ON THE MODULAR EMBEDDIBGS

FOR BASIC P-EXTENSIONS

by
Hidehisa NAGANUMA

Max-Plank-Institut	and
fir Mathematik	Department of Mathematics
Gottfried-Claren-Strasse 26	Faculty of Science
D-5300 Bonn 3	Kochi University

MPI / 90-12

On the modular embeddings for basic p-extensions

By HIDEHISA NAGANUMA

1. Introduction

Let p be an odd prime number. We call a field F the basic p-extension iff F is a cyclic extension of the rational number field Q of degree p and only p ramifies in F. By the class field theory, such a field F is uniquly determined as the subfield with the discriminant $p^{2(p-1)}$ of the cyclotomic field $Q(\zeta)$; where ζ is a primitive p^{2} th root of unity. Let F be the basic p-extension, O the ring of integers of F and g the galois group of F / Q. We fix a generator σ of g. As F is a totally real numer field, we consider Hilbert modular group $\mathrm{SL}_{2}(0)$ over F, which acts on the product $H_{1} \mathrm{P}$ of P copies of the upper half plane H_{1} by the standard way. Now, according to Hammond [1], we call a couple (Ξ, E) consisting of a homomorphism \equiv of $S L_{2}(0)$ into Siegel modular group $S p(2 p, z)$ of degree $2 p$ over
the ring Z of rational integers and a holomorphic map E of $H_{1}{ }^{p}$ into the generalized Siegel upper half space H_{p} of degree p, on which $\mathrm{Sp}(2 \mathrm{p}, \mathrm{z})$ acts by the fractional transformation, a modular embedding for F if it satisfies the following properties : for every element g of $\mathrm{SL}_{2}(0)$ and every point z of $H_{1}{ }^{p}$, (1) $\Xi(g)(E(z))=E(g(z))$; (2) $j(g, z)=J(E(g), E(z))$, where j and J are the standard automorphic factors of $S_{2}(0)$ and $S p(2 p, z)$, respectively(see the section 4).

In this paper we shall construct a modular embedding for the basic p-field F for each p explicitly. To obtain it, we put

$$
\begin{aligned}
& \omega=\operatorname{Tr} Q(\zeta) / F^{(\zeta),} \\
& \omega_{\mu}=\omega^{\sigma^{\mu-1}} \quad(\mu=1,2, \ldots, p), \\
& \Omega_{\mu}=\frac{1+\omega_{\mu}}{p} \quad(\mu=1,2, \cdots, p), \\
& a=\sum_{\mu=1}^{p} Z \Omega_{\mu},
\end{aligned}
$$

where $T_{K / k}$ denotes the trace of K over k for a field extension K / k. After studying the arithemetic of 0 in section 2 , we can show in section 3 that a is a fractional ideal of F and $T r_{F / Q}\left(\Omega_{\mu} \Omega_{V}\right)$
$=\delta_{\mu \nu}$, where

$$
\delta_{\mu v}= \begin{cases}1 & (\mu=v) \\ 0 & (\mu \neq v)\end{cases}
$$

Let us consider the regular representation ξ of F with respect to $\left\{\Omega_{1}, \ldots, \Omega_{p}\right\}$. Then the above facts show that every element of $\xi(0)$ is a symmetric matrix over Z. Thus we obtain that E is a homomorphism of $\mathrm{SL}_{2}(0)$ into $\mathrm{Sp}(2 \mathrm{p}, \mathrm{Z})$ if we put for each element g of $\mathrm{SI}_{2}(0)$

$$
\Xi(g)=\left(\begin{array}{ll}
\xi(\alpha) & \xi(\beta) \\
\xi(\gamma) & \xi(\delta)
\end{array}\right) \quad\left(g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right.
$$

Furthermore we can naturally get a map E of $H_{1}{ }^{\mathrm{P}}$ into H_{p} such that (E, E) becomes a modular embedding for F.

We should note the following three remarks. Firstly, our method to construct the above modular embedding which comes from a certain representation of 0 by rational integral symmetric matrices is analogy to Hammond's one given in [1]. Next, for $p=3$, our result is the special case of Oka's result [4] where he constructed a modular embedding for arbitrary cyclic cubic fields. Finally, our homomorphism Ξ is of full Hilbert modular group $\mathrm{SL}_{2}(0)$ into

Sp (2p,2): On the other hand for each totally real number field Shimura gave in [5] a homomorphism of certain congruence subgroups of Hilbert modular group such that it is compatible with a imbedding between the spaces and the standard automorphic factors.

Notations. We use the following notations in this paper, adding notations used in section 1 :

For each set $X,|X|$ means the cardinarity of X. For galois extension K / k, $\operatorname{Gal}(k / k)$ means galois group of k / k. For $a(\neq 0)$, $b \in z$, we define $\delta_{a \mid b}$ by

$$
\delta_{a \mid b}= \begin{cases}1 & \text { if } b \equiv 0 \text { (mod.a), } \\ 0 & \text { otherwise. }\end{cases}
$$

For a ring R with unity, R^{x} means the multiplicative group consisting of all invertible elements of R, and we denote by $M(n, R)$ the total matrix ring over R and 1_{n} the unity of $M(n, R)$; for each positive integer n.
2. Arithmetic of basic p-extension

Let p be an odd prime number and F the basic p-extension (see section 1). We denote by g the galois group of F / Q and fix a generator σ of g : Let ζ be a primitive p^{2} th root of unity and put

$$
L=Q(\zeta), \quad G=\operatorname{Gal}(L / Q) \text { and } H=\operatorname{Gal}(L / F) \text { : }
$$

Then we have a coset decomposition $G=\bigcup_{\mu=0}^{p-1} H \sigma^{\mu}$. We also denote by R and r the residue rings. $Z / p^{2} z$ and $z / p z$, respectively; and put

$$
N_{p}=\{1,2, \cdots, p-1\}, N_{p}^{+}=N_{p} \cup\{p\}
$$

Then we obtain the natural projection π of R to r and the canonical group homomorphism ψ of G into R^{x} by the class field theory. For each element μ of N_{p}^{+}we define a subset A_{μ} of R by

$$
A_{\mu}=\left\{\psi\left(h \sigma^{\mu-1}\right) \mid h \in H\right\}
$$

It is easily seen that $\left|A_{\mu}\right|=\left|\pi\left(A_{\mu}\right)\right|=p$ for each μ of N_{p}^{+}. For a positive integer m and $\mu_{1}, \cdots, \mu_{m} \in N_{p}^{+}$, we define three sets $X_{0}\left(\mu_{1}, \cdots, \mu_{m}\right), X_{1}\left(\mu_{1}, \cdots, \mu_{m}\right)$ and $Y^{(m)}$ by

$$
\begin{aligned}
& x_{0}\left(\mu_{1}, \cdots, \mu_{m}\right)=\left\{\left(x_{1}, \cdots, x_{m}\right) \mid x_{i} \in A_{\mu_{i}}(i=1, \cdots, m), \sum_{i=1}^{m} x_{i}^{p}=0\right\}, \\
& x_{1}\left(\mu_{1}, \cdots, \mu_{m}\right) \equiv\left\{\left(x_{1}, \cdots, x_{m}\right) \mid x_{i} \in A_{\mu_{i}}(i=1, \cdots, m), \sum_{i=1}^{m} x_{i} p_{\notin R^{x}}\right\}, \\
& Y(m)=\left\{\left(y_{1}, \cdots, y_{m}\right) \mid y_{i} \in r^{x}(i=1, \cdots, m), \sum_{i=1}^{m} y_{i}=0\right\}
\end{aligned}
$$

and put

$$
\begin{aligned}
& x_{j}\left(\mu_{1}, \cdots, \mu_{m}\right)=\left|x_{j}\left(\mu_{1}, \cdots, \mu_{m}\right)\right| \quad(j=0,1) \\
& y^{(m)}=\left|Y^{(m)}\right|
\end{aligned}
$$

We note that $x_{1}\left(\mu_{1}, \cdots, \mu_{m}\right)=y^{(m)}$.

Now we define ω as section 1 by

$$
\omega=T r_{L / F}(\zeta)
$$

and put

$$
\omega_{\mu}= \begin{cases}1 & (\mu=0) \\ { }_{\omega} \sigma^{\mu-1} & \left(\mu \in \mathbb{N}_{\mathrm{p}}^{+}\right)\end{cases}
$$

It is clear that ω_{μ} is an integer of F and $T r_{F / Q}\left(\omega_{\mu}\right)=0$ for each μ of N_{p}^{+}.

LEMmA 1 (1) For m elements μ_{1}, \cdots, μ_{m} of N_{p}^{+}, we have

$$
\operatorname{Tr}_{F / Q}\left(\prod_{i=1}^{m} \omega_{\mu_{i}}\right)=\frac{p^{2}}{p-1} x_{0}\left(\mu_{1}, \cdots, \mu_{m}\right)-\frac{p}{p-1} x_{1}\left(\mu_{1}, \cdots, \mu_{m}\right)
$$

(2) For $\mu, \nu \in \mathbb{N}_{\mathrm{p}}^{+}$, we have

$$
\cdot \operatorname{Tr}_{F / Q}\left(\omega_{\mu} \omega_{\nu}\right)=\mathrm{p}\left(\mathrm{p} \delta_{\mu \nu}-1\right) .
$$

(3) For $\lambda, \mu, \nu \in N_{p}^{+}$, we have

$$
\operatorname{Tr}_{F / Q}\left(\omega_{\lambda} \omega_{\mu} \omega_{\nu}\right)=2 \mathrm{p}\left(\bmod \cdot \mathrm{p}^{2}\right) .
$$

Proof. (1) Since $\omega_{\mu}=\Sigma_{\tau \in H} \zeta^{\sigma^{\mu-1} \tau}$, it is enough to notice following two facts (I),(II) ;
(I)

$$
\begin{array}{ll}
\operatorname{Tr}_{F / Q}(\alpha)=\frac{1}{p-1} \operatorname{Tr}_{L / Q}(\alpha) & (\alpha \in F) ; \\
T r_{L / Q}\left(\zeta^{a}\right)=p^{2} \delta_{p^{i} \mid a}-p \delta_{p \mid a}(a \in Z):
\end{array}
$$

(II)
(2) Since $Y^{(2)}=\left\{(s,-s) \mid s \in f^{x}\right\}$, we obtain that $X_{1}(\mu, v)=p-1$. On the other hand, we have
(\#)

$$
x_{0}(\mu, v)= \begin{cases}x_{1}(\mu, v) & (\mu=v) \\ \phi & (\mu \neq v)\end{cases}
$$

In fact, we put

$$
\left.x=\{(x, y)\} x, y \in R^{x}, x^{p}+y^{p}=0\right\} .
$$

Then we see that $x=\left\{(x,-x) \mid x \in R^{x}\right\}$. Since x and $-x$ are contained in the same A_{μ}, we obtain (\#). Thus we have that $x_{0}(\mu, v)=$ $\delta_{\mu \nu}(p-1)$. therfore by (1) we get (2). (3) Since $Y^{(3)}=$ $\left\{(s, t-s,-t) \mid s \in r^{x}, t \in \cdot r^{x}, s \neq t\right\}$, we have that $x_{p}(\lambda, u, v)=(p-1)(p-2)$.

Hence by (1)

$$
\operatorname{Tr}_{F / Q}\left(\omega_{\lambda} \omega_{\mu} \omega_{\nu}\right)=2 p-p^{2}+\frac{p^{2}}{p-1} x_{0}(\lambda, \mu, \nu) \text {. Since } \omega_{\lambda} \omega_{\mu} \omega_{\nu}
$$

is integer in $F, \quad \operatorname{Tr}_{F / \Omega}\left(u_{\lambda} \omega_{\mu} \omega_{\nu}\right) \in Z$. Therefore $\frac{p^{2}}{p-1} x_{0}(\lambda, \mu, \nu) \in Z$. This implies that $\frac{x_{0}(\lambda, \mu, \nu)}{\rho-1} \in Z$. Thus we have (3).

Remark 1. Lemma 2-(1) shows that $\operatorname{Tr}_{F / Q}\left(\omega_{\mu} \omega_{\nu}\right)$ are the same value for μ, ν of $N_{E}^{+}(\mu=\nu)$ though any two elements of $\left\{\omega_{\mu} \omega_{F} \mid \mu \in \dot{N}_{p}\right\}$ do not conjugate each other. On the other hand, it is not true that $\left|\left\{\operatorname{Tr}_{F / Q}\left(\omega_{\lambda} \omega_{\mu} \omega_{\nu}\right) \mid \lambda, \mu, \nu \in N_{p}^{+}(\lambda \neq \mu, \mu \neq \nu, \nu \neq \lambda)\right\}\right|=1$. In fact, we take $p=5$ and $\zeta=\exp (2 \pi i / 25)$. Then we know by calculation that $\omega_{1} \omega_{2} \omega_{3}$ $=-3+\omega_{1}-2 \omega_{2}-\omega_{3}$ and $\omega_{1} \omega_{2} \omega_{4}=2-\omega_{1}-\omega_{4}$, hence $\operatorname{Tr}{ }_{F / Q}\left(\omega_{1} \omega_{2} \omega_{3}\right)$ $=-15$ and $T r_{F / Q}\left(\omega_{1} \omega_{2} \omega_{4}\right)=10$.

We denote by o the ring of integers of F.

PROPOSITION 1. $\left\{1, \omega_{1}, \cdots, \omega_{p-1}\right\}$ is z-basis of 0.

Proof. Let 0 : be the z-module generated by $\left\{1, \omega_{1}, \cdots, \omega_{p-1}\right\}$. Then it is clear that $0^{\prime} \subset 0$. From Lemma 1-(2), it is easily shown that the discriminant of 0^{\prime} is equal to $p^{2(p-1)}$. On the other
hand, the discriminant of the basic p-extension F is equal to $p^{2(p-1)}$ as stated in section 1 . Therefore we obtain our assertion.

Remark 2. Since F is an abelian field, Proposition 1 is obtained from the main theorem of Leopoldt[2], that used gauss sums, by combining with the result of Odoni [3].

PROPOSITION 2. Put

$$
\omega_{\mu}^{*^{*}}= \begin{cases}\frac{1}{\because p} & (\mu=0) \\ \frac{\omega_{\mu}-\omega_{p}}{p^{2}} & \left(\mu \in N_{p}\right)\end{cases}
$$

(1) $\left\{\omega_{0}^{\star}, \omega_{1}^{\star}, \cdots, \omega_{\mathrm{p}-1}^{\star}\right\}$ is the dual basis of $\left\{1, \omega_{1}, \cdots, \omega_{\mathrm{p}-1}\right\}$ with respect to $\operatorname{Tr}_{F / Q}$.
(2) $\sum_{\mu=1}^{p-1} \omega_{\mu}^{*}=\frac{\sigma^{\omega} \mathrm{p}}{\mathrm{p}}$.

Proof. (1) It is enough to show that $\operatorname{Tr}_{F / Q}\left(\omega_{\mu}^{*} \omega_{\nu}\right)=\delta_{\mu \nu}$ for $\mu, \nu \in N_{p}$. By Lemma 1-(2),

$$
\begin{aligned}
& T r_{F / Q}\left(\omega_{\dot{\mu}}^{\star} \omega_{\nu}\right) \\
= & \frac{1}{p^{2}}\left\{T r_{F / Q}\left(\omega_{\mu} \omega_{\nu}\right)-T r_{F / Q}\left(\omega_{p} \omega_{\nu}\right)\right. \\
= & \frac{1}{p^{2}}\left\{p\left(p \delta_{\mu \nu}-1\right)-(-p)\right\}=\delta_{\mu \nu} .
\end{aligned}
$$

(2) It is obvious from the definition of ω_{μ}^{*}.
3. Ideal with self dual basis

In this section we shall give an explicit fractional ideal, which has a self dual basis, of each basic p-extension. We use the same notations as in section 2 . Now we define p elements Ω_{1}, \cdots, Ω_{p} of F by

$$
\Omega_{\mu}=\frac{1+\omega_{\mu}}{\mathrm{p}} \quad\left(\mu \in \mathrm{~N}_{\mathrm{p}}^{+}\right)
$$

We note that $\Omega_{\mu}{ }^{\sigma}=\Omega_{\mu+1}\left(\mu \in N_{p}\right), \Omega_{p}{ }^{\sigma}=\Omega_{1}$ and $\sum_{\mu=1}^{p} \Omega_{\mu}=1$.

LEMMA 2. $\left\{\Omega_{1}, \Omega_{2}, \cdots, \Omega_{p}\right\}$ is a self dual basis of F, or a basis of F satisfying

$$
\operatorname{Tr}_{F / Q}\left(\Omega_{\mu} \Omega_{\nu}\right)=\delta_{\mu \nu} \quad\left(\mu, \nu \in N_{p}^{+}\right)
$$

Proof. For $\mu, \nu \in N_{p}^{+}$, by Lemma 1-(2)

$$
\begin{aligned}
& \operatorname{Tr}_{F / Q}\left(\Omega_{\mu} \Omega_{\nu}\right) \\
= & \frac{1}{p^{2}} T r_{F / Q}\left(1+\omega_{\mu}+\omega_{\nu}+\omega_{\mu} \omega_{\nu}\right) \\
= & \frac{1}{p^{2}}\left\{p+p\left(p \delta_{\mu \nu}-1\right)\right\} \\
= & \delta_{\mu \nu} \cdot
\end{aligned}
$$

We denote by a the z-module generated by $\left\{\Omega_{1}, \cdots, \Omega_{p}\right\}$.
From Lemma 2 we see that a has rank p and $a \geqslant 1$.

PROPOSITION 3. a is a fractional ideal of F.

Proof. It is enough to show that

$$
\omega_{\lambda} \Omega_{\mu} \in a \quad\left(\lambda \in N_{p}, \mu \in N_{p}^{+}\right)
$$

By Proposition 2-(1) and Lemma 2 ,

$$
\begin{aligned}
\omega_{\lambda} \omega_{\mu} & =\sum_{\nu=0}^{p-1} \operatorname{Tr} F / Q\left(\omega_{\lambda} \omega_{\mu} \omega_{\nu}^{*}\right) \omega_{V} \\
& =\frac{1}{p} \operatorname{Tr}_{F / Q}\left(\omega_{\lambda} \omega_{\mu}\right)+\sum_{V=1}^{p-1} T r_{F / Q}\left(\omega_{\lambda} \omega_{\mu} \omega_{\nu}^{*}\right) \\
& =p \delta_{\lambda \mu}-1+p \sum_{\nu=1}^{p-1} T r_{F / Q}\left(\omega_{\lambda} \omega_{\mu} \omega_{\nu}^{*}\right) \Omega_{\nu}+\frac{1}{p} \operatorname{Tr}_{F / Q}\left(\omega_{\lambda} \omega_{\mu} \omega_{p}\right) .
\end{aligned}
$$

Hence by Proposition 2-(2)

$$
\begin{aligned}
\omega_{\lambda} \Omega_{\mu} & =\Omega_{\lambda}+\frac{\omega_{\lambda} \omega_{\mu}-1}{p} \\
& =\Omega_{\lambda}+\sum_{\nu=1}^{p-1} T r_{F / Q}\left(\omega_{\lambda} \omega_{\mu} \omega_{\nu}^{*}\right) \Omega_{\nu}+\delta_{\lambda \mu}+\frac{1}{p^{2}} \operatorname{Tr} r_{F / Q}\left(\omega_{\lambda} \omega_{\mu} \omega_{p}\right)-\frac{1}{p} .
\end{aligned}
$$

Since $\omega_{\lambda} \omega_{\mu} \in \circ$, we have $\operatorname{Tr}_{F / Q}{ }^{\left(\dot{\omega}_{\lambda} \omega_{\mu} \dot{\omega}_{\nu}^{*}\right) \in Z \text {. Finally by Lemma } 1-(3), ~(3)}$ we have that $\omega_{\lambda} \Omega_{\mu} \in a$.

COROLLARY, pa is the unique integral ideal of F with norm p

Proof. Since pa $=\underset{\mu=1}{\mathrm{p}} Z\left(1+\omega_{\mu}\right)$, pa is an integral ideal of F and

$$
(0: \mathrm{pa}) \quad=\operatorname{det}\left(\begin{array}{ccc}
1 & \\
1 & & \\
\vdots & -1_{\mathrm{p}-1} \\
1 & & \\
1 & -1 & -1
\end{array} \cdots-1 .\right.
$$

THEOREM 1. Let ξ the regular representation of F with respect to the basis $\left\{\Omega_{1}, \cdots, \Omega_{p}\right\}$. Then we have ;
(1) ξ is a Q-algebra homomorphism of F into $M(p, Q)$;
(2) $t_{\xi(\alpha)}=\xi(\alpha) \quad(\alpha \in F)$;
(3) $\xi(\alpha) \in M(p, z) \quad(\alpha \in \circ)$;
(4) $\xi\left(\alpha^{\sigma}\right)=C^{-1} \xi(\alpha) C \quad(\alpha \in F)$, where C is the cyclic matrix given by

$$
C=\left(\begin{array}{ll}
0 & 1_{p-1} \\
1 & 0
\end{array}\right)
$$

Proof. (1) It is obvious by the definition of ξ. (2) It
is an easy consequence from Lemma 2 since the regular representation with respect to the dual basis coincides the transposed of original regular representation. (3) It is clear by Proposition 3 . (4) It is implied directly from the following relation

$$
\left(\begin{array}{c}
\Omega_{1}^{\sigma} \\
\vdots \\
\vdots \\
\Omega_{p}
\end{array}\right)=\left(\begin{array}{c}
\Omega_{2} \\
\vdots \\
\dot{\Omega}_{p} \\
\Omega_{1}
\end{array}\right)=c\left(\begin{array}{c}
\Omega_{1} \\
\vdots \\
\vdots \\
\Omega_{p}
\end{array}\right)
$$

Example. We take $\zeta=\exp \left(2 i / p^{2}\right)$. (1) When $p=3$, we get

$$
\xi(1)=1_{3}, \quad \xi\left(\omega_{1}\right)=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & -1 & -1 \\
0 & -1 & 0
\end{array}\right), \quad \xi\left(\omega_{2}\right)=\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right)
$$

(2) When $p=5$, we get

$$
\begin{aligned}
& \xi(1)=1_{5}, \\
& \xi\left(\omega_{1}\right)=\left(\begin{array}{rrrrr}
1 & 2 & 1 & 0 & 0 \\
2 & -1 & -1 & 0 & -1 \\
1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & -1 & 0 & -1 & 1
\end{array}\right), \xi\left(\omega_{2}\right)=\left(\begin{array}{rrrrr}
1 & 0 & -1 & 0 & -1 \\
0 & 1 & 2 & 1 & 0 \\
-1 & 2 & -1 & -1 & 0 \\
0 & 1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \xi\left(\omega_{3}\right)=\left(\begin{array}{rrrrr}
0 & -1 & 0 & 0 & 0 \\
-1 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 2 & 1 \\
0 & -1 & 2 & -1 & -1 \\
0 & 0 & 1 & -1 & -1
\end{array}\right), \xi\left(\omega_{4}\right)=\left(\begin{array}{rrrrr}
-1 & 0 & 0 & 1 & -1 \\
0 & 0 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & -1 \\
1 & 0 & 0 & 1 & 2 \\
-1 & 0 & -1 & 2 & -1
\end{array}\right) .
\end{aligned}
$$

4. Modular embedding for basic p-extension

Let F be the basic p-extension and o the ring of integers
of F. In this section we consider a modular embedding for F (see section 1). We let ξ the regular representation of F defined in Theorem 1 and define a map E of $S L_{2}(F)$ into $M(2 p, Q)$ by

$$
\Xi(g)=\left(\begin{array}{ll}
\xi(\alpha) & \xi(\beta) \\
\xi(\gamma) & \xi(\delta)
\end{array}\right) \quad\left(g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right) .
$$

PROPOSITION 4. (1) Ξ is a group homomorphism of $\mathrm{SL}_{2}(F)$

into $S p(2 p, Q)$.
(2) $\equiv\left(\mathrm{SL}_{2}(0)\right) \subset \operatorname{Sp}(2 p, 2)$.

```
Proof. (1) From Theorem 1-(1),(2), it is clear. (2) From (1)
```

and Theorem 1-(3), it is obvious.

We put for an element α of F and an element g of $S L_{2}(F)$.

$$
\begin{aligned}
& \alpha^{(v)}=\alpha^{\sigma^{\nu-1}} \quad\left(\nu \in N_{p}^{+}\right), \\
& \xi_{1}(\alpha)=\operatorname{diag}\left(\alpha^{(1)}, \alpha^{(2)}, \ldots \alpha^{(p)}\right) \\
& E_{1}(g)=\left(\begin{array}{ll}
\xi_{1}(\alpha) & \xi_{1}(\beta) \\
\xi_{1}(\gamma) & \xi_{1}(\delta)
\end{array}\right) \quad\left(g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right) .
\end{aligned}
$$

Then there exists an orthogonal matrix V of degree p such that
$V \xi(\alpha) V^{-1}=\xi_{1}(\alpha)$ for any element α of. F :

LEMMA 3. $\quad \mathrm{CV}=\mathrm{VC}$:

Proof. From the definition, for any $\alpha \in F$

$$
\mathrm{v} \xi(\alpha) \mathrm{v}^{-1}=\xi_{1}(\alpha), \quad \mathrm{v} \xi\left(\alpha^{\sigma}\right) \mathrm{v}^{-1}=\xi_{1}\left(\alpha^{\sigma}\right)
$$

On the other hand, by Theorem 1-(4)

$$
\xi\left(\alpha^{\sigma}\right)=C^{-1} \xi(\alpha) C:
$$

By the same reason, $\xi_{1}\left(\alpha^{\sigma}\right)=C^{-1} \xi_{1}(\alpha)$. Therefore

$$
\operatorname{VCV}^{-1} C^{-1} \xi_{1}(\alpha)=\xi_{1}(\alpha) \operatorname{VCV}^{-1} C^{-1}
$$

for any $\alpha \in F$. This implies that $\operatorname{VCV}^{-1} C^{-1}=1_{p}$.

Now we let $\mathrm{SL}_{2}(\mathrm{~F})$ and $\mathrm{Sp}(2 \mathrm{p}, \mathrm{Q})$ act on $\mathrm{H}_{1} \mathrm{P}$ and H_{p}, respectively, by the standard way. Put

$$
\begin{aligned}
& E_{1}(z)=\operatorname{diag}\left(z_{1}, \cdots, z_{p}\right) \quad\left(z=\left(z_{1}, \cdots, z_{p}\right) \in H_{1}{ }^{P}\right), \\
& E_{V}(z)=\operatorname{VE}_{1}(z) V^{-1} .
\end{aligned}
$$

THEOREM 2. ($\left.\Xi, \mathrm{E}_{\mathrm{V}}\right)$ is a modular embedding for F .

Proof. We have to show the following three statements ;
(1) $\equiv(g)\left(E_{V}(z)\right)=E_{V}(g z)$ for $g \in S L_{2}(F)$ and $z \in H_{1}{ }^{p}$;
(2) $\Xi\left(\mathrm{SL}_{2}(0)\right) \subset \operatorname{Sp}(2 p, z)$; (3) for $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{SL}_{2}(0)$

$$
\Pi_{\nu=1}^{p}\left(\gamma^{(\nu)} z_{\nu}+\delta^{(\nu)}\right)=\operatorname{det}\left(\xi(\gamma) E_{V}(z)+\xi(\delta)\right) \because
$$

(1) Put $\Lambda=\left(\begin{array}{cc}V & 0 \\ 0 & V\end{array}\right)$. Then we see that
(Δ)

$$
\Xi(g)=v \Xi_{1}(g) v^{-1}
$$

This implies our assertion. (2) This is already shown in Proposition 4.
(3) It is also clear by (Δ).

We define the standard automorphic factors j of $S L_{2}(0)$ on $H_{1}{ }^{p}$ and J of $\mathrm{Sp}(2 \mathrm{p}, \mathrm{z})$ on H_{p} by

$$
\begin{aligned}
& j(g, z)=\nabla_{v=1}^{p}\left(\gamma^{(\nu)} z_{v}+\delta^{(\nu)}\right) \\
& \left(g=\left(\begin{array}{ll}
a & \beta \\
\gamma & \delta
\end{array}\right) \in S L_{2}(0), z=\left(z_{1}, \cdots, z_{p}\right) \in H_{1}{ }^{p}\right) \text {, } \\
& J(\Gamma, Z)=\operatorname{det}(C Z+D) \\
& \left(\Gamma=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}(2 p, z), z \in H_{p}\right) \text {, }
\end{aligned}
$$

respectively. We call a meromorphic function f on H_{p} (resp. $H_{1}{ }^{p}$) a standard Siege (resp. Hilbert) modular form of weight k if $f(g Z)=J(g, Z)^{k_{f}(Z)}$ (resp. $\quad: f(g Z)=j(g, z)^{k_{f}(z)}$, for all elements $g \in \operatorname{Sp}(2 p, Z)$ (resp. $S L_{2}(0)$) and $Z \in H_{p}$ (resp. $H_{1}{ }^{\mathrm{P}}$) Now for each $z=\left(z_{1}, \cdots, z_{p}\right) \in H_{1}{ }^{p}$, we put

$$
z^{\sigma}=\left(z_{2}, z_{3}, \cdots, z_{p}, z_{1}\right) .
$$

Then we have that $E_{1}\left(z^{\sigma}\right)=C E_{1}(z) C^{-1}$, hence $E_{V}\left(z^{\sigma}\right)=C E_{V}(z) C^{-1}$ by Lemma 3. A standard Hilbert modular form f of weight k over F is called symmetric if $f\left(z^{\sigma}\right)=f(z)$.

THEOREM 3. Let f be a standard Siege form of weight k with respect to $\mathrm{Sp}(2 \mathrm{p}, 2)$ on H_{p}. We put

$$
\tilde{f}(z)=f\left(E_{V}(z)\right) \quad\left(z \in H_{1}^{p}\right)
$$

Then \tilde{f} is a symmetric standard Hilbert modular form of weight k over F.

Proof. It is clear by Theorem 2 that \tilde{f} is a standard Hilbert modular form of weight k over F.

$$
\begin{aligned}
\tilde{f}\left(z^{\sigma}\right) & =f\left(E_{V}\left(z^{\sigma}\right)\right) \\
& =f\left(C E_{V}(z) C^{-1}\right) \\
& =f\left(\left(\begin{array}{cc}
C & 0 \\
0 & C^{-1}
\end{array}\right) E_{V}(z)\right) \\
& =f\left(E_{V}(z)\right) \\
& =\tilde{f}(z) .
\end{aligned}
$$

1. W.F.HAMMOND, The modular groups of Hilbert and Siegel, Amer. J. Math. $88(1966), 497-516$.
2. H.-W.LEOPOLDT; Uber die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J.Reine Angew. Math. 201 (1959), 119-149.
3. R.ODONI, On Gauss sums $\left(\bmod p^{n}\right), n \geq 2$, Bull.London Math. Soc. 5 (1973), 325-327.
4. Y.OKA, On the modular imbeddings for cyclic cubic fields, Mem. Fac.Sci.Kochi Univ.(Math.) 10(1989), 1-7.
5. G.SHIMURA, On the derivatives of teta functions and modular forms, Duke Math.J. 44 (1977), 365-387.

Department of Mathematics	and
Faculty of Science	Max-Plank-Institut
Kochi University	für Mathematik
Akebono-cho $2-5-1$	Gottfried-Claren-Strasse 26
Kochi 780 Japan	D-5300 Bonn 3

