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Plurisubharmonic functions and the Kempf-Ness theorem

HAzad and J.J. Loeb

Let G be a complex Lie group and 11 a complex homogeneous space of G. A general

problem in complex analysis is to give a description of plurisubharmonic functions invariant

under a real subgroup K of G and of holomorphy hulls of j( - invariant domains in 11 :
see, e.g. [18,10,12]. The present paper is a contribution to this problem which is inspired by

the Kempf-Ness theorem [8]. They show that if G is a complex reductive group operating
linearlyon a vector space V, Kamaximal eompact subgroup of G and N the square of

the nonn function obtained from a !<- invariant Hermitian metrie on V , then a G- orbit

n is closed if and only if the restrietion of N to n has a critical point. Equivalently,

the restrietion of N to n is an exhaustion function for n if and only if it has a critical

point. Now the function N is stricHy plurisubharmonie and remains so on restriction to any

complex submanifold of V. The following result can therefore be considered as an "intrinsic"

generalization of the Kempf-Ness c10sedness criterion.

Theorem 1. Let G be a complex reductive group, !( a maximal compact suhgroup of G and

H a closed complex subgroup of G. !I r.p is a K-invariant strictly plurisubharmonic function
on G/ H with a critical point then H is reductive and r.p is an exhaustion function for G/ H .

Dur next result is related to results of D. Luna [13] and has similar applications to orbits of

reductive groups operating on Stein manifolds.

Theorem 2. Let L be a closed subgroup (not necessarily connected) 01 a compact connected

group !( anti f an L-invariant function on K C / LC . The function f has xo = eLc as

a critical point if and only if its restriction to N(LC
)/LC has Xo as a critical point. In

particular if N(LC ) / LC is finite, then any L-invariant function on j(c / LC has'a critical

point

In [2] it was shown that if L is a closed subgroup of a compact connected group ]( containing

a maximal torus of I< then the holomorphy hull of any J<- invariant domain in I<c /LC

contains K / L. The main group theoretic ingredient was the characterization of ]</ L as the

unique totally real K - orbit in !(c/ LC • Here we give in § 3 adescription of a11 totally

real K - orbits in !<c/ LC , L being any closed subgroup of the compact group !( , and

show that the number of such orbits is finite if and only if N ( (LC)01/(LC)0 is finite, and

in this case there is only one such orbit. This implies as in [2] that the holomorphy hull of

any K - invariant domain in ](c/ LC contains 1</L whenever N ( (LC) 0) /(LC) 0 is finite.
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We give several applications in § 4 of our main results, mostly to orbits of reductive groups

operating on Stein manifolds. In [16] R. Richardson shows the existence of a closed orbit

in the closure of any orbit of a reductive group aeting on aStein manifold. In (4.2) we

give a short proof of this result of Riehardson. Corollary 4.1, in the algebraie category is

due to Kempf and Ness [8]; corollaries (4.3) and (4.4) in the algebraic category are due to

D. Luna [13]. A special case of theorem 1, namely when G is semisimple and 1/ is the

identity group, is stated without proof in Guillimin and Stemberg [3]. Before concluding this
introduction we want to say a few words about the proof of theorem 1. Hs proof depends

on a convexity lemma, namely lemma 1.2, and a theorem of G.D. Mostow [14]. Aversion

of this convexity lemma occurs first in M. Lasalle [10], later, in a more general sense in

[12] and finally in [2] it occurs in more or less the same form as it is stated here. We have

tried to give here a (hopefully) clearer version. A generalization of the Kempf-Ness theory

in a different direction has been obtained by Richardson and Slodowy [17]. We take this

opportunity to point out that part of the main result of [2] can also be obtained by using a

suitable moment map and applying Kinvan [9, lemma 7.2]: see remarks at the end of seetion
1. We owe this observation essentially to P. Slodowy.

The reader is referred to [7, 11] for basic facts on piurisubhannonic functions. The notation

is standard. In particular, if H is a subgroup of a group G then NG(H) and Zo(1/) denote
the normalizer and centralizer of H in G. Also HO denotes the connected component of

H .and x y the conjugate xyx-1 .

1. Prelinlinary lemmas

We remind the reader that the Levi·fonn of a differentiable function r.p defined on a complex

manifold M is the Hermitian form associated to the 2-form iaar.p. Denoting the Levi·form

(
- ) 10of r.p by Lr.p we have: (Lr.p)p(u, v) = 88r.p (p)(u, v), p E M, u, v E Tp' (M) .

If the Levi·form of r.p is positive definite, we say that <p is strictly plurisubharmonic.

Lemma 1.1. I[ f : Rn -4 R is a differentible function whose restriction to each Une through

the origin is convex anti has the origin as its only critical point, then lim f( x) = +00 .
Ilxll-co

Proof: Fix v E Rn, V 'I 0 . Let h(t) = f(tv)(t E R). Hy assumptions h"(t) ~ 0 and

h'(t) = 0 onlyal t = O. Therefore h'(t) > 0 for t > O. Now h(t) = (l h'(X)dX) + h(l)

so h(t) 2: h' (1)(t - 1) + h(1) if t > 1. From this inequality we see that (*) f( tv) ~

(V7 f)(v).v(t - 1) + f(v), for all v f; 0 and t > 1. Now 0 < h'(l) = (V7 f)(v).v l so if

m is the minimum value of (V7f)(v).v on the unit sphere in Rn then m > O. Let k be

the minimum value of f on the unit sphere in Rn. From the inequality (*) we therefore

have, for ~ E Rn with 11 ~ 11> 1

f(~) = /(11 ~ 11 ~/ 11 ~ 11) ~ m(11 ~ 11 -1) + k.
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Therefore lim f(~) = +00 .
lIell-oo

Lemma 1.2 Let G, ](, Hand 4J be as in the statement 0/ theorem 1. Assume that 4J has a

criticalpoint at ~o = eH. Fix v E Lie(!(). Ifthefunction <j>((exp itv).~o) (t E R) has a
critical point at to =f. 0 then the 1-parameter suhgroup {exp itv} tER is contained in !l.

Proof: Consider the function f (z) = 4J( (exp i zv ).~o) (z E C). Tbe function f is subhar·

monie and by K - invariance of ,p it depends only on the real part Re( z) of z. Since

V 2f ~ 0 we see that if g(t) = ,p((exp itv).~o) (t E R) then g"(t) ~ O. By assumption

g'(0) = 0 so 9 achieves its absolute minimum at zero. Assurne that for same to =f. 0 we

have g'( io) = O. By convexity of 9 the function 9 is constant on the segment joining 0

and to. Assuming to > 0, the complex curve ,(z) = exp izv. ~o, 0 ~ Re( z) ~ to ,

therefore lies on a level set of the function 4J. Denoting the Levi form of 4J at a point

p by Lp(<j» we have, for 0 < Rez < to, L..,{t)("(Z),,'(z)) = O. Since 4J is strict1y

pIurisubharmonic this forces " (z) = 0 for 0 < Re(z) < t0, hence by continuity ,( z) is

constant on 0 ~ Re( z) ~ to. In particular, for sufficiently small t ER, eitv .~o = ~o, so

the l-parameter subgroup {eitv } tER eH.

Remark As the proof shows, this lemma is valid for any complex Lie group G and a real form

K thereof relative to which G faetorlzes as G = K P, where P = {exp iX : X E Lie(K)}.

Lemma 1.3 11 cp is areal valued differentiable function defined on a complex manilold M

and N is areal submanilold 01 M contained in the critical set 01 cp, then N is totally

isotropie relative to the form iaacp.

Proof: Let w = i8ßcp and j : N -+ M the inc1usion map. We have to show that
~ - ~ 8 aj*w = O. Now w = da-cp, where d = 8 + a and a- = - /2i. Moreover, for

p E M aod v E Tp(M) we have (~cp)p(v) = (dcp)p(Jv) , where J is the complex

structure tensor of M. Hence j* (cf-cp) = 0 as N is a critical submanifold for cp. Therefore

j*w = d(j+E-cp) = 0, which is what had to be proved.

Corollary 1.4 11 11 is a camplex homogeneous space ofa Lie group G and cp is a function on

n invariant under a subgroup !( 01 G whose Levi-Iorm iaacp is non-degenerate, then the

K-orbits 01 critical points 0/ cp are 01 dimension ~ dirn (0) /; In particular, il n = G/ H ,

with both G and H complex, !( is areal lonn 01 G and ~o = eH is a critical point of ep
then dirn (K.~o) = (dirn 0)/2 and !( n H is a real form of H .

Proof: The first statement follows from (1.3) taking into account the non-degeneracy of iaaep.
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If G and H are eomplex and !( is a real form of G then clearly 2 dirn (](/!( n H) 2::
dirn (G / H), whieh eombined with the first statement implies the remaining statements.

Remark. Dur initial proof of theorem 1 used a lemma of Harvey and Wells [4], which
we have replaeed by lemma 1.3, and the main result of [2]. However, part of this result
is implieit in Kirwan [9] and ean be obtained as follows. The moment map for an exaet
form w = d7] , .,., being invariant under a group ]( , is the eontraetion of 7] with the
Killing veetor fields indueed by !( [1, Th. 4.2.10]. If M is a eomplex manifold on whieh
a eomplex reduetive group G operates, !( is a maximal eompaet subgroup of G and <p
is a !(- invariant striet1y plurisubharmonie funetion on M , then d~<p is a ]( - invariant
Kählerian form. Sinee the eritical set of r.p is eontained in p.-1(0) , where p. is the moment
map for w = dry, .,., = ifep , the result follows from [9, lemma 7.2].

2. Proofs of ßlain resuIts

The ingredients of proof of Theorem 1 are the lemmas of § 1 aud the following theorem
of G.D. Mostow [14].

Theorem (Mostow) Let L be a closed subgroup of a compact connected group !(. There
exists anL-invariant subspace m of Lie(]() such that the mapping o[ ]( x L im into ](C / LC

defined by (k x LV) 1--4 k. exp (v ).LC is an isomorphism of topological spaces.

Proof of Theorem 1 Step (i). H is a reductive subgroup of G : Let ~o = eH and
a~o( a E G) be a eritical point of <p. The point ~o is then a critical point of <p 0 La, where
La is left translation by a. The funetion <poLa is strictly plurisubharmonie and it is invariant
under a-1!(a. Henee without lass of generality we may assurne that <0 is a eritical point of
<p. By (1.4) we know that ](nH is a real form of Hand therefore the eonneeted eomponent
HO of H is reduetive. As the natural map 1r : G/ H -+ G/ HO is a local isomorphism, the
funetion ep 0 11'" is also a strictly plurisubharmonie. It is also ](- invariant and H/ HO is in its
critical set. By [1] or [9, lemma 7.2] the critical set is a single /(- orbit, so /( n H operates
transitivelyon H/ HO. Therefore H / HO has representatives in /( and so H / HO is finite.
This means that JI is reduetuve, as it is the complexifieation of the eompaet group ]( n H .

Step (ii) ep is an exhaustion function: By Step (i) we are in a position to apply Mostow's
theorem. So let L = ]( n Hand m C Lie(]<) be as in the statement of Mostow's
theorem. Fix v E m, v f: O. As in (1.2) the function 9v(t) = 4>(exp itv.~o) (t E R) is
eonvex and has t = 0 as a eritieal point. If 9v had another critical point to f: 0 then
by (1.2) exp itv.~o would equal eo for all t = R, in eontradiction to the faet that the
funetion k XL v -+ k(exp iv).LC (k E !(, v E m) is bijective. Therefore the funetion 9v

has only t = 0 as its eritical point. Consider the function f( v) = 4>( exp iv.<o) (v E m). Ey
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what has just been shown the function f satisfies a11 the conditions of lemma (1.1). Hence

lim f{ v) = +00. We have to show that the sublevel sets ljJ ~ c (c E R) are compact.
Ilvll-oo

Let {knexp iVn'~o} be a sequence in G/ H = !{c/ LC with kn E ](, Vn E m and

<p{knexp iVn.~o) ~ c. Since <p is a !(- invariant we have f{vn) = ljJ{exp iVn.~o) ~ c.
Since f is unbounded at infinity, the sequence {vn } C m must be bounded. Extracting

convergent subsequences of {kn } and {vn } we see that the sequence {knexp iVn'~o}

contains a convergent subsequence. Therefore the sublevel sets ljJ ~ c are compact and

<p is an exhaustion function.

Proof of Theorem 2 Let G = j(c, H = LC and f an L- invariant function on X = G/ H.
Denoting the differential of f at a point p by f* (p) and using L- invariance of f we have

V I E L, v E Txo(X) : f.(Ixo)(I.v) = f.(xo)(v) .

Since lxo = xo (I E L) this gives:

(a) f.(xo)(I.v) = f.(xo)(v), I E L, v E Txo(X).

Let < , > be a scalar product on Txo(X) which is L- invariant. Since f*(xo) is a linear

function on Txo(X) we see that there exists a unique h E Txo(X) such that

(b)

Equation (a) then implies

(e)

< h, v >= f.(xo)(v), V v E Txo(X).

l.h = h V1E L.

Let 7r : G ~ G/ H be the natural map. The differential 7r. of 7r at e maps the Lie algebra

(; of G onto Txo(X) and the kernel of 7r* is the Lie algebra if of H. Let Y E (; be

such that 7r.(Y) = h.

Equality (b) is then equivalent to

(d) Ad(I)(y) = y(m.od H) V I E L.

By analytic eontinuation (d) holds for a11 I E LC = H. Therefore if z E iI the curve

Ad(etz) (y) - y lies in H , hence by differentiation we obtain [z, y] EH. Therefore

yEN ( j/) . Let fj be the dass of y in the Lie algebra N ( iI) /iI. From (d) we get

(e) 1 exp tfj I-I exp (-ty) = 1 in N(HO) / HO for all I EH.

Hence I exp ty 1-1 exp (-ty) E HO V I EH, so exp ty E N(H). In particular y is in

the Lie algebra N (11)' of N (H). Denoting the image of an element z E GinG/H by

z the equality (f) becomes

(b) < y, z >= f+(xo)(z) (z E 6)
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Now we have the decomposition

the orthogonal complement being with respect to the L- invariant inner produet < , > .
Therefore if the decomposition of Z( Z E 6) is Z = Zl + Z2, with Zl E N (H) '/iI and

Z2 E (N(H)"JHt then from (f) we have

(g) f.(xo)(z) = f.(xo)(zJ) .

But tbis roeans that Xo = eH is a eritieal point of f if and only if it is a eritieal point of
the restriction of f to N( H) / H .

In particular if N(H)/H is finite then f has Xo as a critical point. This completes
the proof of theorem 2.

3. Totally real orbits in I(c / LC

Let L be a closed subgroup of a compaet connected group ](. Let G = ](c and
H = LC . The principal aim of this section is to prove the following result.

Proposition ]( has jinitely many totally real orbits in G/H if and only i/ N(HO)/Ho is
jinite, and in this case there is only one totally real K - orbit.

Before giving a proof of this proposition we note that totaUy real ](- orbits in G/ H are
precisely those of half the dimension of G/ H. Moreover, if 1r : G/ HO --+ G/ l! is the
natural map and n is a totaUy real /( - orbit in G/ H then 7r-1(n) is a union of totally
real K-orbits which are permuted by the right action of the finite group, H / HO on G/ HO .
Therefore to prove the proposition, we may assume that H is connected. The proof depends
on the following lemmas.

Lemma 3.1!f X is a Hermitian matrix and enX(n E Z, n > 0) commutes with a matrix Y
then eX also commutes with Y .

Proof This follows by elementary arguments taking into account that eX has positive
eigenvalues.

Let G = ](P be the Cartan decomposition of G .

Lemma 3.2// k, k1 E !( and pEP with pkp-l = k1 then k = k1 .
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Proof We have pk = k1P so pk = (k1pkt1)k1 , with k1pkt
1 E P. By unicity of the

Cartan decomposition [6] we see that k = k1 .

Lemma 3.3 I/ p = eX E P centralizes Y E Lie(G) then the 1- parameter subgroup

{erX : r ER} also centralizes Y .

Proof There is a faithful representation of G in GL(n, C) in which 1< is represented by

unitary matrices aod P by Hermitian matriees [6]. By (3.1) eQX (q E Q) eentralizes Y and
therefore so does erX (r E R) .

Lemma 3.4 1/ L is connected anti n E Nc(H) then n /actorizes as n = kpx, where

k E 1( n N(H), pEP n Zc(H) and x E H (recall that H = LC and G = K C ).

Proof Let n E N(H). Now L is a maximal compaet subgroup of H so by conjugaey

of maximal compaet subgroups we have xn L = L for some x EH. Let xn = kp

be tbe Cartan deeomposition xn with k E I< and pEP. The equation PL = 1.-1 L

shows by (3.2) that p eentralizes L aod therefore H and k normalizes H. Heuee
n = x-Ikp = k(k-Ix-1k)p = kp(k-Ix-1k) = kpx' , where k E K n H, pEP n'Zc(H)
aod x' = k-Ix-1k EH. .

Lemma 3.51/ L is connected anti N = N(H)/Hisfinite then N has representatives in 1(.

Proof Let n E N(H) and let n = kpx be the factorization of n given by (3.4). Let

P = eX • The 1- parameter subgroup Z = {erX : r E R} is, by (3.3), in Zc(H). Since

Z11/11 is in the finite group N (H) / 11 , we must bave Z c 11. Therefore N (H) / H has

representatives in 1< .

Lemma 3.6 For connected L, the orbits 0/ N K( H). H / H on N (H) / H parametrize (he
totally real !(- orbits in G/11 .

Proof A K - orbit n in G/ H is totally real if aod only if dirn (n) = dirn (K / L). Let

~o = eH and let 1(x~o be totally real in G/ H. So dirn (]( n xHx-I) = dirn (L) and

tberefore dirn ( x-I ]( n H) = dirn (L). By conjugaey of maximal eompact subgroups, tbe

group (x- I
!( n H) 0 is conjugate in H = LC to Land therefore (!( n xHx-I)O is

conjugate in G = 1<c to L, say by an element kp, wbere k E I( and pEP. By Lemma
(3.2), p centralizes Land therefore (!( n xRx-I) 0 = k-1Lk. Henee k-1Lk C xNx-I

and kx E N(H). Therefore x = k-1n for some n E N(H). Conversely if x = kn

7



with n E N(H) then ]( n xHx-1 = !( n kHk- 1 ~ !( n H = L. Therefore totally

real K - orbits in G/ H have representatives in N (H) / H. Finally, if n}, n2 E N (H) and

knl H = n2H with k E !( , then clearly k E NK( H) . Therefore the orbits of the compact

group NK(l!).H/H ~ NK(H)/L on N(H)/H parametrize the totaUy real K-orbits in

G/H.

Proof of the proposition: Suppose !( has finitely many totally real orbits in G/ H. Theu

K also has finitely many totally real orbits in GIHO. Hence we may assume that H is

connected. By Lemma 3.6 the compact group NK(H).H/H has finitely many orbits on the

Stein manifold N(H)/ H. Therefore N(H)j H must be finite and by Lemma 3.5 it must

have representatives in K. Hence there is a unique totally real !(- orbit in G/ H .

Corollary!1 N(HO) / HO is finite then the holomorphy hull 01 any !(- invariont domain n
in G/ H contains the unique totally real orbit !(/ L .

Proof This follows by repeating the argument given in Corollary 2 oi [2] and using the

proposition of this section.

4. Applications

In this section we give several applications of our results to orbits of a reductive group

G operating on aStein manifold, or more generally, on a manifold which has a strictly

plurisubharmonic function. In this connection, an example of a non-algebraic Stein manifold

with a non-linearizable C* - action is given in Heinzner [5]. Let !( be a maximal compact

subgroup of G.

4.11/ G operates on a mani/old M which has a strictly plurisubharmonic function (say "P),
which by integrating over !( we may assume to be !(- invariant, then an orbit 0 in M is

closed il the restrietion 0/ "P to 0 has a critical point. IJ "P is also an exhaustion function

Jor M then an orbit 0 is closed if and only if the restrietion 0/ "P to 0 has a critical point.

Proof Assume that the restriction 'IjJ of "P to 0 has a critical point. By Theorem 1 'lj; is an

exhaustion function for O. Let {Pn} C 0 be a sequence which converges to a point p E M.

Since 1/J(Pn) converges to "P(p) , the points pn must lie in same sublevel set 'lj; ~ c. As

'IjJ is an exhaustion function, the sequence {Pn} must converge to a point in O. Hence 0

is closed. If "P is also an exhaustion function for M and an orbit 0 is closed then clearly

the restrietion 'lj; of "P to 0 achieves its minimum, hence 1/J has a critical point.
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4.2 Let M be aStein manifold on whieh G operates holomorphieally. Let 0 be a G- orbit

in M.

(a) The closure 0 of 0 in M contains a unqiue closed G- orbit.
(b) If 'P is any K - invariant strietly plurisubharmonic exhaustion funetion for M ,
then the restrietion of c.p to 0 aehieves its absolute minimum at a single !(- orbit,

whieh is in the unique closed orbit in O.

Proof The existenee of at most one closed orbit in the closure of an orbit 0 in the Stein
manifold M is elassieal. It is a eonsequenee of Cartan's theorem B [7]. We reproduee the

argument for the reader's eonvenienee. Suppose 01 and 02 are two distinet elosed orbits

in O. Let f be the funetion on 0 1 U O2 which is 0 on 0 1 and 1 on O2 . By Theorem
B, f extends to a holomorphic function j on M , which by integrating over ]( we may
assurne to be ](- invariant, and therefore G- invariant. Tbe function j restrieted to 0 is

eonstant as it is eonstant on O. By construction j is not constant on 0 1 U 02 C O. Hence
there ean be at most one closed orbit in O.

Ta show that there is at least one elosed orbit in 0, take on the Stein manifold M a

](- invariant strietly plurisubharmonie exhaustion funetion fjJ. Take a sublevel set 1 ~ c

whieh interseets O. Sinee {1 ~ c} n 0 is compact, the restrietion of 4> to 0 aehieves its

aboslute minimum, say m, at some point ~o. By (4.1) the orbit G.~o is closed in M .
By [2], the restrietion of 1 to G.eo achieves the value m at a single ](- orbit. Now if

e1 in 0 is sueh that 4>(el) = m tben the orbit G.e1 c 0 is also closed. By uniqueness
of a closed G- orbit in 0 we see that G.6 = G.~o. Hence the restriction of 1 to 0
aehieves its absolute minimum on a single !(- orbit which is eontained in the unique closed

G- orbit in O.

4.3 I/ G operates on a mani/old M which has a strictly plurisubharmonic function then the

G- orbit 0/ a ]XJint x is closed i/ and only i/the Nc(H) orbit 0/ x is closed, H being the

stabilizer 0/ x in G.

Proof This follows from Theorem 2 and (4.1).

4.4 Let H be a reductive subgroup 0/ G with N(H)/Hisfinite. 1/ G operates on a

mani/old M which has a strictly plurisubharmonic function then all orbits 0/ G with stabilizer
isomorphie to H are closed in M.

Proof This again follows from Theorem 2 and (4.1).

Remarl{s (a) Tbe conditions of (4.4) hold if G is semisimple aod H is asymmetrie subgroup.
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(b) If (K, L) is a symmetrie pair with !( compaet, semisimple and G = [(c, H = LC

tben by theorems 1 and 2, any !(- invariant strietly plurisubharmonie function c.p on G/ H
is an exhaustion function and its critieal set by [2] or [9, lemma 7.2] is K / L. In other words,

c.p is a eanonical exhaustion function in the sense of Patrizio-Wong [15]. This paper suggests

many problems on tbe geometry of G/ H .
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