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On the modular embeddings for basic p-extensions

By HIDEHISA NAGANUMA

1. Introduction

Let p be an odd prime number. We call a field F the basic
p-extension ¥f F is a cyclic extension of the rational number
field Q of degree é and only p ramifies-in Fﬂ By the class
field theory, such a field F 1is uniquly determined as the subfield

2(p-1)

with the discriminant p of the cyclotomic field Qf(z) ,

where ¢ 1is a primitive p2th root of unity; Let F be the bas;c
p-extension, o ;he ring qf integemof F and g the galois
group of F/Q. We fix a generator ¢ - of g. A& F is a totally
real numer field, we consider Hilbert modular group SLz(o) over
F, which acts on the product H1p of p copies of the upper half
plane H, by the standard way. Now, according to Hammond [ 1 ],

we call a couple ( Z, E} consisting of a homomorphism = of

SLz(o} into Siegel modular group Sp(2p,2) of degree 2p over



the ring 2 of rational integers and a holomorphic map E of

H

19 into the generalized Siegel upper half space HP of degree p,

on which Sp(2p,Z) acts by the fractional transformation, a modular
embedding for F if it satisfigs the following propérties : for
every element g of SLz(o) and every point z of H1p,
(1Y =(g)(E(2)) = E(g(2)); (2) J(g,2z) = J(E{(g),E(2)), where j
and J are the standard automorphic factors of SLz(o) and Sp(2p,2),
respectively(see the section 4).

In this paper we sha;l construct a modular embedding for the

basic p-field F for each p explicitly. To obtain it, we put

© = Ty /e le)

W = w I(U=1,2:"‘:P)r

=3 P
a Zu,___.1ZQu ’

where TrK/k denotes the trace of K over k for a field extension
K/k. After studying the arithemetic of o in section 2, we can show

in section 3 that a is a fractional ideal of F and TrF/Q(QuQv)



]
On

wv where

_ 1. (u=v) ;
S - {0 (u=v) .

Let us consider the regular representation £ of F with respect

to { Qq,+°+, Q_ }. Then the above facts show that every element of

D
£(o) 1is a symmetric matrix over 2. Thus we obtain that Z 1is a

homomorphism of SLz(o) into Sp(2p,2) if we put for each element

g of SLz(o)

Furthermoreé we can naturally get a map E of H1p into Hp such
that ( =, E) becomes a modular embeddiné for F.

We should note the following three remarks. Firstly, our method
to construct the above modular embedding which comes from a certain
representation of o by rational integral symmefric matrices is
analogy to Hammond's one given in [ 1 ]. Next, for p=3, our result
is the special case of Oka's result [ 4 ] where he constructed a

modular embedding for arbitrary cyclic cubic fields. Finally, our

homomorphism = is of full Hilbert modular group SLz(o) into



. Sp(2p,2). On the other hand for each totally real number field
Shimura gave in [ 5 ] a hémomorphism of certain congruence subgroups of
Hilbert modular group such that it is compatible with a imbedding
between the spaces and the standard automorphic factors.

Notations. We use the following notations in this paper,
adding notations used in section 1 :
For each set X , |X| means the cardinarity of X . For galois
extension K/k , Gal(K/k) means galois group of K/k . For a(=0),

b € 2 , we define Galb by

= g 1 if bz=0 (mod.a),
0 otherwise.

For a ring R with unity, R° means the multiplicative group
consisting of all invertible elements of R , and we denote by
M(n,R) the total matrix ring over R and 1n the unity of M(n,R);

for each positive integer n .



2. Arithemetic of basic p~extension

Let p be an odd prime number and F._the bas;c p-extension
( see section 1 ). We denote by g the galois group of F/Q and
fix a generator o of g . Let ¢ be a primitive p2 th root of
unity and put

L = Q(zg), G_= Gal(L/Q) and H = Gal(L/F)

Then we have a coset decomposition G = Ug;s Ho". We also denote
by R and r the residue rings . Z/pzz and 2Z/pZ , respectively,

and put

N = 1,2, ,p~1 ' N, .
b { f P } b Np U {p}

Then we obtain the natural projection 7 of R to r and the
canonical group homomorphism ¢ of G 1into R” by the class
field theory. For each element 1 of N; we define a subset Au
of R by

A, = (y(he"™") | hen }.

It is easily seen that | A | = | n( A ) | = p for each u of

u

N; . For a positive integer m and Myrese, € N; , we define

(m)

three sets XO(“1"'°'“m)' X1(u1,---,um) and Y by



S
il

{(x1,---,xm)|xi€Au (i=1,+++,m}, 2121X-p =0 1},

xo(u1,°",u N i

. . m X
X (uypeee o) 2 {lxg,eeexg) [xg€A (1=1,000,m), £, 0%, P¢ RY 1,

i
v ™ =y lygert st e my, 5Ty, = 000
and put
Xyqeresoupg) = [ Xy goeeepug) | (3=0,1),
Y(m) = | Y(m)|.
We note that x1(u1,---,um) = y(m)'. . .

Now we. define” w as section 1 by
Q = Try g (%)

and put

1 {(u=0),
wp = 0u—1 +
EN ).
w {u p)

It is clear that W, is an integer of F and TrF/ (wu) = 0 for

Q

each u of N;-.

LEMMA 1 (1) For m elements P AA T of N; , we have

2
m = —L ® e - —& LN B ]
Trp/l Mizqoy, ) = pogXo My e o) = g% (g oup)

i



(2) For u,v € N; , we have

. Tr ( W, ) = pl p6uv— 1) .

F/Q v

(3) For i,u,v € N; , we have

‘ 2
TrF/Q( PUNCN ) = 2p ( mod.p”).

u=1
Proof. (1) Since w, = ZTEH'CG T, it is enough to notice

following two facts (I), (II) ;.

- 1 .
(1) TrF/Q(a) ey TrL/Q(a) (e€F) ;
a = 25 - .
(II) TI'L/Q( g ) P 6p2|a pép]a (a€Z)
(2) Since Y(2)= {(s,-s)] s € r*}, we obtain that x1(u,v) = p-1

On the other hand, we have

. X.‘ (L!,V) (U=V)r
(#) Xo(u,v)-= :
¢ (u=v) .

In fact, we put
X = {(x,v)] x,y € R, xP+yP=0 }.
Then we see that X = {(x,-x)| x€R*}. Since x and -x are contained

in the same Au , we obtain (#). Thus we have that xo(u,v)

6uv(p_1)' thexrfore by (1) we get (2). {3) Since Y(3) =

{(s,t-s,-t)| s € £°, t-€-r", s¥t}, we have that xq (Apu,v)=(p=1) (p=2).



Hence by (1)

2
: _ _ A2 D .
TrF/Q( wkmuwv) = 2p - p°~ + E:T—xo(h,u,v) . Since wkwuwv
inl
1s~1nteger in F , TrF/Q( wkwuwv ) € Z . Therefore EngO(A,u,v) € Z.
. . . xo(?\,u:\))
This implies that - 1 € Z . Thus we have (3).
Remark 1. Lemma 2-(1) shows that TrF/Q( muwv ) are the same

value for u,v of N; (u=v) though any two elements of ({ wuwF| uENp}

do not conjugate each other. On the other hand, it is not true that

| { TrF/Q(wAwugv)| A,u,v € N; (A#u,usv,v#)) }| = 1 . In fact, we take

p =5 and ¢ =exp(27i/25). Then we know by calculation that Wy g

-3 + w, = 2m2 —wy and Wil W, = 2 -w, —Wy hence TrF/Q(w1w2w3)
= =15 and TrF/Q(w1w2m4) = 10

We denote by o the ring of integers of F .

PROPOSITION 1. { 1,m1,---,wp_1} is Z-basis of o .

Proof. Let o' be the Z-module generated by {1,w;,***,w _,}.

p~1

Then it is clear that o' « o . From Lemma 1-(2), it is easily shown

p2(p-1) . On the other

that the discriminant of o¢' 1s equal to



hand, the discriminant of the basic p-extension F 1is equal to p2(p-1)

as stated in section 1 . Therefore we obtain our assertion.

Remark 2., Since F 1is an abelian field, Proposition 1 is
obtained from the main theorem of Leopoldt[2], that used gauss sums,

by combining with the result of Odoni [3].

PROPOSITION 2. Put

1 -
| s (pu=0),
w** =4
H “u Yp (wen, ).
2
P
(1) {wa,wq,-?-,w;_1} is the dual basis of {1,w1,-~-,wp_1} with

respect to TrF/Q .

Proof. (1) It is enough to show that Tr (w w ) = §

F/Q v for

u,v € Np . By Lemma 1-(2),

Trp/qlofey)
_ 1
= ? {TrF/Q(wuwv) - F/Q(w w,, )
S - - (= _
= p2 {p(pﬁuv 1) {(-p)} = Guv .

(2) It is obvious from the definition of w; .



3. Ideal with self dual basis

In this section we shall give an explicit fractional ideal,
which has a self dual basis,-of each basic p-extension. We use the
same notations as in section 2. Now we define p elements 91,

cee, Q of F b
P Yy

1 + mp
Q = —e—— +
. € N7 )
U P (u D
We note that 0 % = @ (uen ), 2.9 =9, and r©P.a =1
U H+1 P P 1 u=1"u

LEMMA 2. {91,92,---,9 } is a self dual basis of F , or a

basis of F satisfying

|
[+

+
TrF/Q(QuQv) { u,v € Np ).

Hv

Proof. For u,v € N; , by Lemma 1-(2)

= 2. Tr (1 + w + w, + ww)
p2 F/Q u v ThatV!
< -
—Y {p + p(péuv 11}
p
= 61,[\)

We denote by a the Z-module generated by {91,---,Qp}.

From Lemma 2 we see that a has rank p and a 3 1.

- 10 -



PROPOSITION 3. a is a fractional ideal of F

Proof. It is enough to show that

: +
wxﬂu € a ( A € Np' U € Np ) .
By Proposition 2-(1) and Lemma 2 ,
= b1
Wy, = - TrF/Q(w O )w
= —l—Tr (wyw ) + Zp 1Tr (wyw wd *)
p TF/Q TATw F/Q 'A% n
- - P1
= palu 1 +p 5] TrF/Q(w w w* )Q + F/Q(wlw w_).
Hence by Proposition 2-(2)
Wwyw, = 1
ATu
w}\Qu=QA+——p—
- p 1 1 _ 1
Ql + Z F/Q(wxw W )Q + Gku + F/Q(wkw w ) o .

Since wyw, € o , we have TrF/Q(wAwu V) € Z . Finally by Lemma 1-(3)})

we have that mXQ € a .
U
COROLLARY. pa 1s the unique integral ideal of F with
norm p .

Proof. Since pa = @UE1Z(1+wu), pa 1is an integral ideal

of F and

- 11 -



(o:pa) det

_ = 8 e =i aa
o)
1
—
i
o)

THEOREM 1. Let § the regular representation of F with

respect to the basis {Q,,+++,2_} . Then we have ;

1’ P

(1) & 1is a Q-algebra homomorphism of F into M(p,Q):

(2) Fg(a) = £(a) (o €F) ;

(3) &£(a) € M(p,2) (a € 0) ;

() £(% =c 'g(a)c (€ F) , where C is the cyclic matrix
given by

Proof. (1) It is obvious by the definition of § . (2) It
is an easy consequence from Lemma 2 since the reqular representation
with respect to the dual basis coincides the transposed of original
regular representation. (3) It i1s clear by Proposition 3 . (4) It

is implied directly from the following relation

N

el

)
—-a
]
)
N
/
1]
s}
—_—
9

) esee s
) ssee ®



3, we get

p
) E(mz) =(_

exp(2 i/pz) (1) When

g

We take

Example.

- T

O — —

QOO

:
-1

1
1
0 -1

(

£lw,) =

13 ’

£{1)

, we get

=5

(2) When p

£(1) = 15 ’

1]
o
3
e
OO
| I
OO0 0
I
—r—— Q0O
[
N—v QO+
11 1
T~ N— OO
H
=
3
s

- 13 -



4, Mo@ular embedding for basic p-extension

Let F be the basic p-extension and o the ring of integers
of F . In this section we consider a modular embedding for F ( see
section 1 ). We let £ the regular representation of F defined in

Theorem 1 and define a map = of SL,(F) into M(2p,Q) by

= _ £(a) E(B) _ o B
29 = (%) £(8) ) (g=(y5))
PROPOSITION 4. (1) £ 1is a group homomorphism of SLZ(F)
into Sp(2p,Q)
(2) E(SLZ(O)) < Sp(2p,2)
Proof. (1) From Theorem 1-(1),(2), it is clear. (2) From (1)

and Theorem 1-(3), it is obvious.

We put for an element o of F and an element g of SLZ(F).

v=1
'“(“l = of (v eN' ),
P
£, (@) = diaga!M,a®) oo o (P
: £ () &, (8) -

Then there exists an orthogonal matrix V of degree p such that

- 14 -



vE () V™1 = g1(a) for any element a of. F :
LEMMA 3. Cv = VC 7

Proof. From the definition, for any o € F
VE(@) VT = £ (a) , ve (v = g, (a9

On the other hand, by Theorem 1-(4)

£(a®) = clg(a)C

By the same reason, 51(a°) C—1£1(a) . Therefore

VCV‘IC_1E1(a) 11

1]

51(a)VCV-

1A~=1

for any o € F. This implies-that VCV 'C

Now we let SLZ(F) and sSp{(2p,Q) act on H1p and Hp ’
respectively, by the standard way. Put

E1 (Z) = diag(21,"',zp) (Z'—"(Z.],"',Zp)eH.]p),

Eg(z) = VE (2)V ' .

THEOREM 2. ( &, Ey ) is a modular embedding for F .

Proof. We have to show the following three statements ;

- 15 -



(1) E(g)(EV(z)) = Ev(gz) for g € SL2(F) and z € H1p ;
(2) Z(SL,(0)) = Sp(2p,2);(3) for g = ( $ g ) € SL, (o)
M2 Mz, + M) = der(z(E () + (60 -
vV 0 |

(1) Put A = 0V ) . Then we see that

() E(g) = VE (g)v ' .
This implies our assertion. (2) This is already shown in Proposition 4.

(3) It is also clear by (a).

We define the standard automorphic factors Jj of- SL2(0) on

H.lp and J of Sp{(2p,2Z) on Hp by

~_j__(g,z_) = H‘\)g‘] (.Y(\))Zv' + 6(\))\
(.g = g g ) € SLy(0), z = (z1,.4-,zp) € H1p ),
J(F,Z2) = det (CZ+D)

_ AB
(r=(gp) esp2p2), 28, ),
respectively. We call a meromorphic function £ on Hp (resp.
H1p } a standard Siegel (resp. Hilbert) modular form of weight k
. k . . k
if £(g2) = J(g,z) £(2) (resp. “f(gz) = jlg,z)" f(2) ) for all

elements g € Sp(2p,2) (resp. SLz(o) ) and 2 € Hp (resp. H1P‘)

Now for each =z = (21,---,2 ) € H P ;, we put

P 1

- 16 -



N
1

(zzrz3r'°"zprz1) .

Then we have that E1(zg) L

CE, (z)C
by Lemma 3 . A standard Hilbert modular form £f of weight k

over F 1is called symmetric if f(zc) = £(z)

THEOREM 3. Let f£ be a standard Siegel form of weight k

with respect to Sp(2p,2) on H, . We put T

L f(z) = £(Ey(2)) (zemP).

Then f is a symmetric standard Hilbert modular form of weight

k over F

-~

Proof. It is clear by Theorem 2 that f is a standard

Hilbert modular form of weight k over F

£(z°)

£(E,(z°))

1

= f(CEV(ZlC )

= £((§ 2-1 ), (2))

= f(EV(z))

= £(z)

- 17 -

, hence Ev(zc) = CEV(z)C_

1
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