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Plurisubharmonic functions and the Kempf-Ness theorem

H.Azad and J.J. Loeb

Let G be a complex Lie group and §) a complex homogeneous space of G. A general
problem in complex analysis is to give a description of plurisubharmonic functions invariant
under a real subgroup K of G and of holomorphy hulls of K — invariant domains in Q :
see, e.g. [18,10,12]. The present paper is a contribution to this problem which is inspired by
the Kempf-Ness theorem [8]. They show that if G is a complex reductive group operating
linearly on a vector space V, K a maximal compact subgroup of G and N the square of
the norm function obtained from a K — invariant Hermitian metric on V', then a G'— orbit
{1 is closed if and only if the restriction of N to ! has a critical point. Equivalently,
the restriction of N to  is an exhaustion function for 2 if and only if it has a critical
point. Now the function N is strictly plurisubharmonic and remains so on restriction to any
complex submanifold of V. The following result can therefore be considered as an “intrinsic”
generalization of the Kempf-Ness closedness criterion.

Theorem 1. Let G be a complex reductive group, K a maximal compact subgroup of G' and
H a closed complex subgroup of G. If ¢ is a K-invariant strictly plurisubharmonic function
on G/H with a critical point then H is reductive and ¢ is an exhaustion function for G/ H .

Our next result is related to results of D. Luna [13] and has similar applications to orbits of
reductive groups operating on Stein manifolds.

Theorem 2, Let L be a closed subgroup (not necessarily connected) of a compact connected
group K and f an L-invariant function on K€/LC . The function f has zo = eL® as
a critical point if and only if its restriction to N (Lc) / LC has zo as a critical point. In
particular if N(LE)/LC is finite, then any L-invariant function on K©/L¢ hasa critical
point

In [2] it was shown that if L is a closed subgroup of a compact connected group /' containing
a maximal torus of K then the holomorphy hull of any K — invariant domain in K€ /LC
contains K /L. The main group theoretic ingredient was the characterization of K/L as the
unique totally real K — orbit in K€/L® . Here we give in § 3 a description of all totally
real K—orbits in K/L¢, L being any closed subgroup of the compact group K , and
show that the number of such orbits is finite if and only if Ng(LC)°2 J(L€)° is finite, and
in this case there is only one such orbit. This implies as in [2] that the holomorphy hull of
any K — invariant domainin K¢/LC contains K/L whenever N((LC)O)/(LC)0 is finite.



We give several applications in § 4 of our main results, mostly to orbits of reductive groups
operating on Stein manifolds. In [16] R. Richardson shows the existence of a closed orbit
in the closure of any orbit of a reductive group acting on a Stein manifold. In (4.2) we
give a short proof of this result of Richardson. Corollary 4.1, in the algebraic category is
due to Kempf and Ness [8]; corollaries (4.3) and (4.4) in the algebraic category are due to
D. Luna [13]. A special case of theorem 1, namely when G is semisimple and H is the
identity group, is stated without proof in Guillimin and Sternberg [3]. Before concluding this
introduction we want to say a few words about the proof of theorem 1. Its proof depends
on a convexity lemma, namely lemma 1.2, and a theorem of G.D. Mostow [14]. A version
of this convexity lemma occurs first in M. Lasalle [10], later, in a more general sense in
[12] and finally in [2] it occurs in more or less the same form as it is stated here. We have
tried to give here a (hopefully) clearer version. A generalization of the Kempf-Ness theory
in a different direction has been obtained by Richardson and Slodowy [17]. We take this
opportunity to point out that part of the main result of [2] can also be obtained by using a
suitable moment map and applying Kirwan [9, lemma 7.2]: see remarks at the end of section
1. We owe this observation essentially to P. Slodowy.

The reader is referred to [7, 11] for basic facts on plurisubharmonic functions. The notation
is standard. In particular, if H is a subgroup of a group G then Ng(H) and Zg(H) denote
the normalizer and centralizer of H in G. Also H° denotes the connected component of

H and z, the conjugate zyz~'.

1. Preliminary lemmas

We remind the reader that the Levi-form of a differentiable function ¢ defined on a complex
manifold M is the Hermitian form associated to the 2-form i9dy . Denoting the Levi-form
of ¢ by Ly we have: (Ly),(u,v) = (00¢)(p)(u, D), pE M, u,ve T (M) .

If the Levi-form of ¢ is positive definite, we say that ¢ is strictly plurisubharmonic.

Lemma 1.1, If f: R® — R is a differentible function whose restriction to each line through
the origin is convex and has the origin as its only critical point, then lim f(z)= +co.

llzll =00

Proof: Fix v € R®, v # 0. Let A(t) = f(tv)(t € R). By assumptions k”(¢) > 0 and
¢

h'(t) = 0 only at t = 0. Therefore A'(¢) > 0 for t > 0. Now h(t) = (f h'(a:)d:c) + h(1)

1
so A(t) > R'(1)(t—1)+ k(1) if t > 1. From this inequality we see that (*) f(tv) >
(V)(v)v(t—1)+ f(v), forall v # 0 and ¢t > 1. Now 0 < A'(1) = (Vf)(v).v, so if
m is the minimum value of (Vf)(v).v on the unit sphere in R™ then m > 0. Let & be

the minimum value of f on the unit sphere in R®. From the inequality (*) we therefore
have, for £ € R® with || £ ||> 1

JO=FNERE/NEDNZml €1 —1) +&.
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Therefore lim f(£) = +oo.
1€l —o0

Lemma 1.2 Let G, K, H and ¢ be as in the statement of theorem 1. Assume that ¢ has a
critical point at £y = eH . Fix v € Lie(K) . If the function ¢((exp itv).&) (t € R) has a
critical point at to # 0 then the 1-parameter subgroup {exp itv},.g is contained in H .

Proof: Consider the function f(z) = ¢((exp izv).£p)(z € C). The function f is subhar-
monic and by K — invariance of ¢ it depends only on the real part Re(z) of z. Since
V2f > 0 we see that if g(t) = @((exp itv).&) (t € R) then ¢”(¢) > 0. By assumption
¢'(0) = 0 so g achieves its absolute minimum at zero. Assume that for some ty # 0 we
have ¢'(to) = 0. By convexity of g the function g is constant on the segment joining 0
and to . Assuming to > 0, the complex curve y(2) = exp i2v.§y, 0 < Re(z) <1,
therefore lies on a level set of the function ¢ . Denoting the Levi form of ¢ at a point
p by Ly(¢) we have, for 0 < Rez < 1y, Ly;)(7'(2),7'(2)) = 0. Since ¢ is strictly
plurisubharmonic this forces v'(2) = 0 for 0 < Re(z) < to, hence by continuity y(z) is
constant on 0 < Re(z) < tp. In particular, for sufficiently small ¢t € R, ¢'**.6 = ¢, so
the 1-parameter subgroup {e"**} o C H .

Remark As the proof shows, this lemma is valid for any complex Lie group GG and a real form
K thereof relative to which G factorizes as G = K P, where P = {exp 1 X : X € Lie(K)}.

Lemma 1.3 If ¢ is a real valued differentiable function defined on a complex manifold M
and N is a real submanifold of M contained in the critical set of ¢, then N is totally
isotropic relative to the form 100y .

Proof: Let w = i90p and j : N — M the inclusion map. We have to show that
j'w = 0. Now w = dd®p, where d = 9+ 9 and dt = 8_6/22'_ Moreover, for
p € M and v € Tp(M) we have (dctp)p(v) = (dp),(Jv), where J is the complex

structure tensor of M. Hence j*(dCyp) = 0 as N is a critical submanifold for . Therefore
j*w = d(j*d%p) = 0, which is what had to be proved.

Corollary 14 If Q is a complex homogeneous space of a Lie group G and ¢ is a function on
Q invariant under a subgroup K of G whose Levi-form 100y is non-degenerate, then the
K-orbits of critical points of ¢ are of dimension < dlm(Q)/é In particular, if Q = G/H ,
with both G and H complex, K is a real form of G and & = eH is a critical point of
then dim(K.&) = (dim Q)/2 and K N H is a real form of H .

Proof: The first statement follows from (1.3) taking into account the non-degeneracy of :99.
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If G and H are complex and K is a real form of G then clearly 2 dim(K/KNH) >
dim(G/H), which combined with the first statement implies the remaining statements.

Remark. Our initial proof of theorem 1 used a lemma of Harvey and Wells [4], which
we have replaced by lemma 1.3, and the main result of [2]. However, part of this result
is implicit in Kirwan [9] and can be obtained as follows. The moment map for an exact
form w = dn, 7 being invariant under a group K , is the contraction of 7 with the
Killing vector fields induced by K [1, Th. 4.2.10]. If M is a complex manifold on which
a complex reductive group G operates, K is a maximal compact subgroup of G and ¢
is a K — invariant strictly plurisubharmonic function on M , then dd®¢ is a K — invariant
Kihlerian form. Since the critical set of ¢ is contained in x~!(0), where x is the moment
map for w = dy, n = dC¢ , the result follows from [9, lemma 7.2).

2. Proofs of main results

The ingredients of proof of Theorem 1 are the lemmas of § 1 and the following theorem
of G.D. Mostow [14].

Theorem (Mostow) Let L be a closed subgroup of a compact connected group K . There
exists an L-invariant subspace m of Lie(K) such that the mapping of K x pim into K€/L¢
defined by (k x v) — k.exp (v).LC is an isomorphism of topological spaces.

Proof of Theorem 1 Step (i). H is a reductive subgroup of G : Let & = eH and
ao(a € G) be a critical point of ¢ . The point { is then a critical point of ¢ o L, , where
L, is left translation by a. The function o L, is strictly plurisubharmonic and it is invariant
under a~!Ka. Hence without loss of generality we may assume that £y is a critical point of
¢. By (1.4) we know that KN H is a real form of H and therefore the connected component
H® of H is reductive. As the natural map = : G/H — G/H° is a local isomorphism, the
function o~ is also a strictly plurisubharmonic. Itis also K — invariant and H/H° is in its
critical set. By [1] or [9, lemma 7.2] the critical set is a single K — orbit, so KX N H operates
transitively on H/H® . Therefore H/H® has representatives in K and so H/H® is finite.
This means that H is reductuve, as it is the complexification of the compact group K N H .

Step (ii) o is an exhaustion function: By Step (i) we are in a position to apply Mostow’s
theorem. Solet L = KN H and m C Lie(K) be as in the statement of Mostow’s
theorem. Fix v € m, v # 0. As in (1.2) the function g¢,(t) = ¢(expitv.&p) (t € R) is
convex and has { = 0 as a critical point. If g, had another critical point ¢y # 0 then
by (1.2) exp itv.{p would equal £ for all ¢t = R, in contradiction to the fact that the
function k x; v — k(expiv).L® (k€ K,v € m) is bijective. Therefore the function g,
has only ¢ = 0 as its critical point. Consider the function f(v) = ¢(expiv.£o) (v € m). By
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what has just been shown the function f satisfies all the conditions of lemma (1.1). Hence
' llim f(v) = +o0o. We have to show that the sublevel sets ¢ < ¢ (c € R) are compact.
v|{—O0

Let {knexpiv,.£o} be a sequence in G/H = KC/L¢ with k, € K, v, € m and
d(knexptvn.&o) < c. Since ¢ is a K— invariant we have f(v,) = é(expivp.bo) < c
Since f is unbounded at infinity, the sequence {v,} C m must be bounded. Extracting
convergent subsequences of {k,} and {v,} we see that the sequence {k,exp iv,.{o}
contains a convergent subsequence. Therefore the sublevel sets ¢ < ¢ are compact and
¢ is an exhaustion function.

Proof of Theorem 2 Let G = K€, H = LC and f an L— invariant function on X = G/H.

Denoting the differential of f at a point p by f.(p) and using L— invariance of f we have
VIie L veT(X): fillzo)(lv) = fi(zo)(v).

Since lzg = 29 (I € L) this gives:

(a) Se(zo)(l.v) = fulzo)(v), L€ L, v € T5o(X) .

Let <, > be a scalar product on T,,(X) which is L— invariant. Since f,(zo) is a linear
function on T,(X) we see that there exists a unique h € T,,(X) such that

(b) < h,v>= fu(zo)(v), Vv € Tp(X).
Equation (a) then implies
(c) Lh=h Viel.

Let 7 : G — G/H be the natural map. The differential =, of = at e maps the Lie algebra
G of G onto Tr(X) and the kemnel of , is the Lie algebra H of H. Let y € G be
such that 7. (y) = k. :

Equality (b) is then equivalent to
(d) Ad(D)(y) = y(mod H) Viel.

By analytic continuation (d) holds for all | € L¢ = H . Therefore if z € H the curve
Ad(e*)(y) — y lies in H, hence by differentiation we obtain [z,y] € H . Therefore
yeEN (H) . Let 4 be the class of y in the Lie algebra N (H ) /ff . From (d) we get

(e) lexptyllexp(—ty) =1 in N(HG)/HO forall 1€ H.

Hence [ exp ty i lexp(—ty) € H'VI € H, so exp ty € N(H). In particular y is in
the Lie algebra N(H) of N(H). Denoting the image of an element z € G in G/H by
z the equality (f) becomes

(b) < 7,2 >= fu(z0)(2) (z € G)



Now we have the decomposition
. . .y A
G/H = N(HY [H & (N(HY/H),

the orthogonal complement being with respect to the L— invariant inner product <, > .
Therefore if the decomposition of :?(z € G) is z =12 +%, with 7 € N(H)/H and

L
Z2 € (N(H)'/H) then from (f) we have

(8 Folzo)(2) = fu(zo)(Z1) -

But this means that z¢o = eH is a critical point of f if and only if it is a critical point of
the restriction of f to N{H)/H .

In particular if N(H)/H is finite then f has z¢ as a critical point. This completes
the proof of theorem 2.

3. Totally real orbits in KC/LC

Let L be a closed subgroup of a compact connected group K . Let G = K© and
H = L€ . The principal aim of this section is to prove the following result.

Proposition K has finitely many totally real orbits in G/H if and only if N(H°)/H® is
finite, and in this case there is only one totally real K- orbit.

Before giving a proof of this proposition we note that totally real K — orbits in G/H are
precisely those of half the dimension of G/H . Moreover, if = : G/H® — G/H is the
natural map and  is a totally real K— orbit in G/H then #~!() is a union of totally
real K-orbits which are permuted by the right action of the finite group H/H® on G/H°.
Therefore to prove the proposition, we may assume that H is connected. The proof depends
on the following lemmas.

Lemma 3.1 If X is a Hermitian matrix and e"*(n € Z,n > 0) commutes with a matrix Y
then X also commutes with Y .

Proof This follows by elementary arguments taking into account that eX has positive
eigenvalues.

Let G = K P be the Cartan decomposition of G .
Lemma 3.2 If k, k1 € K and p € P with pkp~' = ky then k = k; .
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Proof We have pk = kip so pk = (kipk;' )k, with kipk;' € P. By unicity of the
Cartan decomposition [6] we see that k& = k; .

Lemma 33 If p = eX € P centralizes Y € Lie(G) then the 1— parameter subgroup
{erX :r € R} also centralizes Y .

Proof There is a faithful representation of & in GL(n,C) in which K is represented by
unitary matrices and P by Hermitian matrices [6]. By (3.1) e¢X(¢ € Q) centralizes Y and
therefore so does e"¥(r € R) .

Lemma 3.4 If L is connected and n € Ng(H) then n factorizes as n = kpz , where
ke KNN(H), p€ PNZg(H) and = € H (recall that H = L® and G = K©).

Proof Let n € N(H). Now L is a maximal compact subgroup of H so by conjugacy
of maximal compact subgroups we have *"[ = L for some z € H. Let zn = kp
be the Cartan decomposition zn with kK € K and p € P. The equation PL = *1L
shows by (3.2) that p centralizes L and therefore H and k normalizes H . Hence
n=z"lkp=k(k“lz71k)p = kp(k~12~1k) = kpa', where k€ KNH, pe PNZg(H)
and ¢’ = k7 1z"k € H. '

Lemma 3.5If L is connected and N = N(H)/H is finite then N has representatives in K .

Proof Let n € N(H) and let n = kpz be the factorization of n given by (3.4). Let
p = eX . The 1— parameter subgroup Z = {e"X :r € R} is, by (3.3), in Zg(H). Since
ZH/H is in the finite group N(H)/H , we must have Z C H . Therefore N(H)/H has
representatives in KX .

Lemma_3.6 For connected L, the orbits of Ny(H).H/H on N(H)/H parametrize the
totally real K—orbits in G/H .

Proof A K— orbit Q in G/H is totally real if and only if dim(Q) = dim(K/L). Let
o = eH and let Kz be totally real in G/H . So dim (K NzHz') = dim(L) and
therefore dim ( T KNH ) = dim (L) . By conjugacy of maximal compact subgroups, the
group (’—II(HH)O is conjugate in H = L® to L and therefore (K NzHz™')° is

conjugate in G = K to L, say by an element kp, where k€ K and p € P. By Lemma
(3.2), p centralizes L and therefore (Kﬂsz'])O = k~'Lk. Hence k™ 'Lk C zHz™!
and kz € N(H). Therefore = = k~'n for some n € N(H). Convemsely if z = kn
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with n € N(H) then K NzHz™! = KNkHk™ = KN H = L. Therefore totally
real K— orbits in G/H have representatives in N(H)/H . Finally, if n;,n, € N(H) and
kniH = ngH with k € K, then clearly k € Ng(H) . Therefore the orbits of the compact
group Ng(H).H/H = Ng(H)/L on N(H)/H parametrize the totally real K-orbits in
G/H .

Proof of the proposition: Suppose K has finitely many totally real orbits in G/H . Then
K also has finitely many totally real orbits in G/H®. Hence we may assume that H is
connected. By Lemma 3.6 the compact group Ng(H).H/H has finitely many orbits on the
Stein manifold N(H)/H . Therefore N(H)/H must be finite and by Lemma 3.5 it must
have representatives in K . Hence there is a unique totally real /— orbit in G/H .

Corollary If N(H®)/H" is finite then the holomorphy hull of any K — invariant domain Q
in G/H contains the unique totally real orbit K/L .

Proof This follows by repeating the argument given in Corollary 2 of [2] and using the
proposition of this section.

4. Applications

In this section we give several applications of our results to orbits of a reductive group
G operating on a Stein manifold, or more generally, on a manifold which has a strictly
plurisubharmonic function. In this connection, an example of a non-algebraic Stein manifold
with a non-linearizable C*— action is given in Heinzner [5]. Let K be a maximal compact
subgroup of G'.

4.1 If G operates on a manifold M which has a strictly plurisubharmonic function (say ¢ ),
which by integrating over K we may assume to be K — invariant, then an orbit O in M is
closed if the restriction of ¢ to O has a critical point. If ¢ is also an exhaustion function
for M then an orbit O is closed if and only if the restriction of ¢ to O has a critical point.

Proof Assume that the restriction ¢ of ¢ to O has a critical point. By Theorem 1 % is an
exhaustion function for O. Let {p,} C O be a sequence which converges to a point p € M.
Since ¥(ps) converges to ¢(p), the points p, must lie in some sublevel set ¢ < ¢. As
1 is an exhaustion function, the sequence {p,} must converge to a point in O. Hence O
is closed. If ¢ is also an exhaustion function for M and an orbit O is closed then clearly
the restriction ¥ of ¢ to O achieves its minimum, hence 1 has a critical point.
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4.2 Let M be a Stein manifold on which G operates holomorphically. Let O be a G— orbit
in M.

(a) The closure O of O in M contains a unqiue closed G— orbit.

(b) If ¢ is any K — invariant strictly plurisubharmonic exhaustion function for M |
then the restriction of ¢ to O achieves its absolute minimum at a single K — orbit,
which is in the unique closed orbit in O .

Proof The existence of at most one closed orbit in the closure of an orbit O in the Stein
manifold M is classical. It is a consequence of Cartan’s theorem B [7]. We reproduce the
argument for the reader’s convenience. Suppose O; and O are two distinct closed orbits
in O. Let f be the function on O; UO, whichis 0 on O; and 1 on O,. By Theorem
B, f extends to a holomorphic function f on M , which by integrating over K we may
assume to be J/{— invariant, and therefore G— invariant. The function f restricted to O is
constant as it is constant on O. By construction f is not constant on O; U0, C O. Hence
there can be at most one closed orbit in O .

To show that there is at least one closed orbit in O, take on the Stein manifold M a
K — invariant strictly plurisubharmonic exhaustion function ¢ . Take a sublevel set ¢ < ¢
which intersects O . Since {¢ < ¢} N O is compact, the restriction of ¢ to O achieves its
aboslute minimum, say m, at some point & . By (4.1) the orbit G.§, is closed in M .
By [2], the restriction of ¢ to G.§, achieves the value m at a single K — orbit. Now if
& in O is such that #(£;) = m then the ombit G.£; C O is also closed. By uniqueness
of a closed G— orbit in O we see that G.£; = G.£ . Hence the restriction of ¢ to O
achieves its absolute minimum on a single /'~ orbit which is contained in the unique closed
G— orbit in O .

43 If G operates on a manifold M which has a strictly plurisubharmonic function then the

G— orbit of a point z is closed if and only if the Ng(H) orbit of z is closed, H being the
stabilizer of =z in G .

Proof This follows from Theorem 2 and (4.1).

4.4 Let H be a reductive subgroup of G with N(H)/H is finite. If G operates on a
manifold M which has a strictly plurisubharmonic function then all orbits of G with stabilizer
isomorphic to H are closed in M .

Proof This again follows from Theorem 2 and (4.1).

Remarks (a) The conditions of (4.4) hold if G is semisimple and H is a symmetric subgroup.



(b) If (K, L) is a symmetric pair with K compact, semisimple and G = K¢, H = L©
then by theorems 1 and 2, any K — invariant strictly plurisubharmonic function ¢ on G/H
is an exhaustion function and its critical set by [2] or [9, lemma 7.2] is K/L. In other words,
¢ is a canonical exhaustion function in the sense of Patrizio-Wong [15]. This paper suggests
many problems on the geometry of G/H .
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