative diagram:

Lyxx/x — O(V)'Lywyx <+« gV)

I I I

g’(V)

detp xLayxx/x < ®(det(E))" Ly, /x
Therefore, we obtain the following commutative diagram:

Ly  ——— Ob(V)

I 1 o

det L1y < Ob%(V)

5.1.3 Preparation for Master space

We also put A(W.) := Xgrw,). We have the natural morphism I' : Y(W.) — A(W.). We put ¥(V.) :=
I'o ®(V.). Then W(V.)*Law./x is represented by Hom(Vp, Vp)¥[—1]. For these representatives, the natu-
ral morphism W(V.)*Lyuw.)/x — ®(V.)*Ly .y x is expressed by the obvious inclusion of Hom(Vy, V) to
Hom(Vy, Vo) ® Hom(V_1,V_1). We put h(V.) := Hom(Vy, V.)¥[~1] and Ob% (V) := Rpx .« (h(V.) ®wx). Then
we obtain the following diagram:

h(V) — g(V)

l l

Y(V)* Law)/x — (V)" Lyw)x —— Luxx/x
Therefore, we obtain the morphisms Ob%(V.) — Ob(V.) — Ly k-

Now, we assume the following condition (C) for E and V.:
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(C1) For any point u € U, the higher cohomology groups H'® (X, E|{u}><X) vanish.
(C2) We put V' :=px .(E). Then we have Vp = p5 V".

We put B(W.) := Spec(k)grw,). We remark A(W.) = X x B(W.). Because of Vj = p%V’, we have
rank Wy = rank V', and hence we have the classifying map U(V') : U — B(W.) of V. We have the following

commutative diagram:
vxx 2Ylyw) —— x

\P(V/)Xl rl l (89)
B(W.)x X — AW) —— X
Thus we obtain the following diagram on U x X:

Lyxx/x — O(V)'Lyw,)/x +— 9(V)

I I | (90)

YV Lpw)xx/x ——— (V)" Law)x —— b(V)
Hence, we obtain the following diagram on U:

Lu e Ob(V)

w 1 o

U(V')*Lpw) «—— Ob%(V)).

It is easy to see that both of Ob%(V.) and U(V')*Lpw,) are isomorphic to Hom(V',V')[~1] under the
condition (C).

Lemma 5.2 The morphism 11 in (91) is isomorphic.

Proof The composite of the following naturally defined morphisms is isomorphic:
Rpx « ((Hom(Vo, Vo) = Hom(V_1,Vp)) ® wx) — Rpx «(Hom(Vy, Vo) @ wx) — Hom(V', V)

Then, the claim of the lemma immediately follows. |

5.1.4 Basic complex on the moduli stack M (m,y)

Let y € H*(X) be a Chern character of a coherent sheaf on X. Let H denote the polynomial associated to
y. We take an H(m)-dimensional vector space V,,. We have the scheme Q°(m,y). (See the subsubsection
3.6.2.) We consider the universal quotient ¢* : p*Qo(m)y)VmX — E¥(m) defined over Q°(m,y) x X. We put
Vo' = Dho(my) Vim,x and VY = ker(Vg* — E“(m)). The inclusion V* — Vi is denoted by f*. We put
V"= Vi @ Ogo(m,y) = Px «Vy'. We have the morphism 7 : Q°(m,y) — M(m,y) := Q°(m,y)/GL(V;,). The
latter is an open subset of the moduli stack of torsion-free sheaves of type y, determined by the condition O,,.
The descent of E*, V. and V' with respect to the GL(V,, )-action are denoted by £“, V. and V’'. The sheaf &*
is the universal sheaf.

We put Wy := V,,,, and we take a vector space W_; such that dim W_; = H(m)—rank(y). Applying the result
in the subsubsection 5.1.1, we obtain the complex Ob().) and the morphism ob(V.) : Ob(V.) — L r(m.y)/k-
We obviously have 7* Ob(V.) = Ob(V*).

Lemma 5.3 We have the following morphism of the distinguished triangles on Q°(m,y):
™ Ob(V.) —— Ob(VY%, f*) ——  Hom(V',V/) —— x*Ob(V.)[1]

! ! | !

T Lpim,y) —  Lgemy) — Loomy)/Mimy) — T Laa(m,y[1]-
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Proof We use the notation in the subsubsection 2.4.3. We have the following commutative diagram:

(VY
Q(my) T YWy —— X

| ~| l
M(m,y) —— Y (W) —— X
The composite my o (V¥ f*) is same as ®(V*). Thus we obtain the following morphism of distinguished

triangles on Q°(m,y) x X:

(V") Ly w.)/x —— @V, f*) Ly, ow)/x — ®(V*, [*)* Ly,..ow.)/yw)

! ! o

T Lm(my)xx/x —— Lqo(m,yyxx/x —  Lqo(muy)x X/ M(m,y)xX-

Recall that ®(V*)*Lyw.)/x and ®(V*, f*)* Ly, (w.)/x are expressed by g(V.*)<1 and g(V, f*)<1, respec-
tively. It is easy to see that the morphism a is expressed by the naturally defined morphism g(V*)<; —
a(V, f*)<1 We put E(V*) := Cone(g(V*) — g(V*, f*)). Then, obtain the following morphism of the
distinguished triangles on Q°(m,y) x X:

g(V*)  —— g(Vi, /") —— GUAY — g(V)[1]

l l l l

T Lamxx/x — Lgomuyyxx/x — LQo(my)xx/Mmy)xx — T La(m,y)xx/x[1]-
Hence we obtain the following morphism of distinguished triangles on Q°(m,y):
Ob(V.) —— Ob(V_q,f) —— Rpx*(E(V.)®wX) ——  Ob(V)[1]
I I g I
T Lm —— Loemy) — Losmuy/mimy) —— T Laaimay[1-

Recall g(V*) = Hom(V:*, V)" [=1] and g(V*, f*) = Hom (V4 [1], V*)"[~1]. Tt is easy to observe that &(V.*)
is expressed by the complex Hom(Vy, V§*) — Hom(V*,Vy"), where the first term stands at the degree 0.
Under the identification, the morphism ¢ is given by the identity of Hom(Vy*, V*). Then, it is easy to check
that Rpx.(8(V.)) and Lqo (m,y)/M(m,y) are quasi isomorphic to their 0-th cohomology sheaves Hom(V', V'), and
that the morphism ¢ in the diagram is isomorphic, as in Lemma 5.2. |

Corollary 5.4 The morphism ob(V.) gives an obstruction theory for M(m,y). |
We also use the notation Ob(m,y) and ob(m,y) to denote Ob(V.) and ob(V.).

5.1.5 The case of the moduli of line bundles

Let Poin denote the Poincaré bundle on Pic x X. Then we have the classifying map ®(Poin) : Pic xX — Xg, .
We put g(Poin) := ®(Poin)*Lx, ,x and Ob(Poin) := Rpx .(g(Poin) ® wx). Then we have the morphism
ob(Poin) : Ob(Poin) — Lpi. on Pic.

Since g(Poin) ~ O[—1], we have an isomorphism in the derived category D(Pic):

Ob(Poin) = (H(X,0)" @ Opic[-1]) & (H'(X,0)" @ Opicl0]) @ (HA(X,0)" @ Opic[1])

We have to be careful that the decomposition is not canonical, but the morphism Ob(Poin) — Lpi. —
HY(X,0)" ® Opic[0] = H'(Ob(Poin)) induces the canonical decomposition:

720 Ob(Poin) = (H'(X,0)" @ Opicl0]) & (HO(X,0)" © Opic[-1])

We also remark that the composite 7<_; Ob(Poin) — Lp;c is trivial.
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5.2 Relative Obstruction Theory for Orientations
5.2.1 Construction of the complex

We use the notation in the subsubsections 5.1.1-5.1.2. Let U; be an Artin stack. Let Fy : Uy — U be a
morphism. Assume that we have an orientation p of the sheaf F}'y (E) over U; x X. We have the morphism
detg : Uy — Pic induced by det(E). We denote detg xidx : Uy x X — PicxX by detg x. We have
det x Poin ~ det(E). Then we have the following commutative diagram:

Uxx 2y
detE,Xl mJV
PicxX 2P, .
It induce the following commutative diagram:
Ly, xx/x — O(V)'Lyw)x a(V)

I I I

dety x Lpicxx/x < ®(det(E))*Lx, ,x «—— ®(det(E))" Lx. /x
Since we have ®(det(E))*Lx, x = g%(V.), we obtain the following:
LU1 — Ob(V)

I |

det}; Lpje «—— Ob%(V))

We put Obye1(V., p) := Cone(Obd(V.) — detf; Lpic). We have the morphisms Obyel(V., p)[—1] — ob*(V)) —
Ob(V).

Let M(1) denote the moduli of line bundles, i.e., M(1) = Pic/G,,. Let m denote the projection Pic —
M(1). We have the following commutative diagrams induced by det(E):

de . e
U, L, pic Uy x X AEX i x X
m | ql x| |
U v) UxX —— MU)xX —— Xe,.

Hence, we have the following diagram on U; x X:
Ly,xx/x «—— detp x Lpicxx/x
| | (92)
FixLyxx/x «—— detp x mx Lyayxx/x < ®(det(E))* Lx,, /x
Therefore, we obtain the following diagram on Uj:

I/[J1 — det*E LPiC

1 I o

FfLy «——— detym Ly «—— Ob%(V)
Thus, we obtain the following commutative diagram:
Obyer(V., p)[=1] —— Ob(V7)

1 | o

Ly, w1 ——— FfLy
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The following lemma can be shown by an argument similar to Lemma 5.1.
Lemma 5.5 The diagram (94) depends only on (E, p) in the derived category D(Uy). 1

The following lemma is easy to see by construction and the argument in the subsubsection 5.1.5.

Lemma 5.6 Ob,(V.,p) is isomorphic to (HO(X7 0)Y ® Oy, [0]) ® (Hz(X, 0)V ® Oy, [2]) The composite of
the morphisms (7<—2 Obyal(V., p))[—1] — Ob(V.) — Ly, is trivial. 1

5.2.2 Relative obstruction property

For any U-scheme g : T — U, let F;(T) denote the set of orientations of ¢g*E. Then, we obtain the functor F;
of the category of U-schemes to the category of sets. The functor F; is representable by the scheme Or(E)*.
Let 7 denote the projection Or(E)* — U. On Or(E)* x X, we have the universal orientation p* of 7*E.
From the resolution V. and the orientation p“, we obtain the morphism:

Obrel(Va Pu) : Obrel(Vapu) — LOT’(E)*/U

*

Lemma 5.7 The morphism obye(V., p*) gives the relative obstruction theory for Or(E)* over U.

Proof We have only to show that H°(obye(V., p")) is isomorphic. From the diagram (93), we obtain the
following morphisms:

Obrel(V-,p“) L) detE COHe(ﬂ'*LM(l) E— LPic) L) LOT(E)*/U

Since we have the isomorphism Or(E)* ~ U X xq(1) Pic, the morphism (5 is isomorphic. We have the following
commutative diagram:

HO(Ob%) ——— det}; Qpic —— H°(Obya(V.,p%)) —— H'(Ob%)

.| | .| .|

Ho(det}} W*LM(I)) E— det}i; Qpic —_— det}} LPic/M(l) _— det}i; W*Hl(LM(l))

We also have H'(det}; Lpic) = 0. The morphisms a; (i = 1,3) are isomorphic, by applying Corollary 5.4 to
M(1). Thus ag is isomorphic. Then, we obtain the claim of the lemma. 1

5.3 Relative Obstruction Theory for L-Section

5.3.1 Construction of the complex

We use the notation in the subsubsection 5.1.1. Let L be a line bundle on X. Let P. := (P_; 2N Py) ~ L
be a locally free resolution, where Py stands in the degree 0. We have the natural right GL(W.)-action on
N(P;,W;) given by (9-1,90) - f = g; ' o f. It induces the GL(W.)-actions on the varieties N (P_1, Wy x),
X and N(W_q1x,Wox) xx N(Py, Wox) xx N(P_1,W_1x). The quotient stacks are denoted by Yo(W., P),
Y1(W., P), and Ya(W., P.) respectively.

We have the equivariant map h : N(W_q1 x,Wox) Xx N(P_1,W_1x) Xx N(Py,Wox) — N(P_1,Wy x)
given by h(f,a_1,a0) = foa_1 —agodr. Since dr, is injective for any point € X, the map h is smooth. It
induces the smooth morphism Y3 (W., P.) — Yo(W., P.). We also have the morphism Y, (W., P.) — Yo(W., P))
induced by the 0-section X — N(P_1, Wy x). We denote the fiber product Y7 Xy, Y2 by Y(W., P.).

Let Uy be an algebraic stack with a morphism F : Uy — U and an L-section ¢ : py; (L) — F5x(E).
We assume that we have a morphism of complexes ¢. = (¢_1, ¢p) : Py, (P) — Fyx(V.) which gives ¢ in the
cohomology level. Such a gz~5 is called a lift of ¢. We put as follows:

grel(Va ;5) = Hom(p;}QP,7 FZ*,XV)V
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We have the naturally induced morphism (¢.) : grel(V., )[—1] — (V) and 7(&5)@ Cgra(V, 9)[—1)<1 —
a(V)<1. B N

We have the classifying map ®(V., ¢) : Uz x X — Y(W., P.) which induces the maps ®;(V.,¢) : Uy x X —
Yi(W., P).
Lemma 5.8 &(V, 5)*LY<W_7P_)/X is expressed by the complex Cone(’y(g.)gl),

Proof We have the induced morphisms x; : ®(V., ¢)*Ly,(w. py/x — ®i(V., )" Ly,(w.,p)/x (i =1,2). Since

Yo(W., P) — Yo(W., P.) is smooth, ®(V.,¢)" Ly w. p)/x is isomorphic to the cone of the induced morphism

Qo (V, 5)*LYD(W,7P,)/X — D12 ©i(V, (5)*LYi(W,,P.)/X-
Let us see ®;(V.,¢)*Ly,(w. p)/x- We use the argument explained in the subsubsection 2.3.2. We will omit
to denote py;, and I3 y. In the case i = 2, it is expressed by the following complex:

Hom(Vo, V_1) ® Hom(V_1, P_1) & Hom(Vy, Py) — Hom(Vo, Vo) & Hom(V_1,V_1)

(b,c_1,c0) — (fob—&—(zNSooco, —bof—&—&lloc,l) )
Here, the first term stands in the degree 0. In the case ¢ = 0, it is expressed by the following complex:
Hom(Vy, P—1) — Hom(Vo, Vb) @'Hom(V,l, V,l), Co — (0,0) (96)
Again, the first term stands in the degree 0. In the case i = 1, it is expressed by the following:
0 — Hom(Vp, Vo) ® Hom(V_1,V_1) (97)

Here the term 0 stands in the degree 0. For the description (95) and (96), the degree 0-part of ko is given as
follows:

Hom(Vy, P—1) — Hom(Vo, V_1) & Hom(V_1, P_1) & Hom(Vy, Fy), a+— (¢_10a, ao f, —dr0a).
The degree 1-part of kg is given by the identity. On the other hand, the morphism &, is the obvious one for the
descriptions (96) and (97). Then the claim of the lemma can be checked directly. |

We put g(V., 56) := Cone (7(36)) Then, we obtain the following commutative diagram:
V) —— ‘I)(FQ*XV-)*LY(W,)/X - FQ*,XLUXX/X

! ! !

a(V.,6.) —— ®(V, ¢.) Lyw..py/x —— Lu,xx/x
We obtain the following morphism of the distinguished triangles on Us x X:

g(V) - g(Vag) - grel(Vag') - g(V)[l]

| ! ! |

FyxLuxx/x — Luyxx/x — Luyxxjuxx — F5xLuxx/x[1].
We put Obye (V., 5) = Rpxs« (grel(V., (5) ® wx). Then we obtain the following diagram on Us:
Obar(V.,9.)[-1] —— Ob(V))

1 1 o

Ly,wl=1]  —— FixLu
Lemma 5.9 The diagram (98) depends only on (E, @) in the derived category D(Us) .
Proof Let (V.(l),P.(l),g(l)) be another choice. We take the resolution V.* of E as in the proof of Lemma
5.1. We put P{” = P{" @ By and P = ker(P{® — L). Then the lift ¢ : P¥ — F; v is naturally

obtained from the lifts 5(1) and g We have the compatible inclusions P. — P? and V. — V. Then we
can show the claim of the lemma by using the filtered objects as in Lemma 5.1. |
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5.3.2 Relative obstruction property

For any U-scheme g : T — U, let F(T) denote the set of L-sections of g% E. Thus we obtain the functor
of the category of U-schemes to the category of sets. The functor F' is representable by a scheme M (L). Let
M (L) — U denote the projection. On M (L) x X, we have the universal L-section ¢ of 7% E. Assume that we
have a locally free resolution P. of L for which we have a lift 5 : P — V. of ¢. Then we obtain the morphism:

Obrel( ¢) Obrel( 5) — LM(L)/U
Lemma 5.10 ob,q(V,, 5) gives the relative obstruction theory for M (L) over U.

Proof We have only to show the claim on any sufficiently small open subsets ¢ of M (L). Recall that ob.e1(V., ¢)
is independent of the choice of P. and a Therefore, we may assume Hi(X7 P071 @V {u}xX) =0 fori=0,1,
l=0,—1and for any u € U.

For simplicity of the notation, we put Cp := gre(V, 5) and C1 := gra(V, 5)@. We have the obvious map
Cp — (4. By the argument in the subsubsection 2.3.2, the complex C; expresses ¥ (V., 5)*Ly(w_,p_)/y(w_).
Thus we have the natural morphism C1 — Ly« x/uxx- We put Ob; := Rpx .(C1 ® wx). Then we have the
induced morphisms Ob,e (V. QNS) — Ob; and ob; : Oby — Ly y. It is easy to see that the composite of the

morphisms is same as obye (V. 5) We use the following lemma.

Lemma 5.11 The morphism H° (Obyer(V., 5)) — H%(Oby) is isomorphic, and H* (Obyel(V., 5)) — H'(Oby)
18 surjective.

Proof We have the exact sequence of the complexes 0 — Hom (Vfl, Po)[—l] — (g — C1 — 0. Due to
our choice of P., we have H' (X, P;' @ V_1| {y3xx) = 0 for any u € Y. Then the claim can be easily shown. I

Therefore, we have only to show that oby gives the obstruction theory for ¢ over U. For that purpose, we
have only to check the conditions (Al) and (A2) in Proposition 2.28. We use the same argument as that in
the proof of Lemma 2.35. Let T be a scheme with a morphism h : T" — U. Then, we have the following
commutative diagram, for any coherent sheaf J on T

Ext’ (W Lyw,J) ~— ——— Ext’(h*Oby,J)

Ext’ (W Lyx x/uxx: Jx) — Bxt'(h%Ch, Jx)

Let T be a scheme such that T is a closed subscheme of T whose corresponding ideal sheaf .J is square 0. Let h’
be a morphism 7' — U such that the restriction h‘T is same as 7o h, where 7 denotes the projection Y — U.

We have the obstruction class o(h, h’) € Ext? (h* Ly, J). We put hx = d(V, a) ohx:TxX — Y(W.,$)
and E’X = ®(V.)ohly :AT ><AX — Y (W.). Since the complex C; expresses ¥(V., (b) Lyw., P)/Y (W) We have
the obstruction class o(hx,h’) € Ext' (h*Cy, JX) By the functoriality, o(h,h’) is mapped to o(hX,h’ ) in

the diagram. Hence, ¢(o(h,h’)) = 0 implies that hx can be extended to a morphism h1 x: T — Y(W,P),

which is a lift of E’X Hence, we obtain an L-section of h'¢ E. Then we obtain an extension of i to a morphism
hy : T — U which is a lift of A/, due to the universal property of M(L). Thus the condition (A1) is checked.
The condition (A2) can also be checked easily, and the proof of Lemma 5.10 is finished. |

5.3.3 Preparation for the obstruction theory of Master space

We will use the notation in the subsubsections 5.1.3 and 5.3.1. We have the naturally defined right GL(Wjy)-
action on N (OX,WO, X). The quotient stack is denoted by A(W.,P.). Assume that we have a morphism
t: Ox — F. Then we have the induced morphism Yy(W., P.) — A(W., P.), and thus I'y, : Y(W., P) —
A(W.,P). From (FjyV.,$) on Uy x X and 7, we obtain the morphism ¢ : 1, O0x — FixVo. We put
Bret(V., @) := Hom (p, Ox, FQ*XV.)V. Then, we have the induced maps v() : hra1(V., ¢)[—1] — b(V)).
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We put U(V.,¢.) :=Tf o ®(V,, ¢), which is the classifying map of (FQ*XVQ,E). Then, W(V.,¢.)"Law. .py/x
is expressed by Cone(’y(a)gl). The induced morphism \II(V,&Z.)*LA(W_7P_)/X — @(V,&F.)*Ly(w_,p)/x is ex-
pressed by the naturally given morphism Cone(y(4)<1) — Cone(y(¢.)<1).

We put h(V., §) := Cone(v(4)). Then, we obtain the following commutative diagram:

h(V., ) —— g(V.,9) —— Ly,xx/x
I I I

b(V.) —— g(V)) —— FixLuxx/x

We put Ob% (V.,¢) := Rpx « (hrel(V., P) ® wX). Then, we have the following diagram on Us:

rel

Ly, u[=1] e« Oba(V,,$)[~1] «—— ObZ(V.,4)[-1]

| ! | g

FiLypy, ——— Ob(V.) — 0b%W)

Now, we assume the condition (C) in the subsubsection 5.1.3. We have the natural right GL(Wj)-action on
N (k, Wp). The quotient stack is denoted by B(W., P.). We have the natural isomorphism J, : B(W., P)x X —
AW, P). From ¢ : p;;, Ox — Vo, we obtain the morphism Z(V.,¢) : Uy — B(W., P.). Note that the

composite of Z(V., ¢)x and Jy, is same as U(V., ¢). Therefore, we have the following commutative diagram:
UyxX —— B(W,P)xX —— A(W,P)
UxX —— B(W) x X —_— A(W)

Thus, we obtain the following commutative diagram:

FyLusk (V) Lpw.)/k <—;1 Ob% (V)

I I [

Ly, wl=1] «——— E(V., )" Law..py/sw)[-1] —=— ObZ(V,, )
Lemma 5.12 The morphism 7o is isomorphic.

Proof The complex brei(V., @) is quasi isomorphic to (Hom(Vy,0) — Hom(V_1,0)), where the first term

stands at the degree 0. And the degree O-part of the morphism hrei(V., ¢)<1 — Z(V, E)QLB(W’P)/B(W.) ~
Hom(Vy, O) is given by the identity of Hom(Vp, O). Hence, the claim can be shown as in Lemma 5.2. 1

5.3.4 Preparation for Proposition 6.23

We have the morphism of the complexes f: gre1(V., 9) — Op,x x given as follows:

Hom(Fyx Vo, pir, Po) ® Hom(Fyx V_1,pr;,P-1) — Ouvyxx, (ag,a-1) — tr(qbo o a,o) + tr(¢_1 o a_l)

It is easy to check that the following diagram is commutative:

grel(‘/‘vg)[_l] - g(V)

| o

Ov, xx[—1] 4, Ov, xx[—1]
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It induces the following commutative diagram:

Oba(V.,d)[-1] ——  Ob(V)

l l (100)

Ov,xx[—1]  —— Ou,xx[—1]

5.4 Relative Obstruction Theory for Reduced L-Section
5.4.1 Construction of the complex

We use the notation in the subsubsection 5.3.1. The weight (—1)-action of G,, on P; induces the G,,-action
on Y;(W,P) (i = 0,1,2) and Y(W., P.). The quotient stacks are denoted by Y;(W.,[P]) (i = 0,1,2) and
Y (W.,[P]). We have the morphism 73 : Y (W.,[P]) — Xg,, induced by Y (W., P) — X.

Let Us be a stack with a morphism F3 : Us — U and a reduced L-section [¢] : p;, (L)@p% (M) — F3 x (E),
where M denotes a line bundle on Us. Let @5 : Us — Spec(k)g,, denote the classifying map for M.

Notation 5.13 When we have a map g : Us — T, then ®p; induces the morphism Us — T X Spec(k)g,,,,
which is denoted by gar in the following argument. |

We assume that we have a morphism of complexes [¢.] = ([5_1], [50]) L pp, (P) @ ps M — F§y(V.) which
gives [¢] in the cohomology level. Such a map [56] is called a lift of [¢]. We put as follows:

ga(V., [8]) = Hom (p}y P. @ pix M, FiV.)"

We have the naturally induced morphism v[¢.] : gl (V.. [¢])[—1] — ¢'(V.) and ~[¢.]<1 : ¢'(V.,[¢])[—1]<1 —
g'(V)<1. -

We have the classifying map ®(V.,[¢]) : U3 x X — Y(W.,[P]). We consider the trivial G,,-actions on
U x X, Y(W) and X, and the quotient stacks are denoted by (U x X)g,,, Y (W.)q,, and X¢,, respectively.
Then, we have the following commutative diagram:

Usx x 20Dy woip) —— Xe,

- o |

UxX)g, —— YW)ag

- XGm

The composite w30 P(V., [5]) is same as ®(F3 x V). The following lemma can be shown by the same argument
as the proof of Lemma 5.8.

Lemma 5.14 ®(V., [¢.])* Ly w. [p})/xe,. is expressed by the complex Cone(y[p.]<1). |
We put g'(V,, [&5]) = Cone(’y[g.]). Then we obtain the following commutative diagram:

(V) —— BV Ly e, sxe, —— FixarlwxX)on /Xen

! ! !

g(V,[p]) — (V.,0.) Lyw. p)/xs,, — Ly,xx/xc,,

We remark FZ;X,ML(UXX)GM/XGM and q)(FZ;FXV)ijY(W-)Gm /X, are naturally isomorphic to F;X’MLUXx/X

and <I>(F§ XV.)*Ly(W‘) /x> respectively. Then, we obtain the following morphism of the distinguished triangles
on Us x X:

g(V) — (V. [0) ——  ga(Vile) —— g(V)]

! l l l

FixLwxx)a,, /Xa,, — Lusxx/xa,, — Lusxx/wxx)a,, — F5xLwxx)a,, /Xa,, [1]-
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We put Ob., (V. [¢]) = Rpx « (9 (V,, [(75])) Then we obtain the following diagram on Us:

Obrel( [5])[_1] E— LUg/Ucm [_1]

l l (101)

Ob(V)) — FiyLug, v — FiyLue, v

We obtain the morphism Ob, (V. [(E]) [~1] — F3 Ly, ju, by taking the composite of the morphisms in the
diagram above. We put as follows

Obya(V,,[6]) := Cone(Obl(V,, [¢]) — F3arLue,, w1])[=1]:
We obtain the following morphism of the distinguished triangles:

F;,MLUGm/U — Obrel(Vv[g]) - Obrel(v [5]) - Fg,MLUGm/U[l]

! ! ! !

Fyylog,, v ——  Luyv —— Loyuvs, —— Fiylue, ol
Therefore, we obtain the following commutative diagram on Us:
Obyar(V, [¢])[~1] —— Ob(V))
obrd(v,,[&)l l (102)

Ly, ul-1 —— FiLy.
Lemma 5.15 The diagram (102) depends only on (E,[¢]).

Proof By an argument similar to the proof of Lemma 5.9, we can show that the diagram (101) is independent
of a choice of (V.,[P],[¢]). Then the diagram (102) is also independent. 1

5.4.2 Relative obstruction property

For any U-scheme g : T'— U, let F(T) denote the set of the reduced L-sections of g% E. Thus, we obtain the
functor of the category of U-schemes to the category of sets. The functor is representable by a scheme M[L]. Let
7 : M[L] — U denote the projection. We have the line bundle Z on M L], and the universal reduced L-section
(0] : pXT @Dy L — mx E over M[L] x X. Assume that we have a locally free resolution P. of L for which we

have a lift [¢] : p PxZ@py P — mx V. of [¢]. Then, we obtain the morphism obrey (V, [&5]) : Obyar (V, [(E]) —

Lr)u- We also have the complex Obl,, (V. [5]) and the morphism Ob, (V. [5]) — Lyz)/ve,, -
Let M(L) be as in the subsubsection 5.3. 2 It is easy to observe that M (L) is isomorphic to Z*. We have
the smooth projection 7o : M (L) — M|[L]. The pull back of [¢] via 73 x is denoted by ¢.

Lemma 5.16 We have the following commutative diagram:

Obrel( [%]) ; Obrel(‘/v %)

l l (103)

w3 Lainive, —— Luww

Proof We have the following commutative diagram:

M(L) x X Y(W.,P) —— YW) —— X

l l l l

ML x x 2y p) s YW, ——— Xe

(V.,0)
—_—
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Therefore, we obtain the following:

Larnyxx/uxx — () Lyw. pyyw) ——  galV, )
dl dl dl
T3 x Lmi)xx/uxxa,, ——— @) Ly w (p)y/y e, —— 75 x8a(V[4])
Then the claim is clear. |
We have the morphisms Obye (V,, qg) — Lyny/v — Ly i), where the latter is the projection.
Lemma 5.17 We have the commutative diagram:
75 Obrat(V-, [9]) —— Obra(V.,8) —— Lusqwy/miy — 73 Obra (V.. [S)[1]
! 1 | l o
w5 Ly —— Lumwyw —— Lavwym) —— ™ Lol
In particular, 75 Obye(V., [(;NS]) ~ COHE(Obrel(V7 [g]) — LM(L)/M[L])'

Proof Let F3 7 denote the morphism M[L] — Ug,,, induced by Z. Then we have the following isomorphism
of the distinguished triangles on M (L):

s Lyinyv — T Lmnyve, — ™5 rLlue, julll —— 75 Ly oll]

- | | -| (105)

5Ly ——  Lv@yyuv —— Luwymry  ——— TLayoll]
We obtain (104) from (103) and (105). |

Lemma 5.18 obya(V, [5]) gives a relative obstruction theory for M[L] over U.

Proof The complex Ly (z)/az) is quasi isomorphic to the 0-th cohomology sheaf, and we know that ob,ei(V, (5)
gives the obstruction theory for M (L) over U (Lemma 5.10). Then, the claim of the lemma follows from the
diagram (104). 1

5.4.3 Preparation for the obstruction theory of Master space

We will use the notation in the subsubsections 5.4.1 and 5.1.3. We have the weight (—1)-action of G, on Ox.
It induces the Gy,-action on A(W., P.). The quotient stack is denoted by A(W.,[P]). We have the induced
morphism Ty : Y(W., [P]) — AW, [P]). From (Fy V., [¢]) on Us x X and [t], we obtain the morphism

(@] : Pir,Ox @ px M — F3 V. We put b (V. [@]) == Hom (pj;, Ox ® pi M, *XV.)V. We have the induced

map Y([8]) : bl (V., [¢])[=1] — b(V.), and y([#])<1 : by (V., [B])[-1] <1 — b(V))<1. B
We put U (V. [ ]) =Ty o @V, [qb]), which give the classifying map of the tuple (F% pVo,[¢]). Then,
U(V,[¢])*L A(W.[P])/Xe,, is expressed by the complex Cone(7y([¢])<1), and the naturally defined morphism

Cone(v([¢])<1) — Cone(y([¢.])<1) expresses U(V., [6.])* Lacw (p))/xe, — @V, [0)) Ly w (p))/xc,, -
We put b/(V., ¢) := Cone(y([¢])). Then, we obtain the following commutative diagram:

b (V. [6) —— ¢(V,[é]) —— Luyxx/xo,

I | I

bvV) —— g(V)) —— FixLuxx/x



We put ObLS (V. [¢]) := Rpx « (. (V. [¢]) ® wx). Then, we have the following diagram on Us:

rel

Luy jug,, [=1] «——— Obia(V,[8])[~1] «——— Ob.§(V., [¢])[~1]

rel

1 | | 100
FiLyj —+~——  Ob(V)  ———  Ob%(V)

We obtain the composite Ob'§(V, [¢]) — Lu,ve,, — FiaLue,, ull]- Let Ob%,(V.,[#]) denote the cone of

rel rel
the morphism. Then, we obtain the following diagram:

Ly, ju[—1] «——— Obra(V.,[9])[-1] «——— Ob&(V., [4])[-1]

1 1 1 o

FiLyjy +«——— Ob(V) — Ob% (V)

Now, we assume the condition (C) in the subsubsection 5.1.3. We have the weight (—1)-action of G, on
the one dimensional vector space k. It induces the G,,-action on B(W., P.). The quotient stack is denoted
by B(W.,[P]). Similarly, we obtain A(W.,[P]) from A(W.,P.). We have the natural isomorphism J; :

B(W.,[P]) x X — A(W.,[P]). From [¢] : px M ® p};,Ox — Vi, we obtain the morphism Z(V., [¢]) : Us —

B(W.,[P]). Note that the composite of Z(V.,[¢])x and Jjz) is same as W(V.,[§]). Therefore, we have the
following commutative diagram:

Usx X ——— B(W.,[P))xX —— AW, [P])

! ! !

(UXX)Gm E— (B(W)XX)G E— A(W)G

m
m

Therefore, we obtain the following commutative diagram:

F:;FaMLUan/kcm, (D(V)?(\JLB(W)GM/ICG"L — ObG(V)

Lu,jve,, [-1] —— E(V,[8)*Lew..ip))/ W), [-1] —— Ob.S(V.,[¢])
The following lemma is similar to Lemma 5.12.

Lemma 5.19 The morphism 74 is isomorphic. |

By the standard modification, we obtain the following commutative diagram:
Filyyp ——— (V)" Lpw.)/k — ObG(V.)
T T T (108)
Ly yu[=1] ——— E(V,[8)* Lw. (/s [=1] ——— Obg(V., [d])[-1]
The following lemma immediately follows from the previous lemma.

Lemma 5.20 The morphism T3 is isomorphic. |

5.4.4 Preparation for Proposition 6.23

We use the notation in the subsubsection 5.4.1. As a preparation for the proof of Proposition 6.23, let us see
/

the morphism ¢; : Ob, (V. [¢]) — F3 Ly, su on Us, more closely. We recall ®(V, [¢])*Ly(W_7[p_])/y(W_)Gm ~

8.a(V, [9]) <0-
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Lemma 5.21 We have the following commutative diagram:

(V[ Ly w. . p)y/y(wWye,, — @ xV)uLyw)e,, /v w)lll]

T | I-
LoV, [8]) - @

Here, the morphism §' is given as follows:

Hom(F5 x Vo, piPo@pikM)®Hom(F; xVo, pirPo@pxM) — O, (ag,a_1) — tr([¢o]oa) +tr([¢_1]oa_1).
Proof It follows from Corollary 2.15. |

The morphism §' induces the following morphisms:

Ob;el(Vv [¢]) = RpX * (grel(Va [(b]) & WX) — RpX * (p;}ng) — OU3~

It is easy to check that the composite is same as ;.

5.5 Relative Obstruction Theory for Parabolic Structure
5.5.1 Construction of the complex

We use the notation in the subsubsection 5.1.1. Let Fy : Uy — U be a morphism, and let F, be a quasi-
parabolic structure of F ¢ E at D. We denote the kernel of Fj Vo p — Cokj—1(E) by Vgl). Since the
smoothness of D is assumed, V[()h) are locally free. The filtered vector bundle Vg) 2 V[(f) >:+D V[()lﬂ) is

denoted by V.

We put W := Wy and WD .= W_,. Let W (h = 2,...,1) be vector spaces over k such that
dim W™ = rank Vl()h). Let D be a smooth divisor of X. We denote W @ Op and W; ® Op by W; p and Wl()h)
respectively. We have the natural right GL(W.)-action on N(W_; p, Wy p) given by (go,g-1)-f = gal ofog_1.
The quotient stack is denoted by Y (W.). Similarly, we have the natural right GL(W ")) x GL(W ("*+1))-action on
NWIHD Wy given by (g, gh+D). f = g 1o fog(h+1) Thus we obtain the right [T} GL(W®)-action
on [Ty N(WYHY W), where the latter fiber product is taken over D. The quotient stack is denoted by
Yp(W.,W*). The composition of the morphisms induce the map Hilzl N(Wgﬂrl), éh)) — N(W_1p,Wop).
It induce the morphism Yp(W., W*) — Yp(W.).

We have the classifying map ®p(V., Fy) : Uy x D — Yp(W.,W*) over D obtained from the tuple V5. We
also have the classifying map ®(V,p) : U x D — Yp(W.). Thus, we obtain the following diagram on Uy x D:

Ly,xp/p +—— ®p(V,,F.)"Ly,(w..w=)/D

I [

FipLluxp/p (I)(FID(V-\D))*LYD(W.)/D-

We use the notation in the subsubsection 2.1.5. We put gp(V., Fy) := C1(V}5, V)V [—1] and gret(V., Fi) ==
Cao(V5, Vi)Y [=1]. We also put g(V.p) := Hom(V.p,V,p)¥[—-1]. We have the morphism vp : g(Vp) —
gp(V., F,) induced by ¢ given in 19. It is easy to see that g,e1(V, Fy) is quasi isomorphic to Cone(vp).

By an argument explained in the subsubsection 2.3.2, we can show that ®p(V., Fi)* Ly, w. w+)/p and
®(Vp)* Ly, w.)/p are expressed by gp(V., Fi)<1 and g(V,p)<1. Under the identification, the natural mor-
phism ®p(V., F\)* Ly, w.,w+y;p — ®(V.| p)* Ly, w.)/p is given by the restriction yp<i. Then we obtain the
following commutative diagram:

o(Vip) —— o(Vip)<n —— FiLyu

l l |

op(V.,F.) —— gp(V.,F.)<1 —— Ly,
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Then we obtain the following morphism of the distinguished triangles on Uy:
gVip) —— op(V,F) —— ga(Vp, Fv) ——  g(Vp)[1]
FixLyxx/x —— Lu,xx/x —— Lu,xxjuxx —— FixLuxx/x

Let wp denote the dualizing complex of D. We put Obye1(V., Fy) := Rpp « (gre1 (V., Fi)®wp) and Ob(V,| p) :=
Rpp « (g(V. D) ® wD). Then, we obtain the following commutative diagram:

Obee (V., F)[-1] —— Ly, u[-1]

| | (109)

ob(V.
Ob(Vyp) 2L pep .

We have the following exact sequence of complexes:
0—g(V)®w—g(V)®w(D) — g(Vip) ®wp[l] — 0.

Thus we obtain the morphism Rpp.(g(V.p) ® wp) — Rpx «(a(V.) ® wx), that is, n : Ob(V,p) — Ob(V.).
We have the morphism ob(V.) : Ob(V.) — Ly, and hence the composite ob(V.) on: Ob(V,p) — Ly. On the
other hand, we have the morphism ob(V,|p) in the diagram (109).

Lemma 5.22 Two morphisms ob(V.) on and ob(V.|p) are same in the derived category.

Proof It is easy to observe that g(V.,p) — ®(V.,p)*Lyxp/p is the restriction of g(V.) — @®(V.)*Lyx x/x to
D. Then the coincidence ob(V.) o = ob(Vp.) follows from the compatibility of of the traces for wx and wp.
(See [1], for example). |

Thus, we obtain the following commutative diagram:
Obrel(V., Fy)[-1] —— Ob(V,p) —— Ob(V.)
obrel(V.,F*)l l l (110)
Ly,yvl-1]  ——— FiLyj — FiLyp.
The following lemma can be shown by an argument to use the filtered objects as in the proof of Lemma 5.1.

Lemma 5.23 The diagram (110) depends only on (E, F.(E)). 1

5.5.2 Relative obstruction property

For any U-scheme g : T — U, let F/(T') denote the set of the parabolic structure of g% E of a fixed type. Thus,
we obtain the functor of the category of U-schemes to the category of sets. It is easy to see that the functor F
is representable by a scheme M via the method of the quot schemes.

Let m : M — U denote the projection. On M x X, we have the universal parabolic structure F}* of
7% E. From the resolution V. and F, we obtain the complex Ob,e(V., F) and the morphism ob,e(V., F) :
Obrel(V,Ff) — LM/U-

Lemma 5.24 ob,q(V., FY) gives an obstruction theory of M over U.

Proof It follows from Lemma 2.41. Note that g,e1(V., F*) is naturally isomorphic as the complex considered
there. |
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5.5.3 The decomposition into the trace-free part and the diagonal part

Lemma 5.25 The morphism Obye(V, Fi)[—1] — Ob(V.) factors through the trace free part Ob°(V.).
Proof We have the trace map tr: gp(V., Fi) — Op[—1] given as follows:
l . .
DHom(V V) — 0. (f)— D ()
i=1

We also have the map i : Op[—1] — gp(V, F) given as follows:

l
O — @PHom(V V), t— (t-idyw,0,...,0,~t-idyasn).

i=1

We put g3, (V., F.) := Ker(tr) and g5 (V., F.) := Im(i). We also have the decomposition g(V.|p) = g°(V,p) ®
g%(V,|p) as in the subsubsection 5.1.2. We have the following commutative diagrams:

o] —— 0O[-1 g(Vip) —— op(V,, F.)
§(Vip) —— en(V, Fy) O] —— O[-1

Therefore, the decomposition is compatible with g(V.;p) — gp(V., Fy). It follows from gre1(V., Fi)[—-1] —
a(V,p) factors through g°(V,p). Therefore, Ob,ei(V, Fi)[—1] — Ob(V,p) factors through Ob°(V,p). It is
easy to see that the morphism Ob(V,p) — Ob(V.) is compatible with the decomposition into the trace-free
part and the diagonal part. Thus we are done. |

As an immediate corollary, we obtain the decomposition of the cone:

Cone(Obrel(V., F) — Ob(v.)) ~ Cone(Obrel(V., F) — Ob"(V.)) @ Ob,, (V) (111)

rel

5.6 Obstruction Theory for Moduli Stacks of Stable Objects
5.6.1 Relative complexes

Let y be an element of H*(X). Let y be an element of 7ype whose H*(X)-component is y. Let M(m,y) be
the open subset of M(y) determined by the condition O,,. We have the natural morphism p; : M(m,y) —
M(m,y). On M(m,y) x X, we have the universal sheaf p} " over M(m,y) x X with the parabolic structure
F* at D. From the resolution V. of £%(m) and the parabolic structure F', we obtain the complex Ob,e(V., Fy)
and the morphism:

obre1(m, Y) : Obrer(m, ¥) — L Aq(m,y)/ M(m,y)

Let M(m,y, L) denote the open subset of M(y, L) determined by the condition O,,. The natural morphism
M(m,y, L) — M(m,y) is denoted by pa. We have the universal L-section ¢ of p} E*. It induces the L(m)-
section of p E¥(m), which is also denoted by ¢*. We fix an inclusion ¢ : O(—m) — L. If m is sufficiently
large, we may assume that L(m) has a locally free resolution P. = (P_1 — Fy) such that P, is a direct sum of
some Ox. Since we have the isomorphism px . (£%(m)) ~ px «(Vo), the L(m)-section ¢ is canonically lifted to
the morphism QNS?‘ : pj\/t(m7y7L)P. — p5 V.. Then we obtain the morphism:

Obrel(ma Y, L) : Obyel (mv Y, L) I LM(m,y,L)/M(m,y)
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Let M(m,y,[L]) denote the open subset of M(y,[L]) determined by the condition O,,. The natural mor-
phism M(m,y,[L]) — M(m,y) is denoted by p3. Then we have the universal reduced [L]-section [¢“] of
pi & over M(m,y,[L]) x X. As before, we obtain the morphism:

Obrel (m7 Y, [L]) : Obrel (ma Y, [L]) — LM(m,y,[L])//\/l(m,y)~

Let M(m,y) denote the open subset of M(y) determined by the condition O,,. The natural morphism
M(m,y) — M(m,y) is denoted by p4. Then we have the universal orientation p* of pj} €™ over M(m,q) x X.
From the resolution V. and the orientation p*, we obtain the morphism:

Obrel(mvg) : ObYEI(m’ 27) - LM(m,@\)/M(m,y)

5.6.2 Construction of the complexes and the morphisms

We have the naturally defined morphisms of M(m,y, [L]) to M(m,y), M(m,y), M(m,y,[L]) and M(m,7).
The pull back of the complexes Ob(m,y), Obye(m,y), Obyer(m,y, [L]) and Obyel(m,y) are denoted by the

~

same notation. Then, we put as follows on M(m, g, [L]):

Ob(m,y,[L]) = Cone(Obrel(m, 9)[—1] ® Obyer (m, y, [L])[-1] @ Obyer (m, y)[~1] — Ob(m, y))

Proposition 5.26 We have the naturally defined morphism ob(m,y, [L]) : Ob(m, ¥y, [L]) — L pq(m,g,[L))-

Proof We put C := Oby,e (m, ﬁ) @ Obyel (m, Y, [L]) @ Obyel (m, y) Due to the diagrams (94), (102) and (110),
we have the following commutative diagram:

Cl-1) ——  Ob(V)
L p(m g, 1L0) / M(map [=1 —— Lamim,y) /k
It induces the desired morphism. |
Similarly, on the moduli stack M(m,y, L), we put as follows:

Ob(m,y,L) := Cone(Obrel(m, y, L)[~1] & Obyer (m, y)[-1] — Ob(m,y)).

By using the sequence of the morphisms, M(m,y, L) — M(m,y) — M (m,y), we obtain the morphism:
ob(m, vy, L) : Ob(m, Yy, L) — LM(m7y,L)/k-

We put as follows on the moduli M(m, y):
Ob(ma g) := Cone (Obrel(m7 @\)[_1] D Obrel(ma y)[_l] - Ob(mv y)) :

Then we obtain the morphism ob (m, @) : Ob(m, @) — Lat(m.g)/k-
Let L = (L1, La) be a tuple of line bundles on X. We put as follows, on M(m,y, [L]):

Ob(m, 3, [L]) = Cone(Obrel(m,ﬁ)[—l] ® Obya(m, y)[—1] & @ Obar(m, y, [Li))[-1]. — Ob(m,y)).
i=1,2

Then we obtain the morphism ob(m7 Y, [L]) : Ob(m7 v, [L]) — LA (m,g,[L]) /-
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5.6.3 Obstruction theory of the quot scheme and the moduli stacks

Let Q°(m, ¥y, [L]) be as in the subsubsection 3.6.7. Let 7 : @°(m, y, [L]) — M (m, ¥y, [L]) denote the projection.
On Q°(m,y, [L]), we put as follows:

Ob2(m, 3, [L]) := Cone (w* Obyet(m, §) ® 7 Obyer(m, y, [L]) & 7 Obyer(m, ) — Ob(V_1, f))

Then we obtain the morphism on(m,@, [L]) : ObQ(m,@, [L]) — L@o(m,g,/L])/x Dy an argument as in the
subsubsection 5.6.2.

Proposition 5.27 The morphism on(m,ﬂ, [L]) gives an obstruction theory of Q°(m,y, [L]).
Proof It follows from Proposition 2.38, Remark 2.40, Lemma 5.24, 5.18, and Lemma 5.7. |
Proposition 5.28 The morphism ob(m,y, [L]) gives an obstruction theory of M(m,y,[L]) over k.

Proof We have 7*H'(Ob(m, 3, [L])) ~ H(Ob%(m, 3, [L])) for i < 0. We also have the following diagram from
Lemma 5.3 and the construction of the complexes:

m™H°(Ob(m, ¥, [L])) —— HO(ObQ(m,@, [L])) —— Hom(V',V') —— 7*H'(Ob(m, ¥, [L]))

T H(Lpi(m g iz)ye) — H(Lgomg L) —— Hom(V', V') ——— 7 H (L pt(m.g,1L1)/k)
We also remark that Hl (ObQ(m, Yy, [L])) = Hl (LQO(m,y7[L])/k) =0 and Hil(LQ(m)/M(m)) =0. Therefore, the
claim follows from Proposition 5.27. |
By a similar argument, we obtain the following:

~

Proposition 5.29 ob(m,y, L), ob(m,y) and ob(m,y, [L]) give obstruction theories of M(m,y, L), M(m,y)
and M(m, ¥y, [L]) respectively. |

5.6.4 Obstruction theory of the moduli stacks of stable objects

Let a, be a system of weight, and let § be an element of PP". Take a sufficiently large integer m. Then
M*(y, [L], i, 8) is the open substack of M(m, g, [L]).

Proposition 5.30 The restriction of ob(m, Y, [L]) gives an obstruction theory of M*(y,[L],d, ). It is inde-
pendent of a choice of m.

Proof The first claim follows from Proposition 5.28. The second claim follows from Lemma 5.5, Lemma 5.15
and Lemma 5.23. |

By the same argument, we can show the following proposition:

Proposition 5.31 Let y be an element of Type. Let o, be a system of weights. We take a large integer m
appropriately in the following claims.

o The morphism ob(m,y) : Ob(m,yY) — L (g,a.)/k gives an obstruction theory.

o Let § be an element of PP, The morphism ob(m,y,L) :Ob(m,y, L) — Lgs(y,1,a.,6) gives an obstruc-
tion theory.

o Let & = (61,02) be an element of P*. The morphism ob(m,y,[L]) : Ob(m,y, [L]) — Lt (g,[L],0..6)/k
gives an obstruction theory.
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5.7 Obstruction Theory for the Enhanced Master Space and the Related Stacks
5.7.1 The enhanced master space

Take a sufficiently large number m. We put N := H,(m). We take an N-dimensional vector space V,,. We
put P, := P(V,}). We put Z; := P(Op,,(0) ® Op,, (1)) over P,,. We have the natural right GL(V,,)-action
on Zy = Zy x Flag(V,,, N), where Flag(V,,,, N) denotes the full flag variety of V;,, as in (54). The quotient
stack is denoted by Q. The quotient stack (Prm)cL(v,,) is same as B(W., [P]) in the subsubsection 5.4.3, when
Wo = V,,. So we use the notation.

Let us fix an inclusion ¢ : O(—m) — L. Since reduced L-sections induce O(—m)-sections, we obtain

the morphism Z(V.,[¢]) : M(m,y,[L]) — B(W.,[P]). For simplicity of the notation, we use ¥; instead of
=V, [¢]). We use the following lemma in the construction of the deformation theory of the enhanced master
space.

Lemma 5.32 We have the morphism ¢ : WiLpwy. [p])/x — Ob(m,@, [L]) such that the composite of ¢ and
ob(m,ﬂ, [L]) is same as the naturally defined morphism Vi Lpw. p.))/k — Laimg, L)) /k-

Proof Recall the complexes Ob®(V.) and Obrel( ,[¢]) constructed in the subsubsection 5.1.3 and the subsub-
section 5.4.3 respectively. We put Ob%(V., [¢]) = Cone(Obrel(V [¢])[~1] — Ob®(V)). Then we obtain the
following commutative diagram from (107) and (108):

| l

Vilpw. Pk — Lmmg.L)/n
It is easy to show that ¢ is isomorphic due to Lemma 5.2 and Lemma 5.20. |

The fiber product M(m,y, [L]) X gw.,[p]) Q is denoted by N. By construction, the enhanced master space

M is an open subset ~of N. The induced morphism N — Q is denoted by Wy. Let p denote the naturally
defined morphism of M to M(m,y,[L]). Then we obtain the following morphism of the distinguished triangles

on M:
Vs LQ/B(W [P])[ ] —— P Lpw. Pk — \IISLQ/k - \IJSLQ/B(W.,[P.])

| | | I a12)

LJ\?/M(m B,[L]) [_1] — P Lam(mg.[L)/k ’ Lﬁ/k ’ LM/M(m 4,[L])
From Lemma 5.32 and the diagram (112), we obtain the morphism ¥} LQ/B(W [P])[ 1] — p* Ob(m, y, [L]).
The cone is denoted by Ob(M ) We have the induced morphism ob(M ) Ob(M ) — Lz

Proposition 5.33 The morphism ob(]/W\) gives an obstruction theory of the master space M.

Proof We put M := M(m,y,[L]). By construction, we have the following morphism of distinguished triangles:

Lz jadl—1] —— p* Ob(m,§,[L]) —— Ob(M) —— Ly .,
| | | | (113)
LX/I\/M[_l] —_— P Lk —_— LJ/W\/k —_— LX/I\/M
Then the claim follows from Proposition 5.28. |
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5.7.2 The substack M*
We have the natural GL(V,,)-action on V,* x Flag(V,,, N). The quotient stack is denoted by Q*. We put

B(W., P.) := (V;,)aL(v,,)- We have the natural morphism Q* — B(W., P) which is a full flag bundle. Since
V.» naturally gives the open subset Z; — ]P’(OP(O)) U ]P’(Op(l)) of Zy, the stack O naturally gives the open

subset of Q. - P .
Recall that we put M* = M — (M1 U Mg) (the subsection 4.3). The stack M* is an open subset of

M(m,y, L) Xgw.,p) o* by construction. We have the commutative diagrams:

M* Pl O Vils.pw. pyl—1 —— p3¥iLlpaw., p)
9| | ~| gl
M(m,§,L) —22 B(W.,P) Lz jmgmg.y 1 —— P3Lmimg.p)

Lemma 5.34 ¢ factors through p3 Ob(m,y, L).

Proof Recall the complexes Ob%(V.) and QbG (V.,$) constructed in the subsubsection 5.1.3 and the subsub-

rel ™
section 5.3.3, respectively. We put Ob%(V., ¢) := Cone(Ob%,(V., ¢)[~1] — Ob%(V.)). We obtain the following
commutative diagram on M(m,y, L):

ObY(V.,¢) —— Ob(m,y,L)
<P2l l
VsLpw,pyk — Lammy,L)
It is easy to show ¢ is isomorphic by using Lemma 5.2 and Lemma 5.12. |

Since ¢ factors through Ob(m, y, L), we obtain the morphism \IIZLQ/B(WP)[—l] — Ob(m,y, L). The cone
is denoted by Ob(M*). Then we obtain the morphism ob(M*) : Ob(M*) — L.

—

Lemma 5.35 There exists the quasi isomorphism u : Ob(J/W\) — Ob(ﬁ*) such that ob(J/W\*) ou = ob(M).

|M*

Proof Let m; denote the natural morphism M(m, 3, L) — M(m,§,[L]). By construction of Ob%(V.,[¢])
and Ob%(V., ¢), we have the following commutative diagram on M (m, g, L):

S5 Lpwpyr —— Ob(V,¢) ——— Ob(m,g,L)

¢1T ¢2T ¢3T (114)

T ®ILB(w,P])/k —=— 71 ObY(V,[¢]) —— 7} Ob(m, 7, [L])

Moreover, the induced morphisms Cone(¢2) — Cone(v);) (i = 1,3) are isomorphisms. Hence, we obtain the
following commutative diagram on M *:

Vils. pow.pyl—l] —— p3¥iLlpw,p) —— p30b(m, Y, L) —— p5Lrq(mg,1)

o] o] o] 1

Vils. g eyl —— " ¥iLlpw,p) —— p"Ob(m, ¥, [L]) —— p"Lat(m,g.[1)

Moreover, the induced morphisms Cone(u;) — Cone(ug) — Cone(us) are quasi isomorphic. Then the claim
of the lemma is clear. |
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We have another description of Ob(]\//f*). When V;,, = Wy, we have B(W.) := Spec(k)ar(v,,)- We put
F :=Flag(V,,, N )GL(V,,)- We have the following commutative diagram:

]/\Z* é* I F

.| | ! o

M(m,§,L) ——~ B(W.,P) —2— B(W.)

Then, we have the isomorphism WiLs. 5y py =~ Vil'T Lz gy, We also obtain the following morphisms:
UslsLpow) —— Y3Lpw.,p) — Ob(m,y, L)

Therefore, we obtain the morphism a : ViI'{ Lz, 5y ) [=1] — p3 Ob(m, ¥, L). We naturally obtain the follow-
ing quasi-isomorphism: .
Cone(a) ~ Ob(M™) (116)
5.7.3 The moduli stack M(m, 3, [L])
Let M(m, g, [L]) be the moduli stack of the tuple (E,, p, [¢], F) as follows:
o (E.,p,[4]) is an oriented reduced L-Bradlow pair of type y, satisfying the condition O,,.
o Fis a full flag of H°(X, E(m)).

By an argument in the subsubsection 5.7.1, we can obtain the obstruction theory of M (m,y,[L]). We also
use the notation M and M to denote M(m,y,[L]) and M(m,¥y, [L]), respectively. When V,, = Wy, we have
B(W.) := Spec(k)ar(v,,)- We also put I := Flag(Vyn)ar(v,,). The following diagram is Cartesian:

F
d |
M(m. g, [L]) = B(W)
Then, we obtain the following morphism of distinguished triangles on M (m,qy,[L]):
Ui Ly g1 —— p1¥Llew) e —— Yilg,, —— Yl pw,

| | l |

 — PIL Ak — Lo — L

L Mk

M/ M [—1] MM

Lemma 5.36 ¢ factors through p; Ob(m, ¥y, [L])
Proof It can be shown by using the complex Ob%(V.) and the argument in the proof of Lemma 5.32. |

Then, we obtain the morphism Wi, L,y ) [—1] — p7 Ob(m, 3, [L]). The cone is denoted by (/)vb(m, v, [L]).
We obtain the natural morphism:

ob(m, g, [L]) : Ob(m,y, [L]) — L % mg.12])

By the same argument as the proof of Proposition 5.33, we can show the following.

Proposition 5.37 gf)(m, 9, [L]) gives an obstruction theory for Mv(m,y, [L]). |
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We have the equivalent obstruction theory. Let Qi denote the quotient stack of P,, x Flag(V, N) via the
natural GL(V,;,)-action. Then, the following diagram is Cartesian:

vl Vi3

M(ma @7 [L]) - A

Then, we have the following diagram on M (m, g, [L]):

VisLo,/pow,pp[—1 —— p1¥iuLpw,p) —— Vislo,k —— YisLo,/Bw,P)

! “| ! !

L/ pml=1 ’ P1La/k Lz ’ L5 m

By an argument similar to the proof of Lemma 5.32, we can show that ¢; factors through p% Ob(m, y, [L]). Let

Oby(m, ¥, [L]) denote the cone of Wi3Lo, pw,p)[—1] — pi Ob(m,¥y,[L]), and then we have the naturally

defined morphism: . N
oby(m, g, [L]) : Oba(m, Y, [L]) — L5, 5.11))

Lemma 5.38 We have the natural quasi isomorphism 1 : Ob(m,y,[L]) — Oba(m,y,[L]) such that the
composite oba(m, Y, [L]) o1 is same as ob(m,y, [L]).

Proof Let V. be the canonical resolution of £“(m) over M(m, g, [L]). We obtain the complexes Ob%().) and
ob%, (v, [5]) by the constructions in the subsubsection 5.1.3 and the subsubsection 5.4.3. Let Ob%(V., [QNS])
denote the cone of the morphism Ob%,(V., [¢])[~1] — Ob%(V.). We have the following commutative diagram
on M(m, ¥y, [L]):

‘I’ikzLB(W) — ObG(V-) ——  Ob(m,¥y)

! l !

Ut Lpw,py —— ObY(V.,[9]) —— Ob(m, 3, [L])

We have the commutative diagram:
M(m7 i/\a [L]) ? Ql —_— F
M(m,y,[L]) —— BW,[P]) —— B(W)
We obtain the following diagram on M (m, 9, [L]):

VisLo,/pw,ippl—1 —— piVLpw,p) — p1Ob(m, ¥, [L]) —— pILat(m,g, (1)

dl I I I

Vi Ls powy—1]  —— piVLLpw) —— p1Ob(m, ¥, [L]) —— PILmimg, L)
Then, the claim is clear. |

Recall that the moduli stack M? (9, [L], v, (6, 0)) of (8, £)-stable objects is the open substack of ./T/l/(m, v, [L).
By restricting ob(m, ¥, [L]), we obtain the obstruction theory of M®* (g, [L], a, (6, £)).
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5.7.4 The moduli stack M(m,y,L)
Let Mv(m, y, L) be the moduli stack of the tuple (E., ¢, F) as follows:
e (E,,¢) is an L-Bradlow pair of type y, satisfying the condition O,,.
o Fis a full flag of H°(X, E(m)).
We use the notation in the subsubsection 5.7.3. We have the following Cartesian diagram:

Mv(m,y7L) _Tu

F
n |
M(m,y, L) = B(W))
By using the construction in the subsubsection 5.7.3, we obtain the obstruction theory:

86(m7y7 L) : /O\E(m7ya L) - L/’V[v(m,%L)

The moduli stack M** (y,L, o, (5,0)) (the subsubsection 3.3.3) is the open substack of Mv(m,y7L). By
restricting ob(m, y, L), we obtain the obstruction theory of Mo (y, L,a, (9, E))

5.7.5 The moduli stack M*(§, ., +)
Let ./T/l/(m7 y) denote the moduli stack of the objects (E,, F) as follows:

e [, is a parabolic torsion-free sheaf satisfying the condition O,,.

o Fis a full flag of HO(X, E(m)).
We use the same notation in the subsubsection 5.7.3. In this case, we have the following Cartesian diagram:

Wy

M(m,y) —— F
M(m,§) — B(W).
By using the construction in the subsubsection 5.7.3, we obtain the obstruction theory:

ob(m,¥) : Ob(m,§) — L¥mw)

Recall M® (Y, ax, +) denotes the moduli stack of the objects (E,,F) as follows (the subsubsection 4.6.1):
e [, is a parabolic torsion-free sheaf of type y with weight .
o Fis a full flag of HO(X, E(m)).

o (E,, Fiin) is e-semistable reduced O(—m)-Bradlow pair, where € denotes any sufficiently small positive
number.

Since MS(@, au, +) is the open substack of Jq(m7 Y, i), we obtain the obstruction theory of /WS(@, iy +)
by restricting ob(m, y).
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5.7.6 The case where the 2-stability condition is satisfied

Let us construct the obstruction theory of the master space in the case where the 2-stability condition is satisfied
for (y, L, s, d). It can be done by the way given in the subsubsection 5.7.1, so we give only an indication. We
use the notation in the subsubsections 4.7.1 and 5.7.1.

We have the natural GL(V )-action on the P'-bundle P(Op,, (0) ® Op,, (1)) over P,. The quotient stack

is denoted by Q. We have the map ¥y : M(m,y,[L]) — B(W.,[P]), and M is an open substack of
M(m,y, [L]) X aw,p)) Q-
M — Q

d l

M(m,§,[L]) —2— B(W,[P])

We obtain the following morphism of distinguished triangles on M:

Vi Lo/pw,p)l—1] —— »*V5Lpw,p) —— ¥ilo —— V¥iLo,pw,p)

! d ! !

1] —— p"Lymmgy —— Ly —— Ly

L M/ M(m,y,[L])

N/ M(m.g (L) |

Since ¢ factors through p* Ob(m, ¥, [L]) (Lemma 5.32), the morphism ¥iLg,gw,p))[—1] — Ob(m, ¥y, [L]) is

— — —

obtained. The cone is denoted by Ob(M). We have the naturally defined morphism ob(M) : Ob(M) — Ly;.
By an argument similar to the proof of Proposition 5.33, we can show that ob(J/W\ ) gives an obstruction theory
of M.

Recall we put M* := M — My U M,. It is an open substack of M(m, 3, L). We put Ob(M*) := ob(m, ¥, L),
and then we have the obstruction theory ob(M*) : Ob(M*) — L;..

—

Lemma 5.39 There exists the quasi isomorphism u : Ob(J\/J\)lfw\* — Ob(]\?*) such that ob(]\/J\*) ou = ob(M).

Proof We have the commutative diagram:

— Uy

M %, B(W,P)

| !

M(m,§,[L]) —2— B(W,[P)])

From the diagram (114), we obtain the following diagram:
ViLlgw,py —— Ob(m,y,L) —— L
mT uzT usT
TV Lpw,p) —— 7 Ob(m, Y, [L]) —— 7" Lym,g.[L)

Moreover, the induced morphisms Cone(u;) — Cone(ug) — Cone(us) are quasi isomorphic. Then the claim
of the lemma is clear. |
5.7.7 The case of oriented reduced L-Bradlow pairs

Let L = (L1, L2) be a pair of line bundles over X. Let us construct the obstruction theory of the master space
for the moduli stacks of the oriented reduced L-Bradlow pairs, under the setting in the subsubsection 4.7.2. We
give only an indication. We use the notation in the subsubsection 5.7.6.
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We construct the master space M as in the subsubsection 4.7.2. Let us take an inclusion ¢1 : O(=m) — L.
Then the universal reduced Li-section [¢}] induces the reduced Ox-section [¢;]. Therefore, we obtain the

morphism Wy : M(m, ¥y, [L]) — B(W, [P]). By construction, M is an open subset of M(m,y,[L]) X g(w,p)) Q-

M L9
d |

M(m,y, [L]) —— B(W,[P])
We obtain the following morphism of distinguished triangles on M:

UiLo pw,p)—1] —— »*V5Lpaw,p) —— ¥1Q —— ¥iLg/pw,p)

l d l l

1] —— " Lymmgey —— Ly —— Ly

L

N/ Mg M/M(m,g,[L)

By an argument similar to the proof of Lemma 5.32, it can be shown that ¢ factors through p* Ob(m, y, [L]).
Hence we obtain the morphism U3 LQ/B(W [p])[ 1] — Ob(m, ¥y, [L]). The cone is denoted by Ob(M). We have
the naturally defined morphlsm ob(M ) Ob(M ) — Lgz. By an argument similar to the proof of Proposition
5.33, we can show that ob(M ) gives an obstruction theory of M.

Recall we put M*:= M — M; U M,. Tt is an open substack of the moduli stack M(m,y, L1, [L2]). (See the
subsubsection 4.7.2 for M(m,y, L1, [Ls2]).) On M(m,y, L1, [Ls]), we have the following morphism:

Obyer(m, y)[—1] & Obyer(m, y, L1)[~1] & Obyel(m, y, [L2])[~1] @ Obye(m, y)[-1] — Ob(m, y)

The cone is denoted by Ob(m, ¥y, L1,[L2]). As in the subsubsection 5.6.2, we can naturally construct the
morphism ob(m, y, L1, [La]) : Ob(m, ¥y, L1,[L2]) — Lat(m.g,0,,[12])- By an argument similar to the proof of
Proposition 5.30, it can be shown that ob(m, y, L1, [Ls]) gives an obstruction theory.

—

Lemma 5.40 There exists the quasi isomorphism u : Ob(]/W\ — Ob(M\*) such that ob(J/W\*) ou = ob(M).

)|f\4\*

Proof It can be shown by the same argument as the proof of Lemma 5.39. |

5.8 Moduli Theoretic Obstruction Theory of the Fixed Point Set

5.8.1 Statement

Let 7 = (yq, Yo, I I,I5) be a decomposmon type as in Definition 4.33. We use the notation in the subsubsection
4.6.1. We put Mspht = Mo (y1, L, e, (8, ko)) x ./\/lss(yQ, o, +). Recall that we constructed the obstruction

theory Ob(m, y,, L) of Mss (y1, L, o, (8,ko)) (the subsubsection 5.7.4) and the obstruction theory &)(m7y2)

of M?**(Y,, v, +) (the subsubsection 5.7.5). The direct sum Ob(Mspii¢) gives the obstruction theory of Mgpiis.
The affine line Spec k[t] is denoted by A!.

Proposition 5.41 We have the obstruction theory ob(]/W\Gm (7)) : Ob(J/W\Gm (3)) — Lye and the defor-

mation ob(MG (3)) : Ob(MGm( J)) — Ly NiGm (3)x A1 /a1 With the following property:

™ (J)

o We have the following commutative diagram.:
¢50b(M)  —— 5Ly

l l (117)

Ob(M%(3)) —— Lgiam
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o Let SBQ(M\GM (7)) : &)Q(M\Gm (3)) — Ly (3) denote the specialization of BB(M\GM (7)) att = a. At

t =1, we have 6\61(]\/4\6;*“ (J) = ob(J\/J\Gm (3)). Att =0, we have the following commutative diagram in
the diagram (79):
F*ObO(MGm(j)) - F*Lﬁcm(j)

:l :l (118)

G"™ Ob(Mgplie) — G/*L/Wspm

On each a, we have the following distinguished triangle:
G'*Ob(m, yy, L) ——— F*Obg(M%(3)) —— G'*Ob(m,g,) — G'*Ob(m,y,, )[1] (119)
We will prove Proposition 5.41 in the subsubsection 5.8.6, after some preparation.

5.8.2 The moduli stack of split objects with an orientation

We put My := M(m,y,, L) and My = M(m,y,). We put M3 := M; x M.
Let us consider the moduli stack M3 of the objects (E1, Fi «, ¢, B2, Fa ., p) as follows:
o (E1,F14,¢) € My and (Eq, Fy,) € Ma.
e p denotes an orientation of £ & Es.

We have the obstruction theory Ob(M3s) := Ob(m,y;, L) & Ob(m,y,) of M3. The relative obstruction
theory of M\g over M3 is constructed in the standard manner, which we explain in the following. Let 7 :
M3z — M3 denote the projection. We have the universal objects (£}, F}., ¢*) over M1 x X and (£¥, F3.) over
My x X. We also have the canonical resolutions Vv of E¥(m). We denote the induced objects over M\g x X
by the same notation. Then we have the orientation of £ @& £3 over M\3. Therefore, we obtain the following
diagram:

g0V ev?)  —— ) @)

! !

*
deteugen x Lpicxx/x — Lt xx/x

Therefore, we obtain the following:

otV @ V) —— Ob(m,y,, L) @ Ob(m, y,)

l |

detz‘%@f;; Lpie —— L/T/l\s
We put Obrel(/\//\lg//\/’.;g) = Cone(Obd(V.(l) P V.(Z)) — detziu@géu Lpic). We have the natural morphism:
¥ : Obya(Ms/Ms)[~1] — Ob(m,yy, L) & Ob(m, y,) = 7 Ob(Ms)

The cone of v is denoted by Ob(ﬂg,). Then we have the natural morphism Ob(/\//Tg) : Ob(./(./l\;),) — Lz,
We have the following commutative diagram as in the subsubsection 5.2.1:

L.K/l\s — detziu@géu Lpic

I I

ﬂ—*LMs — @(det((‘;{l@g;))*ﬂ'TLM(l) — Obd(]}(l) @V(2))
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Here, m; denotes the projection Pic — M(1). Therefore, we have the following commutative diagram:
Obyet(Ms/M3)[—1] —L— 7* Ob(M3)

Obrcl(-//\-/[\3/M3)l l

Lgym =1 —— mlm

By the same argument as the proof of Lemma 5.7, it can be shown that Obrel(Mg / M3) gives a relative obstruc-
tion theory of Ms over Mj. Therefore, Ob(./\/lg) gives an obstruction theory of M.

5.8.3 The embedding into the moduli stack of non-split objects

We put My := M(m,y,L) and Mo = M(m,y,L). The projection Moy — My is denoted by mp Let V.
denote the canonical resolution of px .€%(m) on Mg x X. We put V) := px Vo = px E¥(m). We have the
naturally defined morphism § : My — Mo. We have the decomposition 5" = £ @ £, f5 V. = V!V @ V&
and f*V) = /(1 ® V'(2 We have the naturally defined projections:

o) — o) @ g?). gV, 6) — (V. ).
Fes(Vip) — (VD) @ VD), Frora (V. ) — gra(W, B D) @ gra (VP R,
They induce the following morphisms:
7 0b(V.) — 0b(V ) & Ob(V?),  §* Obai(V., §) —> Obra(VV), )
7 Ob(Vp) — Ob(V( ) & Ob(V}),  §*Ob(V., F) — Oba (V" F* ) @ Ob,a (WP, F2' @)
Therefore, we obtain the morphism:
g+ §7 Ob(m, y, L) — Ob(m, y,, L) & Ob(m, y,)
Lemma 5.42 The following diagram is commutative:
f* Ob(m,y, L) — " Lm,

l l (120)

Ob(m7 Y1, L) D Ob(m’ y2) - LMS

Proof We take an H, (m)-dimensional vector space Wy = V;,, with a decomposition Wy = Wél) ® Wé2), where
dim Woi) = Hy (m). We also take a (Hy (m) — rank(y))-dimensional vector space W_; with a decomposition
W, =W aw® where dim W) = H, (m) —rank(y,). We put Y (W W) = y () x y (W), we
have the naturally defined morphlsm Y(W.(l), W(2)) — Y (W.). By considering the classifying map of V. and
v g V.(z), we obtain the following commutative diagram:

Mox x 2V, Y (W)

al I

(1) ,(2)
My x X 2V )

By the argument in the subsubsection 2.3.2, we can show that {5 g(V.)<1 — g(V.(l))Sl ® Q(V-(z))gl expresses
the morphism {5 ®(V.)* Ly w.)/x — <I>(V.(1),V.(2))*L
mutative diagram:

YD W@y x- Therefore, we obtain the following com-

P Lmoxx/x % @V) Ly w.y x — g(V)

l | l

Lmsxx/x ‘I’(V(l)aV»(Q))*LY(W_“),W.(”)/X —— sy e g?)
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Therefore, we obtain the following commutative diagram:

f*LMo A f* Ob(m7y)

l l (121)

Lam, +—— Ob(m,y1) @ Ob(m, y2).

Let P. be a locally free resolution of L(m), as in the subsubsection 5.6.1. We put Y(W.(l),W.(Z),P.) =
Y(W(l), P)x Y(W(Q)). Then, we have the naturally defined morphism Y(W.(l), W@, P) — Y(W.,P). Then
we have the following diagram:

Mox X 2009, Y(W.,P)

ol I

(1) ,(2) 2
My x X FOUVED ) e py

Then, we obtain the following commutative diagram:

FeLpoxx/x —— %@V, 0) " Lyw pyx frea(V., 0)

! ! !

Lygxx/x  ——— (I)(V'(l)aV~(2)75)*LY(W_(1)’W_(2),P.) —— g(V.(l),g)EBg(V(z))

It is easy to observe that Rpx.g(V.,¢) ® wx is naturally isomorphic to Ob(m,y,L). Then, we obtain the

following diagram:
f*LMo T f* Ob(ma Y, L)

l l (122)

Lam, +—— Ob(m,yi, L) @ Ob(m, y2)

We have the natural morphism Ob(m,y) — Ob(m,y, L) and Ob(m,y1) ® Ob(m,y2) — Ob(m,y1,L) &
Ob(m,y2). The diagrams (121) and (122) are compatible for the natural morphisms in the sense of the subsub-
section 2.1.4.

We put Vg)(j ) = Ker(VéT}D) — Cokg-i_)1 which are locally free sheaves on M3 x D. Let Vg)* denote the

vector bundle Vg) with the filtration Vg)(l) D Vg)@) <o D Vg)(lﬂ). Similarly, we have the filtered vector
bundle Vj, on My x D.

We put W@OD .= Wo(i) and WO+ — WE? We take vector spaces W@ (i = 2,...,1) with decom-
positions W# = WOM ¢ WO where rank W = rank Vg) and rank W®0) = rank Vg)(j). We use the
notation in the subsubsection 5.5.1. We put Yp(W., WO * W®) .= v, (WM, W) x Yp(W® , W®*), and
YD(W.(I), W(2)) = YD(W.(l)) X YD(W.(2)). We have the naturally defined commutative diagram:

VoW, W) s Yp(W)
YD(W.,W(l)*,W(2)*) - YD(W.(l),W.(z))

By considering the classifying maps of Vj, and (Vj(jl)*, Vg)*), we obtain the following commutative diagram:

MO x D M YD(W,W*) e YD(W)

I I |

MsxD ——— O Yp(W, WO w@s) — ywH w®)
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Therefore, we obtain the following:

fbLsmoxp/p +———— Fp@p(V, F¥') Ly, (w. ,w+y/p +——— @V p) Ly, w.) /D

l l l

. 1 2)\
Lymsxp/p ——  Pily,w. worwe-yp <I>(V_(‘[))€BV_(‘[))) Ly ow® w®y/p

Then, we obtain the following:

foLmoxp/p fpa(V., FY) — fpe(V.p)

l l l

Ltaxop —— gpVV, Fr D) & gp (v, F1®) g ) & gV
We put Obp(V, F*) := Rpp.(s(V.,, F*) @ wp). Similarly, we obtain Obp(V®, F*)). Then, we obtain the
following commutative diagram:
P L, —— 7 Obp(V., F¥) — F Ob(V.p)

l l l

Ly, —— Obp(W )@ 0bp(V?, F1®)) —— 0b(V(p) @ 0b(V ()

We remark that the cone of Ob(V,p) — Ob(V.) @ Obp(V, F\) is naturally isomorphic to Ob(m, y). Thus, we
obtain the following commutative diagram, which is compatible with (121):

f* Ly ——— fr Ob(m, y)
| | (123)
Lam, ——— Ob(m,y,) ® Ob(m, y,)
From (121), (122) and (123), we obtain the desired diagram (120). Thus the proof of Lemma 5.42 is finished. 1

We have the naturally defined morphism ?: /\73 — M\o. By construction of the obstruction theories, we
have the following commutative diagram:

7 Obe(m, §)[~1] —— e Ob(m, y, L)
:l #1l
Obyet(M3/M3)[~1] ——— 7* Ob(m,y,, L) & Ob(m, y,)

Therefore, we obtain the following commutative diagram:
FOb(m,§, L) —"*— Ob(Mj)

! !

f*Lz, — Ly,

5.8.4 Some compatibility

We take H, (m)-dimensional vector spaces Wo(i). We put B(WO(I),WO(Q)) = konw®)yxanw ) We put
X . 0 0

V{)(Z) = pX*Vél). Then we have the classifying map <I>(V(l)(1) ® V(I)(Z)) Mg — B(Wél), Wém). Therefore, we

have the morphism ¢ : @(Vé(l) ® V(/)(Q))*L — Lps-

BW W)
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Lemma 5.43 The morphism ¢ factors through Ob(m,y1,L) & Ob(m,ys2). In particular, it factors through
Ob(ma Yis L) D Ob(mv y2)

Proof We have the following commutative diagram:

gV @ gW?) —— h(V™M) @ h(V?)
L (V /(1) V’(Q))
Msx X A— 0 B(WO(1>,WO(2>)xX/X

It induces the following diagram:

Ob(m, y1) & Ob(m, y2) ——  ObS (VM) g ob¢(V?)

l -

Lm, —— oV )L Lpuw w®)

It is easy to check ¢ is isomorphic. Then the claim of the lemma is clear. |
We put Wy = Wo(l) @ WO(Q) and B(Wo) := kar(w,).- By considering the classifying maps of the vector
bundles Vy and Véi), we obtain the following commutative diagram:

—

(1) 1,(2)
— My S B W)

1 ! =
Mo =2 M, 2, B(Wo)

Lemma 5.44 We have the following commutative diagram:

Ly, —— ObMy) —— m @V ) Ly o,
T mT T (125)
FLg, «—— FObm,g,L) «——  Fm0(Vo)* Lpwy)
Here, the composite of the horizontal arrows are the naturally defined morphisms from the diagram (124).
Proof We have the following commutative diagram:
fxb(V.) — fxa(V.)
I I

VM) @ hV?) —— gV @ gV

Therefore, we obtain the following:
frObe(V) ——  ["Ob(m,y)
Obe(VM) & 0% (V) —— Ob(m, y1) & Ob(m. y2)
On the other hand, we have the following commutative diagram:
f?{h(V-) - x® % ) LB(WO)XX/X

| |

bV ) @ hV) —— eV V)KL v x
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Therefore, we obtain the following:

f* Ob%(V.) — *®(Vo)* L p(we)

l I

oL @ ObE W) 2 @™ V) Ly gy o)

The morphisms 7; are isomorphic. Thus we obtain the claim of the lemma. |

5.8.5 Deformation

As explained in the subsubsection 5.5.3, we have the decomposition Ob(m,y,) = Ob®(m,y,) ® Ob%(m, y,). We
put Ob(m, y,) := Ob°(m, y,) ® 7<o Ob%(m, y,). We have the following commutative diagram:

Ob,a (V" & VP)[~1] —— Ob(m,y;, L) ® Ob(m, ys)

I I

71 06 (WY & V®) 2 Ob(m,y,, L) & Ob(m, y,)
We put Obl(/\//Tg) := Cone(A;). Then we have the morphisms Obl(ﬂ3) — Ob(ﬂg,) — Ljzz,- Since the

first morphism is quasi isomorphic, the composite Obl(/\//T:;) of the morphisms gives an obstruction theory

of Ms. We remark we have the following commutative diagram (We put Cy = 1< Obd(V.(l) & V.(2)) and
Cy := Ob(m,y,,L) ® Ob(m,y,) in the diagram, to save the space.):

H(C) —— H Y C) ——— HH(Ob(Ms)) —— 0

! | | | s

—— H ' (7" Lamy) —— H '(Lyg,) —— 0

HO(Cy)  —=— HO(Oby(M3)) —— 0 ——  HYC,) —— HY(Ob(Ms))

I | I I =l
HO(m*Lpg,) —— HO(LHS) —_— HO(LJQ?’/MS) —=— H 7" Lpgy) —— Hl(Lﬂg)
We would like to deform obl(/T/l\g). Let i1, i2 and n denote the following naturally defined morphisms:
i1: <1 Ob%(V1) — Ob(m,y,, L), iz:7< 1 Ob%(Vy) — Ob(m, y,),
n:7< 1 0bY WV @ Vy) — 7«1 Ob(Vy) @ 7< 1 OB (Vy)
The following is a special case of Lemma 5.6.

Lemma 5.45 The composite i1 o ob(m,y,, L) and iz o ob(m,y,) are trivial. 1

For any a € k, let ¢, : 7<_1 Obd(V.(l) @ V.(z)) — Ob(m,y,, L) ® Ob(m,y,) be the morphism given by
Pq 1= (a 11, ig) on. Then the following diagram is commutative for any a, due to Lemma 5.45:

7<.1 0b*(VWY & V) £y Ob(m,y,, L) & Ob(m, y,)

l l (128)

Lggm -1 —— ™ Las

We put (/)\Ba(/\ ) := Cone(p,). From the commutativity of the diagram (128), we obtain the morphism

—

Z)Ba(ﬂg) : Obq(M3) — Lz, for any a. The choice of a does not have any effect on the diagram (127). Hence,
it is easy to observe that {SBG(/%) |a € k} gives an obstruction theory of ob(M3) : Ob(M3) — L, jan
of Ms x Al over A'. At a =1, (/)vbl(/\//Tg) is same as Ob(ﬂg,) in the derived category.
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Lemma 5.46 We put Mo = M(m,y,). There exists an algebraic stack 8" with the following diagram:

— F el —
Mg L S/ L M1 X MQ

I I |

Mm@ s~ M

Here the bottom horizontal arrows are given in (79). The morphisms Fy and G} are etale and finite of degree

(T‘l . 7‘2)71,

Proof Similar to Proposition 4.45 and Corollary 4.46. |

Lemma 5.47 For each a, we have the following distinguished triangle:

G Ob(m, yy, L) —— F{Oby(Ms) —— G{" Ob(m.§y) — G}" Ob(m, yy, L)[1] (129)
We also have FyObg(Ms) = G/* Ob(m, y,, L) & G}* Ob(m, §y).
Proof We have the following naturally defined distinguished triangle on M\gz

Ob(m,y;, L) —— (/)vba(ﬂ@ —— Cone(is) —— Ob(m,y;, L)[1] (130)

In the case a = 0, it splits. It is easy to see F}* Ob(m,y;, L) ~ G}* Ob(m,y,, L) and F} Cone(iz) ~ Ob(m,y,).
Hence we obtain (129) from (130). |

Lemma 5.48 The composite of the following morphisms is independent of the choice of a, and it is same as
the naturally defined one:

T @V & V) Ly ey — 7 (Ob(m, yy, L) & Ob(m, y,)) — Oba(Ms) £ L. (131)

BV,

Proof It is clear from the construction. |

5.8.6 Proof of Proposition 5.41

Let us construct an obstruction theory of M%m (3). We take H,, (m)-dimensional vector spaces V. Let F
denote the full flag variety of V,\"). We put F; := F, gy Then, MGS=(3) is an open subset of the fiber

product of Fy x Fo and Ms over B(Wo(l), 0(2)). Hence we have the following commutative diagram:
]/\ZG"I (j) L Fl X FQ

’”l ql (132)

My —— B, W)

Then we have the isomorphism g*L Due to Lemma 5.43, we have the

FixFo/BWD W) = LJ\?Gm(j)/ﬂg.'
following morphisms:

*

gL 1] —=— 90 L gy we —22, 711 Ob(Ms)

fle2/B(W§1>,W(§2))[_
We put Ob(M%m (3)) := Cone(pz o p1). Then we obtain the morphism ob(J/W\GM(J)) : Ob(MG 3)) —
L]’\ZGm(j)' By the same argument as that in the subsubsection 5.7.1, it can be shown that ob (J\?Gm (3)) gives
an obstruction theory for MY (3).

We put N := Hy(m). Let Flag(Vn(f), I;) denote the moduli of filtrations F ot V) as follows:
1 (jel)

FO A e ) v, a0y - { ) UED
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We put V,, (1) ® Vm) Recall that Flag(V,,, N) denotes the full flag variety of V,,,. We have the naturally

defined IHCIUbIOH Flag(V,g ), 1) x Flag(Vi, 2 ,Is) — Flag(Vi,, N). Clearly, Flag( n(l), I;) is naturally isomorphic
F;. We use the notation in the subsubsection 5.7.2. Then, the diagram (132) is compatible with the following
diagram, which is given by (115):

M* —— F

! !

My —— B(Wo)
By using the description (116) of Ob(M*) we also obtain (117) from (125).

We would like to construct Ob(MGm( )) Corresponding to the equivalence Ob;(M3) ~ Ob(Ms), we
have the equivalent obstruction theory Oby (J\IGm (7)) ~ Ob (]\//.TGm (3)). Due to Lemma 5.48, we obtain the
deformation ob(M%"(3)) : Ob(M%m(3)) — Lit6m (5yx a1 a1 from ob(Ms) : Ob(Ms) — Lz . 41 40 We
also obtain the distinguished triangle (119) and the splitting (118) at ¢ = 0 from Lemma 5.47. Thus the proof
of Proposition 5.41 is finished. |

5.8.7 The case where the 2-stability condition is satisfied

Let us describe the obstruction theory of the fixed point set of the master space, when the 2-stability condition
is satisfied. We use the notation in the subsubsection 4.7.1. We give only the statement. We put Mgy 1=
M3(yq, Ly ag, 8) X M*5(yy, o).

Proposition 5.49 We have the obstruction theory ob(J\/I\Gm (J)) : Ob(J\/I\Gm (3)) — L+ ) and the defor-

MGm (3
mation ob(MG (3)) : Ob(MGm( J)) — L+ Jar With the following property:

MGm (T)x Al

o We have the following commutative diagram:
@3 0b(M)  —— ¢3Lg

l l (133)

Ob(M%(3)) —— Lgiem
o Let S\BQ(M\G’” (7)) : &)Q(M\Gm (3)) — Ly (3) denote the specialization of B\B(M\Gm (7)) att = a. At
t =1, we have 6\61(7\4\&" (7)) = ob(]/W\Gm (7). Att =0, we have the following commutative diagram in
the diagram (82):

F*Oby (M (3)) —— F*Lyjo,.

Zl Zl (134)
G Ob(Mpiit) —— G L

On each a, we have the following distinguished triangle:

split

G’ Ob(m,y,, L) —— F*Oby(M%(3)) —— G'*Ob(m,g,) —— G'*Ob(m,y,, L)[1] (135)

Proof It can be shown by an argument similar to the proof of Proposition 5.41. In this case, MG @)
is an open substack of Mjs. The obstruction theory ob(Ms3) : Ob(M3) — MY (J) and the deformation

Z)B(/(/l\g) : 6vb(./T/l\3) — Lf6um (3)x a1 /a1 81VES the desired objects. |
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5.8.8 The case of oriented reduced L-Bradlow pair

Let L = (L1, L2) be a pair of line bundles over X. Let us describe the obstruction theory of the fixed point set
of the master space for the moduli stack of the oriented L-Bradlow pairs, under the setting in the subsubsection
4.7.2. We give only the statement. We put Mgpiiy := M?®(yq, L1, o, 1) X M*(Yy, [La], s, 02).

Proposition 5.50 We have the obstruction theory ob(J\/J\Gm (J)) : Ob(]\/J\Gm (3)) — Lzze., (3) and the defor-
mation BB(M\GM (7)) : &)(M\Gm (7)) — L 576 (3)x a1 a1 With the following property:

o We have the following commutative diagram:

95 Ob(M) —— @il

| | (136)

Ob(ME(3)) —— Lizen )

o Let OAB,I(]\//.TGm (J)) : (/)vloa(]\//fgm ) — Litem 5y denote the specialization of (/)T)(]\//.TGm (3)) att = a. At
t =1, we have 6\61(7\4\&" (7)) = ob(]/W\Gm (7). Att =0, we have the following commutative diagram in
the diagram (82):

F*Oby(M®™(3)) —— F*Lgc,. )

:l :l (137)
G Ob(Mgpiit) —— G Ly

On each a, we have the following distinguished triangle:

split

G’ Ob(m,y,, L) ——— F*Ob,(M%(3)) —— G'* Ob(m, g, [Ls]) —— G/*0b<m,y1,L1(>[1])
138

Proof We put My := M(m,yy,L1), Mg := M(m,y,, [L2]) and Mg = M; x My. We consider the moduli
stack M3 of the objects (E1, Fy«, ¢1, Fa, Fa ., [$2], p) as follows:

o (E1,F1.,¢1) € My and (Eq, Fa 4, [¢2]) € Ma.
e p denotes an orientation of F1 & Fjs.
Then MG (J) is the open substack of Ms.

We can construct the obstruction theory Ob(./\//T:;) : Ob(./(./l\;),) — Lz, by the argument in the subsubsection

5.8.2. We can also construct the deformation 86(/\73) : (/)\E(./T/l\g,) — Ljc,m (5)x a1 /41 by the argument in the
subsubsection 5.8.5. It can be checked that they give the desired objects by an argument similar to the proof
of Proposition 5.41. |

5.9 Equivariant Obstruction Theory of the Master Space
5.9.1 Statements

In this subsection, we would like to explain the following claim, first.

—

Proposition 5.51 We have the G,,-equivariant lift of the obstruction theory ob(M) of the enhanced master
space M.

The construction is explained in the subsubsection 5.9.2-5.9.3. We explain that Ob(]\//f *) can also be lifted
equivariantly, in the subsubsection 5.9.4.

We will later apply the localization formula of Graber and Pandharipande ([24]). For that purpose, we have
to see the induced obstruction theory and the virtual normal bundle at the fixed point set. Let ¢; : ]\//Z — M
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denote the inclusion (i = 0,1). We have the decomposition of ¢} Ob(J\/J\) into the invariant part ¢} Ob(J\/J\)i“"
and the moving part .* Ob(M)™V. We put N(M;) := (v Ob(Z/M\)mOV)v[l]7 which is called the virtual normal
bundle. We have the induced obstruction theory obl(J\/J\i) Dl Ob(]\//f)i“" — Lg; ([24]). We will prove the
following proposition in the subsubsection 5.9.5

PropOSItlon 5.52 The induced obstruction theory obl(l\/ii) is equivalent to the moduli theoretic obstruction the-
ory ob( i) = Ob( Z) — Ly given in the subsubsection 6.3.3. The virtual normal bundle W(M;) is isomorphic
to Orer((—=1)"71), and the weight of the induced Gy -action is (—1)%.

Let 7 = (y1,Y,,[1,12) be a decomposition type. Let @7 : MGm (7)) — M denote the inclusion. Sim-
ilarly, we have the decomposition of ¢% Ob(/\) into the invariant part ¢} Ob(]/W\ )"V and the moving part
% Ob(M )mo" We obtain the virtual normal bundle ‘ﬁ(MG (3) = (¢% Ob(]\//.T)mOV)V[l], and the obstruction
theory obl(MGM( ) : % Ob(M )mv — Lizen ()

To describe ‘ﬁ(]\//f @m (7)), we prepare some notation. In the K-theory of coherent sheaves on MGm (3), we
put as follows:

NEM, EM) = — 3 (~1)'Ripx.RHom(EM, EM) (139)
i=0,1,2
NLE)):= Y (~1)'R'px.Hom(L, E}) (140)
i=0,1,2
Np (E%,EM). - (- 1)RpD*RHom2(El|D*,E|D*) (141)
i=0,1

Here E|D*

2.1.5 for RHomj.) Let My and Ms be as in the subsubsections 5.8.2-5.8.3. It is easy to observe that
MG (3) — M x A, Ms is a regular embedding. The normal bundle is denoted by No.
We will prove the following proposition in the subsubsection 5.9.6.

denotes the restriction E ® (’)MGm (3)xD with the induced filtration. (See the subsubsection

Proposition 5.53

* The induced obstruction theory 3 Ob(M*)lnv is naturally isomorphic to Ob(MG (3)), and the induced

obstruction theory % Ob(M*)™ — Lit6. (5 s equivalent to ob(MC(3)) : Ob(MCm (3)) — Lit6. 3)-

o The virtual normal bundle ‘II(]/W\GT“ (7)) is K-theoretically given as follows:

m(E{V[a Eéw) ® Il+T1/T2 + m(Eéwa EiM) ® Iflfrl/rz + m(L’ Eéw) ® Il+T1/T2
+Np (B, Bl) © Ly, jry + N (Bgd, BY) @ Iy ey + Noo (142)
Here, I,, denote the trivial line bundle on MGm (3) with the Gy, -action of weight n.

Before going into the proof, we give a remark. Recall the diagram (77). We put A =1+71/r2. Let O1 yer(1)
denote the tautological line bundle obtained from M (g, [L], o, (6,k)). On S, we have the following:

FR(EN, BY) = G*R(EY, EY) ® Orya(—A), FNEY, EN) = G*N(EY, EY) © Oy ai(A) (143)
F*U(L, BEY) = G*N(L, BY) @ Oy y(—71/72) (144)
F*7Mp (E{\z, Eé\f) =G* (mD( 1% Eg*)®01 rel( A)), F*7Mp (Eé\z, E{\f) =G" (mD(Eg*v E?*)@)OLFEI(A))' (145)

Here, N(EY, EY), N(L, EY) and Np(EY,, E) are elements of the K (M (g, [L], o, (6,£)) X M(@y, .)), given
as follows: L o R
WEEY) ==~ > (-1)'R'px.RHom(E}, E}) (146)
i=0,1,2
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N(L, BY) := (=1)'Ripx ~Hom(L, E¥) (147)

i=0,1,2
Np(E}, EB},) == D (~1)'R'pp.RHom}(Ejp.. Efip.) (148)
i=0,1
Here Eﬁ p . denotes the restriction E{‘ ® Ogjem (3)xD with the induced filtration.

5.9.2 (,-equivariant lift of Ob(]\//f) and ob(]\//.T)

We would like to obtain the G,,-equivairant structure of Ob(]\//f ). We use the notation in the subsubsection
5.7.1. We have the following commutative diagram:

Moo, 3
g v|
vy

We have the G,,-action on Z; given by t[ug : u1] = [t-ug : u1]. It induces the G,,-action on Q. We remark that ¥,
is G -equivariant map. We have the natural G,,-equivariant structure of p* Ob(m, y, [L]) and V5Lg pw. p))
Let C; (i = 1,2) be a bounded G,,,-complex on M. We have the induced G.n-action on ExtO(Cl, Cs), where

Ext®(C}, Cy) denotes the vector space of the homomorphisms of C; to Cy in the derived category D(M). In
the following, we say that a morphism ¢ : C; — C5 is contained in the G,,-invariant part of the Ext’-group,
if ¢ is contained in the G,,-invariant part of ExtO(Cl, Cy).

Lemma 5.54 The morphism V3L5, py (py)[—1] — p* Ob(m,y,[L]) is contained in the Gy -invariant part
of the Ext’-group.

Proof By using Remark 2.18, we obtain the natural G,-equivariant representatives C’(Q) and C’'(B(W., [P])),
Cs of ¥35Lg, Usp'*Lpw. [p)) and \IJELQ/B(W.,[P,]) respectively. We regard Ehem as Gm—equivariant complex.
We have the natural G,,-equivariant morphism « : C(B(W.,[P])) — C(Q). We put C'(Q/B(W.,[P])) =
Cone(a). Then, we obtain the G,,-equivariant quasi isomorphism C3 ~ C'(Q/B(W.,[P])). Then the morphism
V3Lapw. [P.])[—l] — Wip"*Lgw. [p]) can be expressed by the G,-equivariant morphism:

C'(Q/B(W.,[P])[-1] — C'(B(W.,[P)))

On the other hand, the morphism p*u : p* W3 Ly, (p)) — »* Ob(m, ¥y, [L]) is contained in the G'p,-invariant
part of the Ext-group. Then the claim of the lemma is clear. |

By applying the general non-sense in the subsubsection 2.5.2, we obtain G,,,-equivariant representative C' (]\//.7 )
of Ob(M).

Recall that we need only the (—1)-truncated cotangent complexes for the construction of the virtual classes,

and the complex C (M) above are used for the localization theory by Graber and Pandharipande ([24]). Since
L JM(m.5,[L]) is isomorphic to the 0-th cohomology sheaf, we have the distinguished triangle:

> 1P Lammg i) — 7> -1Lar — Lig piomgny —— 7= 10 Lavtmgion 1

Since the morphism p* Ob(m, y, [L]) — T>_10* L o((m,g,[z]) 18 contained in the G,,-invariant part of the Ext’-
group, the morphism LJ/W\/M(m 9 [L])[—l] — P*Lp(m,g,L)) 1 also contained in the G,,-invariant part of the
Ext%-group, due to Lemma 5.54. Therefore, we also obtain the G,,-equivariant structure of 7> 1Lz

By construction, ob(M\ ) : Ob(]/W\ ) — T>_1Lg; is contained in the G,-invariant part of the Ext’-group.

—~ —

Therefore, we can take the G,,-equivariant representatives of Ob(M), 7> 1 Lz; and ob(M).
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5.9.3 Equivalent G,,-equivariant structure of 7>_;Lz;

On the other hand, we have the G,-equivariant structure of 7> _1Lz7, obtained from the G,,-equivariant
embedding into a smooth Deligne-Mumford stack. We use the notation in the subsubsection 4.3.1.

Let Zom be the vector bundle as in (38). Then we put B:=Bx Zom Zm. We have the natural morphism
TH — B which is GL(V,,,) x Gp,-equivariant. Therefore, we obtain the G,-equivariant immersion L: M—

BGL V,.)- Since M is Deligne-Mumford, we can take a smooth Deligne-Mumford open substack P of BGL(me

which contains M. - . .
Let I denote the ideal sheaf of P corresponding to M. We put C(M) := Cone(I/I*> — *C(P)) on M,
where we put C(P) := Qp/j. It is naturally G,,-complex, and it is the representatives of the (—1)-truncated

cotangent complex 7> _1 L7 Ik

Lemma 5.55 The above two Gy, -equivariant structures of 7> —1Ly; are equivalent.
Proof We have the complex C'(B) = Cone(Q — QE/P)[ 1] on B. It is naturally GL(Vi,) X Gyp-equivariant,
and thus it induces G,,-equivariant complex C’ (P) on P. We have the natural G,,-equivariant quasi isomor-
phism C(P) — C’(P) on P. We put C’(Z/W\) := Cone(I/I?> — 1*C’"(P)) on M, then we have the natural
G'm-equivariant quasi isomorphism C(M ) — C'(M A)

We put A := A Xz Z,. We have the natural GL(V, ) action on A. The quotient stack is denoted by 9.
We have the GL( 'm)-equivariant map Q°(m,y, [L]) — A, and hence M(m,y,[L]) — Q.

Let p3 : B — A denote the projection. We put C’(.Z) = Cone(p§Q — ngﬁ/Q)[—l]. The complex is
provided with the natural GL(V,)-action. Hence, it induces the complex C’(QQ) on P. We have the natural
morphism C'(Q) — C'(P).

It is clear that the morphism I/I? — *C(P) factors through .*C’(Q). We put C’'(M) = Cone(I/I? —
xc’ (Q)) We have the exact sequences of the G,,-equivariant complexes:

0—C'(Q) — C'(P) — Qpqg — 0 on P

0—>C’(M)—>C”(M\)—>Qﬁ/M—>O on M

We put C’(P/Q) := Cone(C'(Q) — C’(P)). We have the Gp-equivariant morphism C’(P/Q)[-1] —
C’(Q) on P. We have the natural G,,-equivariant morphism (*C’(P/Q)[-1] — *C"(Q) — C’(M) of the
Gy-complexes on M. We e put Cy(M) = Cone(:*C(P/Q)[-1] — C”(M)).

Let us show that Cy (M ) is Gp-equivariant quasi-isomorphic to C'(M ) We put Cy := Cone(I/I* — I/I?).
We have the composite of the morphisms C'(M ) — I/I%[1] — Cp[1]. We have the naturally defined G,-
equivariant quasi isomorphism Cone(C’(J\//.?) — Co[1])[-1] — C”(J\/J\). We have the morphism I/I? —
1*C'(Q). Tt induces the G,,-equivariant quasi isomorphism Cone(C’(M) — Co[1])[~1] — Cy(M).

We have the following commutative diagram:

M P Q
| | |
M 0 B(W.,[P])

I [

C'(BW,[P])) —— C'(Q)

Hence, we obtain the isomorphism C'(Q/B(W., [P])) ~ C'(P/Q). We also have C'(M) ~ p*7<_1 L. There-
fore, two G,,-equivariant structures are equivalent. |
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5.9.4 (G,,-equivariant structure of Ob(]\//.T*)

Since we have the quasi isomorphism Ob(J\/J\ )I 17
structure of Ob(]\//f *). We give another description of the G,,-equivariant structure. We use the notation in the
subsubsection 5.7.2. o .

We have the natural G,,,-equivariant structure on the sheaves E™ over M x X . It induces the G,,-equivariant
structure on p3 Ob(m,y, L). On the other hand, the morphisms ¥3 and py are G,,-equivariant. Therefore, we
have the G,-equivariant representative of Lpy. p)-

o~ Ob(J\/J\ *), we have already obtained the G,,-equivariant

Lemma 5.56 The morphism p5W3Lpw. py — p3 Ob(m,y, L) is G, -equivariant.

Proof Let V. denote the canonical resolution of Eﬁ(m) By the remark 2.18, h(V.,¢)<1 gives the G-

equivariant representative of ®3x Ly (. p.)/x, where the Gy,,-equivariant structure of h(V., ¢) is induced by the

Gm-equivariant structure of EM, Therefore, the G,,-equivariant representative of ®% Ly (w. p)/x is given by
Ob%(V.,$). On the other hand, the morphism Ob®(V.,¢) — Ob(m, ¥, L) is G,-equivariant, because their

Gm-equivariant structures are induced by that of EM . Thus we are done. |
Then, the morphism \IIZLQ*/B(W.7P,)[_1] — p> Ob(m, ¥y, L) is contained in the G,,-invariant part of the

Ext’-group. Therefore, we can take the G,,-equivariant representative of Ob(J\/J\ ).

Lemma 5.57 Two G,,-equivariant structure of Ob(J\/J\*) are equivalent.

Proof We have the following diagram:

Vils. )y ow. p) [-1] ——— Ob(m,y,L)

aT bT
Vils. ;yw ppl—1t — Ob(m,y, [L])

The morphisms are contained in the G,,-invariant part of the Ext-groups. Therefore, the induced G,,-
equivariant structures on Cone(a) and Cone(b) are equivalent. 1

5.9.5 Proof of Proposition 5.52
We use the notation in the subsection 4.5 and the subsection 5.7. We put F := Flag(Vim, N)gr(v,,) and
Z1:=17 GL(V,,)- Since we have 0= Z1 X B(W.) F, we have LQ/B(W,[P]) = L71/B(W,[P]) @ LF/B(W)'
Recall Ob(J\/J\) is given by Cone(\I@Lé/B(W)[P]) — p*Ob(m, ¥, [L])). The moving part ¢} Ob(]\//f)mo" is
given by the following: ‘
3Ly o)) Lz o1 = Orer((—=1)")[1]

Then, it is easy to see that the virtual normal bundle ‘ﬁﬁ(l\/fl) is given by the line bundle Oe1((—1)""1), and
that the weight of the induced G,-action is (—1)*. By construction, we have the following:

1} Ob(M)™ := Cone (W3 Lz, 5y [—1] — Ob(m, g, [L])) ~ Ob(1;)
It is easy to observe that we have the following commutative diagram:
1 Ob(M) —1— Ob(M;)
P ob@l ob(fml
w2

”
LiLM - LMi

Here, o is the naturally defined one, and ¢; is the projection onto the invariant part. Thus the induced
obstruction theory is given by ob(M;).
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5.9.6 Proof of Proposition 5.53

We use the notation in the subsubsections 5.7.2 and 5.8.4. Recall the expression of Ob(]/W\ *) as in (116). Let
us describe the decomposition of Wil Ly, gy, We take a decomposition Wy = Wél) & W(§2) as in the

subsubsection 5.8.4. We put F; := Flag(Wéi),Ii)GL(Wu)). We also put F o= Flag(Wo,M)GL(Wu))XGL(W(z)).
0 0 0

Then we have the regular immersion F'; x Fy — F'. We have the following commutative diagram:

]/\ZG"’ (j) Yot Fl X Fg e F

My —— BV . Wg?) —— B(W)
Therefore, we have the isomorphism:

VAl L o) = Yol v we)

The invariant part of WiT* Lz, 5y is isomorphic to the pull back of the relative cotangent bundle of Fi xFy

over B (Wo(l), WO(Z)). The moving part is same as the pull back of the conormal bundle of F'; x Fy in F/, which
is naturally isomorphic to Ny [1].

Let us see the decomposition of Ob(m,y, L). Corresponding to the decomposition <p§EM =EMa EM we
obtain the decomposition of the resolution V. = V1. & Vs .. It induces the following decompositions:

g™ =gy @ gv®), g™ = Hom (VD V) 1] @ Hom (W, V)Y [-1]

gre1(V, (b)inv = grel(V-(l)v ?);  Gra(V., )" = Hom(P., V-(2))v

ap(V. )™ = gp(VD, F) & gp(V, F?),  gp(V, F)™ = C1(v" ve") -1 e cr (v, ve ) -]
(See the subsubsection 2.1.5 for Cj.)
sV )™ =gV @ eV ). a(Vip)" = Homo, (V5. V) [-1] & Homo, (V). V(D) [-1]

We also have g?(V.)"™ = g?(V.). The contribution to the virtual normal bundle can be calculated formally. We
can also easily observe that Ob(m,y, L)™" is naturally isomorphic to Ob(M3) given in the subsubsection 5.8.2.
Then ¢* Ob(M*)"V is obtained as the cone of the composite of the following morphisms:

Lfleg/B(W<1>,W<2>)[_1] — Lpwo,we)y —— Ob(M3)

Namely, it is same as Ob(J/W\Gm (7). (See the subsubsection 5.8.6.) We also have the diagram (117). Then it is
easy to observe that the induced obstruction theory is given by ob(M %= (3)).

5.9.7 The case where the 2-stability condition is satisfied

We give only the statement about the G,,-equivariant obstruction theory of the master space in the case where
the 2-stability condition is satisfied. The proof is similar to those of Proposition 5.51, Proposition 5.52 and
Proposition 5.53.

Proposition 5.58 Under the setting in the subsubsection 4.7.1, the following claims hold:

o We have the equivariant obstruction theory of the master space M.
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o The induced obstruction theory of the fixed point sets M and MG m(J) are equivalent to the moduli theoretic
obstruction theory.

o The pirtual normal bundle ‘JI(]\Z) Of]/\jl' in M is given by Orel((—l)i_l) with the G, -action of the weight
(—1)".
o The virtual normal bundle ‘JI(]/W\GT“ (7)) of MGm (3) in M s given by the following:

m(E{VIaEéVI) ® Il+T1/T2 + m(Eéw’E{VI) ® Iflfrl/rz + m(L’EéM) ® Il+T1/T2
=+ mD(E{w*a Eé\/i) ® Il+r1/T2 + mD(EéViv E{w*) ® Iflfrl/rz (149)

Here, I,, denotes the trivial line bundle with the G,-action of weight w, and the terms are as in (139),
(140) and (141). (See also (143), (144) and (145).) 1

5.9.8 The case of oriented reduced L-Bradlow pairs

We give only the statement about the G,,-equivariant obstruction theory of the master space in the case of

the oriented reduced L-Bradlow pairs, under the setting of the subsubsection 4.7.2. We prepare some notation.
For any decomposition type J, the elements ‘.TI(EM EM) Np (E%, EM) and N(L, Eé‘/j) of KGM(]\//I(J)) are
given as in (139), (140) and (141). (See also (143), (144) and (145).) Let ¢ : M — M(m,¥y,[L]) denote the
naturally defined morphism. We put Z(?) := go*(’)@)(—l)7 which is naturally provided with the G,,-action. We

rel
have the following element of K% (M%(7J)):
N(L, ® T2, EM) . Z ) Ripx .Hom(Ls ® T?), EM)
=0,1,2
Lemma 5.59 Under the setting in the subsubsection 4.7.1, the following holds:

o We have the equivariant obstruction theory of the master space M.

o The induced obstruction theory of the fixed point sets M and MG m(J) are equivalent to the moduli theoretic
obstruction theory.

The virtual normal bundle W(J\Z) ofJ\/J\i in M is given by (’)gel) (( 1) 1) with the G,,-action of the weight
(—1)".

The virtual normal bundle ‘ﬁ(MGm( )) of MGm m(J) in M is given by the following:

m(E{V[v Eé\/[)®[1+r1/r2 +m(EéV[a E{V[)@)I*l*ﬁ/rz +m(L1’ Eé\/[)®11+7‘1/r2 +m(L2®I(2)v E{V[)@)I*l*ﬁ/m
+ mD(E{\{H Eéw*) @ I1+T1/T2 + mD(EéVi? E{\{e) ® I—l—Tl/T’2 (150)

We have the following equality on S:
F'N(Ly @ I?, BM) = G* (N(La, EY) @ O1yer(1 +11/72) @ O211(1))
Here, we put M(Lq, EY) := Rpx . Hom(La, E}'). |

6 Virtual fundamental Classes

6.1 Perfectness of the Obstruction Theories for some Stacks
6.1.1 The moduli stacks

Let y be an element of 7Type, and let «, be a system of weights. Let L be a line bundle on X. We use the
notation in the subsection 5.6. The proof of the following propositions will be given in the subsubsection 6.1.4
after the preparation in the subsubsection 6.1.3. The expected dimensions can be calculated formally. We give
the results in the subsubsection 6.1.5.
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Proposition 6.1 Let m be a sufficiently large integer.
e The obstruction theory Ob(m,y) of M*(y,a.) is perfect in the sense of Definition 2.29.
e Let & be an element of PP*. The obstruction theory Ob(m,y, L) of M**(y, L, aw.,8) is perfect.

Proposition 6.2 Assume rank(y) > 1. Let § be an element of PP*. Let m be a sufficiently large integer.
e The obstruction theory Ob(m,y, L) of M**(y, L, a., ) is perfect.
o The obstruction theory Ob(m,¥y, [L]) of M**(y,[L], a,9) is perfect.

Proposition 6.3 Assume rank(y) = 1. Let m be a sufficiently large integer.
o We have the vanishing H'(Ob(m, ¥, [L])) unless i = 0. In particular, the moduli M () is smooth.

o [If the 2-vanishing condition is satisfied for (y, L), then the obstruction theory Ob(m,y,L) of M(y,L) is
perfect, and the obstruction theory Ob(m,y, [L]) of M(Y,[L]) is perfect.

We remark Ob(m,y, L) is always perfect as in Proposition 6.1.

Proposition 6.4 Let L = (L1, Ls) be a pair of line bundles on X. Let & = (01,02) be a pair of sufficiently
small parameters §; as in Lemma 3.63. Let o be a system of weights. Assume that the 2-vanishing condition
holds for (y, Lo, ). Then, the obstruction theory Ob(m,y, [L]) is perfect on M**(y, L], o, ).

Notation 6.5 Due to Proposition 6.1-6.4, we obtain the perfect obstruction theories of the moduli stacks M
of the corresponding stable objects, which induces the virtual fundamental classes due to Proposition 2.30. They
are denoted by [M]. We use the notation [,, ® for the evaluation of a cohomology class via [M]. (See the
subsection 7.1.)

6.1.2 The master space and the related stacks

We also obtain the following propositions.

Proposition 6.6 The obstruction theory Ob(J/W\) ofJ/W\ is perfect. (See the subsubsections 5.7.1, 5.7.6, 5.7.7 for
Ob(M).)

Proof We consider the obstruction theory for the enhanced master space M given in the subsubsection 5.7.1.
We have the naturally defined smooth morphism p : M — M(m, ¥y, [L]). We remark that the image of p is
contained in the open substack M := M*$(y, [L], a, ). Then, the claim immediately follows from the diagram
(113) and Proposition 6.2.

We obtain the perfectness of the obstruction theories Ob(]\//f ) (subsubsection 5.7.6) by the the same argument.

We obtain the perfectness of the obstruction theories Ob(]\/] ) in the subsubsection 5.7.7 by using the same
argument and Proposition 6.4. |
The following claims can be shown by a similar argument.
Proposition 6.7
e The obstruction theory 85(m7@) of MVS(Q, Q. +) 1s perfect.
e The obstruction theory (’)\B(m,y, L) of the moduli stack Ms @, L, a., (0, €)) is perfect.
o Assume one of the following:

— rank(y) > 1.
— rank(y) = 1 and the 2-vanishing condition holds for (y, L, ay, ).

The obstruction theory ob (m, v, [L]) of the moduli stack Ms @, [L], o, (0, €)) is perfect. |
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Recall that we obtained obstruction theory ob(MS= (3)) of M (J) x A over A! in Proposition 5.41. The
specialization at ¢ = a is denoted by ob, (M %~ (3)).

Proposition 6.8 The obstruction theories (/)vloa(]\//fgm (7)) are perfect for any a € k.

Proof Due to the distinguished triangle (119), we have only to show that 6vb(m,y1, L) and 6vb(m,§2) gives
the obstruction theories of M*(yy, L, v, (8, ko)) and M?(gs, as, +) as in Proposition 6.7. 1

Notation 6.9 We obtain the virtual fundamental classes of M%m(J) with respect to the obstruction theories
Ob, (MY (3)) for each a € k. It is independent of a choice of a (See Proposition 7.2 of [5].) Therefore, we
denote it by [M%m(7)]. |

We use the notation in the subsubsection 4.6.1. We put Mspht = M*s (y1, L, i, (8, ko)) % M (g, 0t +).
Proposition 6.10 In the diagram (79), we have the relation F*([J\/J\Gm () = G'*([Mvsp1it]).
Proof It follows from the diagram (118). 1

We can show the following propositions by the same argument.

Proposition 6.11 Assume that the 2-stability condition holds for (y, L, ax,?d).

o We have the perfectness of the obstruction theories (/)T)Q(J\/J\Gm (3)) in Proposition 5.49.

e They give the virtual fundamental class [M\Gm (3)].

e We have the relation F*([]/W\GT"(J)]) =G ([M?*(yy, L, ., 8) x M*(gy,)]) in the diagram (82). |
Proposition 6.12 Under the situation of the subsubsection 5.8.8, the following claims hold:

o We have the perfectness of the obstruction theories (/)T)Q(J\/J\Gm (3)) in Proposition 5.50.

e They give the virtual fundamental class [M\Gm (3)].

e We have the relation F*([]/W\GT"(J)]) =G ([M*(yy, L, ., 8) x M*(gy,)]) in the diagram (85). |

6.1.3 Vanishing of some cohomology groups

1 — Vb) be a locally free

We use the notation in the section 5. Let E be a torsion-free sheaf on X. Let V. = (V_
V(V.) as Ox-complexes. We

resolution of E. Then we put C(FE) := gV (V.), where g¥(V.) denotes the dual of g
also put C°(E) := g°V(V.) and CH(E) := g4V (V).

Let F. be a quasi-parabolic structure of E' at D. We have g(V/|p) and gp(V., F) with the natural morphism
ap(V., Fi) — g(V,p) on D. (See the subsubsection 5.5.1.) We have the dual complexes g¥(V|p) and g}, (V., F\)
as Op-complexes. We have the natural morphism C(E) — g"(V.)|p = g"(V,|p). Thus we have the morphism
a:C(E)®g)hH(V.,F.) — ¢Y(Vip). We put C(E, F,) := Cone(a)[—1].

Recall we have the decompositions g(V./p) = ¢°(V.p) ® g*(V,p) and gp(V., F.) = g5,(V., F.) @ g% (V., F.).
(See the subsubsection 5.5.3.) Thus, we obtain the complexes C°(E, F,) and C%(E,F,). It is easy to see
CUE,F,) = C4E).

Lemma 6.13 Let (E, F.) be as above. The hyper-cohomology group Hi(X, CO(E,F*)) vanishes unless 1 =
—1,0,1. If (E, F.) is stable with respect to some system of weights o, we also have H~1(X,C°(E, F,)) = 0.

Proof The i-th cohomology sheaf H* (CO(V., F*)) vanishes unless —2 < ¢ <1 by construction. It is easy to see
that the morphisms C°(E)~2 — C°(E)~! and g%/(V,, F.)"2 — g%/ (V,, F.)~! are injective. Therefore, we
have H~2(C°(E, F)) = 0. Since the morphism C°(E)! — g°V(V.)! is surjective, we have H'(C°(E, F.)) = 0.
Let P ¢ D be a point where E is locally free. Then we have H° (CO(E7 F*)) = 0 around P. Thus the support
of the sheaf H°(C°(E, F.)) is 1-dimensional.
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Then, we obtain the vanishing H’ (X, C°(E, F*)) unless ¢ = —1,0, 1 by using the spectral sequence. It is easy
to see that H™!(X,C°(E, F,)) is the set of endomorphisms of (E, F.) whose trace is 0. If (E, F) is assumed
to be stable with respect to some weight o, we obtain H~! (X, C°(FE, F*)) =0.

In the rank one case, we have the following result.

Lemma 6.14 Let (E, F.) be as above, and we assume rank(E) = 1. Then, we have H'(X,C°(E, Fy)) = 0
unless © = 0.

Proof Let z be a point of X with one of the following:
e z is contained in X — D, and F is locally free around =x.

e 1 is contained in D, F is locally free around = as O x-module, and Cok;(E) are locally free around z as
Op-module.

Around such a point, we can compute the cohomology sheaves of C°(E, Fy) in the case Vo = E and V_; = 0.
Hence it is easy to check C°(F, Fy) ~ 0 around such a point.

We know H'(C°(E, F,)) = 0 unless i = —1,0, in general. By the above consideration, we know that the
support of Hi(C" (E, F*)) is 0-dimensional. Therefore, we obtain that H’ (X, C°(E, F*)) = 0 unless i = —1,0.
Since (E, F,) is always stable in the case rank(E) = 1. we also obtain the vanishing H~!(X,C°(E, F\)) = 0.
Thus we are done.

Let L be a line bundle on X. Let ¢ be an L-section of E. We take a locally free resolution P. = (P_1 — )
of the line bundle L so that we have a lift ¢ : P. — V. of ¢. We have the complex gye1(V., ¢) = Hom(P.,V.)¥
and the dual complex g;/el(V.,qz). We have the natural morphism grer(V., ¢)[—1] — g(V). Thus we have
the morphism v, : C(E) — g%,(V.,,$)[1]. It induces the morphisms ay, : C(E,F.) — g%, (V.,¢)[1] and
aj : C°(E,F,) — g;;l(V.,g)[l]. We put C(E, F, ¢) := Cone(ar)[—1] and C°(E, F, ¢) := Cone(af)[—1]. It
is easy to see that C'(E, Fy, ¢) and C°(E, F, ¢) are well defined in D(X).

Lemma 6.15 Let (E, F,, ¢) be as above. Assume ¢ # 0. Then the hyper-cohomology groups H* (X, C(E, F., (b))
vanish unless i = —1,0,1. If (E,F.,¢) is (ax,08)-stable for some 6 € PP and some weight a., we have
H-!(X,C(E, F.,$)) = 0.

Proof We have H? (C(E, F,, (b)) = 0 unless —2 < i < 1 by construction. We also have H 2 (C(E, F,, (b)) =0
as in the proof of Lemma 6.13. Since the morphism Hom(FPy, Vo) — Hom(P_1, Vp) is surjective, we obtain the
vanishing H*(C(E, Fs,¢)) = 0. Let z be a point of X — D with ¢(z) # 0 such that E is locally free around z.
Then, it is easy to show the vanishing of H°(C(E, Fy, ¢)) around . Therefore, the support of H°(C(E, F,, ¢))
is one dimensional. Then we obtain H'(X, C(E, F,¢)) = 0 unless i = —1,0, 1 by using the spectral sequence.
Since H™*(X, C(E, Fy, ¢)) is the set of endomorphisms of (E, Fy, ¢), we obtain H™!(X, C(E, Fy, ¢)) = 0 from
the stability assumption of (E, F,, ¢). |

Lemma 6.16 Let (E, F,,¢) be as above. We assume ¢ # 0 and rank(E) > 1. Then, the hyper-cohomology
groups Hi(X, C°(E, Fy, qb)) vanish unless 1 = —1,0, 1.

Proof The i-th cohomology sheaf H’ (C"(E, F,, ¢)) vanish unless —2 < ¢ < 1 by construction. We also have
the vanishings of H/ (C"(E, F,, ¢)) j = —2,1, as in the proof of Lemma 6.15. Let « be a point of X — D with
¢(x) # 0 such that E is locally free around xz. Under our assumption rank(F) > 1, we can easily check the
vanishing H° (CO (B, Fy, (b)) = 0 around such a point x. Thus the claim can be shown by using the spectral
sequence. |

In the rank one case, we have the following:

Lemma 6.17 Let (E,F,,$) be as above. We assume ¢ # 0 and rank(E) = 1. Moreover, we assume
H?*(X,L7'® E) = 0. Then, the hyper-cohomology groups H(X,C°(E, F\, ¢)) vanish unless i = 0, 1.
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Proof We have the distinguished triangle g¥, (V, ¢) — C°(E, F,,¢) — C°(E, F.) — g%,(V,¢)[1]. Hence
we obtain the long exact sequence:

-— H'(X,L™'® FE) — H'(X,C°(E, F\,¢)) — H'(X,C(E,F,)) — H" (X, L' ® E) —
Then the claim follows from the assumption and Lemma 6.14. |

Let L = (L1, L2) be a pair of line bundles on X. Let ¢; be L;-sections of E. By takmg appropriate resolutions

) of L; and lifts ¢1 PO v of ¢i, we obtain the complexes C'(E, F*,¢1,<b2) and C°(E, F*,¢1,¢2) as
above. They are well defined in D(X).

Lemma 6.18 Assume H? (X, L;l ® E) =0 and ¢; #0 for j =1,2. We also assume rank(E) > 1. Then, we
have Hi(X, C"(E,F*,¢1,¢2)) =0 unless i = —1,0,1. If (E, Fx, 1, ¢2) is (au, d1,02)-stable, then we also have
_1(X700(E7F*7¢17¢2)) =

Proof We have the exact sequence: 0 — Hom(P®,V.) — C(E, F, ¢1,¢2) — C(E, F\,¢1) — 0. Then
the claims can be reduced to Lemma 6.15 and Lemma 6.16. |

6.1.4 Proof of the propositions in the subsubsection 6.1.1

Proposition 6.1 immediately follows from the following lemma.

Lemma 6.19 The obstruction theory Ob(m,y) of M(m,y) is perfect in the sense of Definition 2.29. The
obstruction theory Ob(m,y, L) of M(m,y, L) is perfect.

Proof Let us discuss Ob(m,¥y). We would like to show Ob(m, %) is quasi-isomorphic to a complex E~1 —
E% — E! of locally free sheaves on M(m,¥). Since Ob(m,3) is obtained from the push-forward of perfect
complexes on M(m,y) x X and M(m,y) x D, it is easy to show that Ob(m,y) is quasi isomorphic to a
bounded complex of locally free sheaves by using the projectivity of X and D.

Therefore, we have only to check H(if Ob(m,y)) = 0 unless i = —1,0,1 for any point z € M(m,y),
where i, denotes the inclusion of z to M(m,y). Let (E,F,,p) be the parabolic oriented torsion-free sheaf
corresponding to z. Then the dual of H'(if Ob(m, %)) is isomorphic to H™(X,C'(E, F,)) & H*(X,0)[0].
Therefore, the claim follows from Lemma 6.13.

The perfectness of Ob(m,y, L) can be shown similarly, by using Lemma 6.15. |

Lemma 6.20 Assume rank(y) > 1. The obstruction theory Ob(m,y, L) of M(m,y, L) is perfect. The ob-
struction theory Ob(m, y,[L]) of M(m,y,[L]) is perfect.

Proof We have the following commutative diagram:
Obyei(m, y)[—1] —— Obya(m,y, L) @ Obyei(m,y)[—1] —— Obyea(m,y, L)[—1]

| ! |

ob%(m,y) —— Ob(m, y) ——  Ob°(m,y)

We put Cy := Cone(Obyei(m, §)[—1] — Obd(m,y)) and Cy := Cone(Obyei(m,y, L)[—1] — Ob°(m,y)). We
have only to show that Cy and Cj are perfect of amplitude in [—1,1]. It is easy to see that Cy is isomorphic to
HY(X,0)" ® O[0]. To check the claim for Cy, we have only to see i*Cs as in the proof of Lemma 6.19. Then
the dual of H'(i3C5) are isomorphic to H*(X, C°(E, F\, ¢)). Thus the claim for C5 follows from Lemma 6.16.
Therefore, we obtain the first claim of the lemma.

Let us show the second claim. We have only to show the vanishing of H*(Ob(m, g, [L])) = 0 for i < —1. Let
m: M*(Y, L, ., §) — M*(y,[L], @, d) be the natural morphism, which is smooth. Hence, we have only to
show H'(7* Ob(m, ¥, [L])) = 0 for i < —1. Since we have H(7* Ob(m,y,[L])) ~ H'(Ob(m,y, L)) for i < —1,
the claim follows from Lemma 6.19. |

Let us see Proposition 6.3. The first claim can be shown by using Lemma 6.14 and the argument in the
proof of Lemma 6.19. The second and third claims can be shown by using Lemma 6.17 and the argument in

the proof of Lemma 6.20.
Proposition 6.4 can be shown by using Lemma 6.18 and the argument in the proof of Lemma 6.20. |
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6.1.5 Expected dimension

We put p, := dim H?(X,0) and x(Ox) := 1 — dim H'(X,Ox) + dim H*(X,Ox). It is easy to obtain the
formulas of the expected dimension in the non-parabolic case. Let y be an element of H®(X). The degree
2i-part of y is denoted by y;. We put as follows:

d(y) == (v — 2y0 - y2) N[X] — y5 - x(Ox)

For a line bundle L, we put as follows:
drei(y, L) := (ch(L7) -y - TA(X)) N [X]
Proposition 6.21 For the moduli of the non-parabolic objects, the expected dimensions are as follows:
o dim’ M(H) = d(y) + 1+ p,.
° dimf./\/l(y,L 8) =d(y) + dra(y, L).
o dim’ M(7,L,8) = d(y) + 1 + pg + drai(y, L).
e dim’ M(3,[L],8) = d(y) + pg + drei(y, L).

Proof Let us consider the first case. For any (E, p, F) € M(%y), the virtual tangent space is K-theoretically
given by Y. (—1)'H!(X,C°(E)) + H'(X,Ox). The Euler number can be easily calculated, and it is given by
d(y) + x(Ox) +dim H(X,Ox) = d(y) + 1 + p,. The second and third cases can be discussed similarly.

Let p denote the natural morphism M(y, L,§) — M(¥y,[L],0). We have the distinguished triangle on
M(m,y, L).

Lst(m,g,)/ M(mg,i)[—1] — »* Ob(m, 4, [L]) — Ob(m, ¥y, L) — L y(m,5,L)/M(m.5,[L])

Then the fourth claim is obtained. |

The contribution of the parabolic structure can also be calculated formally. Let y = (y,y1,¥2,...,%) be an
element of 7ype. In this case, y; can be regarded as elements of H¢V(D). We put s; + w; := Zj<i Yy;, where s;

(resp. w;) denotes the element of HO(D) (resp. H2(D)). Let g denote the genus of D. Let dye(y, y) denote the
Euler number of the complex g,e1(V., Fy) for (E, Fy) of type y. The result is as follows:

! -1
dea(y,y) =29 — 2 si(si — si1) + Z/ ($i1 - wi — 8- wit1).
i=1 i=1"D

Proposition 6.22
o dim/ M(g,a.) =d(y) + 1+ py + dear(y, y)

o dim/ M(y,[L], s, 8) = d(y) + py + dre1(y, y) + drei (y, L). 1

6.2 Comparison of the Oriented Reduced Case and the Unoriented Unreduced
Case

6.2.1 Statements
We have the natural morphism  : M(m, ¥, [L]) — M(m,y, L) which is etale and finite of degree rank(y) .
But the obstruction theories are not same, in the case p, := dim H?(X,0) > 0. We would like to compare

them.
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Proposition 6.23 We have the following commutative diagram in the derived category D(M(m,y, [L])):
£*Ob(m,y,L) —— Ob(m, ¥y, [L])

l l

K Ltmyt) —— Lmmg[o)
We also have the following distinguished triangle:
k* Ob(m,y,L) —— Ob(m,y,[L]) —— H*(X,0)" ® O mm,g,iL)ll] —— w* Ob(m,y, L)[1]
A proof will be given in the next subsubsection. Before going into the proof, we give some consequences.

We have the natural morphism M?*(y,[L], ax,0) — M*(y, L, s, ) which is etale and finite of degree
rank(y)~!. It is also denoted by &.

Proposition 6.24 Assume rank(y) > 1. In the case py > 0, we have the vanishing [Ms(y,L,a*,é)] =0. In
the case pg = 0, we have the following relation:

ﬁ*([Ms(yv L7 Qs 6)]) = [MS(§7 [L]7 Qs 5)]

Proof Under the assumption rank(y) > 1, the obstruction theory ob(m, ¥y, [L]) of M*(y, [L], a, d) is perfect.
From Proposition 6.23, we have the relation:

Eu(HQ(X, 0)® (9) N [MS(@, [L],oz*,(S)] = [Ms(y,L,a*,zS)]
Then the claim is clear. |

When rank(y) = 1, the obstruction theory of M(y, [L]) is not perfect, and hence, a similar vanishing result
does not hold, in general. But, we obtain the following proposition by the same argument. Since the stability
condition is trivial, we omit to denote “s”, a, and §.

Proposition 6.25 Let y be an element of Type such that rank(y) = 1.
e In the case py > 0, we assume H? (X, L'® E) =0 for any L-Bradlow pair (E.,¢) € M(y,L). Then we
have [M(y, L)] = 0.
e In the case py = 0, we have *[M(y, L)] = [M(3, [L])].
We remark that the assumption in the first claim always holds in the case pg = 0. |

Similarly, we have the natural morphism & : ./T/l/S@, [L], o, 6,0) — Ms(y,L,oz*,(S, ¢), which is etale and
finite of degree 1/ rank(y). By the same argument, we obtain the following propositions.

Proposition 6.26 Assume rank(y) > 1. In the case py > 0, we have the vanishing [M?®(y, L, ., 6,¢)] = 0. In
the case py = 0, we have the relation k* [./\/ls(y, L,ay,d, 6)} = [MS(@, [L], o, 0, 5)] |
Proposition 6.27 Assume rank(y) = 1.

e In the case pg > 0, we assume H2(X,L*1 ® E) = 0 for any (E.,¢) € M(y,L). Then, we have the

vanishing [./Ws(y,L,oz*,(S, )] =0.

e If pg =0, we have the relation k* [Ms(y, L, oy, d, E)} = [MS@, [L], o, 6, E)} |

We obtain the following vanishing result for the virtual fundamental class of the fixed point set of the master
space.

Proposition 6.28 Let J = (y,, Y, 1, I2) be a decomposition type (Definition 4.33). Assume py > 0.
e In the case rank(y;) > 1, we have [M%"(J)] = 0.

e In the case rank(y,) = 1, we assume H? (X, L*1®E) = 0 for any torsion-free sheaf E of type y, moreover.
Then we have [M %= (3)] = 0.

Proof It follows from the propositions 6.10, 6.26 and 6.27. |
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6.2.2 Proof of Proposition 6.23

The canonical resolutions of the universal sheaves on M(m,y, [L]) x X, M(m,y, L) x X and M(m, ¥y, [L]) x X
are denoted by V[L], V(L) and V[L], respectively.
Let us see Ob(m,y, L). From (100), we obtain the following diagram:

Obrel(V(L)ad))[_l] — Ob(m’y)

fll 1 (151)

O[-1] O

We put as follows:

Ob.e1(V(L), ¢) := Cone(Obye(V(L), ¢) — O)[—1], Ob(m,y) := Cone(Ob(m,y) — O[-1])[-1]

Then we obtain the following commutative diagram:

Ob.et(V(L), 9)[~1] —— Obt(V(L),8)[~1] —— Lat(my,0)/M(mz) [~ 1]

| l l

Ob(m, y) — Ob(m, y) — L p(m )

Thus we put as follows:

Ob(m,y, L) := Cone(mrel(V(L), P)[-1] — Ob(m,y))

Then we obtain the morphisms Ob(m, y, L) — Ob(m,y, L) — L q(m.y,1)- Since the first morphism is quasi
isomorphic, the composite gives the equivalent obstruction theory.

On the other hand, let mo : M(m,y, L) — M(m,y, [L]) denote the natural projection. Due to Lemma
5.21, we have the following commutative diagram on M(m,y, L) from the diagram (151):

75 Obly (VL] [4])[=1] —=— Obya(V(L), $)[—1] —— Ob(m,y)

T | |

~

Lmimyyc,, /Mmy) — O[-1] —  O[-1]

In particular, we have the isomorphism

7'('; Obrel(v[L]a [g]) = m(V(L)v %) (152)
On M(m,y,[L]), we have Obrel(f)[L], p*) := Cone (Obd(ﬁ[L]) — Lpic). The trace map induces the following

commutative diagram: R
Oba(V[L], p*)[-1] —— Ob(m,y)

| |
O[—1] —  O[-1]

~

We put mrel(ﬁ[L], p*) := Cone (Obrel( [L], p*) — (’)) [—1]. Then we have the following commutative diagram:

k*1*Obrel(V[L], [¢]) & Obral(V[L], p*) ——— Ob(m, y)

l l

Obya(VIL], [¢]) @ Obrat(VIL], p*)  ——— Ob(m,y)

143



We put as follows:
Ob(m, 3. [L]) = Cone ("7 Obya(VIL], [8]) & Oy (VIL], p) — Ob(m, y))

Then we have the morphisms Ob(m, g, [L]) — Ob(m, ¥, [L]) — Lt(m,g.,(z])- Since the first morphism is quasi
isomorphic, the composite gives the equivalent obstruction theory.
By the construction, we have the following isomorphism:

Obra(V[L], p*) ~ H2(X,0)" @ O[2]

Then the claim of the proposition immediately follows. |

6.3 Rank One Case
6.3.1 The moduli of L-abelian pairs

Let L be a line bundle on X. An L-Bradlow pair (E,¢) is called an L-abelian pair, if E is a line bundle.
Similarly, a reduced L-Bradlow pair (E, [¢]) is called a reduced L-abelian pair, if E is a line bundle.

Let ¢ be an element of H2(X). We denote by M(c,L) the moduli of L-abelian pairs (E,¢) such that
c1(E) = c. We denote by M (¢, [L]) the moduli of oriented reduced L-abelian pairs (E, [¢], p) such that ¢1(E) = c.
We have the isomorphism M (¢, [L]) =~ M(e, L) of schemes. We have the projection M (¢, L) — Pic(c), which
is a projectivization of a cone over Pic(c).

The universal object on M (G, [L]) x X is denoted by (L, [¢"]). The line bundle £* is the pull back of the
Poincaré bundle on Pic(c) x X. On the other hand, the universal object on M(c, L) x X is denoted by (L, ¢%).
We have the relation £* = £* ® Orar(1).

The obstruction theories of M(c, L) and M (¢, [L]) are denoted by Ob(M(c, L)) and Ob(M (¢, [L])) respec-
tively. They are not equivalent in general. In fact, Ob(M (¢, [L])) is not perfect in the case py > 0 in general,
unless H?(X, L) = 0 for any £ such that ¢;(£) = c.

In the case H!(X,Ox) = 0, we have a simple description of the moduli of abelian pairs. We work on the
complex number fields. Let ¢ be an element of H%(X,Z). Let £ be a line bundle on X such that ¢;1(£) = c.
Due to the assumption H'(X,Ox) = 0, any line bundle £’ with ¢;(£’) is isomorphic to £. Hence, the moduli
M (c, L) is isomorphic to the projective space P(H(X, L™ ® £)V).

Since the moduli is smooth, the obstruction theory of M (e, L) is given by the obstruction bundle O(c), and
the virtual fundamental class is the Euler class of O(c¢). The vector bundle O(c) is obtained as follows: We
have the universal sheaf £ = £ ® Okrei(1) and the universal L-section ¢ : py. )L — L over M(c,L) x X.

We have the cokernel sheaf Cok := Cok(¢). Then the sheaves px.(Cok) and R'px.(Cok) are locally free
Oi(e,r)-modules. The vector bundle px .(Cok) gives the tangent bundle of the moduli, and Rl7y . (Cok) gives
the obstruction bundle O(c). The virtual fundamental class is given by the Euler class Eu(O(c)) N [M (¢, L))o,
where [M (¢, L)]o is the ordinary fundamental class of the smooth variety M(c, L).

Let d(c, L) denote the dimension of the smooth variety M (c, L), which is same as dim(H°(X, L' ® L)) — 1.
We put x(L'® L) :=dim H(X, L' ® £) —dim HY(X, L' ® £) + dim H*(X, L™ ' ® L).

Proposition 6.29 Assume H'(X,0x) = 0 and p, = dim H*(X,Ox) > 0. Moreover, we assume that the
virtual fundamental class of M(c,L) is not 0. Let L be a line bundle such that c1(L) = c. Then, we have
X(L7'® L) = x(Ox), and the expected dimension of M(c, L) is 0.

The total Chern class of the obstruction bundle O(c) is (14c1 ((’)rel(l)))d(c’L)fpg, and the virtual fundamental
class is as follows:

[15G = o)
d(c,L)!

Here [p] denotes the cohomology class of a point M(c,L). We also have the inequalities d(c,L) < py and
dim H (X, L' @ £) < dim H2(X, L' & L).

- [p]
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Proof Since we have assumed H'(X,Ox) = 0, the obstruction bundle O(c) can be decomposed on M(c, L) as
follows:

0— HY(X,L7'® L) ® Orei(1) — O(c) — H*(X,0) @ Opr(e,ry — H* (X, L' ® L) ® Orei(1) — 0.
Thus the total Chern class of the vector bundle O(c) is (1+ cl(Orel(l)))dlm(Hl(x’L 1O0) ~dim(H* (XL 1®£)). On
the other hand, the rank of O(c) is dim (H' (X, L™'® L)) —dim(H*(X, L~ *® L)) +py. Thus, if dim(H'(X,L™'®
L)) —dim(H?*(X,L~' ® £)) > 0, the Euler class of O(c) is 0 due to our assumption p, > 0. It contradicts
with our assumption that the virtual fundamental class is not 0. Therefore, we have —e = dim(H (X, L™ ®
£)) — dim(H*(X,L™ ® £)) < 0. Then, the coefficient of ¢;(Oye(1))%*L) in the polynomial (1 + 01(0)@)76
is not 0. Thus, the rank of the O(c) must be d(c,L) = dim(H°(X,L™' ® £)) — 1. Therefore, we obtain

x(Ox) = x(L7' ® L), and the expected dimension of the moduli is 0. By a formal calculation, we obtain the
virtual fundamental class. |

Remark 6.30 In particular, we have the vanishing of the virtual fundamental class in the case H*(X, L' ®
L) =0. We can derive it also from Proposition 6.25. |

Let us consider the virtual fundamental class of M(¢,[L]) when H?(X,L™! @ £) = 0 holds for any line
bundle £ such that ¢;(£) = ¢. We have M (¢, [L]) ~ M(c,L) ~ P(H°(X,L™' ® £)¥) for such a line bundle
L. The obstruction theory of M (¢, [L]) is perfect (Proposition 6.3). Since the moduli is smooth, we have the
obstruction bundle a(c)7 and the virtual fundamental class is the Euler class of a(c) The following proposition
can be checked directly from the construction of the obstruction theory.

Proposition 6.31 We assume H'(X,0) =0 and H*(X, L=*® L) = 0 for any line bundle L such that c¢1(L) =
c. Let L be a line bundle such that c1(L) = c. The expected dimension of M (¢, [L]) is x(L™1®L). The obstruction
bundle a(c) is given by HY(X,L) ® Oa(1). The total Chern class of a(c) is (1+ cl(Orel(l)))dlmH (0,
In particular, the virtual fundamental class is given by c1(Orer(1))™H (X:L) A [M (€, [L])]o, where [M (@, [L])]
denotes the ordinary fundamental class. |

6.3.2 Parabolic Hilbert scheme

Let y be an element of 7ype such that rank(y) = 1. We assume that the first Chern class of y is trivial. Then,
let X[¥! denote the moduli of the oriented parabolic sheaves E, of rank one such that det(F) = Ox. In other
words, X denotes the moduli space of ideal sheaves of 0-dimensional schemes with parabolic structure of an
appropriate type. We call X¥! the parabolic Hilbert scheme of type y. The universal sheaf Z% over X% x X
can be regarded as the ideal sheaf of the relatively 0-dimensional scheme Z(y). The relative length is given by
—12, where 2 denotes the H*(X)-component of .

Proposition 6.32 When D is smooth, the parabolic Hilbert scheme is smooth. The expected dimension is same
as the ordinary dimension.

Proof X[ is the fiber of the smooth morphism M () — Pic. Hence the claim follows from the first claim
of Proposition 6.3. |

Due to Proposition 6.32, the obstruction theory of X¥! is obvious. But, we give another expression of the
obstruction theory of X ¥ for later use.

Let V. = (V_; — Vj) be a locally free resolution of the universal sheaf E over X[ x X. We take vector
spaces W; such that rank W; = rank V;. We put SGL(W.) := {(g9-1,90) € GL(W.), | det(g—1) det(go) = 1}. We
put Y(W) := N(W_1 x, Wy x)scr(w)- Then, we have the classifying map ®(E) : X¥l x X — Y (W.). Thus,
we obtain the morphism ®(E)* Ly yyy/x — Lxtwixx/x- We can show that ®(E)* Ly ), x is expressed by
g°(V))<1. Therefore, we obtain the morphism g°(V.) — Ly x/x, and it induces Ob®(V) — L. Since
it is uniquely determined in the derived category D(X¥]), we denote it by Ob°(y).
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We put Y p(W.) := N(W_1 p, Wo p)sgr(w.). We have the naturally defined right action of Hi:z GL(W®) x
SGL(W.) on Hézl N(WED W®). The quotient stack is denoted by Y p(W.,W*). We have the naturally
defined morphism 7 : YD(WLW*) — Y p(W). . _ .

We have the morphisms ®(V,p) : XU x D — Y p(W.) and ®p (V. p, V) : XW x D — V(W.,W*). We
have 7o ®p(V.p,V*) = ®(V,p). Thus, we obtain the morphisms:

LX[ylxD/D — 6D(V-\Da VB)*L?D(W.,W*)/D A 6(V-\D)*L?D(W.)/D
It is easy to see that ®p(Vp, Vp)* Ly, v wey,p and ®(Vp)* Ly, p are expressed by g3, (V. Fi)<i and
9°(Vp)<1. Thus, we obtain the morphisms:

LXMXD/D —— gp(V, Fy) «—— QO(V-\D)

We put Ob,(y) := Rpp (85 (V., Fi) ®@wp). We also put Ob,(y) := Rpp«g°(V,|p) @wp. They are independent
of the choice of V. in the derived category. Then, we obtain the following commutative diagram:

Ob%(y) —2— Ob°(y)
Obh(y) —— Lxmw

The cone of (i1, —i2) : Obh(y) — Ob(y) @ Obp(y) is denoted by Ob°(y). We obtain the morphism ob®(y) :
Ob°(y) — Lxuw-

Lemma 6.33 The morphism ob°(y) is quasi-isomorphic.

Proof We have the inclusion X — M(y). We take a locally free resolution of the universal sheaf on
M(3) x X. The restriction to X¥ x X gives the locally free resolution of the universal sheaf on X x X.
Then, we obtain the following naturally defined commutative diagram:

XWX 2 M@) x X —2— PiexX
YW) —— Y(W) —— Xa,
Then, we can obtain the following commutative diagram on X [¥!:
Lxw «——— jiLlm@ < JiisLlpic
Ob°(y) ——— Ob(y) ——— Ob’(y)
By the construction of Ob(y), we can obtain the following:
Lxw «—— jilma < JijsLpic
Ob°(y) «—— Ob(y) «——— jijsLpic

It is easy to observe that the both of the horizontal rows are distinguished.
We also have the following diagram:

XWx X —— Yp(W,W*) —— Yp(W)

| ! |

M(y) —— Yp(W,W*) —— Yp(W)
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We remark Ob(y) ~ Cone(Obp(y) — Obp(y) @ Ob(y)). Then, we can derive the following commutative
diagram by construction of the complexes:

Lxw +—— Obp(y) «—— Obp(y)

I I I

JiLme) +—— Obp(y) «——— Obp(y)

Here, Obp(y) := Rpp.gp(V, F.) ® wp and Obp(y) := Rpp«g(V p) ® wp on M(y). Then, we obtain the
following morphism of the distinguished triangles:

Lxw «—— jilma) < JijsLric

I
Ob°(y) «——— Ob(y) —— JjijiLpic

The morphisms a; (i = 1,2) are isomorphic. Therefore, the claim of the lemma follows. |

6.3.3 Splitting into the moduli of the abelian pairs and the parabolic Hilbert schemes

Let y be an element of 7ype such that rank(y) = 1. We have the following description of M (y,L). Let ¢
denote the H?(X)-part of y, and y(—c) := y - exp(—c). We have the universal line bundle £. on M(c, L) x X.
We also have the structure sheaf O z(y(_)) of the subscheme Z(y(—c)) C X¥(=9) x X. The pull back of them
via the projection M (c, L) x X¥(=9) x X onto M(c, L) x X and X[¥(=9)] x X are denoted by the same notation.
We put as follows:

K:=L!® LI'® OZ(y(fc))-

It is easy to see that U := px K is a locally free sheaf on M(c, L) x X¥(=9)]. We have the natural morphism
px LY ® L™t — U. We also have the natural section of py (L~ ® £%) induced by the universal section ¢*
for M(c, L). Therefore, we obtain the section v : M(c, L) x XW(=9l — 93, Tt is easy to observe that 1~ (0)
is isomorphic to the moduli M(y, L).

We have the following Cartesian diagram:

M(y, L) _r M(c, L) x Xw(=e)]
ji lw (153)
M(c,L) x Xw=al L D4}

Here i denotes the 0O-section. Since i is a regular embedding, we can define the Gysin map i'.

Proposition 6.34

e We have the relation i'([M(c,L)] x [X¥(9)]) = [M(y, L)] among the virtual fundamental classes. In
particular, we have i,[M(y, L)] = Eu(D) N ([M(c,L)] x [XW]), where Eu(V) denotes the Euler class
of 0.

o Assume H?(X,L) = 0 for any L € Pic(c) . Then, we have the relation i'([M (¢, L)] x (X)) =
[(M(@, [L])] and i.[M(g, [L])] = Eu(B) N ([M (@, [L])] x [X¥T)).

The proof will be given in the next subsubsections 6.3.4-6.3.7.

Before going into the proof, we remark that the study of [M(y, L)} is reduced to the study of X¥(=) by
Proposition 6.29 and Proposition 6.34, when we assume H!(X,0) = 0 and pg > 0. We are mainly interested
in the cap product of some cohomology class ® and the fundamental class [./\/l(y7 L)} In the interesting cases,
the cohomology class ® is defined on M (¢, L) x X¥(=9) and thus we have only to consider the product of ®
and i, [M(y, L)]. Let £ be any line bundle on X such that ¢;(£) = c¢. We put K= Oz(g(—c) @ LR L™, We
put Y= Px .K which is the vector bundle on X ¥(=o),

147



Proposition 6.35 Assume H'(X,0) =0 and p; > 0. We have the following formula in the cohomology ring
H*(M(c,L) x XWE) ~ H*(M(c, L)) @ H* (Xl

14 — py)

qenr P (Eu(D) N [x W) (154)

i [M(y,L)] =

Here [p] denotes the cohomology class of a point of M(c, L).

Proof When [M(y,L)] # 0, the expected dimension of M(c, L) is 0, and [M(c, L)] is same as (d(c, L)!)_1 .
Hf(clL)(z — py) points, due to Proposition 6.29. Therefore, we have only to consider Eu(U) N ([p] x [X¥(=)}).

Moreover, we can replace U with By xiw-en = Q?Hp}xx (-] Then we obtain the formula (154). |

6.3.4 The morphism to the moduli of abelian pairs and the obstruction theory

We use the notation in the subsubsection 5.3.1. Recall the diagram (88). We would like to obtain a similar
diagram from an L-Bradlow pair in the case rank(E) = 1. Since E is contained in det(E), we have the naturally
induced section ¢’ : L — det(E). Assume that U is connected, for simplicity. Hence ¢ = c¢1(det(E)|(u}xx) is
independent of the choice of u € U. Therefore, we obtain the morphism detg 4 : Uy — M(c, L).

Proposition 6.36 We have the following commutative diagram:

Lu, — Ob(V., ¢)

T T (155)

det*E,qb LM(C,L) A — detE7¢ Ob(M(C, L))

Here, we put Ob(V., %) = Rpx*(g(V., q~5) ® wx), and Ob(M(c7 L)) denotes the obstruction theory of M(c,L).

Proof Let us begin with a general non-sense. Let Uy and U_; be locally free sheaves on a stack Z with a
morphism §: Y_; — L. Assume rank Uy —rankY_; = 1. Let vy,...,v; be a local frame of U _1, and let u
be a local section of By. We put w := vy A -+ Av;. Then we put Aj(u) := (uA f(w)) @ w™t. It is easy to see
As(u) is independent of a choice of the frame. Therefore, we have the morphism A; : By — det(U.). It is easy
to see that Ajo f = 0. Hence, we have the morphism of the complexes Cone(f) — det(.).

Applymg the above construction, we obtain the morphlsm Ay V. — det(V.). We also obtain the morphism

Ajo ¢o : Py — det(V.) ~ det(E). Since we have Ajo ¢o(P_1) = 0, the morphisms ¢’ and Ayo o are
essentially same. We put g := Hom (P., det(V.))v. The morphism Ay o 560 naturally induces the morphism
gret|—1] — O[—1]. The cone is denoted by g(det(V.), ¢').

It is convenient to make a minor change in the construction of Ob(V. 5) We have the natural right
GL(W.)-action on N(W_1 x,Wox) x N(P-1,Wox). The quotient stack is denoted by YO(W P). We put
Yi(W.,P) := Y(W.) and Yo(W., P) = Yo(W., P). We put Y(W.,P) := Y;(W., P) X5 (WP Ya(W., P). We
have the natural morphisms Y;(W.,P) — Y;(W.,P)). The induced morphism Y (W.,P.) — Y (W.,P) is
isomorphic.

We have the classifying map ® : Uy x X — Y (W., P.) and the induced maps ®; (U x X — Y (W., P).
In the construction of the subsubsection 5.3.1, we can replace ®(V., (b) Ly w. py/x with P Ly(W Py/X

We have the weight 1-action of Gy, on det(W.). It induces the G,-action on N (P;,det(W.x)) (i = 0,1).
We put as follows:

Zo(W., P) = N(P_y,det(W.x)), , Zi(W.,P):=Xg,, Zs(W.,P):=N(Pydet(W.x)),

The fiber product Z1(W., P.) X z,(w.,p.y Z2(W., P.) is isomorphic to N(Ox,det(W. x))g,,, and it is denoted by

Z(W., P.). From the section Ay o ¢g : Py — det(V.), we obtain the classifying map ¥ : Uy x X — Z(W., P)
and the induced maps U; : Uy x X — Z;(W.,P.) (i =0,1,2).
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We have the morphism T’y : N(W_1,Wy) x N(P-1,W_1) x N(Py,Wy) — N(Py,det(W.x)) given by
I'h(e,a—1,a0) := A¢ 0 ag. We have the morphism GL(W.) — Gy, given by (g_1, go) — det(g—1)~! - det(go)-
Then T is equivariant with respect to the actions of GL(W.) and G,,. Therefore, we obtain the mor-
phism I's : E(W,P.) — Zo(W., P.). Similarly, we have the equivariant morphism I'y : N(P_1,Wp) —
N(P_y,det(W. x)) given by Ty(e,a) = A, o a, which induces Ty : Yo(W., P.) — Zo(W., P.). We also have the
obvious map I'y : }71(W.,P.) — Z1(W.,P.). We have I'; o &)i = U, for i = 0,1,2. We have the induced map
I:Y(W., P)— Z(W.,P) and the relation T o & = W.

We have the universal L-abelian pair (£*,¢") over M(c, L) x X. We have the classifying map ®;(L", ¢") :
M(e,L) x X — Z;(W., P.). We obtain the following commutative diagram:

Us x X —)q)i E(W7P)
dEtE’(b’Xl F1l (156)

@, (LY, 0")
g

M(c,L) x X Z;(W., P)

We obtain the following morphism on Uy x X:
@ : COD@(‘I’SLZO(W.,P.)/X - P \Ij;‘kin(W.,P.)/X) — Cone(tﬂI}SL%(WqP)/X ey ‘ifLE(W,,p.)/X)
i=1,2 i=1,2

By the argument in the subsubsection 2.3.2, we can show that ¢ is expressed by the morphism of the complexes

g(det(V2),¢") — Cone(v(¢)<1).
Lemma 6.37 The morphism ¢ naturally factors through g(det(V.), ¢") — g(V., 5) — Cone(’y(a)gl),

Proof We give only an indication. The following diagram is commutative:

O —— Hom(Vp, Vo) & Hom(V_1,V_1)

l l

0 —— Hom(V_1, Vo)

In fact, it is a part of the morphism of the complexes O — Hom(V.,V.)V. The following diagram is commu-

tative:
Hom(det(V.), Py) —— Hom(V_1, P_1) ® Hom(Vy, Po)

l l

0 — HOm(V717 PQ)

In fact, it is a part of the morphism of the complexes Hom (P., det(V.))v — Hom (P., V.)v. Then the claim of
the lemma can be checked easily. |

Let us finish the proof of Proposition 6.36. We obtain the following commutative diagram from (156) and
Lemma 6.37:

l l

Lu,xx/x < detg g x Lne,n)xx/x
It is easy to observe Ob(M(c,L)) = Rpx «(g(det(V.),¢’) ® wx). Thus, we obtain the desired commutative
diagram (155). |

By a similar argument, we obtain a similar commutative diagram in the reduced case. We use the notation
in the subsubsection 5.4.1. Assume rank(E) = 1. Then the reduced L-pair (det(E), [¢']) is induced. Therefore,
we have the morphism detp 4 : Us — M (c, [L]).
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Lemma 6.38 We have the following commutative diagram:

Ly, ——  Ob(V.[g])

T T (157)
det}}’[qﬁ] Lyrie, iy < Ob(M(Ca [L]))

Here, we put Ob(V., [¢]) := Cone(Ob,a(V., [¢]) — Ob(V.)), and Ob(M(c,[L])) denotes the obstruction theory
of M(c, [L]).

Proof We indicate only an outline. From the weight (—1)-actions of G,, on P. and Ox, we obtain the G,,-
actions on Y;(W., P) and Z;(W., P.). The quotient stacks are denoted by Y;(W.,[P]) and Z;(W.,[P]). The
natural morphisms I'; : Y;(W., [P]) — Z;(W.,[P]) are induced.

We have the induced map @/ : Us x X — Y;(W.,[P]). We put ¥/} := I'; 0 ®;. We also have the classifying
maps ®;(LY, [¢"%]) : M(c,[L]) x X — Z;(W.,[P]) for the universal objects on M(c,[L]) x X. We have the
following commutative diagram:

U3 x X - YZ(W,[P]) E— XG

detEv[d)]yXl Fll :l

M(e,[L]) x X 2ERDZ o p) —— Xe

m

m

We have the following induced morphism on Uz x X:

o COIle(‘I’f)*Lzo(W.,[P,])/XGm — @ ‘I/Q*in(w,7[P.])/xcm) —
i=1,2

Cone((ig*LYo(W,,[P,])/Xcm — @ (AI;;*LYi(W,,[P,])/XGm) (158)
i=1,2

We can show that ¢’ is expressed by the morphism of the complexes g(det(V.), [¢']) — Cone(y[d]<o[—1]), where
g(det(V2),[¢]) is given by Hom(det(V.),[P-1]) — Hom(det(V.), [Po]) — O, as in the proof of Proposition
6.36. It factors through g’(V., [¢]). Therefore, we obtain the following diagram:

g(V.[g) —— g(det(V2), [¢])

! !

Luyxx/xc,, < detp g) x Do) xx/Xa,,

Then, we obtain the following:

Rpx.(g'(V.,[¢]) owx) —F— Ly, ke, —=— Ly, /

I I I

P1 * P2
Rpx «(g(det(V)), [¢']) ® wx) ——— deth ) Las(en))/be,, — Lia,, /6[1]
It is easy to observe Ob(V., [¢]) ~ Cone (s 0 ¢1) and det; 5 Ob(M (¢, [L])) =~ Cone (4 01h1). Thus, we obtain
the desired diagram (157). |

When E has an orientation p, we have the morphisms Oby(V., p)[=1] — Ob(V.) — Ob(V., [4]). Let

Ob(V., p, [#]) denote the cone of the composite of the morphisms. On the other hand, we have the morphism
detp [g],p : Us — M(c, [L]).
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Proposition 6.39 We have the following commutative diagram:

Ly, cee Ob(V., p,[9])

I I

dets 41, L))~ detf 4, Ob(M(, [L]))
Here, Ob(M (¢, [L])) denotes the obstruction theory of M (c,[L]).
Proof The orientation induces the morphisms Us — M (¢, [L]) — Pic(c), and we have the following diagram:

obi(v) —— Ob4 (V) —— Ob(V)

! ! !

dety , Lpic — dety 14, Luy ——  Lus
Then the claim follows from the construction of the relative obstruction complex for orientations. |

6.3.5 The morphism to the parabolic Hilbert scheme and the obstruction theories

Let U be a k-scheme. Let (E, F.) be a quasi-parabolic torsion free sheaf of type y. Assume rank(y) = 1.
Let ¢ be the H?(X)-part of y. Then we put y(—c) := y - exp(—c). We put I(E) := det(E)~! ® E, which
has the induced quasi-parabolic structure Fy. The type of (I (E), F*) is y(—c). Thus, we have the morphism
2(E): U — XMW=l

Lemma 6.40 We have the following commutative diagram:

Ly ——  Ob(V,FE)

T T (159)

(E)* Ob(X[y(fc)])

[1]

E(E)*Lxiy(-ey ——

Here, we put Ob(V., F,) := Cone(Obyei(V, Fi)[—1] — Ob(V))), and Ob(X¥(=9)) denotes the obstruction theory
of X9l Moreover, ¢ factors through Ob°(V., F,).

Proof Let 7% denote the universal sheaf on X¥(=9] x X. We take a locally free resolution V. of Z%. It is
easy to observe that V. := Z(E)% V. @ det(F) is a locally free resolution of E. We have g(V.) = Z(E)%g(V.),
8(V,p) = Z(E)pa(Vp) and g(V., F.) = E(E)pa(V., F.).

We take vector spaces W; (i = —1,0) such that rank W; = rankV;. We have rank Wy —rankW_; = 1. In
that case, we have the homomorphism GL(W.) — SGL(W.), given as follows:

(9-1,90) — (det(g.)""-g_1, det(g.)""go)

Here, det(g.) denotes det(go) - det(g_1)~'. Therefore, we have the isomorphism Y (W.) ~ Y (W.) xx Xg,,. In
particular, we have the morphism: -
wy: Y(W) — Y (W) (160)

Then, we obtain the following commutative diagram:

UxX e Y(W)

! |

Xl X —— Y(W)
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Therefore, we obtain the following commutative diagram on U x X:

Lyxx/x — (V)" Ly w) — a(V)

I I I

*

E(E)x Lxweaxx/x — E(E)xWV.) Ly, — E(E)¢°(V)
Hence we obtain the following commutative diagram:
Ly — Ob(V))
E(E)* Lo <« Z(E)*Ob°(V.)
We obtain a similar diagram from V| p and V.|p. Moreover, we obtain the following diagram by the argument

of Lemma 5.22:
Ly — Ob(V) — Ob(V.‘D)

E(E)* Lxweo) «— E(E)* Ob°(V.) «—— E(E)* Ob°(V,p)

We also have the following commutative diagram:

Ly «———  Rpp«(gp(V,F.)®@wp)  —— Ob(Vp)

I I I

(E)*LX[y(—c)] — E(E)*Rpp*(goD(V.,F*)@)wD) — E(E)* Obo(V.‘D)

[1]

We remark the following:

Ob(V, F,) ~ Cone(Ob(V,,D) — Ob(V)) ® Rpp«(gp(V., F.) ® wD))

Ob(X(=9y ~ cone(0b°(v.m) — Ob°(V) & Rpp. (ap(V, F.) ® wD))
Hence, we obtain the desired commutative diagram (159). 1

6.3.6 The mixed case

Let (E, Fy, ¢) be a quasi parabolic L-Bradlow pair of type y over U x X. Assume rank(y) = 1. Let ¢ denote
the H?(X)-part of y, and we put y(—c) := y - exp(—c). Then, we have the morphisms detg 4 : U — M(c, L)
and Z(E) : U — XMW=l

Assume we have a locally free resolution V. of E, a locally free resolution P. of L, and a lift 5 : P — V. of

¢. We have the natural morphism 41 : Ob(V.) — Ob(V., ¢) and i : Ob(V.) — Ob(V., F}). We put as follows:
Ob(V,, i, ¢) := Cone(Ob(V.) (=) Ob(v, B,) @ Ob(V, ¢))
We have the induced map Ob(V., F, ¢) — Ly.

Lemma 6.41 We have the following commutative diagram:

detj‘g@ Ob(M(c, L)) DEE)* Ob(X[y(*C)]) — Ob(V,,F,,9)

l l

det*E’¢ LM(C,L) ©® E(E)*Lx[y(—c)] - LU
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Proof It follows from Proposition 6.36 and Lemma 6.40. |

Let (E, Fx,p,[#]) be an oriented quasi-parabolic reduced L-Bradlow pair of type y over U x X. We have
the morphism detg (4 : U — M (¢, [L]) and E(E) : U — X W=,
Assume we have a locally free resolution V. of E, a locally free resolution P. of L, and a lift [¢] of [¢]. We

have the natural morphisms i1 : Ob(V.) — Ob(V, p, [¢]) and iz : Ob(V.) — Ob(V., F}). We put as follows:

OB(V., ., (], p) := Cone(Ob(V)) "= Ob(V., ], p) & OB(V., F-.))
Lemma 6.42 We have the following commutative diagram:

det}y , (5 Ob(M(C, [L])) & E(B)* Ob(X W) —— Ob(V,, F,, [¢], p)

l l

det*E‘,p,[qﬁ] Ly @ E(E)* Lyl —_— Ly

Proof It follows from Proposition 6.39 and Lemma 6.40. |

6.3.7 Proof of Proposition 6.34

Applying the construction in the subsubsection 6.3.6 to the universal object (€%, ¢) on M(y, L), we obtain the
morphism F : M(y, L) — M(c, L) x X9, Tt is same as the inclusion given in the subsubsection 6.3.3. Let
us denote the obstruction theory of M(y, L) by Ob(y, L). We have the following commutative diagram, due to
Lemma 6.41:

F* (Ob(M(c, L)) ® Ob(X (=0 )) — . Ob(y, L)

l l (161)

F (LM(C7L)XX[y(—c)1) —— Lm,n)
Let L. denote the universal line bundle on M(c, L) x X. We have the natural inclusion £% @ L™! —
F*L* @ L™, and the quotient is isomorphic to Kim(y,r)xx- Thus, we have the following:
Cone(F*[Ob(X (=) & Ob(M (e, L))] — Ob(y, L))
~ Rpx « (Cone[RHom(F*C“c‘, L) — RHom(E",L)] @ wX)
~ RPX*(’C)‘VM(%L) (1] =~ BV [1jpmey,L) = T Lare,nyxxiv-on g (162)
From the diagram (161), we obtain the morphism v : j* Lys(c 1y« xiw(-o1 jg — LM(y,L)/M(c.L)

Lemma 6.43 The morphism v is same as the morphism j* Ly pyxxtw-e1 0 — Lam(y,0)/p(c,n) obtained

from the diagram (153). In particular, the obstruction theories of M (c, L) x X W= and M(y, L) are compatible
over the morphism 1.

Proof We take a locally free resolution V. of £*. We take vector spaces W; such that rank W; = rank V;. We
obtain the following commutative diagram:

My, L) x X 2(.9), Y(W., P)

| et |

-1 _
X[y(*c)] « M(C, L) D(det(E)”"QV)xP(L,9) Y(W) « Z(W,P)

It induces the morphism:

LM(m;y)><X/M(c7L)><X[y(—C>] xX (D(V'7 ¢)*LY(W.,P.)/V(W.)XZ(W,7P,)'
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We use the notation in the subsubsection 2.3.3. We put Vi =V, (1 =0,—1) and V= LY. By the argument

in the subsubsection 2.3.2, we can show that ®(V., )" Ly p) /77w )xzw.,p) IS expressed by ¢(V., P, ¢, ¢)<o.
Thus we obtain the following morphism:

€V, P,¢,0) —— Lpg(y,0)xX/M(e,L)x X v~ x X

We put Ob™ (V.. P., ¢, $) := Rpx*(k(‘N/.,P.,qb,qg) ® wyx). Then, Ob(V., P.,¢,$) is isomorphic to the cone of
the morphism Ob(M (e, L)) & Ob(X¥(=9l) — Ob(M(y, L)). The induced morphism Ob? (V., P, ¢, ¢) —
L aq(y, )M (e,L)x X w(-o) 1S same as v.

We have the following factorization:

M(y,L) x X Y 2V, P) —— Y(W.,P)

V,P
M(e,L) x XWeal w X —— Z,(V,P) —— Y/(W.) x Z(W., P)

Thus, we have the following morphisms:
Ly, nyxx/meLyxxw-olxx < ®ILy ¢ py iy < 2VL0) Ly py/vw)xzow.p)

Therefore, the morphism v is same as t(\~/., P, ¢, (5) in the subsubsection 2.3.3. Then, the claim follows from
Proposition 2.25. |

Recall that X¥ is smooth. Let m be a sufficiently large integer such that H'(X,L(m)) = 0 (i = 1,2)
for any line bundle £ such that ¢;(£) = ¢. Then the moduli stacks M (y,O(—m)) and M (c, O(—m)) are
smooth. Let ¢ : O(—m) — L be an inclusion. Then we have the inclusions M(y, L) — M (y,O(—m)) and
M(c,L) — M(c,0(-=m)). On M(c,0(—m)) x X9l x X we put £’ := L4 ® L' ® Oz(y(—¢)). Then
Y’ := px K’ gives the vector bundle over M(c7 (’)(—m)) x XW(=9)l guch that QI?M( 0. Therefore,
we obtain the following Cartesian diagrams:

e, L)x X(=a] =

M(y, L) ——— M(c,L) x X ——— M(c,0(—m))
M(e, L) x Xw=eal P _— pug

We have i' = i}. Therefore, we obtain the relation i'([M(c, L)] x [X¥]) = [M(y,L)] from (162), due to
Proposition 2.32. The relation ' ([M (¢, [L])] x [X[¥]]) = [M (3, [L])] can be shown by a similar argument. Thus
we finish the proof of Proposition 6.34. |

6.4 Bradlow Perturbation
6.4.1 Statements
Let L be a line bundle on X. If § € P"" is sufficiently small, we have the projective morphism:
§: M°(y, [L], s, 0) — M*(Y, o) (163)
To discuss §, let us consider the following condition for (y, L, a,):
(i-vanishing condition) We have H’ (X, E® L’l) =0 for any j > ¢ and for any F, € M*(y, a,).
The 1-vanishing condition obviously implies the 2-vanishing condition.

Proposition 6.44 Assume the 1-vanishing condition holds for (y, L, «.).
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e The morphism § : M*5(y, [L], o, 0) — M*3(y, o) is smooth.
o Assume, moreover, that the 1-stability condition holds for (y,a.). Then, we have the following relation:

S*([MS(@aa*)]) = [MS(@v [L]va*v5)]

Proof We give only a remark. The smoothness of § is clear. We put M; := M*(y,a,) and My :=
My, [L], s, 0). Tt is easy to obtain the following morphism of distinguished triangles:

Lpo/mi =1 —— FLamye  ——  Lamee —— Lamgm
Obrel(m7 Y, [L])[_l] — 5 (Ob(m7 y)) - Ob(mv Y, [L]) - Obrel(ma Y, [L])
Due to Proposition 2.32, we obtain the equality W*[M;] = [Ma]. |

Let L = (L1, L) be a pair of line bundles on X. We take 6; € PP such that both of §; are sufficiently small.
If & is sufficiently smaller than d1, we have the projective morphism:

81 : MS(@? [L],O[*,(S) — MS(@? [Ll]va*751)

Proposition 6.45 Assume that the 1-vanishing condition holds for (y,a., L2). The morphism §1 is smooth,
and we have the following relation:

F1([(M* @, [L1], a, 61)]) = [M*(3, [L], s, 0)]
Proof It can be shown by an argument similar to the proof of Proposition 6.44. |

If the 1-vanishing condition does not hold, §; is not smooth, in general. The following proposition will be
proved in the next subsubsections 6.4.2-6.4.4.

Proposition 6.46 Assume that the 2-vanishing condition holds for (y,au., La). Then, there exists a Deligne-
Mumford stack B over M*(y, [L1], s, 01) with the vector bundle U and the section 1 such that the following
holds:

e The morphism & : B — M?(y, [L1], o, 01) is smooth.
o M*(y,[L], o, 8) is p1(0).
o We have the following relation:
OB IM (G, [La], e, 61)]) = [M°(F, [L], s, 6)]
Here, ' denotes the Gysin map for the inclusion M*(y, [L], ., 8) — B.

Before going into the proof of Proposition 6.46, we give a corollary. Let P be any point of M*(y, [L1], s, 61).
The fiber &~ 1(P) is smooth, and F1*(P) is the 0-set of the section Yje-1(p) of Vjg-1(p). Therefore, we obtain
the following.

Corollary 6.47 For any k-valued point P € M?*(y,[L1], ax, ), the fiber §1*(P) is provided with the perfect
obstruction theory. We also have the following formula:

/ <I>-\I/:/ \Il/ o)
Mo (g,[L],s,8) 3 (P M (G,[L1],04,81)

Here, ® and ¥ are cohomology classes on M?®(y,[L1], @, 61) and M5(y,[L], ax,d), respectively, such that
deg(®) = 2dim’ M*(y, ). (See the subsection 7.1 for the cohomology classes and the evaluation considered
in this paper.) |

Remark 6.48 Similar claims also hold for the morphism § in (163), if the 2-vanishing condition holds for
(y, L, ). The proof is similar. |
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6.4.2 Construction of B

Let m be a sufficiently large such that the 1-vanishing condition holds for (y, O(—m), a.). We put L} := O(—m)
and L} := (L1, L}). We put B := M*(y,[L], @, ). Then, we have the natural smooth morphism & : B —
MS(@? [Ll]a Qs 51)

We take an inclusion ¢ : Ly — Lo such that the cokernel Lo/L} is a line bundle on some smooth divisor
of X. It naturally induces the morphism Ly — L/{l. The cokernel is denoted by Cok. We also obtain the
inclusion M*(y, [L], o, ) — B.

We have the morphisms M*(y, [L], o, 6) — M(y, [Li]) (i = 1,2). The pull back of the relative tautological
line bundles are denoted by OEQ (1). Similarly, we have the morphisms of B to M(y,[L1]) and M (3, [L}]). The

pull back of the relative tautological bundles are also denoted by (’)gl) (1) and szl) (1), respectively.

Let E'* denote the universal sheaf over B x X. We have the universal reduced [L}]-section [¢s] : szl) (-)®
Ly — E'*. We put E'" := E'* ® (’)(2)(1). We put as follows:

rel
Y = pX*(E’“ ® Cok).

It is easy to see RipX*(E'“ ® Cok) =0 for i = 1,2, and hence U is a locally free sheaf on . The universal
reduced Lj-section [¢%] induces the section ¢ of U over B. It is easy to observe that ¢»~1(0) is isomorphic to
M#(§, [L], o, 6).

Thus, we obtain the following Cartesian diagram:

M*(G,[L], 0.,8) ——
jl lw (164)
B _t .y
Here i denotes the O-section. For the proof of Proposition 6.46, we have only to show i'[B] = [M* (¥, [L], a., d)].

6.4.3 Compatibility of the obstruction theories
Lemma 6.49 The obstruction theories of M*(y, [L], o, ) and B are compatible over i in the diagram (164).

Proof We discuss in some more general situation. Let L be a line bundle on X. We take a sufficiently large
integer m. We take an inclusion ¢ : O(—m) — L. It naturally induces the morphism L=! — O(m). We
assume that the cokernel Cok is a line bundle on some smooth divisor of X.

We use the notation My and My to denote the moduli stacks M(m,y,[L]) and M(m,y, [O(—m)]). The
inclusion M(m, g, [L]) — M (m, T, [O(—m)]) is induced by ¢. Let E¥ denote the universal sheaf over My x X.
We put £ := Eg ® Orel(1). We put U := px (E; ®Cok). The universal reduced O(—m)-section of E; induces
the section 1 of 0. We have M; ~ 1~1(0) and the following commutative diagram:

My —1 My

jl wl (165)
My —— 1
To prove the claim of the lemma, we have only to show that the obstruction theories of M, are compatible over
i in the diagram (165).
Let E% denote the universal sheaf on My, and let [¢}] denote the universal reduced L-section. We put Vs ¢ :=
DX DPX *E{‘(m), and the kernel of the surjection V; g — E{‘(m) is denoted by Vi _1. We take a locally free resolu-
tion P. of L(m) such that P is a direct sum of Ox. We have the canonical lift [Q~51] 1w, P @p%Orel(—1) — V..
Recall gl (V1,., [$1]) := Hom (pi, P. ® py Orar(—1), V1) and g(V1..) := Hom (V.. V1) [~ 1].
Similarly, we take a locally free resolution V5. of the universal sheaf Eg on My x X. Let [¢2] denote the
universal reduced O(—m)-section of Eg. We have the canonical lift [(752] P, Ox @px Orel(—1) — Va o of [¢].
In this case, we have gl (Va., [¢2]) = Hom (ph, O @ piy Orel(1), V2.)", and g(Va.) = Hom(Va., Vo) [—1].
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The inclusion ¢ : O — L(m) has the canonical lift Ox — P.. Therefore, we have the following commutative
diagram on Mi: N N
8 (Vaos [62])[-1] —— graVi- [01])[-1]

l l (166)
itg(V2.) — g(V1.)
Lemma 6.50 The diagram (166) is compatible with the morphisms to the cotangent complezes:

1T LMoy x X/ (M(myy)x X) e, =1 = Lty x X/ (M(m,y)x X)a,, [—1]

| |

75 Lt (m,y)x X/ Xa,, — T Lm(m,y)x X/ X6,

Here, m; denote the natural morphism of M; to M(m,y). (See the subsubsection 2.1.4 for the compatibility of
diagrams.)

Proof We give only an indication. We use the notation in the subsubsection 5.4.1. We construct the stack
Y(W.,[Ox]) by replacing P. with the complex (0 — Ox). Then we have the following commutative diagram:

My x X — Y(W.,[P]) —— Xg,
M2 x X —_— Y(W, [Ox]) —_— XGm (167)
M(m,y) x X)a,, —— YW)a,, —— Xa,
Then the desired compatibility follows from the construction of the complexes. |

Lemma 6.51 We have the following commutative diagram:
i1 Ob(m,y,[O(-m)]) —— Ob(m,y,[L])
l l (168)
ZILMQ - LMI

Proof We obtain the following commutative diagram from (166):
i§ OBl (V2. [92])[-1] —— OBl (V1. [6])[~1]
l l (169)
i1 Ob(V2,.) — Ob(V1.)
It is compatible with the morphisms to the cotangent complexes due to Lemma 6.50:
HLMa/ Mmoo, [1] — Lmymmy)e,, [—1]
UM Lpmmye,, ——  Tilmmuye,,

By a modification as in the subsubsection 5.4.1, we obtain the commutative diagram from (169):

it Obye (Vo [62))[~1] —— Obya (V1., [61]) [~ 1]

| |

zT Ob(V27.) — Ob(Vl.)
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It is compatible with the following commutative diagram:
G Lo mimay) [ — Lty /My [—1]
0 lmmy) ———  T2Lammy
Then we obtain the desired commutative diagram (168) by construction. 1

We put 1717. =V1. ® Orei(1). We put as follows:
Grol 1= Cone(i’{Hom(pjwz(’)X, 92,.)v — Hom(piy, P, 171,.)v), Obyel := Rpx « (@rel ® wix )

It is easy to observe that Obye naturally isomorphic to Cone(Ob(m, g, [O(—m)]) — Ob(m, g, [L])). From the
diagram (167), we obtain the following morphism:

Lapyxx/moxx ——— @V, [0) Ly w. [p))/y(w. [0x]) ¢« Brel (170)

It is easy to observe that the composite of (170) induces the morphism 51 : Obyer — L, JMzs which is same
as the morphism induced from (168).
We have the naturally defined morphism:

h: N(Orel(—1) @ P_1,V1,—1) X N(Ore1(—1) ® Py, V1,0) — N (Orei(—1) ® P_1, V1)

We put Z; := h=1(0). We also put Z := N((’)rel(—l)7 V270) which is the vector bundle over My x X. Then,
the lifts [¢;] induce the following factorization:

Mix X =2, 7 Y(W.,[P])
My x X Zs Y/(W., [Ox])

We obtain the following factorization:

OV, [8) Ly w..p/ywox) —— ®iLz/z, — Lmyxx/Maxx

We put Z3 := N(pj,Ox, pxU), which is the vector bundle over My x X. We have the naturally defined
morphism Vs ¢ ® Ore1(1) — p% Y. Then, we obtain the following diagram:

MixX =2 7, 22, Myx X

l l l

Mg x X Zg Z3

We naturally have ®7P5L a1, x x/z5 =~ Jx Lmyxx/pyw- Thus, we obtain the morphism: a : j% L, xx/pi, 0 —
®7Ly, /7, It can be checked that a factors through gre;. Namely, we have the following morphisms:

-
IxLmoxx/pim — Brel — Lty xx/Mox X

It induces the morphism:

j*LMz/m@)RpX*WX L Obrel L) LMl/Mz

It is easy to observe that (y induces the isomorphism 3 : j*L g, /95 — Obyel, and the composite (51 o 32 is
same as the morphism obtained from the diagram (165). Thus the proof of Lemma 6.49 is finished. |
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6.4.4 Ambient smooth stack

Since B is not smooth in general, we construct an ambient smooth stack to use Proposition 2.32. Let C denote
the support of Cok. Recall that C' is smooth and that Cok is isomorphic to a line bundle L& on C, due to our
choice of ¢.

For a k-scheme T', let F(T') denote the set of the quotients g : phVi, o — € over T x C, satisfying the
following condition:

e & is flat over T, and the type of £ is yjc - ch(Lc).
e For any point u € T, H' (C’, 5|{u}xc) =0.

Then, we obtain the functor F of the category of k-schemes to the category of sets. The functor F' is representable
by a scheme Q3.

Lemma 6.52 The scheme QS is smooth.

Proof We have the perfect obstruction theory Ob(Q3) of Q5 (Proposition 2.38). Let z = (¢,&) be a point of
Q9, and let i, denote the inclusion {z} — Q9. Let K denote the kernel of V,,, c — €. We have only to show
H~1 (i Ob(Q3)) = 0.

The dual Hl( Ob(Q ))V is isomorphic to Ext_i(lC 8) We have the exact sequence Ext! (Vmc,é') —
Ext' (K,&) — Ext?(£,€). We have the vanishing of the first term by definition of Q5. Since C'is a smooth
curve, we also have the vanishing of the third term. Therefore, we obtain the desired vanishing, and hence Q
is smooth. |

We have the universal quotient sheaf pgs Vi, c — C on Q7 x C. The push-forward pc .C gives the vector
bundle on Q5. We denote it by U;.
We use the notation in the subsubsections 4.1.1. We put Q**(m, ¥, o) := Q**(m, Y, &) XQ(m,y) Q(M,Y)-

~

Let Z, be as in (38). We have the GL(V,,)-closed immersion Q**(m,¥y, o) — Zpy X [[; Gm,i. (See the
subsubsection 3.6.3 for G, ;.)

We also have the naturally defined GL(V,,)- equlvarlant morphism Q**(m,y, a,) — QF by the correspon-
dence (¢,&, Fy, p) — (¢, E(—m) ® Cok), where q denotes the naturally induced map V,,.c — £(—m) @ Cok.

We have the natural right GL(V,,,)-action on Zm X I[; Gm,i x QF x ]P’nll) IP’(2) The quotient stack is denoted
by B’. The bundle U, induce the GL(V},)-vector bundle on T % IL; Gm,i x Py x QF, and hence the vector
bundle B on B’

We have the GL(V,,, )-equivariant immersion Q°(m, y, [L1]) x P2 — Z, x I Gm,i xQF x P& x IP’SZ), which
induces the immersion 8 — B'. Since B is Deligne-Mumford, we can take an open neighbourhood B of B in
%’ which is Deligne-Mumford and smooth. The restriction of U to B is denoted by U. By the construction,
the restriction of U to B is same as L. We put M = M?**(y, [L], ., d). Then, we obtain the following diagram:

M B B
D N T

Here i and iy denote the O-section. We have i' = i,. The obstruction theories of M and 9B are compatible
(Lemma 6.49). Then, we obtain i'([M>]) = [M,], due to Proposition 2.32. Thus, the proof of Proposition 6.44
is finished. |

6.5 Comparison with Full Flag Bundles

Let y be an element of Type. Let c. be a system of weights. Let L be a line bundle on X. We take a sufficiently
large integer m. Let M® (Y, [L], ax, 0) denote the full flag bundle associated to the bundle px LE*(m). We have
the natural smooth morphism:

81 : M\/S(@v [L],OZ*,(S) — MS(@a [L],Oé*,(S)
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Lemma 6.53 We have the following relation:
ST ([MS(@v [L]7 A, 5)]) = [Ms(il\a [L]a Qe 5)]

Proof Let 7 denote the projection M(m, 3, [L]) — M (m,§, [L]). By construction in the subsubsection 5.7.3,
we have the following morphism of the distinguished triangles on M(m,y, [L]):

7 Ob(m, ¥y, [L]) —— &)(mvga L) — Lﬂ(m7§,[L])/M(m7§7[L]) —— 7 Ob(m,y, [L])[1]

! ! ! !

T Lp(m,g.[L) L Simg ) * L S 5, 1L)) M (ma5 (L) > T Lm0 (1]

Hence we obtain the compatibility of the obstruction theories Ob(m, y, [L]) and a)(m, Y, [L]) of M*(y, [L], o, d)
and M*(y, [L], o, d). Then, the claim follows from Proposition 2.32. |

Let y and a, be as above. We take a sufficiently large integer m. Let Mo (Y, ax, +) be as in the subsubsection
5.7.5. Let € be sufficiently small positive number. Then, we have the naturally defined morphism:

o s MO (@, 0 +) — MO, [O(=m)], v, )

Lemma 6.54 We have the following relation:

§5 (M@, [0(=m)], aw, €)]) = M (G, s, )] (171)

Proof In this case, we have the other way of construction for the obstruction theory Ob(m,y, [O(—m)]) on
M(m,y,[O(—m)]) by the method in the subsubsection 5.7.1. Let V;, be an H,(m)-dimensional vector space.

We put B(W) := kai(v,,) and B(W, [P]) := P(V,})cL(v,,) as in the subsubsections 5.1.3 and 5.4.3. Let Ev

denote the universal sheaf over M(m,y) x X. Then, M(m,y, [O(—m)]) is the projectivization of px L(E*(m)).
Hence, we have the following naturally defined Cartesian diagram:

. v
M(m,y,[O(=m)]) —— B(W,[P])
M(m,y) ——  B(W)

Since ¢ factors through Ob(m,¥y), we obtain the following morphism:

U*Lpw,p)/Bw)[—1] —— 7" Lpw) —— 7 Ob(m,y)
The cone of the composite is denoted by Oba(m, y, [O(—m)]). Then, we obtain the morphism:

oba(m, Y, [O(=m)]) : Oba(m,y, [O(=m)]) — Lrtimg,[0(-m))
We use the following lemma.
Lemma 6.55 We have oba(m,y, [O(—m)]) = ob(m, y, [O(—m)]) in D(M(m,y, [O(—m)])).

Proof We use the result in the subsubsection 5.4.3. We take the canonical locally free resolution of E“(m)
Namely, we put Vp := p% (p X *E“(m)), and the V_; denotes the kernel of the canonical morphism Vo — E%(m).

The reduced Ox-section [¢] of £¥(m) is canonically lifted to the reduced O x-section [¢] of Vy. In this case, the
diagram (107) is as follows:

Lt(m.g.(])/ M(m ) [—1] ——— Obea(V, [])[=1] —— ObG,(V,, [4])[~1]

ai

| 1 | i

W*LM(m,@) h— Ob(V) A E— ObG(V.)
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The diagram (108) is as follows:
T Lp(m.5) —— OW)'Lpwyk ——  ObYWV)
I | | (173)
Lpt(m g 2/ Mim) [ =1] ¥ Lpaw,p)y/ vy [-1] «— ObZ(V., [é])[-1]

The morphisms 71 and 73 are isomorphic, in general (Lemma 5.2 and Lemma 5.20). The morphism a; is also
isomorphic in this case. Then, the claim of Lemma 6.55 immediately follows. |

It is easy to see the compatibility of the obstruction theories (/)T)(m7 y) and obs (m,y, [O(—m)]) on the moduli
stacks M*(y, o, +) and M*(y, [O(—m)], a, €). Hence, we obtain (171) due to Proposition 2.32. Thus the proof
of Lemma 6.54 is finished. 1
6.6 Parabolic Perturbation

Since we do not use the result in this subsection later, the reader can skip here.

6.6.1 Statement

Let y be an element of H*(X). Let y be an element of 7ype whose H*(X)-component is y, and let a.,. denote
a system of weights. Let us discuss the relation of the obstruction theories and the virtual fundamental classes
of the moduli stacks M*(y) and M*(y, a.).

We assume that any semistable torsion-free sheaf of type y is also u-stable, and that «; are sufficiently close
to 1. Then we have the morphism § : M*(y, o) — M*(¥).

Proposition 6.56 There exists a Deligne-Mumford stack B(y, o) over M?*(y) with a vector bundle 0 and the
section 1, such that the following holds:

e The morphism & : B(Y, o) — M*(y) is smooth.
o M?(g, ) is isomorphic to 1 ~1(0).

o We have the following relation:
! * S s(~
V(&M (G)]) = [M*(G, )] (174)
Here o' denote the Gysin map for the inclusion M?*(y, o) — 0.

The proof will be given in the next subsubsections. Before going into the proof, we give some remarks.

Corollary 6.57 Let P be any point of M*(y). The fiber &1(P) is smooth, and F~1(P) is the 0-set of the
section Y1e-1(py of Vje-1(p) in the situation of Proposition 6.56. Therefore, we obtain the perfect obstruction

theory of I~ 1(P). |
We are mainly interested in the cap product of some cohomology classes and the virtual fundamental classes.

Corollary 6.58 Let @ be a cohomology class on M*(y), and let U be a cohomology class on M*(y, a.). Assume
deg(®) = 2 dim” M?(¥y). Proposition 6.56 implies the following relation for any k-valued point P of M?*(y):

/ @@:/ WX/ ® (175)
Mé (G §-1(P) Mé(G)

(See the subsection 7.1 for the cohomology classes and the evaluation considered in this paper.) |

Let L be a line bundle on X, and let § be an element of P"*. We can discuss a similar relation for M* (¥, [L], §)
and M*(y, [L], ax, §). We assume that any d-semistable L-Bradlow pair is u-d-stable, and that «; are sufficiently
close to 1. Then we have the morphism §r, : M*(y, [L], ax, d) — M*(y, [L],0).
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Proposition 6.59 There exists a M?*(y, [L],0)-scheme B(Y, [L], s, §) with a vector bundle U and its section
1, such that the following holds:

o The morphism &y, : B(Y, [L], o, ) — M*(y,[L], ) is smooth.
o M*(y,[L],ax,d) is isomorphic to 1 ~1(0).
o We have the following relation:
V&L M (Y, [L], 6)] = [M*(, L], s, )]
Here 1) denotes the Gysin map for M?®(y,[L], a.,d) — 0.

As a result, the following formula holds, for any k-valued point P of M?*(qy, [L],0):

/ O U= / . / )
M:(@,[L], 00 ,0) &.'(P) M= (,[L],5)

Here ® and U denote cohomology classes on M?*(y, L,0) and M?*(y, L, «.,0) respectively, and we assume
deg(®) = 2dim’ M*(7,[L],6). I

We will give the proof of Proposition 6.56 in the next subsubsections. The proof of Proposition 6.59 is
similar, and hence we omit to give it.

6.6.2 The construction of a stack 8 and the obstruction theory

Let m be a sufficiently large integer. Let £* denote the universal sheaf on M(m,y). We put Vy := pipx E¥(m),
and the kernel of the natural morphism Vy — £%(m) is denoted by V_;. We obtain the vector bundle V| p
on M(m,y) x D.

Let g : T'— M(m,y) be a morphism. Let F(T') denote the set of the sequence of the quotients g7,V | p =
Ciy1 —C — C—1 — -+ — Co — (1 satisfying the following conditions:

o C; are flat over T'.

e For any point u € T, the induced morphisms H®(D,Ci1|{uyxp) — H®(D,C;|{u}xp) are surjective
(i=1,....1).

° Hl(D,C“{u}Xp) =0 for any u € T and for any i =1,...,1.
e The type of C; is same as },_; y;(m).

Then, we obtain the functor F' of the category of M(m,¥y)-schemes to the category of sets. The functor is
representable by the M (m,y)-scheme, which we denote by B. Let 7 : B8 — M(m,y) denote the natural
projection.

Let us discuss the obstruction theory of 8. We put Vg) == mpVop on B x D. We have the universal
quotients Vj(jl) — C* (i =1,...,1). We put Vg) = Ker(V,(jl) — Cy) for i =2,...,14+ 1. We also have
the locally free sheaf V_;|p. By changing slightly the construction in the subsubsection 2.1.5, we consider the
following complex C'(V.\p, V)

I+1 1
d~? i i d° i i
Hom(Vop, V-11p) — @HOW(VI(:;),Vj(:)))@Hom(Vqu,Vqu) — @HOW(VI(:;H),Vj(j))@Hom(Vqu,VO\D)
=1 =1

The first term stands in the degree 0. The morphism d~! is the composite of the following morphisms:

+1
Hom(Voip,V_1)p) — Hom(Voip, Voip) & Hom(V_1|p,V_1p) — @HOW(V,(:;), V) @ Hom(V_1p, V-1p)
=1
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Here a; is the differential of the complex Hom(V.|p, V.|p), and az is the inclusion via Vo p = Vg). The morphism
d is made of the following maps b; (i = 1,2):

+1 l
by @ Hom(VY V) — @@ Hom(V5T), V)
=1 =1

by : Hom(VS), V) & Hom(V_yp,V_1p) — Hom(V_11p, Voip)

Here by is given as in (18), and by is the differential of the complex Hom(V. p,V.p). We put gp(V.,Vp) :=
C(Vp,Vp)Y[—1]. We have the naturally defined morphism C(V.p,V},) — Hom(V,p,V.|p). It induces the
morphism g(V.\p) — 8p(V., Vp)

We take vector spaces W) over k such that rank W) = rank Vg). We also take a vector space W_; over
k such that rank W_; = rank V_1, and we put Wy := W1 . We put Wg) =W oOp and W, p := W; @ Op.
We have the naturally defined right []:} GL(W®)-action on []\_, N (Wg+1), ng)). We also have natural
right action of GL(W ™M) x GL(W_;) on N(W_; p, Wy p) by the identification Wy = W (). Therefore, we have
the naturally defined right action of Hii CL(W®) x GL(W_) on Hi:l N(WSH), Wg)) x N(W_1p,Wop),
where the latter fiber product is taken over D. The quotient stack is denoted by Y p(W.,W*). (We remark

that we used the notation Y p(W.,W*) in a different meaning in the subsection 6.3.) On the other hand,
we use the stack Yp(W.) introduced in the subsubsection 5.5.1. The morphism Y p(W.,W*) — Yp(W.) is
induced by the natural projections [['_; N(WST W) x N(W_y p, Wop) and [ GLIW®) x GL(W_,)
onto N(W_1 p, Wy p) and GL(Wy) x GL(W_1), respectively.

From V,(:;H) and V_y|p, we have the classifying map ®(V.,V},) : B x D — Y p(W., W*). We also have the
classifying map ®(V.\p) : M(m,y) x D — Yp(W.). They give the following commutative diagram:

BxD —— Yp(W,W*)

l l (176)

M(m,y) x D ———  Yp(W)

It can be shown that ®(V., Vi) Ly, o w) Is expressed by gp(V., V) <1. Moreover, the diagram (176) induces
the following commutative diagram:

Legxp/p —— SV VL) Ly ow we) —— 8oV, VD)

I I |

ThLmmgpxp/p ——  2Vip) Ly,w) —— a8V
We put gret(V., V5) := Cone(g(V.p) — Gp(V.,V})). Then, we put as follows:
Ob(V.p) := Rpp«(s(V.|p) ®wp), Obret(B) := Rpp«(gret(V., Vp) @ wp)
Then, we obtain the following commutative diagram:
ﬂ'*LM(m@ — Ob(v»lD)
| |
Loy m(mg[—1] < Obra(B)[-1]

Therefore, we obtain the following commutative diagram:

Obye1(B)[~1] ——— 7* Ob(m, 7)

! l

Loy jmimp =1 —— 7" Lmm,g)

We put Ob(B) := Cone(Ob,e1(B) — ©* Ob(m, 7)). Then we obtain the morphism: Ob(B) — L.
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Proposition 6.60 The morphism Ob.e(B) — Ly rm,p gives a relative obstruction theory of B over
M(m,y). The complex Ob.e(B) is quasi-isomorphic to the 0-th cohomology sheaf.

Proof The first claim follows from Lemma 2.41. Let us show the second claim. Due to an argument in the
proof of Proposition 6.1, we have only to check H* (zf; Obrel(%)) =0 for i # 0, where i, denotes the inclusion of
any point z into B. Let (E,V};) denote the tuple corresponding to z. Then, H* (i} Obyc1(B)) is the dual of the
hyper-cohomology group H~¢(D, Q), where Q is the complex:

l l
B Hom(Vy T VETY) — @ Hom(VET, VS))
i=1 i=1

Here, the first term stands in the degree —1. We use the following lemma.
Lemma 6.61 We have the vanishing H' (D, Hom(VgH), Vl()i)/VgH))) =0.
Proof By definition of 9B, we have the vanishing H! (D, Vl(,l)/V[(;)) =0foranyi=1,...,14+ 1. We have the
following exact sequence:

HO(D, v jvity 28 50D, v jvi)y — HY (D, v jvSTy — 5N (D, v jvET) =0
By definition of ©, we have the surjectivity of ;. Then we obtain H*! (D, Vg)/VgH)) = 0. From the exact
sequence, V[(;H) — V[(JI) — Vl()l) / V[(;H), we have the following exact sequence:

Ext' (V) V) Vi) B! (VD v vy e (v v vy (177)

Recall that Vgl) is a direct sum of Op, and hence we have the vanishing of the first term in (177). Since
the divisor D is smooth, we have the vanishing of the third term in (177). Therefore, we obtain the desired
vanishing. |

From Lemma 6.61, we can easily obtain the vanishing of H? (D, Q) unless ¢ = 0. Thus the proof of Proposition
6.60 is finished. 1

As a result, Ob(*B) — L is an obstruction theory of 98, and the morphism B — M (m,y) is smooth.

6.6.3 Compatibility of the obstruction theories of B and M(m,y)
On B x D, we have the filtration V¢+D c Y ¢ ... ¢ V. We put as follows:
U :=pp *'Hom(V(“'l), THE (M) |p)
We have the canonical section 1, which is given by the composite V(H+D ¢ V) — 7584 (m) p.
Lemma 6.62 ‘U is a locally free sheaf on B.

Proof Let z = (E,V},) be any point of B. We have only to check Ext! (V[(JZH),E(m)‘D) = 0. We have the
following exact sequence:

Ext! (V", E(m)p) — Ext! (Vi E(m),p) — Ext*(V" VST E(m)p)

Since Vgl) is a direct sum of Op, the first term vanishes. Since D is a smooth curve, the last term vanishes.
Therefore, we obtain the desired vanishing. |

It is easy to observe ¥ ~1(0) = M(m,¥). Therefore, we have the following Cartesian diagram:
M(m.§) —— B

ji wl (178)

B %Q]
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Here ¢ is the 0O-section.
Let us compare the obstruction theories of B and M(m,y). We take an isomorphism J : W) ~ W_, . It
induces the morphism Yp(W., W*) — Y p(W., W*). Then, we obtain the following commutative diagram:

M(mvy) - B - M(may)

l l |

Yo(W., W*) —— Vp(W.,W*) —— Yp(W.)
It induces the following diagram on M(m,y):
Lymomg) ——— Ls ——— Lummp

I I I

LYD(W~7W*) - LVD(W,,W*) — LYD(W')

I I I

Vb, Vp) «—— 8V p,Vp) —— a(Vp)

Therefore, we obtain the following commutative diagram on M(m,y):

it Ob(B) —2— Ob(m, )

l l (179)

itLs  ——— Lymg)

Lemma 6.63 The cone of (3 is isomorphic to j*Le e, and the morphism Cone(3) — Laq(m,g)/s obtained
from (179) is same as the morphism obtained from the diagram (178). In particular, the obstruction theories of
M(m,y) and B are compatible over i.

Proof We put grel := Hom(V_1 | p[1], V.|D)v. Then it is easy to see the following:
Cone(§(V.1p, V") — 8V 0, V")) = Ly, (w woy /vpw i) = Grel-

We put Ob,e := RpD*(gre1 & wD). We have the induced morphism a : Obyel — Laq(m,g)/s- We have
Obyel > Cone(i*{ Ob(B) — Ob(m,@)), and hence we have the morphism b : Obel — L pq(m,5)/5 obtained
from the diagram (179). It is easy to observe a = b.

We have the natural GL(W_;) x GL(W®) x GL(W +1)-action on N(W(Hl) W(l)) xp N(W_1p, Wg)).
The quotient stack is denoted by 9. The isomorphisms W_; ~ WU+ and W ~ ?mduce Yp(W.) — Ds.
Then, we have the following diagram:

M(m,y) x D —— Yp(W.,W*) —2— Yp(W))

! ! !

BxD —— Yp(W, W) —— D,

The induced morphism ®(V.\p, V5)*v{ Ly, w.) /9, — (V. D, VB)*LYD(W,7W*)/7D(W,7W*) is isomorphic.
We have the natural GL(W_;) x GL(Wy) x GL(W#D)-action on N(W_1, Wy) x N(WEHD W_1). The
quotient stack is denoted by 2)1. The isomorphism J induces the following map:

N(W_1,Wo) — N(W_1,Wo) x NWHED Ww_1),  f— (f,9) (180)

165



We also have the homomorphism GL(W_;) — GL(Wy) x GL(W 1) induced by 3. The morphism (180)
is equivariant with respect to the actions. Therefore, we obtain the morphism Yp(W.) — ;. It is easy to
observe that the morphism is an open immersion. Hence, we have the following diagram:

open

M(m,y) x D —— Yp(W)) 2,

! ! !

93 x D e 2)2 ——;f——% 2)2

We put W; == N(WEHD W;) (i = —1,0). We have the natural right GL(W_1) x GL(W))-action on

NW_1,Wy) x N(k,W_1) and N(W_1,Wy) x N(k,Wp). The quotient stacks are denoted by Z; and Z»

respectively. We have the naturally induced map %); — Z;, and we obtain the following commutative diagram:

NJ

M(m,y) x D —2— 9; -2

! !

B D2

1

(181)

—

NI

Thus, we obtain the following:

GTG§L71/Z2 — aiLy, /9, — LYD(W.,W*)/?D(W.,W*) — Lp(m,y)/s
We would like to use the result in the latter part of the subsubsection 2.3.3. We have the resolution of
Hom (VUHD £4(m)) given by Hom (VIHD,V_1) — Hom(VI+1), V) on B x D. We put as follows:
Vo = Hom(VTD V1), Vi =Hom (VT V)

We have the naturally defined map ¢ : O — V; on B x D, and the lift 5: O — Vp on M(m,y) x D. The
section ¢ of Hom (VI+1) £%(m)) is naturally induced by ¢. We put Z; = N(O, Vp) and Z = N(O,V;). Then,
we have the following commutative diagram:

M(m,y) x D Z1 7,
l l l (182)
B x D Z3 Zs

We have the coincidence of the composite of the horizontal arrows in the diagrams (181) and (182). Therefore,
we obtain Ob; = ObT(V., ), and the induced morphism Ob,e — L M(m,y)/® 15 same as the morphism
obtained from the diagram (178), due to Proposition 2.26. Thus the proof of Lemma 6.63 is finished. |
6.6.4 Smooth ambient stack

Let V,,, be an H(m)-dimensional vector space, where H denotes the Hilbert polynomial associated to y. For any
k-scheme T', let F;(T) denote the set of the sequences of quotients p5V,, p =Ci41 = C — Ci—1 — -+ — C2 — C4
satisfying the following conditions:

e C; and F are flat over T'.

e For any point u € T, the induced morphisms H°(D,Ciy1|{uyxp) — H®(D,Ci|{uyxp) are surjective
(i =1,...,1). The induced morphism H°(D,C;,) — H°(D, F,) is also surjective.

e We have Hl(D,]—'l‘u) =0 and Hl(D,CH{u}XD) =0 for any u € T and for any i =1,...,1.
e The type of C; is same as )., y;(m). The type of F is same as 3, y;(m).

Let F5(T) denote the set of the quotients pi.V,,, p — F satistying the following conditions:
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o F is flat over T.

e For any point u € T, the induced morphism V,,, — H®(D, F,) is surjective.
° Hl(D,.ﬂu) =0 forany u € T.

e The type of F is 3, y;(m).

Then, we obtain the functors F; (i = 1,2) of the category of k-schemes to the category of sets. The functors
F; are representable by the k-schemes, which we denote by 9B;.

We have the natural right GL( m) action on Q°(m,y) x B;. The quotient stack is isomorphic to B.
By considering the restriction to D, we obtain the natural morphism Q°(m,y) — Ba, which is GL(V,)-
equivariant.

Let Z, be as in (38). Then, we have the natural right GL(Vy,)-action on T X B1 x By. The quotient
stack is denoted by B. We have the GL(Vin)-equivariant morphism Q°(m, ) x By — Zm % B1 x By, which
is immersion. Therefore, we obtain the immersion 8 — B.

We have the universal filtration on Z,, x B1 X Bs:

V,:()l+1) C VS) c---C V/:(JQ) - ij()l) Vin ® OZ XB1x B

We also have the universal subsheaf on Z x B x Bo:

Vle C %D = Vm & OZX‘le‘BQ

The GL(V,,)-action on Zm x B1 X By is naturally lifted to the action on them. The descents are denoted by
VD and V_; p. We put as follows:

B = pp. (Hom(V§™, Vi /V_ip))

By the same argument as the proof of Lemma 6.62, it can be shown that U is locally free. We also have
|9 ~ Y. Therefore, we obtain the following diagram:

M(m,G) B B
B Y3 4

Here 7 and 75 denote the 0-section.

6.6.5 Proof of Proposition 6.56

Let us finish the proof of Proposition 6.56. We take a sufficiently large integer m such that the condition
Oy, holds for any (E, Fy,p) € M*(y,a,). Then we have the open immersion M*(y, o) — M(m,y) and
M?(y) — M(m,y). We take the stack B as in the subsubsection 6.6.2. We put B(Y, o) := B X pq(m, 5 M* (7).
Due to Proposition 6.60, it is smooth over M*(y). The restrictions of U and 1) to B(y, o) are denoted by the
same notation. It is clear ¥ ~1(0) = M*(¥y, o).

We have the immersion B(y, o) — B. Since B(Y, o) is Deligne-Mumford, there exists an open neigh-
bourhood B(F, o) of B(F, v,) in B, which is Deligne-Mumford and smooth. The restriction of U to B(F, cv.)

are denoted by the same notation. Then, we obtain the following diagram:

MS(@va*) - %(@70[*) - %(@,Oé*)

! 5 [

B3yo) — T —— T

Due to Lemma 6.63, the obstruction theories of M*(y, o) and B(y, a..) are compatible. Therefore, we obtain
the relation i'([B(y, o)]) = [M?*(Y,a.)] due to Proposition 2.32. We also have the relation &'[M*(y)] =
[B(Y, a.)]. We also remark that i' = 1'. Thus we obtain the relation (174). |
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7 Invariants

For simplicity, we assume that the ground field k is the complex number field C in this section. Let H*(A) and
H.(A) denote the singular cohomology and homology groups of a topological space A with Q-coefficient. Let
X be a smooth projective surface over C, and let D be a smooth divisor of X. We denote the Picard variety of
X by Pic.

7.1 Preliminary

7.1.1 The ring R

Let Map;(Z2 o, H*(X)) denote the set of the maps ¢ : Z2 ; — H*(X) such that {(n1,n2) |¢(n1,n2) # 0}
is finite. We use the notation Map,(Z3 ;, H*(D)) in a similar meaning. The sets Map;(Z2 o, H*(X)) and
Map (Z3Z 0 H *(D)) are naturally vector spaces over Q. We use the notation Sym(V') to denote the symmetric
product of a vector space V. Then, we put as follows:

R:=H*(Pic) @R/, R = Sym(Mapf (72, H*(X))) ® Sym(Mapf (72 o, H*(D)))

An element of R is described as a sum of the elements of the following form:

maq m2

P=c- H(ai,vi) . H(bj,’dj) (183)

e ¢ is an element of H*(Pic).

e a; € H*(X) and v; = (vi(1),v:(2)) € Z% ;. We identify (a;,v;) with the map ¢; : Z% ; — H*(X):
oy Jai (v=wv;)
o) =15 (o7
e bj € H*(D) and u; = (u;(1),u;(2),u;(3)) € 73 . We identify (bj, w;) with the map ¢, : Z2 , — H*(D):
(=)
() = Y J
e ={ 0 G

We put di(P) := Y04 vi(1) - v5(2) + Z;n:zl u;(1) - u;(2) — 2mq — ma. When a;, b; and ¢ are homogeneous, we
put da(P) := 3, deg(a;)/2 + 3, deg(b;)/2 + deg(c)/2 and d(P) := d1(P) + d2(P).

7.1.2 The ring R;

More generally, we put as follows for any [ > 1:

Ry := H*(Pic) ® R}, R} := Sym(Mapf (22, H*(X))) ® Sym(Mapf (z2,, H*(D)))

An element of R; is described as a sum of the elements of the following form

P=c [tV 1[0 U)) (184)
i=1 j=1

e cis an element of H*(Pic).
e q; € H*(X) and V,; = (vgh)(l)mgh)@) | h=1,..,1) € Zgzlo. We identify (a;, V;) with the map ¢; :
Zzzlo — H*(X):
_ a; (V = Vl)
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e b;c H*(D)and U; = (ugh)(1)7u§-h)(2),u§h)(3)) € Z?élo' We identify (b;,U;) with the map ; : Zgo —

b; (U =Uj)
wo={ 0 o)

We put di(P) := >, > v, )( 1)-v; ( )+ 2 gh)(l)-ug.h)(Z)—le—mg. If a;, b; and ¢ are homogeneous,

we put do(P) := )", deg(a;)/2 + Z deg( i)/2+ deg( )/2 and d(P) := dy(P) + d2(P).
Let (a,V) € H*(X) x Z% be as above. We regard V as a tuple (v™!),... v(") € (Z2)". Let Al denote
the diagonal map X — X!, and Al , denotes the Gysin map H*(X) — H*(X') = H*(X)®!. We have the

expression as follows:
l
=2 ITein
hoi=1
Then, we put as follows:

qf((a, V)) = Z(Oél,h,’v(l)) @R (Oéz,h, ’U(l)) (185)
h

Let (b,U) € H*(D) x Z; be as above. We regard U as a tuple (u"), ..., ul)) € (Z%)!. Let AL, denote the
diagonal map D — D'. We have the expression as follows:

l
=S 16 (186)

h i=1

Then, we put as follows:

q,((,U)) = Z(ﬂl,h,u(l)) ®-® (ﬁumu(l)) (187)

h
They induce the algebra homomorphism g : R — R;®!. We also have the morphism q; : H*(Pic) —
H*(Pic)®! induced by the multiplication of Pic. Then, we obtain the algebra homomorphism:
q: Ry — R®! (188)

We have the naturally defined algebra homomorphism R’'®! — R’. Hence, q) induces the algebra homo-
morphism t; : R; — R.

7.1.3 Homomorphisms

Let Y be an algebraic stack over Pic. When we are given a tuple of parabolic sheaves E, = (E1 «, ..., Ej.) over
Y x (X, D), we put R(E,) :=R;. In that case, (a, V') and (b, U) are symbolically denoted as follows:

(H bl 3 (En)) /a, (H bt 2 (Gryom i (En)) ) /b (189)

In particular, we use the notation R(E,) in the case I = 1. We will often omit to denote the parabolic structure
if there are no risk of confusion, i.e., R(E) and R(F) are used instead of R(E.) and R(FE.).

When we are given a direct sum E, = Fj . @ Es ., we have the algebra homomorphism goEl*’EQ* :R(EL) —
R(E1 «, B2 «) induced by the following correspondence:

@gi*’E2* (Chg(E)/a) = Z h'(%ih)'(Ch?(El) : Chg_h(EQ))/a,
21l .
e B (chgf (Grk(E))/b) = h'(]jiih), (chf (Gri(Er)) - chg—h(Grk(Eg)))/b

h=0
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As the composite of @El*’EZ* and gz, we obtain the algebra morphism R(E,) — R(E1+) @ R(E2.). For an

element P(E) € R(E,), we denote the image by P(E1 & E3) € R(E1+) @ R(Ea2+).
1

—~
The algebra homomorphism v; gives R(Ex, E, ..., E,) — R(E,), which is also denoted by t;. Let ¢ be a
formal variable. We have the element ch(E ® e')/a € R(E)[t] given as follows:

) Ji—32 gk
ch!(E®e')/a = 1,7 i < chi*(E ) S ! - (190)
Zk§k—g [T5—o ! . (H )/ Hk:o((i - k)!)

Similarly, we have the element ch? (Gry,(E) ® e')/b € R(E)]t] given as follows:

o (Gra(B) @ 1) /b= Z H . tz+1 <(H chy¥ (Gra(E )/b) ok
k=0

J
o dk=i Hko i = ))k

By the correspondences ch? (E)/a — ch! (E - e!)/a and ch! (Gry(E))/b — ch!(Gr,(E) - €!)/b, we obtain the
algebra isomorphism R(E)[t] — R(E)[t]. The image of P(E) € R(E) is denoted by P(E - e").

Remark 7.1 The formula (190) is just a formal development of (22:0 chyp(E) - (i — h)!_lti_h)j. |

7.1.4 Twist by line bundle

Let £ be a line bundle on Y. We put w := ¢1(£). Formally, we often use the notation e* to denote L, if there
are no risk of confusion. Let E, be a parabolic sheaf over ) x (X, D). Then, we have the natural isomorphism
R(E.,Y) ~ R(E, ®e*, V) (see Notation 7.3) given by the following correspondence:

. W= dkk
L) (E ®e*)/a:= i1 ( th ) C— g (191)
i E ij_.] Hk Ojk't-‘r (’I[C )/ Hk:o((i_k)!)
( )/ Z <(H )/ ) WIt=2 dkk
ch! (Grp(E) ® ) /b := —; chl* (Grp( b - - 192
n) S =y Hk o Jk! Mo k il k)!)Jk 1)

Thus we can naturally regard P(E ® e¢¥) € R(E ® ¢¥,)) as an element of R(E,)).
Remark 7.2 We will often use “” instead of “®@” to save the space. |

Let us consider the case = Vi X ). Assume that L comes from the line bundle on )y, and that
E comes from the parabolic sheaf on Vs x (X, D). The formulas (191) and (192) determines the element
P(E-e¥) e A*()1) @ R(E).

7.1.5 Evaluation

Let )V be a proper Deligne-Mumford stack over Pic. Assume that we are given a parabolic sheaf F, over
Y x (X, D) with a parabolic structure. Let A.()) denote the rational Chow group. Let us take an element
P € R(E.) of the following form:

mi m2

P =c-T](en) () ®)/as) - TT (chif(D) (Gr, o (8)) /)

i=1 j=1

We assume that ¢ € H*(Pic), a; € H*(X) and b; € H*(D) are homogeneous for simplicity. We would like
to construct the linear morphism of A,()) to Q. Let mx; denote the projection of Y x X™* x D™2 onto the
product of Y and the i-th X. Let mp ; denote the projection of J x X™ x D2 onto the product of Y and j-th
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D. Let p denote the natural morphism ) x X™* x D™2 to Pic x X™! x D™2. Let Z be a d-dimensional algebraic
cycle on ). Then, we obtain the following element of the Chow group A, (Pic X XM x sz) of Pic x X™1 x D™=
with rational coeflicient:

v1 2) i wi(2 m m
Ap(E., Z) = Hchm W (7 E)" H (7 Gry, 3y (B) 7 A (2 x X™ x D™
=1 j=1
Thus we obtain the linear map Ap(Ex,-) @ Ag(Y) — Ag_q,(p)(Pic xX™ x D™2). The cycle Ap(Ex, Z)
determines the homology class cycl(Ap(Ex, Z)) of Haq—g,(p))(Pic xX™ x D™2). Let 7. denote the push-
forward for Pic x X™! x D™2 to a point pt. Then, we obtain the following:

deg(P(E*) N [Z]) = 7T*( Hm H b N CyCl(AP(E*, Z))) [ Hg(d,d(p))(pt)
i=1
It is trivial in the case d # d(P). We identify Ho(pt) ~ Q. Thus, we obtain the linear map deg(P(E.) N ") :

Let A*(Y) denote the operational Chow ring of ). Let Z be an algebraic cycle of ). Let F be an element

of A*(Y). Then, we obtain the number [, P(E,)- F := deg(P(E*) N F([Z]))

Notation 7.3 Let Y and E. be as above. We put R(E,,)) = R(E.) ® A*(Y). We can naturally regard
R(E.,Y) as an (R(E.), A*(Y))-bimodule. |

We have the linear morphism R(E,,)Y) ® A.(Y) — Hom(A.,Q) by the above construction.
Remark 7.4 Formally, deg(P(E.) N [Z]) is the following number:

ma

/ HChvl w (8)"?/a) - H(Chuju)(Gruj@)(E))uj(z)/bj) (193)

The author does mow know an appropriate reference for the cohomology and homology theories of Deligne-
Mumford stacks with the good cycle maps from the Chow groups, G, -localization theory and any other expected
properties. That is the reason to avoid (193) as the definition. However, it is easy to observe that the formal
argument using (193) is valid. 1

We are especially interested in the following examples.

Example 7.5 Let y be an element of 7ype, and let .. be a system of weights. We have the universal sheaf
E over M**(y, o) x X with the parabolic structure at M**(y, ) x D. Let P be an element of R. By the

identification R(E*) =R, we have & = P(E“) € R(E*) Assume that the 1-stability condition holds for (y, a..).
We put as follows:

[ #mden(en )

In other words, we obtain the linear map | Mo (Gran) - R — Q, under the assumption that the 1-stability
condition holds for (y, a.). We will later discuss how to obtain such a morphism in general. |
Example 7.6 Lety and o, be as above. Let L be a line bundle on X, and let § be an element of PP" such that
the 1-stability condition holds for (y, L, ., d). We denote by w the first Chern class of the tautological line bundle

Orei(1) on M*(g, [L], o, 8). For any P € R, we have the element ® = P(E") - w* € R(E“,MS@, [L], ., 6)).
Thus, we obtain the following number:

/ @ = deg (21 [M*(3, 1], 0., 9)])
M= (g,[L] 0 ,6)
If the 1-vanishing condition holds for (y, L, c.,0), moreover, then we have the relative tangent bundle Tiel of

the smooth map M*(y, L], o, 6) — M(y,[L]). Let Eu(Tya) denote the Euler class of Tyel. For any P € R,
we have ® = P(E") - Bu(Trel) € A*(M*(¥, [L], o, 8)). Thus, we obtain the integral st@ (L]on.0) P 1
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Let us consider the case where we are given a tuple of parabolic sheaves E, = (E14,...,Ej«) on Y x (X, D).
Let us take an element P € R;(E,) of the following form:

ma

RO mao l "
=c- H <H ch (h)g) /a1> . 1—‘[1 <H Chujgi (Gruj(g)(E))/bj>
j=

h=1

We assume that ¢ € H*(Pic), a; € H*(X) and b; € H*(D) are homogeneous for simplicity. Let Z be a d-
dimensional algebraic cycle on ). Then, we obtain the following element of the Chow group A, (Pic X XM x
D™2) of Pic x X™' x D™2 with rational coefficient:

AP(E*, Z) =
l mi (h) (h)
P H (H ch o) 1)(7TX1Eh) H ch <h>(1)(7rDj Gr W (3) (En))™ (2)) N[Z x X™ x D™2] (194)
h=1 =1

Thus we obtain the linear map Ap(Ey,-) : Aq(Y) — Ag_q,(p)(Pic xX™ x D™2). The cycle Ap(E., Z)
determines the homology class cycl(Ap(Ex, Z)) of Hag—q,(p))(Pic xX™ x D™2). Let 7, denote the push-
forward for Pic x X™! x D™2 to a point pt. Then, we obtain the following:

deg(P(E*)ﬂ —7T*( Hm Hb ﬂcycl AP *9 ))) EHg(d,d(p))(pt)

We identify Ho(pt) = Q. Thus, we obtain the linear map deg(P(E.) N-) : A.(Y) — Q.

Notation 7.7 We put R(E.,Y) := R(E.) @ A*()). We obtain the linear map R(E.,)) @ A.(Y) — Q by
the above construction. |

We have the following commutative diagram, which we will use implicitly.

R(E., ..., E,Y) —— Hom(A.(Y),Q)

I -

R(E.,Y) ——— Hom(A,()),Q)

Assume that we have the decomposition Y = Hézl Y; such that FE;, are pull back of the parabolic sheaves
over ); x (X, D) via the natural projection, where }; are the stacks over Pic and the map )} — Pic is the
composite of [[V; — Pic! and the multiplication of Pic. We have the naturally defined morphism:

l l
Iy 0 Q) R(E;, V;) — Homg <® A (W), Q)
i=1 =1
We also have the following morphism:
1 1
Ty : R(E.) ® Q) A (V) — Homg <® A(D), @)
i=1 i=1

The algebra homomorphism q; in (188) induces R(E.) ® ®._, A*(Vi) — Q._, R(Ei., Vi), which is also
denoted by q;. We will use the following lemma without mention, which can be checked by a formal calculation.

Lemma 7.8 We have I'y o q; = I's. |
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7.1.6 Equivariant case

We continue to use the setting in the subsubsection 7.1.5. We recall the equivariant Chow groups for the torus
action. See [9] and [24] for more detail. Let T' denote an I-dimensional torus G!,. Let R(T) = Qlty,...,t]
denote the representation ring of 7. Let us consider the case where ) is provided with a T-action. Let A™*+!
denote the m + 1-dimensional linear space, on which G, acts by component-wise multiplication. We have the
naturally defined T-action on (A™*! — {O})l x ). The quotient stack is denoted by (™). The T-equivariant
Chow group of A% (Y) is defined to be Agiyy, (V™) for sufficiently large m in this case. We take a linear
inclusion ¢ : A — A™+2 which induces the regular embedding Y™ — Y(m+1)  Thus we obtain the
morphism Agy(m41) (VM) — Agi, (Y™), which is independent of the choice of ¢. It is isomorphism
when m is sufficiently large. Thus AZ () is well defined.

We have the naturally defined morphism Y™ — (P™)!. Let O (1) denote the tautological line bundle
of i-th P™. We have the action of the first Chern class ¢y (O(i)(l)) : Ade(y(m)) — Ad,1+lm(y<m>), which
induces the action ¢; : AT(Y) — A4—1(Y). Thus, we can naturally regard AT ()) as the R(T)-module.

Assume that F, is provided with a T-action. Let P be an element of R(E,). We naturally obtain the

parabolic sheaf EM™ on V(™). Let Z be an element of AT(Y), and let Z (™) be the corresponding element of
Agiim (V™). We obtain the following element of Azlldl(P)Hm((]P)m)l x Pic x X™1 x D™2):

mi ma
A (E(m) z m) ):=p. HChvl(l) 7TX zE(m) v;(2) HCh @ WDjGru @ (E (m)))uJ'(Q) N [Z(m) x X™ x D]
=1 Jj=1

Then, it is easy to observe that Ap(ES™ Z(m)) determines the element A%(E,, Z) of AL, (py(Pic x X1 x
D™2). Thus, we obtain the R(T)-morphism AL(E,,-) : AT(Y) — AT_ a,(py(Pic XXM D™2). Then, we
obtain the equivariant homology class cycl(AL(E,,-)) € HZT(*—dl(P))(PIC xX™ x D™2). Since the T-action on

Pic x X™1 x D™ are trivial, ¢, a; and b; naturally give the equivariant cohomology class. Let w1 denote the
equivariant Gysin map for Pic x X™ x D™2 — pt. Then, we obtain the following:

degT(P(E*) N [Z]) = 7T*( Haz Hb ﬂCyCl(AP(E Z))) S Hg(d,d(p))(pt)

Since HI (pt) is the free R(T)-module of rank one with the special base 1 € H{ (pt), we identify it with R(T).
The above procedure is compatible with the actions of ¢;. Hence we obtain the morphism deg” (P(E)N-) -
AT(Y) — R(T) of R(T)-modules.

Notation 7.9 Let A%(Y) denote the T-equivariant operational Chow group of Y. We put Rr(Ey,Y) :=
R(E.) ®g A7 ().

Due to the above construction, we have the morphism Ry (E.,Y) — Hompr) (AL (Y), R(T)).

We are especially interested in the following example:

Example 7.10 Let M be the master space as i in the subsubsections 4.5.1, 4.7.1 or 4 4.7.2. We have the sheaf
EM on M x X with the parabolic structure at M x D. We have the G -action p on M which is naturally lifted
to the action on EM. Let <I>(EM ) be an element of Ry (E, M ) As explained in the subsection 5.9, the perfect

obstruction theory of M is lifted to the Gm-equivariant obstruction theory. Thus, we obtain []\//.7 ] € AGm (J\/J\ ).
Then, we obtain the following number:

@B i= deg (2(EF) n 30))
M
We have the isomorphism:

AGm (M) @gp Qlt, ¢ '] = EB A (M) 20 Qlt, t7] & @ AL (M (3)) ®g Q[t,t ™)
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Under the isomorphism, we obtain the decomposition in A (J\/J\) Qg Q[t,t71] due to [24]:
—~ —1 — — —1 —~
= > EBu(M(M)) " N [M]+ > Eu(NM(3) N [MO(I)]
i=1,2 3

Then, we obtain the following equality in A, (Pic x X™ x D™2)[t, t~1].

/\

N i [MEm(3)]
AGm ( =D AE" <EM M Ty >+ZAG <EM IMGm(j)’Eu(m(M\Gm(j))J

1=1,2

The equality holds in A, (Pic xX™! x D™2)[t]. Then, we obtain the following equality in Q[¢]:

AA o((B) 57) ﬁnMcm(g))
My _
/MQ(E* )= Z/ Eu(M Z/Mcmu) Eu(M(MC(3)))

i=1,27 M

7.1.7 The ring Rcu

We put as follows:
Ren = Sym(Mapf (22, A* (X))) ® Sym (Mapf (Zgo,A*(D))) ® A*(Pic)

An element of Rey is described as in the case of R. When a parabolic sheaf E, is given, we put Reu(Ex) := R.
Similarly, R;cu are defined for each I > 1. When a tuple of parabolic sheaves E, = (Ei.,...,E; ) is
given, we put Reu(Ex) = Ricu. We use a convention (189) to denote elements of Reu(E.). The maps
A*(X) — H?**(X) and A*(D) — H?*(D) induce the algebra homomorphisms T : Rcou(E.) — R(E.).

Let Z be an element of A.()). For HiL:l v (2)

v<h)(1 (E}, /a we put as follows:

l l

(H v(h) 1) (En) /a) = (H (h)(l (h)(z) -py(a)N[Z x X])

For Hil:l uUi;(f (Gru<h> 3)(En )/b we put as follows:
1
u( NO) .
(H Chu(:)(l) Grym (3)(En) )/b) —pD*(H chyom (1) (Gryom (3)(En)) @ -py(b) N[Z x D])
h=1

They induce the algebra homomorphism 9 : Reu(E«) — A*(Y). The following lemma can be checked by a
formal calculation. We will use it without mention.

Lemma 7.11 Let Q be an element of Reu(Es). Let P be an element of R(E.,Y). Let Z be an element of
A, (Y). Then, we have the following equality:

deg(T(Q) - PN [Z]) = deg(PNA(2))

7.1.8 The equivariant Euler class

For an algebra R, let R[[t™',t] denote the algebra of series Y a; - 7 such that the set {j > 0|a; # 0} is finite.
We put R(t) := Q[[t 1, t]. Inductively, we put as follows:

R(t1,to, ... 1) = Rta, ..., tu)[[t7 " 1]
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Let E;. (i = 1,2) be parabolic sheaves over Y x (X, D). Assume that we are given G,,-actions on F; .
Then, we obtain the following complexes of G,,,-equivariant sheaves on ):

Fii= Bpx . (RHom(Ey, Ba)), Fa i= Rpp. (RHomb(Eyp ., Eayp.) ) (195)

See the subsubsection 2.1.5 for the notation RHomb,.) We have the Gm-equivariant Euler class Eu(F,) €
2 .

A% (V) ®qp Qt,t7Y of Fu (a = 1,2). They are formally Y., ca(a)—i(Fa) - (w - t)l € A*(Y) ® R(t), where
d(a) denotes the expected rank of F,. Due to the Grothendieck-Riemann-Roch theorem, we have the element
Eu'(F,) € Reu(EBi, Eoy) ® R(t) such that Q(Eu'(F,)) = Eu(F,). For abbreviation, we use the notation
Eu(F,) to denote Eu'(F,) and the image of Eu'(F,) via the composite of the morphisms:

Ren(Erv, Bay) @ R(t) ——— R(E1., By,) @R(t) —2— R(E1.) ® R(E2.) @ R(t) (196)

Let T denote the k-dimensional torus. If F;, are provided with T-actions, then we have the T-action on
Fa- Therefore, we obtain the T-equivariant Euler classes Eu(F,). Due to the Grothendieck-Riemann-Roch
theorem, we have the element Eu'(F,) of Reu(E1s, Eax) @ R(t1,...,t) such that Q(Eu(F,)") = Eu(F,).
For abbreviation, we use the notation Eu(F,) to denote Eu(F,)" and the image of it via the composite of the
morphisms in (196).

7.2 Transition Formulas in the Simple Cases
7.2.1 Basic case

Let y be an element of 7Type, and let o, be a system of weights. Let L be a line bundle on X. Let § denote an
element of PP, Let P be an element of R, and let k be a non-negative integer. Let w denote the first Chern
class of Ore1(1) on M*(y, [L], as, 8). We obtain the element ® := P(E")-w"” of R(E", M*(y, [L], s, 6)). In the
case where ¢§ is not critical, we obtain the following number by the procedure explained in the subsubsection
7.1.5:

®(F, [L], 0, 6) = / o

M(Y,[L],,0)

Let § be a critical parameter. We take parameters §_ < § < 4 such that §, (k = %) are sufficiently close
to §. We would like to describe ®(y, [L], a, 01) — @(Y, [L], s, 6—) as the sum of the integrals over the products
of the moduli stacks of the objects with lower ranks. Such a description is called the transition formula.

For that purpose, we prepare some notation. Let S(y, a.,d) denote the set of the decomposition types:

S(y, 0, 0) = {T = (y,y2) € Type® |y, +yo =y, Py’ =Py =P’}
For a given (y,,Y5) € S(y, @, d), we put r; = ranky,;. We also put as follows:
M(y1,Ya, L, s, §) := M (yy, L, s, ) X M (Yy, o).

We remark that the 2-stability condition for (y, L, au, ¢) implies the 1-stability conditions for (y;, L, a.,d) and
(Y, ax). Let EY denote the sheaf on M(y;,¥Ysy, L, o, ) x X which is the pull back of the universal sheaf
over M*(yy, L, as,d) x X via the natural morphism. We use the notation E; in a similar meaning. We put
wi := ¢, (Or(EY))/ rankr, and e denotes Or(E®)“/™ formally.

Let G,, be the one dimensional torus. Let e*'t denote the trivial bundle on M(y;,¥s,, L, as,d) with G,,-
action of weight w. We have the following element of the K-group of the G,,-equivariant coherent sheaves on
M(ylvil\%Lva*v(S):

fﬂo(yhyQ) = —Rpx« (’R,Hom(Eii_e*t, E;_eﬁ(tﬂm)/ﬁ)) — Rpx« (RHom(Eg.en(tfwﬁ/rz, E%-eit))
— Rpp« (RHom’Q (quID Leh EQ“D . -e“(t_wl)/”)) — Rpp « (RHom’Q (ES‘D ,-ertmwn)/rz E?ID . -e_t))

+ Rpx « (Hom(L-e*t, EY -erl(t*wl)/”)) (197)
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ee the subsubsection 2.1.5 for the notation oms. e have the equivariant Euler class Eu(9o(y,, ¥y €
See the subsubsection 2.1.5 for the notation RHoms.) We have the equivariant Euler class Eu(Mo(y;, y,

R(EY, M*(yy, L, a.,6)) ® R(E,)[[t™*,t]. (See the subsubsection 7.1.8 for our convention on the equivariant
Euler class.)

By the homomorphisms in the subsubsection 7.1.3 and the twist in the subsubsection 7.1.4, we have the
element P(EY - et @ EY - en(t=w1)/r2) of R(EY, M*(y,, L, s, 8)) @ R(EY)[t]. Thus, we obtain the following

element of R(EY, M*(yy, L, o, 0)) Q@ R(EL)[[t,1):

P(By-et @By - ert(tmwn/ra) . ¢k
Eu(Mo(y1,y2))

By taking the residue with respect to ¢, we obtain the following element of R(E}', M*(yy, L, a,,0)) ® R(EY):

P(E" - et @ EY . eri(t—wi)/r2) . ¢k
V(yy,y) =§i_eg< (£ 2 ) (198)

Eu(No(y;, ys))

Theorem 7.12 Assume that the 2-stability condition holds for (y, L, a., ). Then, we have the following equal-
ity:
ICAURSY AR A1 RSB D SRR SN 178 (199)
(y1,92)E5 (3,00,8) Y M1 Y2, L0 ,0)

The elements ¥(y,,y,) € R(EY, M*(yy, L, o, 0)) ®R(E§‘) are given as in (198).
The contribution of (Y1,Ys) € S(Y, ax,d) vanishes in the case pg > 0 and rank(y,) # 1,

Proof Let M denote the master space connecting M*(y, [L], o, d4) and M?*(y, [L], o, d_) as in the subsub-
section 4.7.1. Let ¢ : M — M(m, ¥, [L]) be the naturally defined morphism. Let 7 (1) denote the trivial line
bundle on M(m,y, [L]) with the G,,-action of weight 1. We have the natural G,,-action on EM and ©*Orer(1).
We consider the following elements of R¢,, (Eﬁ , J\/ﬂ:

D, = P(Eﬁ) s C1 (@*Orel(l))kﬂ EIv)t =P (SD*T(l))

We use Proposition 5.58, then we obtain the polynomial fﬂ Cit of t, as explained in Example 7.10. When we

forget the Gyn-action, we have ¢; (¢*7 (1)) = 0. Hence we have [ ®;,—o = 0. On the other hand, we have the
following equality in Q[t 1, ], due to the localization of the virtual fundamental classes ([24]):

fy-
7

Here, M(M;) and M(ME (J)) denote the virtual normal bundles with the G,y,-action given in Proposition 5.58.
We have ¢ (¢*7 (1)) a7, = tand ey (¢*T(1)) = t. Therefore, we obtain the following equality in Q[¢, 1]

(I’t (pt
_Z/ﬁ BaOUT) s /ﬁwm B (NG~ (7))

JeS(y,ox,0)
|MGm (3)

o, B
_Z /1\7 Res (Eu( ) + Z/ . E{es < (m(]\/]Gm (j)))) =0. (200)

i=1,2

Let us see the contributions from the components ]\/4\1 We have L;‘Eﬂ = E* and 15 *Ore1(1) = Orel(1) with
the trivial G,,-action. Due to Proposition 5.58, we have the following equality:

Therefore, we obtain the following:

®: = 1)t =—-d(y a Y a
3 [ <m>—_§j< V' [ 8= 8 L5 + 8 (L ond) Qo
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Let us calculate the contribution from the component /G (J). We remark that ¢*Oyel (1)‘ 77~ and ™7 (1) bg

are naturally isomorphic as G,-equivariant line bundles. We use the relation of EZJ\7 , B and E; in Proposition
4.50. Then, we obtain the following equality in R(G"*E}, G'*EY, S)[t]:

'@, =G P(EY e~ @ By - en(tmo)/ra) 4
We also have the following equality in R(G*EY') ® R(G/*Eg) [t=1,¢):
F* Eu(W(M 9 (3))) = G En(No(y1,92))

We have the equality of the virtual fundamental classes in Proposition 6.11. Thus, we obtain the following
equality:

d P(EY . et Eu L ori(t—wi) /T2 tk
/ Res | ————— | = / Res (B e @By - ) (202)
MSm (3) =0 Eu(m0(ylay2)) M(yy,8g,Lyos,8) t=0 Eu(m0(ylay2))

The desired equality (199) follows from (200), (201) and (202).
The second claim of the theorem immediately follows from Proposition 6.24 and the first claim. |

Corollary 7.13 Assume py, > 0. Assume that the 2-stability condition holds for (y,L,ay,0), and that the
2-vanishing condition holds for (y, L, a.,d). Then we have ®(y, [L], o, d4) = O(y, [L], s, I_).

Proof It immediately follows from Theorem 7.12 and Proposition 6.3. |

7.2.2 The case of the Euler class of the relative tangent bundle

Assume that the 1-vanishing condition holds for (y, L, ax, ). Let Ty denote the relative tangent bundle of the
smooth morphism M?*(y, [L], a., ) — M(y). We put as follows:

Nuf) = [ TAX)-y- e,

We will be interested in the integral of the following element of R(E“, M (g, [L], o, 6)):

o Eu(Trel) ] S
¢ = Np(y) PEY)

We take parameters _ < ¢ < 4 such that 6, (x = £) are sufficiently close to 0. The transition formula for
®(y, [L], ax, d) is rather simple, if the 1-vanishing condition and the 2-stability condition hold for (g, L, a, d).
Strictly speaking, we do not need it, because we prove a more general formula later. However, we give it as an
explanation of the argument. In the case p; > 0, the problem is easy.

Proposition 7.14 Assume p, > 0. Assume that the 1-vanishing condition and the 2-stability condition hold
for (y, L, oy, 8). Then, we have the equality ®(y, [L], o, 0-) = ®(y,[L], a, 64).

Proof By the same argument as the proof of Theorem 7.12, we can express ®(y, [L], o, 04) — ®(y, [L], a, 5_)
as the sum of the integrals over the fixed point set M= (J). Under the assumption of the proposition, we have
[M%m(3)] = 0 due to Proposition 6.11, Proposition 6.24 and Proposition 6.25. Thus we are done. 1

Let us discuss the case p, = 0. For a decomposition type (y;,¥,) € S(y, L, a.), we put as follows:
M(@la @2) [L]v [eF 5) = Ms(gla [L]v s 5) X MS(@Q? OZ*).

Let €“® denote the trivial line bundle on M (Y, Yy, [L], s, d) with the Gj,-action of weight w. We have
the following element of the K-group K= (M(yy, Yy, [L],ax,d)) of the G -equivariant coherent sheaves on
M(Y1, Yy, [L], s, 6) (see the subsubsection 5.9.1 for the notation):

N(EY, By) - ¥/ L By, BY) - e*/M %" 4 Np(BY,, BY,) - ¥/ 4 Np(BY,, EY,) - e */m o/
(203)

Let Q(Ey - e~/ By - ¢%/72) € R(Ey) ® R(E5)[[s 1, s] denote the equivariant Euler class of (203).

177



Theorem 7.15 Assume that the 2-stability condition and the 1-vanishing condition hold for (y,L,a.,d). In
the case pg = 0, we have the following equality:

0@ (L ands) - 0@ Lhans) = > [ Uy, o) (204)
(¥1,Y2) €S (1,000,8) M(Y1,Ys,[L],,0)

The elements V(y,,yy) € R(E}‘,MS(QD [L], ., 6)) ®R(E§‘) are given as follows:

Nr(y1) P(E{‘ cemsIM @ E; . €S/T2) Euw(Th rel)
-Res : (205)

Uy, yy) = = =
(yl y2) NL(y) Q(E% . 6_5/“, Eé’« . eS/TQ) NL(yl)

Here T 1e1 denote the vector bundle on M(Yq, Yy, [L], ax, ) induced by the relative tangent bundle of the smooth
morphisim M (@, [L, o, 6) —> M(G,).

Proof By using the same argument as the proof of Theorem 7.12, we can reduce the problem to the calculation
of the contributions from MG m(J) for T = (y1,Y,) € S(y, ax, 5). We use the notation in the subsubsection
4.7.1. Let 5 denote the inclusion MSm (3) — M. We remark the relation of the virtual fundamental classes in
the case py = 0 given in Proposition 6.24. Thus, we put [S] := F* ([]\//.TGT“ (3)]) = G*[M (Y1, Ys, [L], o, 8)]. Let
I, denote the trivial line bundle with the action of G, of weight w. On S, we have the following decomposition
of the equivariant vector bundles:

F*(péTrel =G} ;e © G*pX «Hom (L, E;)@Olyrel(—Tl/Tg) X Il+r1/r2
Therefore, we have the following equality in Ag, (S):
F*SD?T Eu( rel) G* Eu(Tl rel) G* EU.(pX *'HOm(L, E;) : e(l+r1/r2)-t7r1w1/r2)

The second term in the right hand side also appears in Eu(Mo(y;,y,)), and hence they are cancelled out in the
evaluation of [S]. Then, we obtain the following equality in Q[t~1,]:

3 EM : re P Eu —ttwi E“ r1(t—wi)/re - Eu(T re
LP<%ww)fMTm>:Lm<(ISA ® By -ent-in) w10> (200

Eu(N(M% (7)) (Bp - e—ttwr By - eri(t-—wn)/rz)

Here, Q(E% emtter Fu. em(t=w1)/72) ig the Euler class of the following element of K% (M(¥y,¥,, [L], o, 6)),
for A=1+4r1/ro:

N(EY, BY) - ") 4 (EY, EY) - e A0 1 9 (B, BYL) - 09 1 9 (B BYL) - e A0
We remark that the integrand of the right hand side of (206) is of the form . A; - (¢t — wi1)?, where A; €
R(EY, M(Ty, [L], s, 6)) @ R(EY). By a direct calculation, we can check the following:

J— 1 (':—1)
Rep (t—w) {o G#-1)

Hence, we have Res;—o(t — w1)? = Res;—ot/ for any j. In particular, we have the following equality:
Res(ZA (t —w1) ) Res(ZA tJ)

Thus, we obtain the following equality:

/ Res G P(E}- eftjm ®EY- ejl(tfwl)/rz) -Eu(T} 1e1)
s t Q(Eqit . €7t+w1,Eg . erl(tfwl)/rg)

P Eu Lt Eu L orit/re - Eu(Ty vo
:/ResG* (B e @ By - en) BulTia) | o0
st Q(EY - et EY - emit/m)
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Therefore, we obtain the following:

P(EM) . Eu(T., P(EY- et @ EY - ent/m2) . Eu(T} e
/ Res [ D7) - Bu(Tia) :7"1-/ Res [ DU 1@ By entm) - Bu(Ti o) (208)
MSm (3) =0 \ Eu(M (M (3)) M@y T [L],as,0) =0 Q(EY -e~t, EY - ent/r2)

By putting 71t = s, we obtain the desired formula (205). |

7.2.3 The L case

Let L = (Lq, L2) be a pair of line bundles on X. We assume that the 1-vanishing condition holds for (y, L1, o),
and that the 2-vanishing condition holds for (y, La, a), in the sense of the subsubsection 6.4.1. We discuss the
transition formula under the situation of the subsubsection 4.7.2.

Let & = (01,62) be an element of PP* 2. Assume that both of ; are sufficiently small as in the subsubsection
4.7.2. Recall that the 1-stability condition does not hold for (y, L, ., §), if and only if the following conditions
hold:

e b1/r1 = d2/r2 holds for some pair of positive integers (r1,r2) such that r1 + 7o

e There exists a decomposition y; + y, = y such that ranky, = r; and P;j‘l* = P;‘;.

Assume that the 1-stability condition does not hold for (y, L, a, §). We take elements 6_, 5, € PP* such that
d_ < 61 < 64 and that |0, — 01| (k = ) are sufficiently small. We put d,, = (dx,2) for K = £. Let Tr(ell) denote
the relative tangent bundle of the smooth morphism M*(y, [L], ax, §,;) — M (Y, [L2]). Let Of?l( 1) denote the
pull back of the tautological line bundle on M(y, [L;]) via the morphism M?**(y, [L], o, §) — M(y, [L;]). We
put w® = ¢; (0(3(1)) We consider the following element of R(E, M (y, (L), ., b))

r

EuTy) g
— —\Trel /| prpu) . (2K
N
We put as follows, for k = +:
®(3. L0 8. = [ @
M (,[L], s, 810)

We would like to discuss the transition formula between ®(y, [L], o, d+) and @(y, [L], s, 6_).
Proposition 7.16 In the case py > 0, we have the equality:
O(y, [L], o, 64) = @(y, [L], v, 6-)

Proof Let ¢ : M — M(m,y,[L]) denote the naturally defined morphism. Let 7(1) denote the trivial

line bundle on M(m,y, [L]) with the G,,-action of weight 1. We put Z; := ¢* OEQ(—I). Let us consider the
G n-equivariant cohomology class:

Eu(gp*T(l))

rel

@ui= Pp"E") Nz, ()

Ty By =0 (9°T(1))

By applying the argument as in the proof of Theorem 7.12 to [7; ®,, we can obtain the description to express
®(y, [L], o, 64+) — ®(¥, [L], s, ) as the sum of the integrals over the fixed point sets M= (J). Under the

assumption of the proposition, we have [M\ Gm ()] = 0, due to Proposition 6.12, Proposition 6.24 and Proposition
6.25. Thus we are done. |

To discuss the case p, = 0, we prepare some notation. We put as follows:

S(y, o, 8) := {(y1,y2) € Type® | Pyr = Py, 61/r1 = 0z/ra}
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For any (y1,¥ys) € S(y, ax, d), we put as follows:
M(@la@Qa [L]’a*aé) . M (yla[ ] (1*,51) X M (y27 [LZ] (1*,52)

Let e™® denote the trivial line bundle on M(¥yy,Ys, [L], ax, ) with the Gp,-action of weight w. We have
the following element of the K-group K= (M(¥y,¥s, [L], ax,8)) of the Gp-equivariant coherent sheaves on
M(@la @27 [L]7 Qs 5)

N(BY, BY) - e¥/m o/ 4 By, BY) e /M 4 N (BY, By, - e/m o0 (B, By ) s/l

The equivariant Euler class is denoted by Q(EY - %/™ E¥ - ¢/™2) € R(E)) ® R(E»)[[s~%,s]. Let Oge(1)
denote the tautological line bundle on M(y,, [L2]). The pull back is also denoted by the same notation. We
put wy := ¢1(O2,e1(1)), and we use the notation e*“2 to denote Oy re1(w) formally. We also have the following
element of K (M (g, Y, [L], o, 0)):

Rpx «Hom(La, Ei‘) e 8/mi—s/ratwe
The equivariant Euler class is denoted by R(Lye~++9/72, Bit.e=*/m) € R(E)@A* (M (@, [La], s,0)) (57", 5]

Proposition 7.17 The following equality holds in the case pg = 0:

(Y, [L], a, 64) = (y, [L], o, 6 ) = > ‘I’(yl,yz)
(1,92) €8 (y,0.,8) 7 MEL 2 [0
The elements ¥(y,,ysy) € R(El,/\/ls@l, [L1], i, 61)) ® R(EQ,MS@Q, [L2], i, 62)) are given as follows:

U(yy,y,) = M Reb P(E%.e*S/n &) E’g.eS/rz) (wa — S/’f‘g)k . Eu(Tl,rel)
1,42 NL1 (y) Q(EU €_S/T17E§L . es/m) . R(Lg-e_w2+5/r27qu-e_s/rl) NL1 (yl)

(209)

S=

Here, Ti vl denotes the bundle on M(Yy, Yo, [L], o, 0) induced by the relative tangent bundle of the smooth
morphism M*(gy, [L1], ax, §) — M(m, 7).

Proof The argument is essentially same as the proof of Theorem 7.15. Applying the same argument as
the proof of Theorem 7.12 to fﬂ ®; in the proof of Proposition 7.16, we obtain the following expression of
(Y, [L], aw,61) — (y, [L], o, 6 ):

. ~ D,
53,000 - 0@ Lhas) = Y [ e ( 2 )
JeS(y,ax,0) MGm (3) =0 Eu(‘ﬁ(MGM(j)))
We have the G,,-equivariant isomorphism F*@%I{l ~ G* (027rel(1)) ® Ot rel(ri/r2) ® e "1t/T2 - There-
fore, we have the equality F*cy (IQ_ 1) = G* (wg +r - (w1 —t)/ 7’2). Hence we have the following equality in
R(G*Ey, G* Es, S)[t):

1
Ni, (y)

k

F* ok (®) = G P(EY - et @ By - e @m0/m) LG (g (w1 — 1) /)
X G* Bu(Ty yel) - G*R(Ly - et EY - e7m1@1=0/r2) - (210)
Here, R(Ly - e, EY . emmili=t)/ "2) denotes the equivariant Euler class of the following G,-vector bundle:
pxsHom(Ly, EY) - e~ mwr/rat(tra/rt
We also have the following equality in R(G*E¥, G*EY, S)[[t~1, 1]:
F* (Ba(M(M(3)) ) = G*Q(EY - e, By - emn(er=0/m2)
X G*R(Ly @ et By - e 1@1=0/r2) . G*R(Ly @ e w2 (@1 =0/m2  f. emm@i=/12) (977
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We put ¢t — wy = t. Therefore, we obtain the following;:

/ Res < Et ) =
M&m (3) =0\ Eu(MN(ME(3)))

u —7 u rit/r T k
" / Res P(E: c OB ) (- rlt/ri) CEu(T()) (212)
N (Y) S @, 80 0e.8) 129 \ Q(BY - e7F, By - em1t/m) - R(Ly - e~w2tnii/r2 Ett . e=T) torel

By an argument in the proof of Theorem 7.15, we can replace ¢ with ¢ in (212). We put s = r; - t, and then we
can show that the right hand side of (212) is same as the integral of ¥(y,,y,) over M(yy, Yo, [L], a, 9). |

Let us consider the integral of the following element of R(E, M*(y, [L], oy, 8)), assuming that the 1-vanishing
condition holds for (y, L2, a):
Eu(T®) BEu(T® R
_ u( rel) . U.( rel) . P(Eu) (213)
Ni, (y) N, (y)
Lemma 7.18 Assume that the 1-vanishing condition holds for (y,La,a). Let ® be as in (213). Then, the
element V(y,,y,) € R(EY, M*(Yy, [L1], s, 01)) @ R(EY, M*(Yy, [La], o, 82)) is given as follows:

Ni, (1) - Nio(y2) 5o P(E} e~ /" @ By -e*/™)\ Eu(Time) Bu(re)
NL(y1) - Nirly2)  5=0 \ Q(Ey-e~s/m, By - es/m2) Np,(y1)  Ni,(y2)

Here T ye1 denote vector bundle on M(Y1,Ya, [L], oy, ) obtained from the relative tangent bundle of the smooth
morphism M?(gy, [La], ax, 62) — M(Ts).

Proof We put t =t — w;. Then, we formally have the following decomposition:

F*QO; Eu(T(2)) et EU(TQ,rel) . G*R(LQ . e—w2+r1~f/r2,Ei¢ . e—t)

rel

We also have G*R(L - emw2trit/ra E% : e*z) in the decomposition (211) of F™* (Eu(‘J’((J\/J\Gm (3)))), which are
cancelled out in the evaluation of S. Then, the claim can be easily obtained. |

7.3 Invariants
7.3.1 Construction

Let y be an element of Type, and let a. be a system of weights. Let P be an element of R. When the 1-stability
condition holds for (y,a.), we obtain the number [ Mo (Fro) P(E*). We would like to obtain such a number
even in the case where the 1-stability condition does not hold.

We take a line bundle L on X such that the 1-vanishing condition holds for (y, L, ) in the sense of the
subsubsection 6.4.1. Let § be a sufficiently small element of PP" such that there are no critical value smaller
than . Then the 1-stability condition holds for (y, L, ax,d). Let Ty denote the relative tangent bundle of
M?(y, [L], ax,0) — M(y). Then, we obtain the following number:

o(L) .—/ p(Evy . 2T)
M@ L as8) Nr(y)

Proposition 7.19
o In the case py > 0, the number ®(L) is independent of the choice of L.

o In general, let L' and L be line bundles on X. We assume that L™ is ample. Then there exists the limit
lim,;, 00 ®(L' ® L™), and it is independent of the choice of L' and L.

e Assume that the equality Pz, = Pg, holds for any E1. ® Ey. € M*(y,a,). Then, ®(O(—m)) is
independent of the choice of any sufficiently large m.
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Proof Let L}, Ly and Ly be line bundles on X. Assume that Ll_1 is ample, and that the 1-vanishing condition
holds for (y, Lo, ). We put LY”) = L} ® L. If we take a sufficiently large integer m, the 1-vanishing
condition holds for (y, L:(Lm)7 o). We put L™ = (L:(Lm), Ls). We consider the following number:

1 2
. Eu(Tr(el)) EU.(T( ))

rel

(m) o
oI5, La61,00) = [ P(EY)
1 M#(@[LO) 0.8) Ny (y) Nio(y)

Here, Tr(ell) denotes the relative tangent bundle of the smooth map M*(y, [L(m)], O, 0) — M(y, [L2]). We use

the notation Tr(j) in a similar meaning. We assume that both of §; are sufficiently small. When 4; is sufficiently

smaller than 2, we have the following equality due to Proposition 6.45:
g(LY™, Ly, 61,85) = (L) (214)
Similarly, when §2 is sufficiently smaller than §;, we have the following equality:
g(L™, L3, 81, 85) = B(L{™) (215)

We fix d5, and we move d;. The transition of the values g(Lgm), Lo, 81, 02) occurs if the following holds:
e 01 = J2 - r1/r2 holds for some pair of positive integers (r1,72).
e There exists a decomposition y; + y, = y such that ranky, = r; and P;‘l* = P;‘;.

We put as follows:
S(y,a.) = {(y1,92) | Py~ = Py>s w1+ Y2 =y}

Therefore, we have the expression of ®(L{™) — ®(Ly) from (214) and (215):
(I)(Lgm)) —®(L2) = Z G(y1,Y2) (216)
S(y,0)

Due to Proposition 7.16, the contributions &(y,,y,) are trivial in the case py > 0. Thus we obtain the first
claim. Let us show the second claim. We use an induction on rank(y). Due to Proposition 7.17 and Lemma
7.18:

Ny (y1) - N,y (y2)
1

&(y,, = X
(Y1:Y2) NL(lm)(y) N, (y)

/ o P(EY e~/ @ EY - e¥/m2)\  Bu(Tire) Eu(Thre) (217)
M@, 55 B an6) =0\ Q(EY - e~s/m By wes/r2) | Nyom(y1)  Nia(ye)

Here &' = (87, 6%) is any element of PP" 2 such that &, are sufficiently small. We have rank(y,) < rank(y).
Recall M (G, Ty, [L™], s, 8) = M5(Gy, [L:(Lm)],a*,&l) X M*(Yq, [L2], @, 62). By applying the hypothesis of
the induction, we have the following limit:

P(EY e /" By - e/™)\ Eu(Tise)  Eu(Thee
lim Res ( 1 ¢ @A2 € ) . u( 1, l)_ u( 2, 1)
meee M(@l,@z,[L(m)La*,ﬁ’) 5=0 Q(E% . 6_S/T1,E§L . eS/T2) NLgm) (yl) NL2 (y2)

Moreover, it is independent of the choices of Ly and L}. We obviously have the limit:

- Npom (Y1) - Nro(y2) _ Ny (e)
m=oo Npom(y) - Nio(y) 7 Nio(y)

Therefore, we obtain the existence of the limit of the sequence {<I>(L§m))}, and it is independent of the choice
of L. Hence, the second claim is shown.
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Let us show the third claim. We use an induction on ranky. We put L} = Ox and L; = Ox(—1). By the
hypothesis of the induction, the following terms are independent of the choice of m:
P(EY e " @ EY-e/™)\ Eu(Ti) Eu(Tzre)
Q(Ev - e=s/m1 By - es/m2) Hy, (m)  Ni,(y2)

/ es
M@y 8, (L]0, 8) *=0
We also have the following equality, due to the assumption Py, = Py:

Hy,(m) - Ni,(y2) _ 71 Ni,(y2)
Hy(m) 'NLz(y) r'NLz(y)

Therefore, we obtain the desired independence. |

Definition 7.20 Let P be an element of R. We take a line bundle L such that L™" is ample, and we take a
sufficiently small § € PP*. Then, we put as follows:

= f E Tre

/ P(E") = lim p(py . Buldie) (218)
Mo (G,n) m=20 J s (g, (L]0 ,6) Npw(y)

It is well defined due to Proposition 7.19. |

Thus, we obtain the linear map fMSS@_m) :

7.3.2 Easy properties

Lemma 7.21 Assume p, > 0. We take a line bundle L such that the 1-vanishing condition holds for (y, L, o).
Then, the following equality holds:

_ . Eu(Tw
/ P(EY) = / p(py . Bl (219)
Mo (o) M# (@,[L] . 0) Ne(y)

Proof It follows from Proposition 7.19. |

The following lemma is clear from the construction and Proposition 6.44.

Lemma 7.22 When the 1-stability condition holds for (y, o), Definition 7.20 is compatible with the ordinary
definition. |

Proposition 7.23 Assume that the equality Pg, = Pg, holds for any E1 . ® Es,. € M**(y, ). Then, we have
the following equality, for any sufficiently large m:

= f E Tre
/ P(E") = / P(E")- u(Trel)
M5 () M (G,[0(—m)] e ) Hy(m)
Proof It immediately follows from the third claim of Proposition 7.19. |

We say a system of weights a, is not critical, if M**(y, o) = M?**(y, o) for any o/, such that |a; — of| are
sufficiently small.

Corollary 7.24 Assume one of the following:

e «, is not critical.

e The parabolic part of y is trivial.
Then, we have the following equality for any sufficiently large m:
- = E Tre
[ e e B
Mes(Gas) M (G,[0(—m)],ca.6) H,(m)

Proof We have only to check the condition in Proposition 7.23. In the case where the parabolic part of
y is trivial, the condition is trivial. Let us show the second claim. Assume that a, is not critical, and take

Ei1.®FEs, € M**(y,a.). Let y; be the types of F; .. Then we have P;l, = P;;* for any o, which are sufficiently
close to a. It implies P, = P,,, i.e., Pg, = Pg,. Thus we are done. |
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7.3.3 The integral over MVSS(Q,a*,+)

Let MVSS(Q, o, +) be as in the subsubsection 4.6.1. Let ﬁel denote the relative tangent bundle of the smooth
morphism M (g, oy, +) — M(F). Recall the description of M (g, ax,+) as the full flag bundle over
M2 (y, [O(=m)], ax, €) for any sufficiently small positive number e. We also remark the equality of the virtual
fundamental classes in Lemma 6.54. Then, we can easily derive the following equality:

= B Tre
/N P(E" LI') :/
Mo (G, +) Hy(m)! M (G, [0(=m)] s s6)

Here T} denotes the relative tangent bundle of the smooth morphism M?(y, [O(—m)], a, €) — M(m, y).

-~ Eu(Trel)

PE) o (220)

Lemma 7.25 Assume one of the following:
e py; >0
e The condition in Proposition 7.23 is satisfied.

Then, we have the following equality:

~  Eu(Tie -
‘/;/ P(E“)-—EL—J%::j/ P(EY) (221)
Mes(G,a,+) Hy(m)! M55 (G,a)
In particular, if one of the conditions in Corollary 7.24 is salisfied, the equality (221) holds. |

7.3.4 Another expression
In the case py > 0, we have another way to express the integral (218).

Lemma 7.26 Assume that the 2-vanishing condition holds for (y,L,a.). We also assume pg > 0 and d :=
x(y . ch(L)’l) —1 > 0. Let P be an element of R. The following equality holds, for any sufficiently small

§ € PPr:
/ P(EY)-w® = / P(EY)
M= (y,[L],ax,0) M5 (g, 00)

Proof We use the argument in the proof of Proposition 7.19. We also use the notation in the subsubsection
7.2.3. We take a line bundle L; on X such that the 1-vanishing condition holds for (y, L1, o). The pair (L1, L)
is denoted by L. We put as follows:

Eu(Tiy) oy

9(L1,L,01,9) 12/ P(EY) .

(222)
Mé (G, (L), ,5) Np,(y)

When 9; is sufficiently smaller than §, we have the following:
E(LlaLaalad):/ P(Eu)w(z)d
M3 (G, [L], 0 ,6)
When 4 is sufficiently smaller than §;, we have the following equality, due to Corollary 6.47:
(L1, L.00) = [ P(E")
Mo (G, )

We move 41, and then the transitions are trivial due to Proposition 7.16. Thus, we obtain the desired equality
(222). |

We recall that the 2-vanishing condition can be controlled numerically, in general. We give it for later use.

Lemma 7.27 Let y be an element of Type®. Assume Py(t) > Pk (t) for any sufficiently large t, where K
denotes the canonical line bundle of X. Then, the 2-vanishing condition holds for (y,O).

Proof Take E. € M*(y). If H*(X, E) # 0, we have a non-trivial morphism F — Kx. It implies P,(t) <
Pk (t), which contradicts the assumption. |
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7.4 Rank 2 Case
7.4.1 Reduction to the integrals over the products of Hilbert schemes

In this subsubsection, we assume H'(X, ) = 0 for simplicity. Let y be an element of 7ype5. In the following,
the H?(X)-part of y is denoted by a, and the H*(X)-part of y is denoted by b. The second Chern class
corresponding to y is denoted by n. We have the relation b = a?/2 — n. We assume P, > Pg and x(y) —1>0.
We would like to give the expression of [ M) P(E") as the sum of the integrals over the products of Hilbert
schemes for any P € R.

Let NS'(X) denote the subgroup of H?(X,Z) generated by the 1-cycles on X. For any element a; €
NSY(X), we put az := a — aj. Let e denote the holomorphic line bundle whose first Chern class is a;. Since
we have assumed H'(X,0) = 0, it is uniquely determined up to isomorphisms. Let Z% denote the universal ideal
sheaves over X"l x X. Let Z; denote the universal O-scheme over X[l x X. Let =; denote DX % ((’)zi ® e‘“).
We use the same notation to denote the pull back of them via appropriate morphisms. Let G, denote the one
dimensional torus. Let e*® denote the trivial line bundle with the G,,-action of weight w. Then, we have the
following element of the K-groups of G,,-equivariant sheaves on X ["1] x X2l

—Rpx RHom(Z{ - ™, I3 - ") — Rpx JRHom(Zy - e®*°, I} - e %)

The equivariant Euler class is denoted by Q(Z{ - e® =%, T4 - e®2+5) € R(I¥ - em) @ R(ZY - e?2)[[s"L,s]. We
have the element P (Z{ - e® ™%, I¢ - e®279) € R(I{ - e™) ® R(Z4 - €?2)[s], which is induced as explained in the
subsubsection 7.1.3. We also have the equlvarlant Euler class Eu(Z; - €2%) € A% (X[’”] x X21), Thus, we
obtain the following element of R(Z}" - €™ ) ® R(ZY - e*2):

Res P(Ty-em=s @Iy - em2T) Eu(E1) - Eu(E; - ¢*)
Q( u eal—s,Zg« ,ea2+s) (28)711+712—pg

In the case (c1(O(1)),a1) < (c1(O(1)),az), we put as follows:

P(T{ - e®—s Tw . az+s =) . =, . 2s
A(al,y) = Z / Res( (1 @ o "€ )Eu( 1) Eu( 2 € ))

(1] % x[na] §=0 Q(Zu 6“1_5,15‘ . ea2+s) (28)n1+n2—pg

ni+ng=n—ai-az

In the case (c1(O(1)),a1) = (c1(O(1)),az), we put as follows:

U, gd1—S$ TY . as+s Eu(=,) - Eu(=, - 2s
A(a1,y) = § / Res ( > S u2 € ) . u( l) - frf f e )
Ty [n1]x xIna] $=0 Q(I 6”‘178,12 .ea2+8) (28) 1+n2—pg
niy>nsg

We put as follows:
SW(X,y):={a1 € NSl(X)| [M(e®,0)] #0, (a1,c1(0x(1))) < (a,c1(Ox(1)))/2}

Recall that the expected dimension of M(e®, ) is 0, if [M(e**, O)] # 0 (Proposition 6.29). Therefore, we can
regard [M(e?, O)] as the number, and we denote it by SW(aq).

Theorem 7.28 Assume p, > 0 and H'(X,0) = 0. Assume P, > Px and x(y) —1 > 0. We have the following
equality:
[opEY Y sWl)- 2 Ay = o
)

a1 ESW(X,y)

Proof Let § be an element of PP* which is not critical. Let w denote the first Chern class of the relative
tautological line bundle on M?*(y, [0],d). Then we put as follows:



When 6 € PPT is critical, we put as follows:

S(y,8) == {(y1,y2) € Type |y1 +yo =y, Hy, +6=Hy,}

We take parameters 0_ < 0 < d4 which are sufficiently close to . Let E}' denote the universal sheaf over
M(y1,0) x X, and E" denote the universal sheaf over M(71,[0]) x X. Recall we have the isomorphism
M(y1,0) ~ M(y1,[0)), although it does not preserve the virtual fundamental class. We identify the moduli
spaces via the isomorphism. Then, we have the relation E} = E”f - e“, where w; denotes the first Chern class
of the relative tautological line bundle of M(y1,O) ~ M (¥, [O]). Due to Theorem 7.12, we have the following
equality:

B P(E% -eY1TS P Eg . es""l) . g

B(5,)— D5 ) = / Res ( _ N i ) (223)
(yl,yz)ZGS(y,é) M(1,0)xM(@2) *=0 \ Q(EY - e=1=%, By - es=1) - Eu(Rpx By - e2*71)

We put as follows:
S(y) = {1, y2) € Type* |y1 +y2 =y, Py, < Py, }

Recall M*3(y,|0],8) = 0 for any sufficiently large § (Proposition 3.38). On the other hand, we have ®(§) =
/ M) P(E") for any sufficiently small § (Lemma 7.26). Therefore, we obtain the following equality:
N P Eu wi—s8 Eu S—wi d
/ P(E") + / Res = ( L ¢ O e ) ’ =0
M) M(y1,0)x M(Faz) 5=0 Q(Eil SewiTs, E%L . es—w1) .Eu(RpX*Eét .625—w1)
(224)

If [M(y1,0)] # 0, the expected dimension of M(e**, ) is 0 (Proposition 6.29). Hence, we can omit w; in
the right hand side of (224). By using Proposition 6.34 and E} = Z} - e, we obtain the following:

(y1,y2)€S(y)

/ P(qu -1 P E; . es_“’l) - g?
Res = = =
M(y1,0)xM(@2) °=0 \ Q(BY - e17%, Ef - es=1) - Eu(Rpx . By - e71)
P(TY . eSS Ty. ed2+s -Sd
SWi(a) - / es (@ 2 )
X[n1lx xIng] $=0 Q(Z{L cem—s Ty - ea2+s) . Eu(RpX*(Ié‘ . ea2+2s

))> "Eu(=;) (225)

By a formal calculation, we obtain the following:

1 o EU(EQ . 625)
Eu(RpX*(I; .eaz+25)) - (23))((‘12)

Since [M(e®, 0)] # 0, we have x(a1) = 1+ p, (Proposition 6.29). Hence, we have the following:

x(az) = x(y2) + n2 = x(y) — x(y1) + 12 = x(y) — 1 — pg +n1 + na.

Then, the desired equality can be obtained by a direct calculation. |

7.4.2 Dependence on the polarization

Let y be an element of Type;. We use a similar convention as in the subsubsection 7.4.1. To distinguish the
dependence on the polarization H, we use the notation M g (y) to denote the moduli stack of torsion-free sheaves
of type y which are semistable with respect to H. Let £ be an element of N.S(X) such that £ + a is divisible by
2 in NS(X). We also assume a® — 4n < €2 < 0. We put W¢ := {c € NS(X) @ R|(c,&) = 0}, which is called
the wall determined by &. It is well known that the ample cone is divided into the chambers by such walls, and
the moduli M f(J) depends only on the chambers to which H belongs. For ® := P(E") € F(Mg(y)), we put

as follows:
Dy (Y) ::/ P
My ()
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We would like to discuss how ® (%) changes when the polarizations vary across the wall W¢. We put as follows:
S, &) = {(yo.y1) € Type(X)*|yo+y1 =y, ao—ar =m-& (m > 0) in H*(X)}

For each (yo,y1) € S(y, &), we put M(Fo, 71) := M(To) x M(J1). Let E; denote the sheaf over M (fo, 71) x X
which is the pull back of the universal sheaves over M(y;) x X via the appropriate projection. Let ¢*"® denote
the trivial line bundle with the G,,-action of weight w. We have the following element of the K-group of the
Gm-equivariant sheaves on M (9o, 71):

—Rpx *RHom(Eo e, By -e*) — Rpx *RHom(El et By ce”%)
The equivariant Euler class is denoted by Q(EO e, By ef) € R(Eo) @ R(E})[[s~ %, s]. By the homomorphisms
in the subsubsection 7.1.3, we have P(EO e G E) - e’) € R(Eo) @ R(E1)[s].

Theorem 7.29 Let Cy and C_ be chambers which are divided by the wall W&. Let H, and H_ be ample line
bundles contained in C1 and C_, respectively. We assume (H_,&) < 0 < (Hy,§).

e In the case py > 0, we have ®y (y) = ®y_(y). Namely, the invariant does not depend on the choice of
generic polarization.

o In the case pg = 0, we have the following equality:

v U P(Ev-e* @ EY-e*
N T -
(yo,y1) €S (y,€) Y MT0:71) °= Q(Eo e, By -es)

We give two arguments to prove Theorem 7.29. Both of them are based on the following observation.

Lemma 7.30 ([10], [42]) Let H be an ample line bundle contained in W¢&. We can take H, € C,, (k = %)
satisfying the following:

o There exists a very ample curve C such that Hy = H ® O(C) and H- = H @ O(-C).
e The following holds for a torsion-free sheaf E of type y:

— FE is Hy-semistable if and only if E(C) is H-semistable.
— E is H_ -semistable if and only if E(—C) is H-semistable. |

Ellingsrud and Gottsche proved the formula (226) for the Donaldson invariant under the assumption that
the wall W¢ is good. They used the parabolic structure E(—C) C E(C) with weight « for torsion-free sheaves
E. Let M?®*(y, ) denote the moduli stack of torsion-free sheaves with the parabolic structure as above, which
are semistable with respect to the polarization H. Due to Lemma 7.30, we have M**(y,1) = Mg, (y) and
M=*(y,0) = Mpy_(y). We say that « is critical, if M**(g,a) # M?*%(y,a’) for any sufficiently close o’ # «.
We can easily show that there are only finitely many critical values, by using some boundedness result. By
investigating the transition of the invariants at critical parabolic weights, they obtained the formula (226).
Using their framework and our transition formula (204), we will show the formula (226) without the assumption
that the wall is good, in the subsubsection 7.4.3.

We will give another argument for the proof of Theorem 7.29 in the subsubsection 7.4.4. Perhaps, it may
be a little more suitable when we discuss a similar problem in the higher rank case.

We give some preliminary for the argument. In the rest of this subsection, we use the polarization H.
Namely, the p-semistability condition and the semistability condition are considered with respect to H. Let S
denote the family of y-semistable torsion-free sheaves of type y. Let S denote the family of torsion-free sheaves
E’ of rank one with the following property:

o u(E') = p(y).
e There is a member E of S, such that E’ is a saturated subsheaf of E.

The families S and S are bounded. We take a sufficiently large integer m such that the family S satisfies the
condition O,,. In the rest of this subsection, § denotes a polynomial of degree 0.
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7.4.3 The proof of Theorem 7.29 (I)

For a torsion-free sheaf E, we denote by F(®) the parabolic structure (E(—C) C E(C), a). The following lemma
is clear.

Lemma 7.31 If(E, F(@) @) is a d-semistable parabolic L-Bradlow pair, E is p-semistable. (Recall § is assumed
to be a polynomial of degree 0.) |

Let M*®® @, [L], a, 6) denote the moduli stack of the oriented parabolic reduced L-Bradlow pairs of type y
with weight o, where the parabolic structure is given as above.

Let « be any real number, and let E’ be any member of S. We take E € S such that E’ is a saturated
subsheaf of E. We put E” := E/E’. Then, we put F(E’) :== Pg, — Pg,,. The number is determined by ch(E’),
and hence it is independent of the choice of E. When we fix «, the function F,, : S — R has finitely many
values, due to the boundedness of S. It is clear that « is critical if and only if there exists a member E’ € S
such that F,(E’) = 0.

Let ag be critical, and let € be any sufficiently small positive number. We can take a small positive number
1 > 0 such that the following holds for any o’ with |o/ — ag| < 7:

o Foo(E')>0«= Fy(E') > ¢
o Flo( ) (E') <0 <= Fy(E') < —¢
e Foo(F') =0« |Fy(E)| <€

Lemma 7.32 We have M**(Y, [L], ag, €) =~ M**(y,[L], o, €) for any o’ such that |ag —o'| < n. Moreover, we
have M**(y, L], aw, €) = M*(7, [L], o, €).

Proof Let (E,p, F), [¢]) be an oriented parabolic reduced L-Bradlow pair, such that F is py-semistable. Let
E' C E be a member of S. We put E” := E/E’. We have Pg? + ¢ < Ppy, if and only if Pg,’ +e< P2, We
have Pg? < Ppy, + € if and only if P2, < Pg, +e. Then, the first claim of the lemma is clear. The second claim
is also easy to see. |

To compare @, (y) and ®_(y), we would like to consider the invariants obtained from the moduli stacks
M?* (37, [O(—m)], a, 5). We remark that the divisor of the parabolic structure is not reduced in this case, contrast
to that we assumed the smoothness of the divisor in the section 5. We can deal with the point by the following
two arguments:

1. We do not have to think the contribution of the parabolic structure to the obstruction theory, because
the filtration is canonically determined by the sheaf. In fact, M*(y, [L],,d) is an open substack of
M(m, g, [L]) for a sufficiently large m, in this case. Thus we obtain the perfect obstruction theory
Ob(m, 7, [L]) and the virtual fundamental class.

2. In the case o > 1/2, we consider the parabolic structure Fl(a) given by (E C E(C),2a — 1) for a torsion-
free sheaf F. Then, (E, F(®) [¢]) is -semistable if and only if (E,Fl(o‘), [¢]) is §-semistable. In the case
a < 1/2, we consider the parabolic structure FQ(O‘) given by (E(—C) C E,2a) for a torsion-free sheaf E.
Then, (E, F® | [¢]) is §-semistable if and only if (E, F{*, [¢]) is é-semistable.

Therefore, we can freely apply our previous results.
Let Tye denote the relative tangent bundle of the smooth morphism M(g, [O(—m)], a, §) — M(m, 7). If 6
is not critical with respect to (y, O(—m), «), we obtain the following number:

P, 6) := / 3.
Me(F,[0(=m)],,6)

= ) Eu(Trel)
b= Hy,(m)

The following lemma is the special case of Corollary 7.24.

Here, we put as follows:

e R(E, M(7,[0(-m)], o, d))
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Lemma 7.33 Assume that « is not critical. Then, &)(04 d) is independent of the choice of m, if § is sufficiently
small. The number is denoted by ®(«).

We have ®(1) = ®p, (y) and ®(0) = ®5_(y). Therefore, we have only to see the transition of the invariants
at critical weights. For a critical a, we put as follows:

S(y,&a) = {(yanl) € S(y7§) |P1:10 = Pﬁ}

Proposition 7.34 We take real numbers oy > o > a— such that |a — «| < 1. In the case pg > 0, we have
®(aq) — ®(a—) =0. In the case py = 0, we have the following formula:

Blay) — dla) = /M Res ( (Eg - @ By 'es)> (227)

(yo,y1 eS(%g @) (Fo,71) *= Q(EY - e=s, Bt - e%)

Proof We have M*(y, [O(—m)], oy, €) ~ M*3(g, [O(—m)], a_, €) due to Lemma 7.32. Therefore, we obtain the
following:

Blay) — o) = (Blar,e) — B(ar)) — (Blas,e) — Blay)) (228)

Let us see the first term in the right hand side of (228). We see the transition of ®(a.t, ) when we move § from
0 to e. We use Theorem 7.15. The transition occurs when Py~ +8 = Py, holds for some (yo,41) € S(y,&, ). In
the case pgy > 0, the transitions are trivial. Hence we obtain ®(a_,e) — ®(a_) = 0. For any (yo,y1) € S(y,§, o),
we put M (Jo, 71, [O(—m)]) := M (Jo, [O(—m)]) x M(1). In the case p; = 0, we obtain the following equality:

@(Oz, e) — CI)(a?) = Z M / Res <P(E6‘ e’ & qu 'es)> ) EU(TO,rel)
o tes ey BvM) I g om)) =0\ Q(EY e, Eft - e?) Hy,(m)

-y e g (DB I
Hy(m)  Jm@o,g) =9\ Q(EY -e~5, Bt - es)

(y0,¥1)ES(¥,€,@)

Similarly, we have ®(a,€e) — ®(a4) = 0 in the case p, > 0, and we have the following equality in the case
pg = 0:

H P(Ey e By e
by, €) = P(ay) = D L ./M(§1.§0)£{_eg< C»é(E“ e, Ef - et )>

H
(yo,y1)€S(y,€, ) y(m)

_ Z _ Hyl (m) . ( EO e’ ® EU ) eS)) (230)
(yo,y1)€S(y.€,2) Hy(m) M@O o) S = € S’qu e?)

Therefore, we obtain the following:

boo-efe)= ¥ (e ey [ Res<P(E§'e‘s@??'es))

(vo,y1) €S (y,€,0) Hy(m) — Hy(m) @0,51) =0\ Q(EY -e=*, Et - e5)
EY.e™S Eu L8
B / Res( (B @ By €)> (231)
(0,91 GS(U7£ a) M(Go,71) ° Q(Eé’« -es, Ef’ . 68)
Thus the proof of Proposition 7.34 is finished. '

The first claim of Theorem 7.29 obviously follows from the first claim of Proposition 7.34. We have S(y, &) =
Uocact S, €, @) since the intersection pairing (C, ) is sufficiently large. Then, the formula (226) immediately
follows from (227). Thus, the first proof of Theorem 7.29 is finished.
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7.4.4 The proof of Theorem 7.29 (II)

We put y(C) := y - ch(O(C)). We use the notation y(—C) in a similar meaning. We regard them as the
element of 7ype whose parabolic parts are trivial. We put O(—m, C) := O(—m) @ O(C) and O(—m, —-C) :=
O(—m) @ O(=C). Let (E,[¢]) be a reduced O(—m)-Bradlow pair such that ¢ # 0. We naturally obtain
the reduced O(—m, C)-Bradlow pair (E(C), [¢¢]). Similarly, we obtain the reduced O(—m, —C')-Bradlow pair
(E(—C),[¢-c]). Let Tiel denote the relative tangent bundle of the smooth map M*(7(C), [O(—m, C)],8§) —
M?3(m,y(C)). When ¢ is not critical, we put as follows:

() = / P : = /
M:(G(C),[0(=m,C)],8) Hy(m) Ms (G(=C),[0(—=m,—C)],8) Hy(m)

When § is sufficiently small, we have ®¢(6) = @y, (y) and De(8) = Dy (y).

Let Type(S) denote the set {ch(E’) € H*(X) ‘ E' e 3}, For any yo € S, we put y1 := y — 5o, and then y; is
also an element of Type(S). We put y;(C) := y; - ch(O(C)). We use the notation y;(—C) in a similar meaning.
We remark that P, ) — Py, (c) and Py (_c) — Py, (—c) are the polynomials of degree 0.

Let a;, b; and n; denote the first Chern class, the second Chern character and the second Chern class
corresponding to ;. We have (ag, H) = (a1, H), and H is a generic element of W¢. Therefore, we have ag—a; =
A ¢ for some A € Q in H*(X). Since (C,£) is assumed to be sufficiently large, we have Py oy — Py, () # 0
unless yo = y1. We also have Py (_c) — Py, (—¢) # 0 unless yo = y1.

We put as follows:

S(y,C) = {(yo,v1) | yo +y1 =y, vi € Type(S), Pyyc) < Py}

S(y,—C) == {(yo,y1) |vo + v1 =y, yi € Type(S), Pyy—c) < Pyi(—c) }-

We take a positive constant §y satisfying the following inequalities:

8o > max{|Pyc) = Pyl | (o.y1) € S(y,C)}, b0 > max{|Pyy—cy = Py, —o)l | (vo,11) € Sy, —C)}.
Lemma 7.35 (E(C), ¢¢c) is dg-semistable, if and only if the following conditions hold:

o E is u-semistable.

o For any subobject (E',¢') C (E, $) such that ¢ # 0, we have u(E') < p(E).
Moreover, (E(C), ¢c) is do-stable, if it is do-semistable.

Proof Assume that (E(C), ¢¢) is dp-semistable. Since dy is a polynomial of degree 0, it is easy to see that E(C)
is pi-semistable. Hence, the first condition holds. Let (E', ¢') C (E, ¢) be a subobject such that ¢’ # 0. We put
E" = E/E'. Assume pu(E') = p(E). Then E’ is a member of S, and hence we have | Pg (¢ (t) — Pgr (¢ (t)| < do,
due to our choice of dyg. Therefore, we obtain Pgo, ©) (t) > Pgr(c)(t), which contradicts the do-semistability of
(E(C), ¢c). Hence the second condition holds.

Let us assume that the two conditions are satisfied. Let (E’,¢') C (E, ¢) be a subobject such that ¢’ # 0.
Since we have u(E’) < w(E), the inequality P(‘E,7¢/)(t) < P(‘SE7¢) holds for any sufficiently large t. Take a
subobject E' C (E, ¢). We have the inequality pu(FE’) < u(E). When the strict inequality holds, we obviously
have P(‘sg/,(b,)(t) < P(5E,¢) for any sufficiently large t. Assume p(E’) = u(E). Then E’ is a member of S. We put
E" = E/E'. Then, we have Pg/(¢)(t) < Pg?,(c) due to our choice of §g. Thus we obtain the semistability of
(E(C), ¢c)-

From the above argument, we also obtain that P E/(C),6L) = Pg(c),4c) cannot hold. Therefore, we obtain
the second claim. |

Lemma 7.36 (E(C),¢c) is do-semistable, if and only if (E(—C),¢_c) is do-semistable. Moreover, the 1-
stability condition holds for (y(C), O(—m,C),dp) and (y(—C),O(—m,—C), do).
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Proof By the same argument as the proof of Lemma 7.35, we can show that (E(—C), ¢_¢) is dp-semistable if
and only if the two conditions in Lemma 7.35 hold. Then the first claim immediately follows. The second claim
can be shown similarly. |

Due to Lemma 7.36, we obtain the equality ®¢(dp) = ®_c(dy). Therefore, we obtain the following equality:
®y, (§) — Pu_ () = (2-c(%) — ®u_(§)) — (Pc(d) — Pm, (5)) (233)

Let us see the first term in the right hand side of (233). We see the transition of ®_¢(8) when we move §
from 0 to dg. The transition occurs when P, (_cy+3d = P, (¢ holds for some (yo,y1) € S(y, —C). In the case

pg > 0, the transitions are trivial. Hence we obtain ®_c(d0) — Py_(§) = 0. In the case pg = 0, we obtain the
following equality, as in the equality (229):

O_c(0) — Pu_(7) = Z Hyy(m) /M Res (P(Eg e @AE% : es)) (234)

owiresty—cy T Ja@og) s=0\ Q(EY -e=s, B} - e)

Similarly, we obtain 50(60) — @y, (y) = 0 in the case py > 0, and we have the following equality in the case

pg = 0. ~
. N H P(EY .5 EU . 8
Qo (dg) — P, (y) = Z Hy,(m) / Res ( ( 0 "° 69,\ 1-c )> (235)
(yo,y1)ES(y,C) Hy(m) M(Ho,91) s=0 Q(Eg e’ Eil ’ es)

Now, we have already obtained ®, (¥) —®x_(y) = 0 in the case p, > 0. Namely the first claim of Theorem
7.29 is proved. To show the claim in the case py = 0, we see the sets S(y,C') and S(y, —C) more closely. We
put as follows:

S1i={(o. 1) | yo+v1 =y, yi € Type(S), ro =711 =1, ag = a1, by < by}

We also put S"(y,£) == {(yo.y1) | (v1,%0) € S(y,€)}. Then, it is easy to observe S(y, —C) = S(y,£) U Sy and
S(y,C) = S'(y,&) US;. We remark the equality (230). Therefore, we obtain the following equalities:

o, @) -0y @)= Y Hwl) / ReS<P(E6‘-eS®E%-eS)>
: ) = Fu —s Tu s
oo T Jm@s) =0\ QEY e, B - e)

0y Hwlm) / heo [PEE - @ By - e)
Hy(m)  Jm@og =0 \ Q(EY -e=s, B} - e*)

(y0,y1)ES1

Ly M (rEceh
Hy(m)  Jm@o,g) =9\ Q(EY - e, EY - ¢9)

(y0,y1)ES(,€)

_ M/ Res [ PEQ - "D B -e”)
Hy(m)  J oz =0 \ Q(EY -e=*,E - )

(y0,y1)€S1

P Eu L ,—S Eu ]
- ¥ / Res< (FBj -e" & By e)> (236)
M(Fo,51) 5=0 Q(Eé‘ ced, qu : es)

(y0,y1)E€S(y,€)

Thus we are done. |

7.5 Higher Rank Case (p, > 0)
7.5.1 Transition formula in the case p, > 0

Let y be an element of 7ype, and let o, be a system of weights. Let L be a line bundle on X. Let 6 € P* be a
non-critical parameter. We denote by w the first Chern class of Oye1(1) on M*(y, [L], s, d). Let P be an element
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of R. When the 1-stability condition holds for (y, L, ., d), we have P(E“) -wk e R(E“, M*(y, [L], aux, 5)), and
we put as follows:

®(5. L) 8) = [ P(E") -
M (Y, [L],0u,0)

Let us discuss the transition formula, when the 2-stability condition does not hold for (y, L, ax,d). In the
case pg > 0, the problem is simpler. Actually, it can be shown that the same formula in Theorem 7.12 holds.
We use the notation in the subsubsection 7.2.1. We put as follows:

Sl(yaa*ad) = {(y17y2) € S(y7a*75)‘ rankyl = 1}
For (ylayQ) € Sl(yva*v5)a we ha‘ve M(ylaL) = Ms(yleva*75)'

Theorem 7.37 The following equality holds:

®(y, [L], 0, 04 ) — (Y, [L], 00, 6-) = > R U(y,,ys) (237)
(419251 (y,a,0) ? MWB1 V2. Lood)

The elements ¥(y,,y,) € R(E}{, M(yy, L)) ®R(E§‘) are giwen as in (198):

P(EY . et oy Eu X e(tfwl)/(rfl) -tk
w%w=m<(l : )

Eu(Mo(y1,9))
Here, we put wy := ¢1 (OT(E{‘))

Proof We put M(6,) := M*(g,[L], 0, 0x). Let Ty denote the relative tangent bundle of the smooth
morphism of Mv(m 9,1L]) to M(m,¥,[L]). We have the open embedding M(8,x) C M(m,§,[L]). The
restriction of Tre] is denoted by the same notation. .

Let M be the master space connecting ./\/l(5+) and M(0_) constructed in the subsubsection 4.5.1. Let
: M — M(m, Y, [L]) denote the naturally defined morphism. Let 7 (1) denote the trivial line bundle on
M (m,y,[L]) with the G,,-action of weight 1. We consider the following element of R, (Eﬁ , M\):

:13,5 = P(cp*E") - C1 (‘P*Orel(l))k ’ E]z((jr’:)l')’

D, =D, -0 ((p*’T(l)).

We use Proposition 5.51. Then, we obtain the polynomial ffw\gt of t. When we forget the G,,-action, we have
c1 (@*T(l)) = 0. Hence we have fﬂ 5,5”:0 = 0. On the other hand, we have the following equality in Q[t~1,1],
due to the localization of the virtual fundamental classes ([24]):

f5-
M

Here, Dec(m, y, a., d) denotes the set of the decomposition types (Definition 4.33), and ‘ﬁ( ;) and ‘JI(MG (7))
denote the virtual normal bundles with the G,,-action given in Proposition 5.52 and Proposition 5.53. We have
@ (@*T(l))lﬁ =t and c1(¢*7 (1)) \FGm (3) = b Therefore, we obtain the following equality:

t ] ('I')t B
ZZ:Q/M =0 <Eu (MM, ))> +;/ﬂcm<s> i (Eu(‘ﬁ(l/w\c’"(ﬁ)))> - (238)

As in the proof of Theorem 7.12, the first term of the left hand side of (238) can be rewritten as follows:

/‘®+/ :—/ $+/v o (239)
My Mo M(o4) M(8-)
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Recall M(4,,) is the full flag bundle over M** (9, [L], @, 6,.), and we have the equality of the virtual fundamental
classes as in Lemma 6.53. Hence, we obtain the following equality:

&, o R
_21:2/1\7 w5 (m) = —0(y,[L], ax,01) + (Y, [L], s, 6-) (240)

The contributions from MSm (J) can be calculated by the arguments in the proof of Theorem 7.12 and
Theorem 7.15. For any decomposition type J = (Y1, Y, {1, [2) € Dec(m,y, ax,d), we put as follows:

M(3) := M (yy, L, s, 6,8(3)) x M (G, t, +)

Let f1,re1 denote the vector bundle over ./T/l/(ﬁ) induced by the relative tangent bundle of the smooth map
M®*(yq, L, oy, 8,8(3)) — M(m,y,, L). Let Ts e denote the vector bundle over M(J) induced by the relative

tangent bundle of the smooth map M?*5(y,, s, +) — M(m,Ys). Let Ny be as in the subsubsection 5.9.1.
Then, we have the following decomposition of the vector bundles:

@;Trel = CZ’:lmel @ T2,rel @ NO~

We remark that gp*(’)rel(l)‘ﬂ* and ©*7 ( l)l 77~ are naturally isomorphic as G,-equivariant line bundles. We use

the relation of E{Tj, E¥ and EY in Corollary 4.46. Then, we have the following equality in R(G'*E¥, G'* E¥, S)[t]:

~  Hy, (m)!H,, (m)! o _ Ew(T1 vet) Bu(T re1)
Frd, = 9 Y2 .G'*P(EY . tay B ri(t—wi)/r2) . tk X ) > -Eu(N,
‘T H,(m) (B e o By e A I e

We also have the following equality of the equivariant Euler classes in A*(S)[[t™!,¢]:
F* En(W(MO (3))) = G'* Eu(No(y,, 92)) - Bu(No)

Recall that we have the equality of the virtual fundamental classes in Proposition 6.10. Therefore, the contri-
bution from M %= (J) is as follows:

Hyl (m)' i Hyz (m)' / Res <P(Eil et D Eét ’ er1(t—w1)/7’2) ) tk) Eu(flﬂel) Eu(Tv2,rel) (241)

Eu(No(y1,9>)) Hy, (m)! Hy,(m)!

We remark that the virtual fundamental class of M(J) is 0, and hence (241) vanishes, if the conditions
rank(y,) > 1 and pg > 0 are satisfied (Proposition 6.24). In the case rank(y,) = 1, the (, £)-semistability con-
dition is trivial. We also remark that the integrand of (241) is the element of R (EY, M**(y,, L, o, 6,8(3))) ®

R(Eg, MVSS(QQ, O, —|—)), and hence we have only to consider the component-wise integration. By using Lemma
7.25, we can rewrite (241) as follows:

Hy, (m)! - Hy2(m)!/ Res | DBE ¢! & By - t7e)/07D) - (242)
Hy(m)! MYy G, Lon,5) =0 Eu(Mo(y1,¥,))

The number of the decompositions (I1, ) of {1,..., H,(m)} satisfying |I;| = Hy,(m) is Hy(m)! - H,, (m)!=1 -

H,,(m)!~!. Therefore, the second term in the left hand side of (238) is same as the left hand side of (237).
Thus, we obtain the desired formula. |

7.5.2 Reduction to the integrals over the products of Hilbert schemes

We assume p; > 0 and dim H'(X,0) = 0. Let y be an element of Type;. Assume Py(t) > Pk(t) for any
sufficiently large ¢, where K denotes the canonical line bundle of X. We also assume x(y)—1 > (r—1)-(1+py,).
We give a straightforward generalization of Theorem 7.28. For a given element y; € Type, we use the notation
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ri, a;, b;, and n; to denote the rank, the first Chern class, the second Chern character and the second Chern
class, in the following argument.

We put as follows:
2
T, = ZT—j_i’ (i=1,...,7r—1), T:ZT—j
Jj<i j<r

We put as follows:

S(y)={(y1,yz,---,yr € Typey” ‘Zy =y, Hy, <(r—i)""Y_ Hy, x(ai) = 1+p, (Z<7")}

7>

Let (y1,...,yr) be an element of S(y). We put X" := [T/_ X["] The universal ideal sheaves over X[l x X
are denoted by Z'. Let Z; denote the universal scheme over X [":] % X of length n;. We also use the same
notation to denote the pull back of 7' and Z; via the projection X [n] x X — X[l x X. Let €% denote the
holomorphic line bundle corresponding to a;. Since we have assumed H*(X,Ox) = 0 in this subsubsection, such
a holomorphic line bundle is umquely determined up to isomorphisms. Let G denote the (r — 1)-dimensional
torus Spec k[, 7 ..., Tr_1,7, 4] Let ¥ denote the trivial line bundle with the G-action, which is induced
by the Speck[r;, T, ] action of weight w. Thus, we obtain the G-equivariant sheaf Z% - e®*+7i. We use the
notation Q(Zy - e+, Tt . ¢%+75) to denote the G-equivariant Euler class of the followmg

—Rpx « (RHom (ZZ“ ettt T eaf+Tf)) — Rpx « (RHom (Z}”‘ et k- e‘“+Ti))

We regard it as the element of ®;_; R(Z - *') ®g R(t1,...,tr—1). (See the subsubsection 7.1.8 for the ring
R(t1,...,tr—1).) We put as follows:

Q(Zﬂiz . €a1+T1,I; . eag—i—Tg7 T ar+T HQ . ai+Ti, Iju . eaj+Tj)
1<J

We also have the element P(@;_; Z}* - e* %) of @;_; R(Z{ - €*)[t1,...,t,—1] by the homomorphisms in the
subsubsection 7.1.3. Let Z; denote the vector bundle px . (Oz, ® e%).

Theorem 7.38 Assume pg >0 and H'(X,0) = 0. We also assume x(y) —1 > (r—1)-(1+py) and P, > Pk.
We have the following formula:

[orEr=cu X TIsWe [ e

(W1, 9r) ES(y) i=1 !

The elements ¥(y1,...,yr) € Qi_, R(Il“ . e‘“) are given as follows:

\Ij(yla"wy’r) -

R (@z 1 :L : aL+TL ’—4 = J>L y]) 1 r=l =
es---Res T ear+T H H t; : H Eu(=Z;) (243)
<j =

tro1 th Q(I}* cemtTr
Proof We put as follows:

S1(y) == {(y1,y2) € Type; x Type,_1 |y1 +y2 =y, Py, < Py}

By using the transition formula (237) and the same argument as the proof of Theorem 7.28, we obtain the
following equality:

N P(T% . emr—t g Fu . ot/(r=1)) . gx(w)-1
[ opEn= Y swi [ Res G S M
M@) (y1,92)€51(y) Xtmbam(@) =0\ Q(ZY - e, By - et/ r71) R(OX et By et/(r_l))
(244)
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Here, R(Ox - e, Ey. et/(r=1)) denotes the equivariant Euler class of px . (Hom(Ox - e, EY - et/ (r=1)y).

We remark that x(y2) —1 > 0 and Py, > P, > Px and x(y2) —1 > (r —2)(1+p,). We also remark that the
integrand of (244) is the element of R (Z; -e**) ®R(E2), and hence we have only to consider the component-wise
integration. Thus, we may use (244) inductively. We put T; := > j<iti/(r—j). Then, we obtain the following
equality:

r—

ja“g)P(Eu)+-C—Dr 3 1SVV@M):[;M]Wl@ﬂ,.”,yr)::o (245)

(Y15--yr)ES(y) i=

The elements ¥y (y1,...,yr) € Q;_; R(Z - e*) are given as follows:

P T . puitTi) 7L iz XW) = =1 =,
V1i(y1s-- - yr) = Res---Res (B ) 1Lt [y Bu(E)
r—1

t1 Hi<j Q(_’Z’Z" . eari*ti7_’Z'j7% . eajJrTj*Ti) . R(OX . e*ti7 _’Z’]" . elljJrTj*Ti)

We have Q(Z;* - e® ", Tl - %™ *T'i) =Q(Ty - en T, I e%+Ti). We also obtain the following by a formal
calculation: ( Jxes)
- T, — T;)xas
R(Ox et g0 . eli"Tiy = 2L ~Y
( X € j € ) Eu(Ej . eijTi)

Hence, we obtain ¥4 (y1,...,y,) = ¥(y1,...,y,). Thus we are done. |

7.5.3 Independence from the polarization in the case p, > 0

Let y be an element of Type;. We use the notation Mg (¥) to denote the moduli stack of torsion-free sheaves
of type y, which are semistable with respect to a polarization H. For ® = P(E") € R(E, MH@)), we put as

follows:
Dy (y) = / P
My ()

Theorem 7.39 The invariant g (y) is independent of the choice of a generic polarization in the case pg > 0.

Proof Let ¢ be an element of NS(X) such that €2 < 0. Let W¢ be the wall in the ample cone determined by
¢. Tt is well known that the ample cone is divided into the chambers by such walls, and M g () depends only
on the chamber to which H belongs. Moreover, the set of such walls are locally finite ([42]).

Let C, and C_ be chambers which are divided by a wall W¢. Let H, and H_ be ample line bundles
contained in Hy and H_ respectively. We assume (¢, H;) > 0 > (£, H_). For the proof of the theorem, we
have only to show ®y, (y) = ®g_(y). We take an ample line bundle H which is generic in W&, As in Lemma
7.30, we may assume the following;:

e Hi =H®O(C) and H_ = H® O(-C) for some sufficiently ample divisor C'.
e A torsion free sheaf E of type y is Hy-semistable if and only if E(C') is H-semistable.
e Fis H_ -semistable if and only if E(—C) is H-semistable.

We use the notation and the argument in the subsubsection 7.4.4. Let § be the family of torsion-free sheaves
of type y, which are u-semistable. Let S be the family of torsion-free sheaves E’ with the following properties:

o u(E") = p(y) and rank(E’) < r.
e There exists a member F of S such that E’ is a saturated subsheaf of E.

We take a large integer m such that the condition O,, holds for the family S. As in the subsubsection 7.4.4,
we consider the integrals over M (y(C), [O(—m,C)],d) and M (5(—C), O(—m,—C), ) given by (232). When §
is sufficiently small, we have ®¢ () = &g, (7) and ®_c(8) = Dy (7).

Let Type(S) denote the set of the types of members of S. For each yg € Type(S), we have y; :=y —yo €
Type(S). We remark that Py oy — Py, (c) and Py ¢y — Py, (—¢) are polynomials of degree 0.
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Let 7;, a;, b; and n; denote the rank, the first Chern class, the second Chern character and the second
Chern class corresponding to ;. We have u(yo) = p(y1), and H is a generic element of W¢. Therefore, we
have ag/ro — a1 /r1 = A - € for some A € Q in H?(X). Since the intersection number (C,¢) is assumed to be
sufficiently large, we have Py ¢y — Py, (¢) # 0 unless yo/ro = y1/r1. We also have Py (_c) — Py, (—¢) # 0 unless

Yo/To = y1/71.
We put as follows:

Sy, C) = {(yo,y1) | yo +y1 =y, vi € Type(S), Pyyc) < Pyi(cy}

Sy, —C) = {(Wo,y1) | yo +y1 =y, yi € Type(S), Pyy—cy < Py }-
We take a positive constant &y satisfying the following inequalities:
8o > max{|Py,c) — Pyl | (wo,y1) € S(y,C)},  do > max{|Pyy(—c) — Py, (—cyl| (wo,m1) € S(y, —C)}.
The following lemma can be shown by the same argument as the proof of Lemma 7.35 and Lemma 7.36.

Lemma 7.40 (E(C), ¢¢) is do-semistable, if and only if (E(—C),p_c) is do-semistable. Moreover, the d¢-
semistability implies the dg-stability in the both cases. |

Due to the lemma, we obtain the following;:
®y, (7)) — Pu_ (@) = (P2-c(%) — ®u_(§)) — (Pc(d) — Pm, (§)) (246)

Let us move the parameter § from 0 to dy, and we see the transition of the invariants ®_c(d) and ®¢(6).
We use Theorem 7.37. Since the condition O,, holds for S, it is easy to see that the contributions from the
decomposition types (yo,y1) are trivial even in the case rank(yo) = 1 (Proposition 6.25). Hence we obtain
®_c(8p) — Py (7) =0 and Do (do) — ®p. (y) = 0. Thus, the proof of Theorem 7.39 is finished. 1

7.6 Transition Formula in the Case p, =0
7.6.1 Statement

Let us discuss the transition formula when the 2-stability condition does not hold for (y, L, a.,d) in the case
pg = 0. Let P be an element of R. We restrict ourselves to the case where the 1-vanishing condition holds for

(y, L, a, d), and we discuss the integral of the element R(E“, M (g, [L], o, 5)) of the following form:

&= P(E")- Lj‘;‘ﬁy;) (247)

We put as follows, for non critical parameter §:

D)) := / o.
M (g,[L],0,0)

Let ¢ be a critical parameter. We take 6_ < § < d4 such that 0, (x = £) are sufficiently close to §. We
would like to obtain the formula ®(d;) — ®(J_) to express the sum as the integrals over the products of the
moduli stacks of the objects with lower ranks. We also impose the following condition to (y, L, a.,0):

Condition 7.41 For any (E1., ) ® E2.® E3. € M®*(y, L, s, 0), the equality Pg, = Pg, holds for the reduced
Hilbert polynomials of E5 and Es. |

For each positive integer k we put as follows:
Sk(y,0) :={Y = (yy,...,y;) € Type" | P> = Py=° (i=1,....k)}

For each element Y = (y4,...,y;) € Sk(y,0), we put |Y| = Zle y,;. We also put as follows:

k
rank(y;)
W(Y) :=
v i1 << rank(y;)
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We put as follows:

Sk(y,0) = {(y,Y) € Type x Sk(y,0) |y + Y=y}, S(y,6) =[] Sr(v.0)
k

For any (y,,Y) € Sk(y,d), we put as follows:

M(gov?v [L]) = MS(@O? [L] Qsy O X HMSS yzﬂa*)

i=1

Let E{f denote the sheaf over M(y,, Y, [L]) x X which is obtained as the pull back of the universal sheaf over
M®(Yo, [L], o, 6-) x X via the natural projection. We use the notation £ in a similar meaning.
When (y,,Y) € Si(y,9) is given, we put as follows:

t; t; t;
TO = — J , T — J + 3
>0 Zogh<j rank(y;,) ' > Zoghq rank(y,)  rank(y;)
Here, t1, ..., are variables. Let G denote the k-dimensional torus Spec k[r1, 77 %, ..., Tk, T ']. Let e®'* denote

the trivial hne bundle with the G-action which is induced by the Spec k[7;, 7; 1] actlon of weight w. We have
the following element of the K-group of the G-equivariant coherent sheaves on M(y,, Y, [L]):

— RPX*RHom(E;‘ ceTi, EJ" . eTj) - Rpx*RHom(Eqﬁ‘ ceTi E” . Ti)
— Rpp RHom)y(EYp, - ™, EYp,, - €)= Rpp RHomb (EY - €%, Bl -eT)  (248)

(See the subsubsection 2.1.5 for the notation RHomb.) The equivariant Euler class is denoted by Q (E-e™, E}‘
e’7), which is regarded as the element of ®f:0 R(Eﬂ) @ R(te,th_1,...,t2,t1). We put as follows:

Q(Eg . eTo,E’}‘ . eTl,...,E}j ~eTi) = HQ(EZ‘ . eTi,E;‘ ~eTj) (249)

i<j

Let T} 11 denote the vector bundle over M (g, Y, [L]) obtained from the relative tangent bundle of the smooth
map M?* (Y, [L], o, d_) — M(m, Yy, [L]). Then, we have the following element:

k

kB el u ~ ~
U(yy,Y) := Res - Res (Q(f(eai_o £ = ") )  BuTosel) € R(Eo, M*(gg, [L], s, 6-)) @ ®R(Ez)

t1=0  tx=0 Ey -eTo, ... E} -eT’c) N1 (yo) i1

Theorem 7.42 Assume that the 1-vanishing and Condition 7.41 hold for (y, L, o, d). For ® as in (247), we
have the following transition formula:

Ni(yo)
) -0@) = > Fooy W) U(yo,Y) (250)
) (¥0,Y)€ES(y,9) NL(y) /M( 0

The proof will be given in the next subsubsections 7.6.2-7.6.4.

7.6.2 Step1

We put M(6,0) := Mss(y, [L], e, (8,0)) for a positive integer . We put M(3,0) == M*(y,[L], o, 04 ).
We put /T/l/(é_) = ./T/l/“(y,[ L],a,,6_). Let Ty denote the relative tangent bundle of the smooth morphism
M(m, 7, [L]) — M(m,y,[L]). We have the open immersion of M(5 ¢) and M(5_) into M (m, ¥, [L]). We use
the same notation to denote the restriction of Tye to M(5 ¢) and /\/l( —). We put as follows:

= (Trel) = / = = / =
d:=7- , ®(6,0) := o, D(H,) = P 251
Hy(m)! .8 NM(8,6) 2 M(6.) (251)
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Then, we have ®(8,0) = ®(6,) and ®(5_) = ®(5_).
Recall that Dec(m, y, a., §) denotes the set of the decomposition types (Definition 4.33). We put as follows:

S(é) = {j = (y17y2711512) € Dec(m,y,a*ﬁ) ‘é C Il}
For any decomposition type J = (yy,Ys, 11, [2) € Dec(m,y, a,,d), we put as follows:

M@3) = M (G, [L], a, 6,8(3)) X M (G, )

Let fl,rel denote the vector bundle over ./T/l/(ﬁ) induced by the relative tangent bundle of the smooth map

Mss (U, [L], o, 6, 8(3)) — M(m, Yy, [L]). Let T 11 denote the vector bundle over ./T/l/(ﬁ) obtained from the
relative tangent bundle of the smooth morphism M (m,y,,[L]) — M(m,y,).

Proposition 7.43 We have the following equality:

o _ _ Nr(y1) Hy, (m)! - Hy, (m)!
P00 0= jgs;g) N (y) H,(m)! /ﬂ(ﬁ)

w(3). (252)

The elements ¥(J) € R(El,ﬂss(@l, [L], o, 6,8(3))) ® R(E,) are given as follows:

PEu —S/Tl@Eu. s/r2 E Tre E j.,"re
() = s< ( - )>- W(Thre) BulTire) (253)

Q(Ev - e=s/m By - e5/72) NL(y1) Hy,(m)!

Proof The argument is essentially same as the proof of Theorem 7.37 and Theorem 7.15. Hence, we give only
an indication. Let M denote the master space connecting ./\/1(5 £) and M( _) constructed in the subsubsection

4.5.1. By using M and the argument in the proof of Theorem 7.37, we obtain the following expression:
/
76m (3) Bu(N(MEn (3)))

B(5,0) — D(6_) =

JES(L)

The contributions from 3G (J3) can be calculated by the arguments in the proof of Theorem 7.37 and
Theorem 7.15. We remark that we can use Lemma 7.25, due to Condition 7.41. Then, we arrive at the formulas
(252) and (253) 1

For our later argument, we reword Proposition 7.43. Let I be a finite subset of Z~ ¢ such that |I| = Hy(m).

We naturally regard I as the totally ordered set. Let io be any element of I. Let M (9, [L), v, (6,40), 1) be
the moduli stack of the objects (E., [¢], p, F) as follows:

o (E.,[¢],p) is a §-semistable oriented reduced L-Bradlow pairs.
o Fis a full flag of H°(X, E(m)) indexed by I.

e The tuple (Ey, [¢], p, F) is (0, io)-semistable in following sense. We take a partial Jordan-Holder filtration
of (E.,[¢)]):

BY cBEP ¢ g BVTY (B9 ) ¢ BTV (o) ¢ - o (BT [0) ¢ (B, [0))
Then, F;, N HO(X, EU=Y(m)) = {0} and F;, ¢ H*(X, E*=D(m)).

We have the bijection ¢ : I — {1,...,Hy(m)} preserving the order. Then, we have the isomorphism

Mss (9, [L], o, (8,40), 1) =~ ~ Mss (y,[L ] Qs ((5 go(zo))) We have the open immersion of M* (9, [L), v, (8,d0), I)

into M(m,,[L]). The pull back of Ty is denoted by the same notation. Let ® be as in (251). We put as
follows:

®(8,ig, 1) := /~ ®

M2 (Y,[L], e, (8530) 1)
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Let Dec(m, y, ax,d, I) denote the set of the tuples J = (yq, Yo, 1, I2) satisfying the following conditions:
Yty =y, Py’ =Py =P, LUul=1I, |L]|=H,(m)
For any J = (y1,Ys, [1, [2) € Dec(m,y, ax,d, I), we put as follows:
£(J) := max{i € I | i < min(3)}

We also put as follows:

M(3) = M (G, [L], s, (6,6(3)), 1) x M (G, ),

We put S(ig, I) := {J € Dec(m,y, o, 5,1) | 8(3) > io }.
Then, Proposition 7.43 can be reworded as follows.

Proposition 7.44 We have the following equality:

= N Hy (m)!- Hy,(m)! N
@(5710,1)—<I>(5):36S2(; , NLL((y;)) ( }}y(m)! (m) /M@xpu). (254)

Here, U(3) are given as in (253). |

7.6.3 Step 2

We define the set Dec(j)(m,y,a*,é) inductively. Put Dec(l)(m,y,a*,é) := Dec(m,y, a.,0). Assume that
Dec(jfl)(m, Y, (., 0) is already given. Let Dec(j)(m7 Y, @, 6) be the set of the tuple JU) = (ygj), Yé]),.flm7 Iéj))
as follows:

e YY) denotes an element (y5,y¥ ™", ... y") of S;(y,6).

° I(J) denotes a tuple (12(3) I(J 2 ...,Iz(l)) of subsets of {1,..., Hy(m)}. Assume min(I( )) > mln(Iz(%l))
for 1=2,...,]

e We assume {1,...,Hy(m)} = Ifj) UTT, I;).

e We put y(J Vo= ygj) + 'yéj) and Ifj_l) = Ifj) U Iéj). Then, (ygj),ym I(j) I(J)) is an element of

Dec(m, ygj Yo, Il(jfl)), in the sense of the subsubsection 7.6.2.

e We put Y(J v (yg] 1), e ,ygl)) and Iéj_l) = (I'Q(j_l)7 . .,IQ(D). Then, (ygj_l),ng_l),Il(j_l),Igj_l))
is an element of Dec(j 1)(m, Y, 0, 0).

Let 30) = (ygj),ng), Il(j),Iéj)) be an element of Dec”) (m, y, a., d). We put as follows:
£(39) := max{i € IV |i < min(1$)}

We also put as follows:

M@ED) = M= (G [L], o, (6,8(3D)), 1) x HMSS @), a)

M_(3D) = M= (G, [L], 02 % HMSS 99, )
Let E ) denote the universal sheaves on MSS( @) (L], a, (5,8(30))), I(J)) x X and M** (@9’, [L], e, 6-) x
X. The appropriate pull backs are denoted by the same notation. Let E(l) (i=1,...,7) denote the universal

sheaves on M?**® (yg ,a*) x X. The appropriate pull backs are denoted by the same notation.
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Let Tl(Jr)el denote the relative tangent bundle of the smooth morphism of M (m, @gﬂ ), [L]) to M (m, @gj )). Let

, denote the relative tangent bundle of M(m, yg )L [L]) — M(m, @9 ) [L [L]). The appropriate pull backs are
denoted by the same notation.

We put as follows for variables s(V), ..., s():
. (h) . (h) (@)
() ._ S (&) ._ S S
L7 ==2 B =) et
h<ji Tl h<i T1 T2

Here, we put as follows:
(4)

ry = rankygj), rih) = rgj) + Z rép)
h<p<j
Let G be the j-dimensional torus Spec k[c(), ..., 0], Let e s denote the trivial line bundle with G-action

which is induced by the Spec k[o®, o) ~1]- action of weight w. We have the following element of the K-group
of the G-equivariant coherent sheaves on M(y,, Y, [L]):

— Rpx .,RHom (E™ . eI EY. Tl(b)) — Rpx .RHom(E" - eI B Ti(a))

— Rpp «RHom' (El(fg* LA El(|b[)) eTl(b)) — Rpp «RHom/ (El(|b[), . eTl(b), Ef"”g* 'eTi(a)) (255)
The equivariant Euler class is denoted by Q(E(a) T E(b) . Tz(b)), which is regarded as the element of
R(E@) ® ®i: R(E\éh)) @R(sM, @, ..., sU=D s0)). We put as follows:
Q(E%J‘)eTf” EDe ) .7E§1)6T() H Q( E(h) " B T“ « HQ BT B TS >) (256)
h<i<j h<j

Then, we put as follows:

\I/(j)(ygj), ng)) := Res- - - Res

s(@) s(1)

( P
QT T B, B eT)) W)
We also put as follows:

Eu(T}},)

yij) :

Lemma 7.45 For each j, we have the following formula:

i o) Ty H o (m)!
NL(yg))Hy“(m) [Th—1 H,m @) G
P(0y) —P(0-) = E § : - T / D", vy
i<j 3() €Dec®) (m,y,ax,5) Ni(y) Hy(m) M_(3()

NL (ygj)) Hy(j) (m)' . Hi:l Hu(h) (m)'

+ S ; s / 0 (P, ¥ )
! =
30G) €Dec) (m,y,ax,5) NL(y) Hy(m)! M(30))

(257)

Proof We use an induction on j. In the case j = 1, the claim is the proven in Proposition 7.43 (the case ¢ = 0).
Assume that the formula (257) holds for j, and we will prove it for j + 1. By definition, we have the naturally
defined morphism 7; : Dec” — DecV~V. Due to Proposition 7.44, we obtain the following equality:

[ w0wP ) - [ 0Py -
M(3@)) M_(3@)

> NIty Hyon (m) - H gen (m)

0y H ;) (m)!
364D €Deci+D (m,y,a ,0) Nir(yy”) ygj)( )
T (j(j+1)):j(j)

[ et v (s
M(j(]+1))
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Here, the elements \T/’(jﬂ)(ygjﬂ), YéjH)) € R(EyH)) ® ®§;11 R(Eéh)) are given as follows:

T+ (U y D)

Res R (H P(EVTT g @l B - o1

es Res- - - Res : ,

> <G s i1 (G+1) h (h) h (h) P (i)
sGHD 50) ) heitl Q(E? ) T} ,Eé ) T )- [heicin Q(Eg ) T ,Eé ) TS )

1
x Q(E§j+1)e_5(j+1)/rij+l) , E§j+1)e—5(j+1)/réj+l)) ) (259)
It is easy to observe \TJ’(j+1)(y§j+l), Yéjﬂ)) = \Tl(j“‘l)(ygjﬂ),YéHl)). Thus the formula (257) holds for j+1. 1
7.6.4 Step 3
When j is sufficiently large, we have Decl )(m, Y, ay,0) = (. Therefore, we obtain the following;:
|
N (i) Hypo (m)!- [T H o (m)! / k) (g () 3 (k)
P(64)—B(6_) = G (M Yy 260
( +) ( ) Z Z NL(y) Hy(m)' M_ (30 ( 1 2 ) ( )

k3 eDec® (m,y,a.,d)

We have the map py, : Dec™™ (m, y, a.,§) — Si(y, d) given as follows:

pk(j(k)) ( ) ygk)ayék 1)7"'7ygl)) = (y07y17y2a...7yk)
Then, (260) can be rewritten as follows:
Ni(yo) [io Hy, (m)!
2(02) =0 oY) [ Uiy Y)  (261)
+ Z 2 Ni(y)  Hy(m)! oo M@ P L)

(0, Y) €Sk (y.9)

Lemma 7.46 Under Condition 7.41, we have the following equality:

[0 Hy (m)!

Hy (m)] #0 (Y0, Y) = W(Y)

Proof It is easy to observe that p; ' (yg,Y) is bijective to the following set:
k
{(10,11, ) \ [15 =1, . Hy(m)}, L] = Hyyny, min(ly) < min(1) < --- < min([l)}
i=0

The correspondence is given by (I{k),fg(k), el 12(1)) = (o, Lh,...,Iy).
We put N = Hy(m) and N; = H,,(m). We have the following:

s (o, V) = N! (N — Ny —1)! (N — Ny — N —1)!
P Wo Nol(N — No)! (Np — !N — No — Np)! (Nj—1 — DI(N — No — Ny — Ny )!

B N! ﬁ (N=No—> o, N;-1)t NI 1, N (262)

Nol(N = No)t 23 (Ni = DN = No — 3", NV [T, V! TTE, YN

Under the condition 7.41, we have N;/r; = N;/r; for 1 <4, j < k. Therefore, we obtain the following:

k k k
) [[;—; Ni! _ [Limy Vi _ [[imymi
#pk (Y0, Y) N > = =%
: [Tic Elgjgi Ny ILio Zlgjgi rj

Thus the proof of Lemma 7.46 is finished. |
We immediately obtain (250) from (261) and Lemma 7.46. 1
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7.7 Weak Wall Crossing Formula
7.7.1 Statement

Let y be an element of 7Type,. We use the notation Mg (3) to denote the moduli stack of torsion-free sheaves
of type y, which are semistable with respect to a polarization H. For & = P(E") € R(E"), we put as follows:

vu@)= [ o (263)

Let £ be an element of N.S(X) such that £2 < 0. Let W¢ be the wall in the ample cone determined by &. It
is well known that the ample cone is divided into the chambers by such walls, and M g (7) depends only on the
chamber to which H belongs. Moreover, the set of such walls are locally finite ([42]).

Let C; and C_ be chambers which are divided by a wall W¢. Let H, and H_ be ample line bundles
contained in H; and H_ respectively. We assume (£, Hy) > (£, H_). We would like to obtain the description
@, — ®p_ as the sum of the integrals over the products of the moduli stacks of the objects with lower ranks.
In the following, r;, a; and b; denote the rank, the first Chern class and the second Chern character of a given
y; € Type®, respectively. We take a generic H € W¢.

Let Sy i denote the set of y = (yo,y1,-..,yx) € Type® kol

satisfying the following conditions:
e There exist A; >0 (i = 1,...,k) such that a;/r; —a;_1/ri_1 = A; - € in H*(X).
e In the case Ay = 0, the inequality bg/ro < b1/r1 holds.
e In the case A; = 0 for some i > 2, we have b;/r; < biy1/ri11-
Let S_ ;. denote the set of § = (yo,y1,...,yk) € Type® ¥ satisfying the following conditions:
e There exist 4; <0 (i = 1,...,k) such that a;/r; — a;—1/ri—1 = A; - €.
e In the case Ay = 0, the inequality bg/ro < b1/r1 holds.
e In the case A; = 0 for some i > 2, we have b;/r; < biy1/rit1-

Then, we put as follows:

Sy=JS81k S-=JS &
k k

Let y = (yo,-..,yx) be an element of Sy ; or S_ ;. Then the integers 1 = i(1) < i(2) < --- < i(s) < k are
determined by the following condition:

Pyiyr 7 Puy = = Py # Puigany

We put i(s + 1) = k + 1 formally. Then, we put as follows:

k
Y To H':1 T
B(U) = _B(U)v B(U) = S (7 1171 (264)
" | Hh(g(j)) 2 i()<i<h T

We also put as follows, for kK = £+
k
My, (5) = [[Man,. @)
i=0

Let E* denote the sheaf which is the pull back of the universal sheaf over M(7;) x X.

When 1 is given, we put as follows for variables ¢1, ..., tx:
t; t; t;
To=— J , T=— J + ¢
3>0 > o<n<; rank(yy) ' = > o<n<;rank(y,)  rank(y;)
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Let G denote the k-dimensional torus Spec k|71, 7 L TR, Ty 1]. Let ¥t denote the trivial line bundle with
G-action which is induced by the Spec k[Ti,Tfl]—action of weight w. We have the following element of the
K-group of the G-equivariant coherent sheaves over M(%) as in the subsubsection 7.6.1:

—Rpx « (RHom(Ei eTi, Ej . eTj)) — Rpx « (RHom(Ej eTi El . eTi))

The equivariant Euler class is denoted by Q(El eTi, Ej . eTf). We regarded it as the element of ®f:0 R(E\l) ®
R(tk,...,t1). We put as follows:

Q(EO-eTO,El-eTl,...,Ek-eT’“) = HQ(EZ -eTi,Ej-eTj)

i<j
Then, we put as follows:
P k Eu .eTi
U(y) = Res- - Res [ —— (i 1) (265)
t e \Q(EY -eTo,... B -eTr)
Theorem 7.47 We have the following formula:
@) - @)=~ 3 B0 [ W+ X Bw- [ ) (266)
neES, Mu, (9) neS_ Mu_ ()

We will write down the formula for the rank 3 case in the subsubsection 7.7.3.

7.7.2 Proof of the theorem

We use the argument and the notation in the proof of Theorem 7.39.

Lemma 7.48 Let y = (yo,...,yx) be an element of Type®™ ™ such that 3. yi =y and u(y;) = p(y). We also
assume that there are p-semistable torsion-free sheaves of type y; (i =0,...,k). Then, it is contained in Sy j
if and only if the following inequality holds for any sufficiently large t:

Pyoe)(t) < Pyy(o)(t) < Pyy(oy(t) < -+ < Pyo(t) (267)

Similarly, v is contained in S_ i, if and only if the following inequality holds for any sufficiently large t:
Py—0)(t) < Pyy—o)(t) < Pyy(—c)(t) < -+ < Py (o) (t)

Proof We remark that finiteness of 1 as in the assumption of the lemma, due to the boundedness of S. The
condition (267) is equivalent to the following:

bo + (ag, C) < b1+ (a1,C) < ba + (az2,C) <

< bk—i—(ak,C)

To 1 T2 Tk

(268)

We have (a;i1, H)/riv1 = (a;, H)/r;, and H is generic in W¢. Hence we have a;11/rit1 — a;/1; = A; - € for
some rational numbers A;, and we have (a;+1,C)/ri41— (a;,C)/r; = A;- (€, C). Since (£, C) is sufficiently large,
the condition (268) is equivalent to y € Sy . Thus the first claim is proved. The second claim can be shown
similarly. |

For any v = (yo,...,yx) € St, we put as follows:
k
M(H(C), [O(-=m, C’)]) = M?*(5o(C), [O(—m, C)], e) X H M?*® (@(C))
i=1
Here, € denotes any sufficiently small positive number. Similarly, we put as follows for any n € S_:

k
M(H(=C),[0(=m, —O)]) := M*(Go(—=C),[O(=m,—C)], €) x HMSS(@(—C))
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Let Te1 denote the vector bundle over M (§(C), [O(—m, C)]) obtained from the relative tangent bundle of the
smooth morphism M?*(5(C), [O(—m,C)],e) — M(m,5(C)). We use the same notation to denote the vector
bundle over M*(§(—C), [O(—m, —C)],€) obtained from the relative tangent bundle of the smooth morphism
M(G(~0), [0(~m, ~C)],¢) — M(m.5(~C).

Let 6y be as in the proof of Theorem 7.39. To obtain the description for ®¢(8y) — ®(H, ) and ®_(dp) —
®(H_), we use the transition formula (Theorem 7.42) inductively. Due to Lemma 7.48, we obtain the following
equality:

~ N Hy,, (m) Eu(Tre)
Bo(do) =0, @)+ 3 P Bw)- [ w(y) - o) (269)
i gs% Hy(m) M) [0(=m.O)) Hy,(m)
We also obtain the following equality:
. H (m) Eu(Trel)
(i) = @)+ Y G B w(y) - o) (270)
veg. Hy(m) MB(=C),[O(=m,—C))) Hy,(m)
From the equality ®_¢(dp) = ¢ (Jp) (Lemma 7.40), we obtain the following equality:
. H (m) Eu(Trel)
B, (§)+ 3 P B | w(y) - )
: ves, Hy(m) M(H(C),[0(-m,0))) Hy,(m)
N H,,(m) Eu(Tie)
—on @+ Y 22 B [ W) (271)
nezs_ Hy(m) M(H(=C),[0(=m,~C))) Hy,(m)
By taking the limit m — oo, we obtain the desired equality (266), due to Proposition 7.19. |

7.7.3 Weak wall crossing formula in the rank 3 case

As an example, we write down the formula (266) in the rank 3 case. In the following, a; and b; denote the first
Chern class and the second Chern character of a given y;. We put as follows:

= {(y1,y2) € Type; x Typey |1 +y2 =y}, Uz = {(y1,y2) € Typey x Type, |y1 +y2 =y},

Us == {(y1.y2,y3) € Typei | y1 +y2 +ys = y}
We put as follows:

S = {(y10) € Ur as —2a1 = A-€ (A>0)}, SE) = {(y1,0) € U1 |21 = a3, 21 < by}
Séli : {(yl,yg e U, | 2a0 —a; = A- £ (A > O)}, 5524)_ = {(yl,yg) € UQ‘ a1 = 2a9, by < 2b2}
Séli = {(y1,¥2,y3) € U3|a2 —ar=A-§ az—az=B-£(A,B>0)}

Sé?_),_ {(yl,yg,yg) € Us | a1 +A-£=as=as (A > 0), by < bg}

~

€U3|CL1=CL2=CL3—A~§(A>O), b1<b2}
€U3|a1:a2:a3, b1<b2<b3}
€U3|CL1+A-§:0,2:CL3 (A>0), b2:b3}
€U3|CL1=CL2=CL3, b1<b2=b3}

Sfi {(Z/l, Y2,Y3
Séi) { (Y1, 92, Y3
SSJ)F = { (Y1, 92, Y3
Sfl = {(y17y2,y3

We also put as follows:

S = {(y1,y2) € UL |az —2a1 = A-€ (A< 0)}, S =8, ={(y1,42) € Ur|2a1 = a2, 20, < by}

=

Séll = {(yl,yg € U2}2a,2 —ap=A-£ (A< 0)}, Sézl = Sézi = {(yl,yg) € U2|a1 =2a0, b1 < 2b2}
Sé)ll = {(yl,yQ,yg) € Us |CL2 —ai :Af, az—as =B -¢ (A,B <0)}

S§2z = {(yl,yQ,yg) € U3|CL1 +A-£=ay=as (A<0) b <b3}

S = {(1,y2,y3) EUs|ar =az =az — A- £ (A<0), by < by}

ssY 25(4) {(y1,y2.y3) € Us | a1 = az = az, by < by < bs}

S5 = {(y1,y27y3 €EUslar+A-E=az=ua3 (A<0), by =b3}

S¢) 5(2) {(y1,y2.y3) € Us | a1 = az = az, by < by =bs}
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We use the notation M (¥, H,;) to denote the moduli stack of oriented torsion-free sheaves of type y which
are semistable with respect to H,. In the case rank(y) = 1, we omit to denote H,. Let (yo,y1) be an
element of TypeQ. Let G, be a one dimensional torus. From G,,-equivariant coherent sheaf & (i = 1,2) on
M(y1, Hy) x M(y2, H,) X X, we obtain the following element of the k-group of the G-equivariant coherent
sheaves on M(y1, Hy) X M (Y2, Hy):

—Rpx «(RHom(&1,E2)) — Rpx « (RHom(Ez, €1))
The G,-equivariant Euler class is denoted by Q(&1,&2). Let P be an element of R. Then, we put as follows:

P& @ &)

P(gl,gg) = P(gl,gg) = m

€ R(&1) @ R(E2) @ A()
Let (y1,92,%3) be an element of Type®. Let G2, denote the two dimensional torus. Similarly, we put as
follows for given G, -equivariant coherent sheaves &; (i = 1,2, 3):

_ P(gl@gg@gg)
[Lic; Q&S E5)

Then, we put as follows for k = =+:

73(51,52,53) : S R((‘:l) X R(SQ) (24 R(gg) X m((tg,tl)).

L ~ 1 Tu_—t pu t/2
A(H,) = ®p, (7) + Z Z ., 3/M(171)XM@27HK)R€S(P(E1 e ', Ey-e ))
1,k

i=1,2 (y1,y2)€87

2 : Z 2 R R
2 R BY. *t/2’ Eu.et
" 3‘//V‘(1717H~)><M(172) teS(P( e 2°€ ))

=12 (y17y2)65§f2c
4
1 ou 7t17t2/2 Hu t17t2/2 Hu to
+Z 2 3 H.M(a.ﬁ?S%fS(P(El'e  Bye  Bse ))
i=1 (yl7?!27?!3)65§.1,2i e

1 ou, ,—t1— o - u
+ Z Z E~/1_[,i/\/l(y ResRes(P(El-e 1 t2/2, E2-e’51 t2/2, E3-et2)) (272)

. ) o)t t2
=12 (y1,y2,y3)€SS, )

Then, the formula (266) says A(H;) = A(H_). The contributions from S:,Elgb and Sf,i are cancelled out.

7.7.4 Weak intersection rounding formula in the rank 3 case

The weak wall crossing formula (266) is not so easy to deal with, even in the rank 3 case. We would like to
derive a more accessible quantity from our invariants. For that purpose, we consider the “intersection rounding
formula”. We will show it in the general case, later (the subsection 7.8). However, the general statement is a
little complicated. So we give the formula in the rank 3 case, in this subsubsection.

We take an element & = (£1,&) € NS(X)? such that & and & are linearly independent, and we put
Wé = W& NWe. A connected component T of W&\ UW;&WEi W is called a tile. For each tile T, there exists
four chambers whose closures contain T'. Let C' be such a chamber, and let Ho be an ample line bundle contained
in C. Then the map p¢c : {1,2} — {1,—1} is determined by ¢c(i) = sign(He,&;). The chambers and the
maps correspond bijectively. We denote by C(¢) the chamber corresponding to a map ¢ : {1,2} — {1,—1}.
We put k(p) = #{i|¢(i) = —1}. We take any ample line bundle H, € C(y¢). Then, we put as follows:

DED®G) =Y (-1 Doy (7)

We would like to show that Dg@@) is independent of a choice of T, and we would like to express Dg@@) as
the sum of the integrals over the products of Hilbert schemes.
Let S(2,1) be the set of @ = (ag,a1,a2) € NS(X)? with the following property:
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o (ap+a1)/2—az=A1-& and ap — a1 = Ag - & for some A; > 0.
Let S(1,2) be the set of @ = (ag, a1,az) € NS(X)? with the following property:

° ao—(a1+a2)/2:A1 -& and a1 — aq

= A, - & for some A; > 0.
For each a, we put as follows:

2 2 2 2 2
" . apt+aj+as—a
X(y,a) = [ [[(x) x Pic(ai)) N(y,a) =n+ =2 12 2
no+ni1+n2=N(y,a) i=0

Here, a and n denote the first Chern class and the second Chern class of y. Let E{‘ denote the sheaf over
[T(X] x Pic(a;)) x X which is the pull back of the universal ideal sheaf over X[l x Pic(a;) x X

Let G = G2, denote the two dimensional torus. Let &; (7 = 1,2,3) be G-equivariant coherent.sheaveb on
[T(X[™] x Pic(a;)) x X. Then, Q(&;, ) denotes the G-equivariant Euler class of the following
—Rpx « (RHom(é’j, Ek)) — Rpx « (RHom(Sk, Sj))
We use the following notation:
P(Er,E2,E3) = % € R(&1) ® R(&2) ® R(E3) @ R(tr,t2)
Proposition 7.49

o DI'®(y) is independent of the choice of T. Therefore, we can omit to denote T
e The following equality holds:

aESZ; 2) ‘/X(%

ResReb 77( ueTt Eletl/%tz’ E;et1/2+tz))

+ Y / Res Res(P( ue—t/2—ts | Fug—ti/2+ts Egetl)) (273)

acs2,1)? X(wa) 2 4

Proof We use the notation in the subsubsection 7.7.3. We identify ¢ and (¢(1), p(2)). We have the equality:
A(Hy y) —A(Hy -) = A(Hy -)

—AH--) (274)
We put as follows:
S} = {(y1,92) € Urfa =201 = A-& (A>0)}, S := {(y1,3) € U1 | 2a1 = az, 261 < bo}
Sé,l ={(y1,12) €Uz |2a2 —a1 = A-& (A>0)}, Sézj_ ([

y17y2 S UQ‘ a1 = 2a9, by < 2b2}
We also put as follows:

{(y17y2 €U1|a2—2a1 A& (A<0)}’ 5(2) =9,
= {(y1,92) € Us|2as —a1 = A- & (A< 0)}, 5(2) o

P24
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Then, we have the following equality for k = =+:

A(Hyy) = A(H,,-) = ®(H, 1) — (H, )

LY

i:1’2(y1,y2)eS§fL
1 _ _
- X —/ Res(P (Bt e, By - '?))
o 3 I M@ M@ o)
1,k

i=1,2 (y1.y2)€81

LDIDY

=12 (g ,y2)e sy

2 Hu -t/ Hu
-2 2 g/M(ﬂl,Hﬁ,_)xM(%)RteS(IP(El et B 'et)) (275)

1=1,2 (yl,yQ)eSéfL

3

Res (77 (Bt et EY - et/2))

W =

/M(@)X/\/l@z,Hn,H

2 ~ ~
—/ Res(”P(Ef e7t? Fy. et))
3 M@ He ) x MG2)

By a formal calculations using the weak wall crossing formula in the rank 2 (Theorem 7.29), we can show the
following equalities:

ReS’P(Ef et Eé‘ . et/z) —

Res P(E}‘ et EAg . et/2)
(y1 y2)€S(1) <‘//VI(?71)><M(1727H+) ¢ /,A/t@l)x./\/t(ﬁz, --) ¢
) 1, H

= ResRes/ P(EY et By - eht/2t By ehh/2Ht2)  (976)
20 JX(ya
acS(1,2) ’

Z (/ ResP(El cemt2 By e —/ ResP(El e 2 B, 'et)>
Testh \IM@LH-)xM@) ! MG H-)xM(F2) !
2,—

(y1,y2

= Z / Res ReSP(EO LeTh /2t By et/ B ey (277)
acs(2,1) Y Xwa) 2 n

We also have the following:

RtesP(E}‘ et Eyel/?) - / RESP(E}‘ et Eﬁ‘etﬂ))

yes®), </M(171)><M(1727H++) M(G1) X M (2, Hy )

(y1,y2

- X ResP(Bge % By ) - | Res P(Bge®, By o)
(i myes® \IMET2H )X M) ¢ MG, Hy ) x M)
: o

=— / Res ReSP(Eo LeTh /2t By et/ B -e)  (278)
acs(2,1) 7 X (w.a) 2 h

> |/ ResP(By o2, By o) | Res P(By - /2, B - )
(y1,52)€SY) M@ Hes)xM(G2) * M@ Hs ) xM(@s)
, o

=— Z / ResP(Eg et By - et/2) —/ ResP(Eg‘ et By e_t/Q)
( ) M(G2)xM(G1,Hyy) M(G2)x MG Hy )
yl’y2)652,+

ta 1y

=- Z Res Res / ’P(E’gf : e*tl,Ei‘ et /27t E; : et1/2+t2) (279)
acs(1,2) X(y.a)
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Recall ngi = ngl Then, it is also easy to observe the following equalities by using the weak wall crossing
formula in the rank 2 case:

Z / ReS(P(Ef et E; _ et/2))
(y1,y2)€S1%) MG XM (@2, He 4)
_ Z / RSS(P(E¥'€_t, E;-etﬂ))

(n 1/2)65'(2) M(G1) XM (G2, Hy )

= Z / Res (P (Bt -et, EY - et/2))

M(G1)x M (Y2, H_,
(y1,y2)65§?1 (Y1) (2 +)

- Z / Res (P(Ef et By et/2)) (280)
@) XMz, H- )

(y1,y2)€S{)

Res(P(E{‘ et By et))
M@G1,Hy )X M(5G2) 1

- /. Res(P(E} e, B - o))

(1, yg)eS(Q) M(G1,Hy - )X M(72)

= > /A Rtes(’P(Ef-e’tm,Eg-et))

M(y1,H- +)xM(y:
(s1,u2)€S2) (T +)XM(32)

(ylryQ)eSé?_);_

- Y / Res(P(Ef-e—t/Q,E;-ef)) (281)
M(y1,H- )X M(72) t

(y1 71/2)65'(2)

Then, we obtain (273) by a formal calculation. |

7.7.5 Transition for a critical parabolic weight

We give a generalization of Proposition 7.34 in the higher rank case. The argument is essentially same as the
proof of Theorem 7.47. Hence we state the result without a proof. R R
Let o be a critical parabolic weight. We take o~ < a < ay sufficiently closely. For & = P(E") € R(E"),

we put as follows:
O(y, o) ::/ o
M(G,0r)

Let Sy (y, &, ) be the set of h = (yo, ..., yx) € NS(X)*! with the following properties:
e Y y;=yand Py = Pg.
e We have ag/rg — a1/r1 = myg - £ for some mg < 0.

e We have a;/r; — aj41/ri+1 = m; - € for some m; < 0. In the case a;/r; = a;41/ri+1, we have y;/r; =
Z/i+1/7"i+1-

Here r; and a; denote the rank and the first Chern class of y;, as usual. Let S_ ;(y,&, «) denote the set of
n = (yo,---,yx) € NS(X)**! with the following properties:

e Y yi=yand P =P

e We have ag/ro — a1/r1 = mg - £ for some mgy > 0.
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e We have a;/r; — aj41/ri+1 = m; - € for some m; > 0. In the case a;/r; = a;y1/ri+1, we have y;/r; =
Yit1/Tit1.

Then, we put as follows:
Sfc(ya 57 O[) = U Sn,k(ya 57 O[)
k
For each ) = (yo,...,yk) € Su.x(y, &, ), we put as follows:

k
M(ﬁv O‘K) = H M(@\Za Oé,{)

i=0
Proposition 7.50 The following equality holds:

) /M(M v+ S Bl /Mm_) (n) (282)

9eES_(y,§,a0)

o

O(Far) —Fa)=— 3

U€S+(y,§,0¢)
Here, ¥(y) denote the elements of ®f:0 R(Elu) given by (265), and B(y) denote the numbers given by (264). 1

As an example, we write down the formula (282) in the case of rank 3. We use the notation in the subsub-
section 7.7.3. We put as follows:

Ur(e) == {(y1,y2) € Ui|Pyoj = Pya} (i=1,2), Us(a):={(y1,v2,y3) € Us ‘ P = P;‘}
We put as follows:

Siy = {(y1,52) € Ur(ax ‘2a1—a2 m-¢& (m<0)}

SQ+—{y1,y2 EUQ }a1—2a2 m{(m<0)}

Sz 1= (y1,y2,y3)€U3 Jar —az=my & az —az =my- & (m; <0)}
Syy = (y17y2,y3)}a1—a2 m-&(m<0), y2=1ys}

Here, a; denotes the first Chern class of y;. We also put as follows:

Si_ = {(yl,yg)EUl ‘20,1—0,2 m-{(m>0)}

Sz~ :={(y1,y2) € Uz(a ‘a1—2a2 m-§& (m>0)}

Ss— == {(y1,y2,y3) € Us() | a1 —az =my - &, az — a3 =my - (m; > 0)}
Sa— = (y1,92,Y3) |a1—a2 m-& (m>0), ya=ys}

We put as follows for k = =+:

Alay) == (Y, i) +
(y1,Y2)E€S1,n

+ Z / R;es (77 (E}L et R ~et))

(y1,y2)€S2,« M(F1,00) X M(F2)

+ /H s ResReb(P( Et.ehimt2/2 B ghimtz/2) Eg-e”))

t1 t2

/ Res (77 (Bt et EY - et/2))
M(G1) X M(Fz2,0r)

wlb—'

(y1,y2,y3 )ES3,k

Y 2 ResRes(P( Bu.emtimta/2 fu. ghi—ta/2 Eg.etz)) (283)

U ty 2
(Y1,Y2,y3) €84,k IT; M%)

Then, Proposition 7.50 says A(ay) = Ala-).
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7.8 Weak Intersection Rounding Formula
7.8.1 Preliminary

We prepare some terminology to state the theorem. An oriented tree is a tree provided with an orientation for
each edge. For an oriented tree R, let V(R) denote the set of the vertices of R. We have the natural order <p
on V(R). Let Viyax(R) denote the set of the maximal vertices of R, and we put V°(R) := V(R) — Vinax(R). An
oriented tree R is called an indexed rooted oriented binary plane tree of rank 7, if the following conditions are
satisfied:

e R is embedded in R x R> ¢, and it intersects with R x {0} transversally. The intersection RN (R x {0})
consists of the maximal points.

e There exists the unique minimal vertex o with respect to the order induced by the orientation. The vertex
is called the root.

e The maximal vertices are {(0,0),(1,0),...,(r —1,0)}.
e For any v € V(R) — ({0} U Vinax(R)), there are three edges which contain v.

e A bijective map ¢ : V°(R) — {1,...,r — 1} is provided, which preserves the orders on the sets V°(R)
and {1,...,r —1}.

The notion of isotopy is naturally given. Let T(r) denote the set of the isotropy classes of an indexed rooted
oriented binary plane trees of rank r. It is easy to see #%(2) = 1, #%(3) = 2 and #%(4) = 4, for example.

Remark 7.51 ¥(r) parameterizes the composition rules. 1
Let R be an indexed rooted oriented binary plane tree of rank r. For any v € V(R), we put as follows:
r(v) = #{u € Vinax(R) ‘ u >R v}

We put j(v) :=max{j| (4,0) >r v}.
Take v € V°(R). It is easy to see that there are two edges e; and es going out from v. Let v; denote the

vertex of e; which is not v. We may assume j(v;) < j(v2), and we put v' =v; and v" = vy.
If v is not the root, there is the unique vertex v® of R such that there exists the edge from v® to v. We put

as follows: .
. 1 v=(v")"
sign(v) := { 1 EU _ Evb;l))
We take t1,...,t.—1 be formal variables, and we put as follows for i =0,...,r — 1:
. too
Tg = Z sign(v) e(v?)
, r(v)
v<Rr(2,0)
v#o0
We identify (i,0) € Vinax(R) and i. For any a = (ag,...,a,—1) € NS1(X) and each v € V(R), we put as
follows:
ay 1= Z Gy
UE‘/max(R)
U>RU

Let a be an element of NS*(X). Let & = (&1,...,&—1) be an element of NS*(X)"~! such that &; are linearly
independent. We denote by S(r,a, &, R) the set of @ = (ag,...,a,—1) € NS (X) satisfying 3" a; = a and the
following condition:

e There exists a positive rational number A such that the following equality holds in NS'(X) ® Q for any
v € V°(R):

Ayl Qyr

=5 = Av o)




Let a be any element of S(r,a,&, R). Let y be an element of 7ype such that rank(y) = r and det(y) = a.
Let n denote the second Chern class of y. We put as follows:

r—1 9 r—1 2
M(a,y) = 11 [[(xdx Pic(ai)), N(a,y) :=n- % +3 %
iZo ni=N(a,y) =0 i=1

On M(a,y) x X, we have the sheaf E’Z“ which is the pull back of the universal sheaf on X[l x Pic(a;) x X
via the naturally defined projection. Let G denote the (r — 1)-dimensional torus Spec k[, Tfl, ey Tr—1, 7';11].
Let e¥ ' denote the trivial line bundle with the G-action induced by the action of Spec k[r;, T[l] of weight w.
We have the following element of the K-group of the G-equivariant coherent sheaves on M(a,y):

—Rpx *RHom(EZ?‘ eli, E}‘ . eTf) — Rpx *RHom(E}‘ ceTi EZ‘ . eTi)

The equivariant Euler class is denoted by Q(E{‘ . eTi,E;f‘ -e’7). We regard it as the element of ®2:_01 R(EZ‘) ®
R(t1,...,tr—1). We put as follows:
Q(Eg T BT B efr=1) = HQ(EZ‘ el Ej -eTh)
i<j

Let P be an element of R. We obtain P(@::Ol Ev. eli) e ®:;01 R(E™)[t1,...,tr—1] by the homomorphisms in

the subsubsection 7.1.3. Then, we put as follows:

P(P—,) EreT: PRt
U(a, R) := ResRes- - - Res = (,\@“O : eA) € ®R(EZ‘) (284)
tr—1tr—2 o\ Q(Eye™, EteT, . .. EY_eTr) Par

7.8.2 Statement

We take an element & = (£1,&,...,&) € NSY(X)! such that &;,...,& are linearly independent. We put
Weé = ﬂizl W& . A connected component of W&\ Uwzwe W is called a tile.
Let ¢ : {1,...,1} — {1,—1} be a map. We have the chamber C(¢p) satisfying the following conditions:

e The closure of C(y) contains 7.

e Let H, be any ample line bundle contained in C (). Then sign(&;, H) = ¢(i).
We take line bundles H, € C(p). We put k(p) := #{i| (i) = —1}. For & = P(E") € R(E"), we put as

follows:
DER(G) ==Y ()" - 0y (7)
o]

Here, @5, (y) is given as in (263).
Theorem 7.52 Assume py = 0. Let y be an element of Type, and let & = (&1,...,&) and T be as above.

e In the case | > rank(y), we have ’Dg@(y) =0.

e In the case | = rank(y) — 1, the number Dg@(y) is independent of the choice of T, and the following
equality holds:

P = 3 > [ wam (285)

ReZ(r) a€S(r,a,¢,R)

Here, ¥(a, R) are given in (284).

The theorem will be proved in the subsubsection 7.8.4 after the combinatorial preparation. We have already
written down the formula (285) for the rank 3 case in the subsubsection 7.7.4.
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7.8.3 Preparation from combinatorics

Let S be a finite set. Let Map(S, {£}) denote the set of maps of S to {£}. For any ¢ € Map(S, {£}), let k(p)
denote the number of {i|¢(i) = —}. Let I be a subset of S. For any ¢; € Map(I,{£}), let Indg (¢;) and
Ind{ 7 be elements of Map(S, {£}) determined as follows:

- N (i) (el) N (@) (el)
Inds (i) (1) = { T ign  Ma(en@= { Yogn
Lemma 7.53 For any functions F; : Map(S, {£}) — C (i = 1,2), we have the following equality:

Y. CDMIER(p) - Bay) =

pEMap(S,{£})

Z( > (—1)’“<W>F1(Inds(w>))-( > (—1)’“<W>F2(1nd§<w))) (286)

IuJ=S \preMap(l,{+}) @ sEMap(J,{£})

Proof We use an induction on |S|. In the case |S| = 1, we can identify Map(S, {£}) and {£}. We have the
following:

Fi(+) Fa(+) = Fi(=) - Fa(=) = (F(+) = F(=)) - G(+) + F(=) - (G(+) = G(-))
Thus, the claim holds in this case.

Assume that the claim holds in the case |S| = k — 1, and we will show that the claim in the case |S| = k.
We take any element s € S, and we put S’ := S — {s}. The left hand side of (286) can be rewritten as follows:

> (V)R- B+ Y, ()M Fi(e)- By

peMap(S,{+}) p€Map(S,{£})
w(s)=+ e(s)=—
= Yo (CD)MIFR(Indf(y) - Fa(Indg(e) — Y. ()RR (Indg(¢) - Fo(Indg(#))
@’€Map(S’,{£}) @’€Map(S’,{£})
(287)
By using the hypothesis of the induction, the right hand side of (287) can be rewritten as follows:
> > (—)HeDTReI By (Indd (Indg (1)) - Fa(Ind§ Ind, (o))
IUJ=S" preMap(I,{£})
ps€Map(J,{£})
- > > (—1)klenThles) [y (Indg (Indg, (1)) - Fo(Indg (Indg, (¢7)))
IUJ=S" preMap(L,{£})
WJeMap(‘L{i})
=Y S (FpMentkes) (F1 (Indf; (Indg (1)) — Fi (Indg (Indg(w)))) - F>(Ind{ Ind%, ()
IUJ=S" preMap(I,{£})
ps€Map(J,{£})
+ > > (—1)klen () By (Indg (Indg (1)) - (F2 (Ind{ (Indf (¢.))) — Fo (Indg (Indg,(gaJ))))
IuJ=S" preMap(I,{£})
QDJEMap(J,{i})
(288)

It is easy to observe the the right hand side of (288) can be rewritten as follows:

Z (_1)k(w1)+k(w.z)pl (Indg(w)) -FQ(IndJSr(@J)) + Z (_l)k(w)+k(w.z)pl(Indg(w)) -FQ(IndJSF(gaJ))

ILJj=s IuJj=s
sel seJ
= Y (~)HeDTReI R (Indg (¢r)) - Fa(Ind () (289)
ILJj=s
Thus we are done. |
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7.8.4 Proof of Theorem 7.52

We consider the following statements:

P(r): Assume rank(y) < r. For any & = (1, ...,&) such that [ > rank(y), we have Dg@(g’/\) =0.

Q(r): Assume rank(y) < r. For any & = (&1,...,&) such that [ = rank(y) — 1, the number Dg@(;ﬂ) is
independent of the choice of the tile T. Moreover, the equality (285) holds.

It is easy to see Q(r) implies P(r). We have already known that @Q(1) and Q(2) hold. We will prove P(r),
and hence Q(r), by an induction on r.
Let y; (i =1,...,s) be elements of Type, and let ®; be elements of R(E;). We put as follows:

Dg <H (I’l(yz)> = Z(_l)k(tﬂ) H(I’i’H“’ (y:)
=1 ¢ i=1

For a given £ = (&1,...,&) and a subset I C {1,...,1}, we put &; := (& |i € I). For a tile T in W¥, let T
be the tile of W& such that (H,&;) < 0 for any j € {1,...,1}\ I and for any element H € T!. Similarly, let
TT be the tile of W& such that (H,&;) > 0 for any j € {1,,...,1} \ I and for any element H € T7. We put
S =1{1,...,1}. Then, we obtain the following equality from Lemma 7.53:

D¢ (H (I%'@i)) = Y D (@) D (H <1>i@>> (290)
=1 IuJj==s 1=2

Lemma 7.54 Assume that P(r—1) holds. Let y1,...,ys (s > 2) be elements of Type such that ranky; < r—1.
For & = (&1,...,&) such that 1 > 377 rank(y;) — s, we have D{ [[;_; ®i(yi) = 0.

Proof We use an induction on s. In the case s = 1, the claim follows from the assumption P(r — 1). Assume
that the claim holds in the case s — 1, and we will show the claim in the case s. Due to the assumption P(r — 1),
the contribution from (I, J) is 0 in (290), if the inequality |I| > rank(y;) holds. If |I| < rank(y;) holds, the
inequality |J| > 37 ,ranky; — s + 1 holds. Therefore, we obtain the vanishing of the contribution due to the
hypothesis of the induction. Thus we are done. |

Lemma 7.55 Assume that Q(r — 1) holds. Let y; (i =1,2) be elements of Type such that ranky; <r —1. For
&= (&,...,&_2), the number ’Dg(@l@l) - ®y(Y2)) is independent of the choice of a tile T, and the following
equality holds:

De(®1(f1) 252)) = D De,, (®1(1) - De,, (92(52)
IL1Ul>,=S
|I;|=rank y;
Proof It can be shown by an argument similar to the proof of Lemma 7.54. |

Let us show the claim @Q(r) assuming that Q(r—1) holds. We put S” := {2,...,l}. Foramap A : S’ — {£},
let T'(\) denote the tile of W determined by the following conditions:

e The closure of T'(A) contains T'.

e Let H be any ample line bundle contained in 7'(A). Then we have sign(H,&;) = A(4).
From the definition of Dg@(g’/\), we obtain the following equality:

DI (2@) = Y (-)FN . DI (0 (p)) (201)
A

Let Hy » denote an ample line bundle contained in the chamber corresponding to Indg(\). We can rewrite
(291) as follows, by using Theorem 7.47:

Dro@) + 3 (1" 3" By) / W) = (=1 3 Bly)- / Tm)=0  (202)
A

neSy Mu, (9) A neS_ Mpu_ (V)

We put &' = (£&2,...,&). Let Tfl (k = £) be the tiles of W€ determined by the following conditions:

213



e The closure of T,fl contain 7.
e Let H, be any element of T¢ . Then, we have (H_,&) < 0 < (Hy,&).

For y = (yo, ..., Yx), we put as follows:

¢ ¢’ ~ ~
Dgr (¥(B)) = Dgr ¥(0) (o, - - -
Then, we can rewrite (292) as follows:
R — T8, — ¢,
DE(2(7) + Y_ Bv) De (¥(®) = > Bn) Dy (¥(H)) =0 (293)

neSy nesS_

Due to Lemma 7.54, the contribution from t = (yo,...,yx) is 0, if & > 2 holds. In the case k = 1, the
contributions do not depend on T¢ . So, we can omit to denote them in the following argument.
We put as follows:

St = {(yo,y1) € Type® |yo+y1 =y, ao/ro —ar/r1 =A-& (A<0)},

S := {(yo,y1) € Type® | yo +y1 =y, ao/ro —ar/r1 = A-& (A>0)}
S :={(yo,y1) € Type® | yo +y1 =y, ao/ro = a1/r1, by < b1}
Then, we obtain the following equality from (293) and Lemma 7.55:

0=DL(@@)+ Y De(¥@.d)+ Y, “De(W(En.i)

(y0,y1)€S51 (y0,y1)E€S3
To ~ o~ To ~
- > 717&/(‘1’(yo,y1))— > 77?5'(‘11(310,1/1)) (294)
(y0,y1)€S2 (y0,y1)€S3

The contributions from S3 are cancelled out. We have the bijection S — Ss given by (yo,y1) — (y1,90). We
also have DV (Yo, Y1) = —De¥ (Y1, o) for (yo,y1) € S1 and (y1,y0) € S2. Therefore, we obtain the following
equality:
D{e@) = Y, De¥(Go,b) (295)
(yo0,y1)€ES2

By using (295) inductively, we can obtain the formula (285). Then, it is clear that ’Dg@(y) is independent of the
choice of T. Applying the hypothesis of the induction to (295) we can easily derive the equality (285). Thus,
the claim Q(r) is proved, and the proof of Theorem 7.52 is finished. |
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