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Abstract

In this article we introduce a natural ((elliptic" generalization of the
classical polylogarithms, ~tudy the properties of these functions and
their relations with Eisenstein series.

Introduction

The notion of the elliptic polylogarithm fUIlctions as a natural generalizatioll
of the usual polylogarithms was introduced in [BI.., 4.8]. In this article
we study the properties of these functions. Part of these properties are
equivalent to some theorems of [BL] but I will prove them purely analytically.

The paper goes as folIows. In the first section we introduce some version
of usual polylogarithms which are more convenvient for generalization and
describe their properties. In the second scction we define the elliptic polylog­
arithms and prove the simplest facts about them. The modular properties
of elliptic polylogarithms and their relations with c1assical Eisenstein series
are discussed in the third section.

I wish to thank A.Beilinson, A.GoncharovJ Yu.I.Manin, M.Rovinskii and
D.Zagier for stimulating discussions. I thank thc Massachusetts Institute for
Technology and the Max-Planck-Institut fiir Mathematik Bonn for their hos­
pitality during my stay there at visiting positions. This work was partially
supported by AMS grants for the former Soviet Union.

1'11 use some standard notations: H = (r E C, ~r > 0) I

e (t) :=exp(21rit),z=e (~),q=e (r),w=e (7]);
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B(E,7) = f exp(21l"i( -2
1
(j + ~ )27 + (j + ~ )E))

. . 2 2
)==-00

00 .

ql/8(zt - z-t) II(1- qj)(1- qjz)(1- qjz-l);
j==1

00

1] ( 7 ) q~ TI (1 - qi).
j==1

1 Debye polylogarithms

Definition 1.1 The n-th Debye poly/ogarithm An(~) is the multiva/ued an­
alytic function on C \ Z given by integm/

1
~ tn-l dt

A (~) = - ' .
n ioo (n - 1)! exp( -21l"it) - 1

The convergence of the integral on the tipper halfplane is clear from the
bound

tn - 1

I (2') I < Cn exp( -21l"~t), ~t > l.exp - 1,1rt - 1

I will use two single-valued branchcs i\~ (~) and A~ (~) which are defined on
the plane C without (-00, O)U(l, 00) anel (-00, -1)U(O, 00) respectively anel
are the analytic continuation to the lower halfplane across (0, 1) or (-1,0).

Recall the definition of the classical (Euter) polylogarithms as the ana­
lytic continuations of the series

It is clear that Lidz) = -log(1- z) anel Lin(z) = J~ Lin_dt)dlog(t).
The relation between A. (*) anel Li.(*) is the following:

Proposition 1.1

a)

b)
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Recall that z =e (~) = exp(2rri~).

I give the basic properties of A. (*) without the proofs which are very
simple.

Proposition 1.2

a) A~(~)=A~(~)

A~ (~) = A~ (E) +01,n

b) A;(~ + k) = 2:7;d ~: A;_i(~)
c) A~(~) + (-l)nA;;(E) = th(~n - (-l)nBn);

d) (n - l)d An(E) = Ed An-d~)j

e) IAn(~) J < Cnexp( -2rr8'~)(1 + (~E)n).

Here the B n are Bernoulli numbers.

ij ~(E) > 0;

if ~(E) < 0;

ij~(E) > 0, k E Z; (1)

(2)

(3)

(4)

Remark. It is useful to introduce the generating function A(E; J()
= 2:~;;;;1 An(E).Iyn-l. Then

A(Ej J() = _ r~ exp(J(~) dt .
Jioo exp( -2rrzt,) - 1

Proposition 1.2 can be reformulated in terms of this generating function in
a very sim pie manner.

Proposition 1.3

a) A+(E; !() = A- (~; K)

A+(Ej !() = A - (E; !() + 1

b) A(E + j; K) = exp(j!()A(Ej !(),j E Z

c) A+(c'K)=A-(_c'-I()+exPllK)- expkK ).
, , ~ , exp( )-1 '

d) (8t - ~)d~A (E; !() = o.

2 Elliptic polylogarithms

ij S'(E) > 0;

ij 8'(E) < 0;

ij ~(E) > 0; (5)

(6)

(7)

The elliptic polylogarithms are single-valued analytic fUllctions on the uni­
versal covering of a punctured universal elliptic curve. I will define them as
multivalued analytic functions on the pa.rtial covering (C X H) \ L, where
L is the relative lattice L := (E = m + nrlm, n E Z). It is well known that
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the universal covering of universal elliptic curve is the product C X H allel
its fundamental group is the semidirect product SLz(Z) t>< ZZ, acting on
C X H in the usual way:

((: ~), (0,0)) (~, T) = (er~ d' ;; : ~);

(0 n,(m,n)) ((,T) = (Um+nT,T).

So the preimage of the zero section is L, and (C X H) \ L cover the
punctured universal elliptic curve.

Definition 2.1 The (Debye) elliptic polylogarithm Am,n(~, r) with index
(m, n) is the multivalued analytic fu nction on (C X H) \ L which is given in
the strip (0 < 9~ < 9r) by the series

1 0000
Am,n (~, r) = -, (Ejm At (~+ jr) + (_l)m+n+l E jmA; (-~ + jr)

m.. 0 . 1
)= )=

n ~n-k 'k B B B
"'"'" ~ r m+k+l n+l n m+l)

+ f:'a(n-k)!k!m+k+1 +(-1) n!(rn+l)

The convergence of the infinite series is an evident consequence of (4).
This formula defines a single-valued branch of Am,n (~, r) on Cx H with­

out the set
{e = jr + sjj E Z,s E (-00,0] U (0, oo)}

Remark 1. The origin of this definition is the following. The series
~! 2::];-00 jmAt(~ + jr) diverges and one can regularise it by this trick:

= ~{f=jmAt(~+jr)+ f jmAt(e+jr)}
m. 0 •

)=0 )=-00

~) ~{f=jmAt(~+ jr) + f (_l)(m+n+l)jmA~(_~ - jr)
m. j=O j=-oo

-1 1
+ E ,jm((e + j?")n - (_l)n Bn)}.

o n.
)=-00
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The first and second series converge according to the bound (4) and the
third which is aseries of polynomials in the variable j, is defined using the
formal equality

00

Ljm = ((-rn) = (-1)mBm+1 /(rn+ 1).
j=l

Remark 2. A one-valued version of the elliptical polylogarithms was

introdused by Bloch [8] in the case m+n =3 and by Zagier [22] for arbitrary
7n, n.

The generating function

A(€, T; .IY, Y) = L Am,n(€, T)( _y)n-1.lym
m2:0,n2: 1

is equal to

00 00

L ex p(j.lY) A+(~ + j T; - Y) + L ex p (- j .IY) A- (-E + j T; Y) +
j=o j=l

exp(-YE)( 1 1 1 1 1
- Y cxP(- Y T + .IY) - 1 - - Y T + .IY) + eY - 1 (eX - 1 - X)·

Evidently Ao,d~,T) = 2~i log(O(~, T)/1](T)).
Many of the transformation properties of the Am,n(~,T) become simpler

if we introduce the modificd generating function

exp( - YE) 1
!l(~, T; .IY, Y) = A(E, T; .IY, Y) + (_Y)( -YT + .IY) + (exp Y _ l)X

00 00

= L: exp(j.lY)A+(E + jTj -Y) +L: exp( -j.lY)A-(-E + jTj Y)
j=o j=l

exp(-YE) 1 1 1
+ - Y ex p(- Y T + .IY) - 1 + exp}T - 1 exp .IY - 1

The reason is that in the domain {O < RX, 0 < ~(-Y T + X") < 2rr8T}
L: ejX A+(~+ jT; -Y) converges and equals A(E, T; )(, V).
iEZ

Proposition 2.1 a) Let 0 < ~(E)9(T) - SS(E)~(T) < ~(T). Then

M€ + 1, T; X, Y) =e-Y CM€, T; X, Y) + (~) ). (8)
exp.l - 1
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b) Let 0 < ~(~) < S(T). Then

li(~ +T, Tj .X, Y) = eX li(~, Tj ..-Y, V)

c)
ß &

(&Y + T f))( + ~)de,Tli(~, T; ,,-Y , Y) = O.

(9)

(10)

Sketch of the proof. Statement a) is obtained after a simple calcula­
tion by summing (5) over the arguments ~ + jT or -~ + jr. Statement b)
is the result of substituting ~ + T for ~ in the definition anel changing thc
limits of summation in the first and second sums, using (6). Statement c)
is obtained after a simple calculation by summing (7) over the arguments
~+jTor-~+jT.

3 Eisenstein - Kronecker series and modular prop­
erties of elliptic polylogarithms

We recall a classical result of Kronecker [WJ : Denote by L the lattice
generated by 1 and T. Any 7J E C determines a character X'r/ on L

Then [\V, Zl] the Eisenstein-Kronecker series of weight 1

.~ ( ) '"" X 'r/ ( w )Al ~,7J,l = L..Je--,
L 10 + ~wE

(where Le denotes Eisenstein summation; see [WJ) is given by the formula

(11)

where

F(~,17,T)

(j' (0, T) (j (~ + 7J, T)
=

(j(~, T)(j(7J, T)

6
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The symmetry of F(~, 1], r) in ~ and 1] is a special case of the functional
equation for Eisenstein- Kronecker series. The transformation properties of
F(~,1],r) are very simple:

F(e + 1,1], r) = F(~, 1], r)j (14)

F(e + r,1], r) = exp( -27ri1])F(~,1], r); (15)

F
~ 1] ar + b c{17

(-- -- --) (cr + d) exp(27ri--
l
)F(e, 1], r). (16)

cr + d' cr + d' cr +d cr +(
One can represent this function as the generating function with respect to

variable ~ of the usual Eisenstein series ek (17, r) = L: I e xti;:) :
wEL

(17)

On the other hand, F(~, 1], r) can be expressed as the exponential of the
generating function of Eisenstein functions En(~, r) = L: e (w~on:

wEL

1 00 (_1])i
F(~, 1], r) = - exp( - I: -,-(Ei(~, r) - ei(O, r))), (18)

1] i= I 1

This statment is a simple corollary of Zagier's "Logarithmic Formula" for
F(~, "l, r) [Zl, Section 3,Theorem(viii)] anel the power-series for En [\V,
Chapter III,formula(lO)].

Proposition 3.1

a) lLA(c r' X Y) - e-yep(C -Yr t ...Y r)'Be- "', ,... , - "', 21rl ' ,

b) a A(C ,X Y) - y e Ö p (C - Y r t ...Y )FiT- '" 1 r,..., = e 7JX '" , 21rl ' r ,

(19)

(20)

The proof is a direct sim pie calculation,
This proposition togcther with (18) gives an expression for the deriva­

tives of elliptic polylogarithms as polynomials in Eisenstein functions.
One can define an action of SL 2(Z) on the two-dimensional spacc gen­

erated by ...Y and Y by the standard formulas
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Proposition 3.2 Let M = (: ~) belong to SL2(Z). Then

A(CT~d' ~;tt j a)( + bY, C4'Y +dY) = A(~ , T j X, Y) +CM (LY, Y) .

where CM(X, Y) is a 1Y!tional function in X and Y with rational coefficients.

Sketch of the proof. We first prove that CM(X·, Y), which can be
defined as the difference

L1(~, ~;$t; aLY +bY, CLY +dY) - A(~, T; X, Y),

doesn't depend on ~ and T. This means that the differential dCTJl(~, Tj .Y, Y)
satisfy to the follawing praperty:

de,7"ß.(CT~d' ~;tt; aLY + bY, CLY + dY) - de,TA(~, T; LY, Y) = 0

One can deduce this equality from (16) llsing the expresions far derivatives
(19) and (20). So we have praved that CM(4'Y , Y) is a formal function in X
and Y with complex coefficients.

To prove the rationality of these caefficients we observe that A1 --t

CM (LY, Y) is a cocycle af SL 2 (Z) with coefficients at q[.tX", YJ]. So it is
enough to check the rationality far generators of SL2(Z):

(0-1)
S = 1 0 1

. (1 1)
T = 0 1 .

The calculation of cr(X·, Y) is a simple exercise like the proof of (8)

er (4'Y, Y) = 1 ( 1 _ 1 )
exp(Y) - 1 exp(.tY) - 1 exp(X- + Y) - 1 .

To calculate es (X-, Y) we lIse the following trick (in which we use that
SL2 (Z) interwine the action of Z2):

eS(LY, Y) = Jl(~, - ~j - Y, LY) - ß.(~ - I, T; LY, Y)

(use(9)) = eY (.A(~, -~j -Y, LY))
Y 1

(use(8)) -(e ß.(~, Tj 4'Y, Y) - (Y) )
exp .I - 1

= eY (ß.(~, Tj 4'Y, Y) +eS(LY, Y))
Y. 1

-(e Jl(~, T, LY, Y) - (Y) )
exp .I - 1

y () 1e cs )(, Y + (V)exp.t\. - 1
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We have deduced an equation for cs()(, Y) with an evident solution which
is a rational function series with rational coefficients:

cs(X, 1') = -( (l~) )( (~) )exp - 1 exp./ - 1
(21)

Now we discribe the relation bctween elliptic polylogarithms anel indefi­
nite Eichler-Shimura integrals of Eisenstein series.

Let r be a congruence subgroup and (;(T) a modular form of weight k
with respect to r. Then the vector-valued differential form G(T)( - YT +
./"()k-2dT is ["'-invariant. The indefinite Eichler-Shimura integral {I (T, .X, Y)
of G(T) is the indefinite integral of this form:

Let rand s be rational. Then the Eisenstein series e~'''(T) = ek(r+sT, T)
is a modular form of weight k for some congruence subgroup.

Proposition 3.3 DeJine tor rational t' and s the function 0/ three variables:

The n ::::r ," (T, ./Y, Y) is the rnodiJied ge nerating fu nction for the indeJin i te
Eichler-ShimHra integrals 0/ Eisensteinseries e~'" (T) :

=r," (T X" }I") = _1_ + ~(-I)jJ' (2rri)-U- 1) c~,,, .
..... ,./ 1 XY ~ , VJ+ll

J=l

(22)

d,[~'" = e~'''(T)(-YT+)()k-2dT.

The proof is a direct calcu lation of d,::::r,s (T, ./Y, Y) using (19), (20) and (17).

4 A Hodge sheaf

I explain in this section the Hodge-theoretical interpretation of previous
results very briefly cf [BL, 4].

The Hodge sheaf of relative homologies 1l = R 1p.(Q(I)) ofthe universal
elliptic curve

p: Cx II/(SL2(Z) [>( Z2) --+ H/SL 2(Z)

on H / S L 2 (Z) can be realised in the following manner. The upper-plane H
is the modular space of elliptic curves with a symplectic frame (A, B) in the
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first homology group (A is the dass of the loop ~ + 1" 0 ~ t ~ 1 and B is the
dass of the loop E+ tr, 0 ~ t ~ 1). The loeal system JiQ is the tautologieal
repesentation of S L2(Z) = trI (11/S L2(Z)):

( ab ) : ( B ) ---+ ( aB +bA ) = (a b) ( B ) .
c d A cE + dA c d A

This means that the Q-sheaf 1lQ on H/ S L2 (Z) can be construeted by iden­
tifying the veetors Band A i~ the fiber over ~;t~ with thc vcetors aB +bA
and cB +dA in the fiber over T respeetively:

BI (lTtS = (aB +bA)I" AI (lTtS = (cB + dA)IT"
CTt crt

The Hodge decomposition llc = p-l,O + pO,-1 of the fiber over the point T

is
p-l,O = (-Ar + B)c, pO,-1 = (-Ar + B)c.

and the Hodge filtration is

pO = p-I,O C p-l = Jie.

Denote by f~l = -AT + B the generator of pO (superseripts 0 mcans the
Hodge type and subseript -1 means the weight) and by r::l1= A the addi­
tional veetor at F-1 whieh formed with the prcvious one the frame of P-l.
These veetors depend holomorphically on T and

The symmetrie powers snJi of Ji are the loeal systems of homogeneolls
polynomials of degrees n in the variables A and B with the evident action
of S L2 (Z). The Hodge filtrat~on

pO C p-l C ... C p-n

is generated by veetors f:~ :

p-i (snJi) = (fo ... I-i) . I-i = (f-I )i( J'Ü )n-1.
-n 1 '-n C, -n -1 J -1

Now we deseribc the "logarithmie sheaf" Gon .-Y. The loeal system GQ is thc
spaee of formal power series in A and B with the evident action of SL2(Z)
and with the action of Z2 = ZA + zn by multiplieation by exponentials :

f(A, B) 1(~+m+nT,T) = exp(mA +nB)f(A, B)I(~,T)'
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The weight filtration coincides with the degree filtration on the space of
formal power series :

The evident action of E~oSi(1l) on G must be compatible with the Hodge
strllcture; so the Hodge filtration can be defined by giving a single vector
1H in pO with unitary constant term, and setting

Choose 1H =exp( -A~). It transforms in the following way:

A : 1H -+ exp A exp(-A(~+ 1)) = exp(-A~) = 1H;

B : 1H -+ exp B exp(-A(~+ r))

= exp( -Ar + B) exp( -A€) = exp(f~l)l11 E pOj

( a b
l

): l"H -+ exp( -(cB + dA)~d)
e ( er +

e(-Ar+B) fOI nO= exp( - d) exp(-A~) = exp( -e-=---d)lll E J' -.
er + er +

The elliptic polylogarithm P is thc extension of G(l) by H. The pull­
back of PQ to any simply connected variety is the (noncanonical) sum of
HQ and G(l) = G 0 Q(l) . So PQ is locally the Q-space generated by A,
Band f(A, B)!( 1 where f(A, B) is a formal power series, the weights of A
anel Bare -1 and the weight of K is -2 (!( denote the generator of the
Tate module Q(l)). The Hodge filtration on Pcle,T at thc point (~, r) is
generated by f:~lH[( E F-i - l (the shirt by -1 is the result of Tate's shift
on Q{l), in other words [( E F- I (Q(l))) and two vectors

exp{-A€) - 1
f~l = -Ar + B + A !( - A(€, T; B, A)( -AT + B)/-t E pO;

r~t = A - A(€, r; B, A)( -A)K E p-l.

Then the properties(8), (9) and (21) of the elliptic polylogarithms mean
that this Hodge filtration is correctly defined on the complexiHcation of some
local Q-system on .-'( .Equation (10) is equivaJent to the Griffiths transver­
sality condition \7 pj C Fj-l 0[21. The formula (22) implies the coincidence
of the restriction of P on torsion points and a Sllm of Eisenstein extentions.
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