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Abstract

In this article we introduce a natural “elliptic” generalization of the
classical polylogarithms, study the properties of these functions and
their relations with Eisenstein series.

Introduction

The notion of the elliptic polylogarithm functions as a natural generalization
of the usual polylogarithms was introduced in [BL, 4.8]. In this article
we study the properties of these functions. Part of these properties are
equivalent to some theorems of [BL] but I will prove them purely analytically.

The paper goes as follows. In the first section we introduce some version
of usual polylogarithms which are more convenvient for generalization and
describe their properties. In the second section we define the elliptic polylog-
arithms and prove the simplest facts about them. The modular properties
of elliptic polylogarithms and their relations with classical Eisenstein series
are discussed in the third section.

I wish to thank A.Beilinson, A.Goncharov, Yu.l.Manin, M.Rovinskii and
D.Zagier for stimulating discussions. I thank the Massachusetts Institute for
Technology and the Max-Planck-Institut fiir Mathematik Bonn for their hos-
pitality during my stay there at visiting positions. This work was partially
supported by AMS grants for the former Soviet Union.

[ll use some standard notations : H = (r € C,$7 > 0),

e (1) == exp(2mit), z= e (§),g=e (), w = e (1);
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1  Debye polylogarithms

Definition 1.1 The n-th Debye polylogarithm A, () is the multivalued an-
alytic function on C\ Z given by integral

[ dt
AL (8) = _;/ioo {n — 1) exp(—2mit) — 1

The convergence of the integral on the upper halfplane is clear from the

bound
tn-l

|exp(—2i1rt) -1
| will use two single-valued branches A} (€) and A7 (£) which are defined on
the plane C without (—o0, 0)U(1, 00} and (—o0, —1)U(0, oo) respectively and
are the analytic continuation to the lower halfplane across (0,1) or (—1,0).

Recall the definition of the classical (Euler) polylogarithms as the ana-
lytic continuations of the series

| < Cnexp(—2nSt), St > 1.

zi

Lin(2) =

M

It is clear that Li;(z) = —log(l — 2) and Li,(z) = f§ Lin—1(t)dlog(t).
The relation between A (*) and Li.(x) is the following:

Proposition 1.1

n En—k .
) MO = Y o (2w L (2)

k=1 (TL - k)
no en—k)
) Linle) = (=2mi Y S 6
k=1 '



Recall that z = e (€} = exp(2m:€).
[ give the basic properties of A.(*) without the proofs which are very
simple.

Proposition 1.2

a) AZ(§) = AZ(9) if 3(€) > 0;

AL(§) =47 ()+51n if S(E) <0;
b) AZ(E+E) = Tig _0 A («f) if () >0,k Z; (1)
¢) AT+ (DA€ =5 (€" —1)"By); (2)
d) (n—1) dAn( J—Edf\n_l(f); (3)
e)  [AL(§)] < Crexp(=2rSE)(1+ (RE)™). (4)

Here the B, are Bernoulli numbers.

Remark. [t is useful to introduce the generating function A(&; K')
=Y AL E)X™ L. Then

D ¢ exp(Kt)dt
A K) = "/,-oo exp(=2mit) — 1’

Proposition 1.2 can be reformulated in terms of this generating function in
a very simple manner.

Proposition 1.3

a) AT (& K) = A(& K) 36 >0
AT(EGK)=A (& K)+1 if 3(€) <0

b) AE+7 K)=exp(JK)A(§K),j €2 if (&) > 0; (5)

¢) AHEGK)=A-(=6-K) + 22880 =gl (6)

d) (5% — €)deh (& K) = 0. (7)

2 Elliptic polylogarithms

The elliptic polylogarithms are single-valued analytic functions on the uni-
versal covering of a punctured universal elliptic curve. I will define them as
multivalued analytic functions on the partial covering (C x H) \ L, where
L is the relative lattice L := (£ = m + nr|m,n € Z). It is well known that



the universal covering of universal elliptic curve is the product C x H and
its fundamental group is the semidirect product SLo(Z) b< Z?, acting on
C x H in the usual way:

a b £ ar + b
((C d) (00))(61 )_(mlc,r_l_d);

1 0
(( 01 ),(m,n)) ¢, r)=E+m+nar,7).

So the preimage of the zero section is L, and (C x H) \ L cover the
punctured universal elliptic curve.

Definition 2.1 The (Debye) elliptic polylogarithm Ay, (€, 7) with indez
(m, n) is the multivalued analytic function on (Cx H)\ L which is given in
the strip (0 < S€ < ST) by the series

Amn(€,T) = ZJ"‘M (E+37) + (=)™ Y AL (€ + 57)
m! =0 =1
N AT - e

+ (_l)n+l Ban+l )

+ n!(m+ 1)

o n—k)klm+k+1
The convergence of the infinite series is an evident consequence of (4).
This formula defines a single-valued branch of Ay, o (€, 7) on Cx H with-
out the set
(€= jr+3lj € Z,s € (00,0 U[0,0)}

Remark 1. The origin of this definition is the following. The series
SR IMAT(E + i) diverges and one can regularise it by this trick:

= S AR (E+ 57)
fj==-00
~ iﬂ AT+ T + ):1: FmAY(E+ )}

= J_—CO

¢ -1—. i PAY(E+5T) + Z 1AL (<€ — )
= _7—-—00

+ (€ +37)" = (=1)"Ba)}.

J_—OO



The first and second series converge according to the bound (4) and the
third which is a series of polynomials in the variable j, is defined using the
formal equality

S im=((=m) = (=1)" B /(m+1).

Remark 2. A one-valued version of the elliptical polylogarithms was
introdused by Bloch [B] in the case m+n = 3 and by Zagier [22] for arbitrary
m, n.

The generating function

AETX,Y) = 3 Apal&n(-Y) X

m>0,n>1
is equal to
D exp(FX)AT(E + 57— Zexp (=€+imY)+
=0
exp(-Y¢) 1 1 1 1 1

-Y (cxp(—Yr+X)— 1 —YT+X)+ e’ — l(e"' -1 Y)

EVIdently AO l(él ) 21n log( (E! T)/T’(T))'
Many of the transformation properties of the Ay, n(€, 7) become simpler
if we introduce the modified generating function

o exp(=Y€) 1
AlS, T X, Y) = A(g’T’X’}_/) + (- Y)( -Yr+X) + (expY — )X
=Eexp(jX)A+(£+jT;— +ZEXP (=€+jm;Y)
=0
LeR(=Y) 1 i 1

-Y  exp(-Yr+X)-1 t expY —lexpX —1°

The reason is that in the domain {0 < RX, 0< R(-Y7 4+ X) < 2757}
Y eI XAT(E+ j1; —Y) converges and equals A(E, 7; X, Y).

JEZ

Proposition 2.1  a) Let 0 < R(§)S(r) — SER(7) < S(7).Then

1

. —_ -Y' N g vl VY — 1
AE+ 17X Y) = e (AT X Y) + o

) (8



b) Let 0 < ¥(€) < Y(r). Then

A€ +7,mX,Y) = XA, 75 X, Y) (9)

c)
4 9 de - A 1 X,Y)=0 10
(8_Y+T8T+€) E,T—(Earv‘ 3 )‘_ . ( )

Sketch of the proof. Statement a) is obtained after a simple calcula-
tion by summing (5) over the arguments £ 4 j7 or —£ + j7. Statement b)
is the result of substituting £ + 7 for £ in the definition and changing the
limits of summation in the first and second sums, using (6). Statement c)
is obtained after a simple calculation by summing (7) over the arguments
E+jror —€+ 7.

3 Eisenstein - Kronecker series and modular prop-
erties of elliptic polylogarithms

We recall a classical result of KKronecker (W] : Denote by L the lattice
generated by 1 and 7. Any 5 € C determines a character y, on L

_ £ -8
Xn(§) = exp(2miz——=).

Then [W, Z1] the Eisenstein-Kronecker series of weight 1

Ky(&,n,1)= ex"(w)

(where ¥, denotes Eisenstein summation; see {W]) is given by the formula

Ki(&,n1) = 2m exp(?m'f : i)F(E, 7,7}, (11)
where
Ea"vr = 1-2 1—w = z w q

- = . (13)



The symmetry of F(€,7n,7) in £ and 75 is a special case of the functional
equation for Eisenstein-ICronecker series. The transformation properties of
F(&,n, ) are very simple:

F+1,n,7) = F(&n,7); (14)
F(E+1,n,71) exp(—2rin) F(§,n, 7 (15)

)
& _n_ar+b <
Pt T DF(En,7)- (16)

One can represent this function as the generatmg functlon with respect to
variable £ of the usual Eisenstein series ex(n, 7 Z ! x—”—(k—l

(cT 4 d) exp(27ri

YT,' 1 I = jXﬂ(w)
Z - g+2e2("f) i+

wel f wel j=0
|- 7 Xp(w)
- s oy (7)
j=0 wel

On the other hand, F'(£,n,7) can be expressed as the exponential of the
. ' e . : _ 1 .
generating function of Eisenstein functions En(&, 1) = w%[;cw.

P&, ) ——eXP Z —i(0,7))). (18)

=1
This statment is a simple corollary of Zagier’s “Logarithmic Formula” for

F(&,n,7) [Z1, Section 3,Theorem(viii)] and the power-series for £, [W,
Chapter I1l,formula(10)].

Proposition 3.1
a) %A 61 X,Y) = e Ver(E, XL EX o, (19)
b ZAETXY) =V éi{—‘*‘— (20)

The proof is a direct simple calculation.

This proposition together with (18) gives an expression for the deriva-
tives of elliptic polylogarithms as polynomials in Eisenstein functions.

One can define an action of SLy(Z) on the two-dimensional space gen-
erated by X and Y by the standard formulas

(22):(5)-(352)- (2 )()



Proposition 3.2 Let M = ( Z ) belong to SLo(Z). Then

R, o

A(F, T aX + bY,cX +dY) = AE, 7, X, Y) + cm(X,Y).
where car(X,Y) 1s a rational function in X and Y with rational coefficients.

Sketch of the proof. We first prove that cpr(X,Y), which can be
defined as the difference

MG EEaX +bY, cX +dY) - A(E, T X, Y),

doesn’t depend on § and 7. This means that the differential d¢ ,A(&, 7; X, Y)
satisfy to the following property:

de A b, SE2 aX + bY, X +dY) — de A6, 73 X,Y) =0

One can deduce this equality from (16) using the expresions for derivatives
(19) and (20). So we have proved that cas(X,Y) is a formal function in X
and Y with complex coefficients.

To prove the rationality of these coefficients we observe that M —
em(X,Y) is a cocycle of SLy(Z) with coefficients at C[X,Y]] . So it is
enough to check the rationality for generators of SLy(Z):

(1) ==(21)

The calculation of c(X,Y) is a simple exercise like the proof of (8)
1 ( 1 B 1 )
exp(Y)—1'exp(X)—1 exp(X+VY)-1"

To calculate ¢s(X,Y) we use the following trick (in which we use that
S Lo(Z) interwine the action of Z?):

es(X,Y) = AL, -L -V, X)-A(E-1,7;X,Y)

(use(9)) = (A%, ~1;-Y, X))

P )

er(X,Y) =

1
exp(X) — 1)
= " (A&, X,Y) +¢es(X,Y))

~AETXY) - )

(use(8)) —(e"AE, T X, Y) -

1

_ Y b :
= e es(X V) + exp(X) -1



We have deduced an equation for ¢g(X,Y) with an evident solution which
is a rational [unction series with rational coeflicients:

1 1
(exp(Y) - 1)(exp(X) - 1)

es(X,Y) = - (21)

Now we discribe the relation between elliptic polylogarithms and indefi-
nite Eichler-Shimura integrals of Eisenstein series.

Let I' be a congruence subgroup and G(r) a modular form of weight &
with respect to I'. Then the vector-valued differential form G(r)(-Yr +
X)¥-2dr is P-invariant. The indefinite Eichler-Shimura integral G(r, X,Y)
of G(7) is the indefinite integral of this form :

4G (r, X, Y) = G(r)(=YT + X)*%dr.

Let r and s be rational . Then the Eisenstein series €,°(7) = ex(r+s7,7)
is a modular form of weight % for some congruence subgroup.

Proposition 3.3 Define for rational v and s the function of three variables :
=, X, Y) = e@XPYAGr+ s, XL Y).

Then = (1, X,Y) is the modified generating function for the indefinite
Eichler-Shimura integrals of Eisenstein series e, (7):

1 (o]
= (r, X, YY) = +Z j(emi)=U=Ner (22)
=1

d.E° = e’ (1) (=Y 1+ X)*2dr.
The proof is a direct calculation of d,Z"*(r, X, Y) using (19), (20) and (17).

4 A Hodge sheaf

I explain in this section the Hodge-theoretical interpretation of previous
results very briefly cf [BL, 4].
The Hodge sheaf of relative homologies H = R!p.(Q(1)) of the universal
elliptic curve
p:Cx H/(SL(Z) < %) — H/SLy(Z)

on H/SLy(Z) can be realised in the following manner. The upper-plane H
is the modular space of elliptic curves with a symplectic frame (A, B) in the



first homology group (A is the class of the loop £ +1¢,0 < ¢t < 1 and B is the
class of the loop £ +¢7,0 < ¢t <1). The local system Hq is the tautological
repesentation of SLy(Z) = m (H/SL2(Z)):

(ea):(8)-(esrad)-(22)(5)

This means that the Q-sheaf Hg on H/SLy(Z) can be constructed by iden-
tifying the vectors B and A in the fiber over 277;% with the vectors aB + bA
and ¢B + dA in the fiber over 7 respectively:

Blargs = (aB+bA)\, Alszsg = (cB + dA)l..

The Hodge decomposition Hg = F~1? 4 F%~1 of the fiber over the point 7
is
F10 = (—Ar + B)¢, FO7' = (AT + B)¢.

and the Hodge filtration is
FO= =10 c =1 = .

Denote by f%, = —Ar 4+ B the generator of F° (superscripts 0 means the
Hodge type and subscript —1 means the weight) and by fI! = A the addi-
tional vector at F~! which formed with the previous one the frame of F~1.
These vectors depend holomorphically on 7 and

f21|57f}:, = (CT+(£)-1f91|r,f_—1l|%H = Cf21|f+ (Cr+d)f21|f-

The symmetric powers S™H of H are the local systems of homogeneous
polynomials of degrees n in the variables A and B with the evident action
of SL2(Z). The Hodge filtration

FPcFlc...cF™
is generated by vectors f75 :
FTHS™M) = (2, fodes fon = (P2 (207

Now we describe the “logarithmic sheaf” G on X. The local system G is the
space of formal power series in A and B with the evident action of SLy(Z)
and with the action of Z2 = ZA + ZB by multiplication by exponentials :

f(A: B)|(5+m+m',‘r) = exP(mA + nB)f(A: B)l({,r)-

10



The weight filtration coincides with the degree filtration on the space of
formal power series :

W_, = ({A'B’li+j > n})e.

The evident action of .52, S*(#) on G must be compatible with the Hodge
structure; so the Hodge filtration can be defined by giving a single vector
1y in F° with unitary constant term, and setting

F? = ({fZuli < plhc
Choose 1y = exp(—A£). It transforms in the following way:
A1y = expAexp(~A(€+ 1)) = exp(—AE) = 1y;
B: 1y — expBexp(—A({+ 7))
= exp(—Ar + B) exp(-A&) = exp(/2) 1 € F*;

£
cr+d)

c d

( a b ) 11y — exp(—{cB + dA)

= exp(—

e(-At + B) o f°, :
md—)exp(-flf) = exp(—c— n i € .

The elliptic polylogarithm P is the extension of G(1) by #. The pull-
back of Pg to any simply connected variety is the (noncanonical) sum of
Hg and G(1) = G @ Q(1) . So Pg is locally the Q-space generated by A,
B and f(A, B)K, where f(A, B) is a formal power series, the weights of A
and B are —1 and the weight of K is —2 (K denote the generator of the
Tate module Q(1)). The Hodge filtration on Pcler at the point (£, 7) is
generated by fZi15K € F~=1 (the shift by —1 is the result of Tate’s shift
on Q(1), in other words K € F~!(Q(1))) and two vectors

exp(=A¢€) - 1
A

JTh= A=A, 7B, A)(-A)K € F~.

Then the properties(8), (9) and (21) of the elliptic polylogarithms mean
that this Hodge filtration is correctly defined on the complexification of some
local Q-system on X.Equation (10) is equivalent to the Griffiths transver-
sality condition VFJ C Fi~1@Q!. The formula (22) implies the coincidence
of the restriction of P on torsion points and a sum of Eisenstein extentions.

f°, =—-Ar+ B+ K — A(€,7; B, A)(—AT + B)K € F°;

11
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