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Introduction. Let M = G/K be a compact homogeneous space of a compact Lie
group G with a G—invariant Riemannian metric g and N be a Riemannian manifold. A
homogeneous harmonic map from M to N means a p—equivariant harmonic map from
M to N relative to a homomorphism p of G to the isometry group of N . The existence
and construction of harmonic maps are interesting and important problems in various
situations. Homogeneous harmonic maps make a simple and nice class of harmonic maps.
Concerning the existence of homogenous harmonic maps, in general it is known by the idea
of W—Y. Hsiang that given a nonconstant p—equivariant map ¢ from a compact homo-
geneous Riemannian manifold M to a compact Riemannian manifold N, then ¢ can be
deformed to a nonconstant p—equivariant harmonic map ® through a smooth homotopy
of p—equivariant maps ¢, (t € [0,1]) with ¢) = ¢ . Naturally we are interested in
getting more explicit descriptions and detailed properties of homogeneous harmonic maps
for specific homogeneous Riemannian manifolds M and N . In his nice paper [Gu 1],
Guest pointed out many interesting connections of the research for homogeneous harmonic
maps with problems of differential geometry and mathematical physics. Moreover he gave
algebraic descriptions of harmonic map equation for general homogeneous maps, and dis-
cussed the harmonicity of homogeneous maps into complex projective spaces and a con-
struction of homogeneous harmonic maps from flag manifolds into complex Grassmann
manifolds by the method of osculating flags and twistor spaces (cf. [E—W] ). In this paper
we discuss homogeneous harmonic maps and minimal immersions into complex projective
spaces in detail, by using the relation between complex line bundles and smooth maps into
complex projective spaces.

In Section 1 we shall recall the correspondence of a smooth map from a manifold into
a complex projective space with a system of smooth sections for a complex line bundle over
the manifold. We should remark a relationship between the homotopical property of the
smooth maps and the equivalence property of complex line bundles. Furthermore we shall

describe the harmonic map equation for a smooth map into a complex projective space in
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i .<'térﬁls 'ﬁf-thé correspo.nding system'"E;.f-smooth sections for a complex line bimdle. In Seciion' |
2 we shall cousiﬂer homogeneous complex line bundles over compact homogeneous spaces.
Using the spectral decomposition of the space of all smooth sections of a homogeneous line
bundle and results in Section 1, we give a description of all homogeneous maps into com-
plex projective spaces. Furthermore we shall show a result on the multiplicity in the
spectral decomposition over compact symmetric spaces, which plays an essential role in
Section 5. In Section 3 we shall give a description of homogeneous harmonic maps from
certain compact homogeneous Riemannian manifolds into complex projective spaces in
terms of Section 1 and 2. In Section 4 we shall apply results of Section 3 to the case when
the domain manifold is a compact homogeneous Kédhler manifold and study some properties
of homogeneous harmonic maps from such manifolds into compex projective spaces. In
Section 5 we shall determine the spectral decompositions for all homogeneous complex line
bundles over every irreducible Hermitian symmetric space M = G/K of compact type.
We shall give a complet'e list of irreducible representations of the compact Lie group G
appearing in the space of smooth sections of each complex line bundle. In Section 6 we shall
classify homogeneous harmonic maps and minimal isometric immersions between complex
projective spaces. By this result we find a nice series of minimal isometric immersions of
complex projective spaces into complex projective spaces, whjcix contains neither |
holomorphic, antiholomorphic nor totally real immersions. It is a generalization of
homogeneous minimal 2—spheres in complex projective spaces given by [B—O],
[B-J-R-W], [Gu 1] to higher dimension. In Section 6 we shall give a remark on
homogeneous minimal 2-spheres in quaternionic projéctive spaces.

In the famous paper [Ta], Takahashi showed a connection of the Laplacian acting on
smooth functions with minimal immersions into spheres and a construction of minimal
immersions of compact homogeneous Riemannian manifolds with the irreducible isotropy
representation by eigenfunctions of the Laplacian. This work can be regarded also as a

natural extension of Takahashi’s results to eigensections of the Laplacian in complex line
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- “bundles and harmonic maps; minimal immersions into compelx projective spaces.
We hope to find more properties and more explicit descriptions of harmonic maps and

minimal immersions into complex projective spaces obtained here.



1. Compiex line bundles and harmonic maps into a complex projective space

Let CP"(c) be an n—dimensional complex projective space with the FuBini-—Study
metric g, of constant holomorphic sectional curvature ¢ > 0 and RP"(c) be an n—di-
mensional real projective space with the standard metric of constant metric of constant
sectional curvature ¢ > 0. RP"(c/4) is imbedded into €P™(c) in the natural manner as a
totally real totally geodesic subxﬁanii’old. Let Sn(c) be an n—dimensional sphere with the
standard metric of constant sectional curvature ¢ > 0. Then we have a natural isometric
covering S™(c) — RP™(c) . |

n+1

Let {60,...,€n} be the standard basis of € . We denote by <, > the standard

Hermitian inner product on ¢+l ; <zZ,W> = zn Zw .Let (,)=Re<,> denote
i=0

the associated real inner product on L Let x: €n+1\{0} — CP" be the canonical

projection. Then Cn+1\{0} is a principal bundle over CP" with the structure group
* *
C , where € denotes the group of non—zero compex numbers. The restriction of x to

Szn+1(c/4) is a Riemannian submersion. Let E = (€n+1\{0}) x 4C be the universal
C

bundle over CP™ : the fibre E_ overany a € CP™ is the complex 1—dimensional sub-
space of ¢! determined by x.Thus E is a holomorphic subbundle of the trivial
bundle LH'H over CP® . Let E1 be the subbundle of £n+1 whose fibre at x is the
orthogonal complement of Ex in £n+1 .E, E* and E' have natural Hermitian
connected structures. We give E* ® E1 the tensor product Hermitian connected structure.
Then there exists a natural bundle isomorphism h : T(I'O)GZPn —_— E* ®EL preserving
connections and satisly <h(Z),h(W)> = (c/2)g,(2,W) for Z,W € T{10eP® (cf
[E-W, p.224]).

Let ¢ M — CPI% be a smooth map from a manifold M to a complex projective

space. A map ¢ is called full if the image (M) is not contained in any proper complex
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where i is the natural inclusion and j is given by the orthogonal pro:iection along L :
We call the section & =i(l) € C_w(tp_l(E* ® LH'H)) the universal lift of ¢ (cf. [E-W]).
Pulling back h: ’I‘(I’O)CP11 — E* ®EL by ¢, we get a connection—preserving bundle
isomorphism h : (p_l(T(l’O)CPn) — go_l(E* ® E') . Let D denote the covariant diffe-

. 1 v
rentiation of the bundle ¢ 1(E ® gn“) relative to the pull-back connection. Then the

following facts are known (cf. [E-W]):

(i) <$¥¢>=1.
(i) Forany X € (M%), Dy € CO(pHE™ ® 1)) hasimagein

go—lE'L . Moreover it holds
(1.1) h((dp)HO(X)) = Dy 3

forany X € TXMC . Here (dga)(l'o) denotes the (1,0)—component of dp in CP".

We recall the relation between a map to a complex projective space and a system of
sections of a complex line bundle..

Let L =P x_C bea complex line bundle over a (paracompact) manifold M asso-
ciated with a principal bundle (P,r,M,K). Here (¢,C) is a complex 1—dimensional repre-
sentation of the structure group K . Then the vector space C®(L) of all smooth sections
of L can be identified with the vector space C‘I’(P,d‘,)K of all C—valued smooth functions
T on P satisfying the condition T(uk) = a(k)_lT(u) forany u € P and k € K, by the



—6— |
Co ) . . ‘:‘. ;
. fi § - ton? '

 ‘correspondence A : C™(L) 3 f-—-» Yec™P,O), T(v) = u_l(f(ar('u))) fpr each
uEP. | |
Given a system {990,...,4,0]1} in C®(L) with no common zeros. Let {ao,...,an} be
the corresponding system in C“’(P,QZ)K . We define a smooth map @ : P — €n+1\{0}
| by @ = (50""’$n) . Since ¢ satisfies ~ga(uk) = a(k)—1~<p(u) forany u€P and k€K,
themap @:P —s Cn+1\{0}< becomes a bundle homomorphism ﬁ'OH‘l (P,x,M,k) to
(€n+1\{0},t,CPn,C*) with the'hémomorphism 071K — € of the structure groups.

Therefore @ induces a smooth inap @: M — CP" and the diagram

P - S e\ {0}
‘ *
rlK wlC
~ ¢p™
M " C

is commutative. Let H = E* be the hyperplane bundle over CP" . Then we see that the
pull-back bundle go_IH is isomorphic to L ; «,a_lE[ = L . Conversely every smooth map
p:M—-— CP" is obtained in this manner by considering the pull-back complex line
bundle cp_lH over M and a system of n+1 sections of <p_1H gotten by the homo-
geneous coordinates on CP™ . Hence giving a smooth map from M to | CP" is equivalent
to giving a complex line bundle L over M and a system of n+1 smooth sections of L
with no common zeros.

Let ¢,9: M — CP" be two smooth maps. If 2n > dim M , then by the classifi-

cation theorem we have
~ -1, - ~1
Y= ¢ = 9 H= ﬁ H,

where ¢~ ¢ means that ¢ is homotopic to # . Since an equivalence class of complex line
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' bundles is determined by the first Chern class, we get

‘P_lH = ﬁ_IH = Cl(‘P_IH) = cl(;ﬁ_lH)
& o (H)= ¢ c(H) .

Hence the homotopy class of a smooth map ¢ : M — CP" is determined by the first
Chern class ¢(L) of the complex line bundle L = rp—IH . When M is oriented and
H2(M,Zl) =1, the degree of amap ¢: M — CP™ is an integer deg ¢ defined by

¢ (L) = <p*c1(H) = (deg p)w, , where w, denotes a positive generator of H2(M,ZZ) . Then

we get

g2y & degp=degy .

Any two maps from M to CP" constructed from systems of sections of the same
line bundle are homotopic each other if 2n 2 dim M . It is an interesting and important
problem to find many harmonic maps in a given homotopy class of maps. We shall describe
the harmonic map equation for a map ¢ in terms of D

Assume that M is an m—dimensional Riemannian manifold. Denote by VM the
Riemannian conection of M . We endow the principal bundle P with a connection T'.
The connection T’ induceé the covariant differentiation VL in the associated line bundle
L. For X,Y € C®%(TMY) | we denote by X,Y € C%(TPY) the horizontal lifts of X,Y
to P with respect to the connection I' . Let & be the universal lift of the map ¢ . By

(1.1) we have
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((d)LOX)P = (D4 8)7
= X P (<X 5> /<03>)P

=X’ .

Here we regard @ as a section of the pull-back bundle ga_lL . By a straightforward com-
8 @

putation we get
~ . x ¥, *n,
h((VY(dsv)(l'O))X)<p= (Y X so—(Vh,l@X) ?
*n ~ o~ *n *n ~N A *p,
<X 9>/ <p,p>)Y 0 — (<Y ,p>[<p,p>)X @) .

We denote by A10) € Cm(ga_lT(l’O)CPn) the (1,0)—component of the tension field =

for the map ¢ . Then we have
O =u] (7, (e Oy

m % %, ¥y m ~ ~ ~ A ~, ¥
=i _ (eie6- (VTiei) B =), (<dile)B>/<Bp>)able;))

where {ei} denotes a local orthonormal frame field on M . By virtue of [K—N,I,p. 115]

or [Oh, p. 162], this equation becomes

h(r(10)% = j«alg)™ - 22:11(<(V£‘iw)~,$>/ <5,5>)(V15i90)~) :
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where ¢ = (p,...¢,) and Al = (71y'YE = ‘21-1(‘71%‘7{% - VI‘;M ] ):
. = e’

Proposition 1.1. (i) ¢ is a harmonic map if and only if the system {cpo,...,zpn} ‘

satisfies
~ m ~N N [ ~N
(8%)" + 2} (<(Ve @) B>/<B5>)Ve o) = it
1= 1 1

for some function z on M.
(ii) Assume that Aquj = K9 (j=10,...,n) for some function x on M.If
Q:P— dln+1\{0} maps horizontal subspaces on P to horizontal subspaces on

€n+1\{0} , then ¢ is a harmonic map.
Note that in case M is a complex manifold, ¢ is a holomorphic map if and only if
Dy® =0 foreach Z € T(l’O)M .

L be the curvature form of

Let {1 be the curvature form of the connection I' and R
the connection VY in the line bundle L . Then we have (RL)~ = () . The 2—form
7,(L) on M defined by (71(L))~ = (1/1T/27r)(RL)~ = (y=1/27)o(N) represents the first
Chern class ¢,(L) of the line bundle L .

A smooth map ¢: M — CP" is called totally real if ¢ satisfies <p*w = 0, where

w denotes the Kahler form of Cpm.

Proposition 1.2. If ¢: M — CP"(c) is a totally real map from a simply connected
manifold M, then ¢ has a horizontal lift $: M — S2n+1(c/4) relative to the
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ig Riemannian submersion = : Sznfil(c/ti) —— CP"(c) . Moreover in case M isa

TS

Riemannian manifold, ¢ is harmonic if and only if @ is harmonic.

. .
Proof. The condition ¢ w = 0 is equivalent to the flatness of the connection

induced from the canonical connection of the principal bundle (Szn+1,r,CPn,Sl) through
' g.e.d.

Q.
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2. Homogeneous line bundles and homogeneous maps into complex projective spaces

Let M = G/K be an m—dimensional compact homogeneous space with a compact
connected Lie group G . We denote by g and ¢t the Lie algebras of G and K, respec-
tively. Let (,) denote an Ad(G)—invariant inner product of g and m the orthogonal
complement of ¢ in g with respect to (,).Let Aut(CP") be the group of all holomor-
phic isometries of CP" . Aut(CPn) is identified in a natural way with a projective unitary
group PU(n+1) = SU(n+1)/{e€ Lt et
p:G— Aut(CP?) ,amap p: M — CP" is called p—equivariant if ¢ satisfies

1. 1} . For a given Lie group homomorphism

pla)op=ypo 7, foreach a € G, where 7, denotes the natural actionof G on M. A
map ¢: M — CP" is called G—equivariant if there exists a Lie group homomorphism
p:G—> Aut(CPn) such that ¢ is p—equivariant.

In this section we consider the case when M is a compact homogeneous space G/K
of a compact connected Lie group G and the principal bundle (P,r,M,K) is the standard
principal bundle (G,r,M,K) of the homogeneous space M = G/K . We endow M witha
G—invariant Riemannian metric g on M . Suppose that (o,C) is a complex 1—dimen-
sional unitary representation of K . Then the associated complex line bundle L = G X&C
becomes a G—homogeneous vector bundle with a Hermitian fibre metric <, > . Cc®(L)
and Cm(G,C)K have (left) G-module structures in a standard manner so that the map A
preserves the actions of G . Let Z(G) denote the set of all equivalence classes of finite
dimensional irreducible complex representations of G . Let for each A € F(G), (p V)
be a fixed representation of A . For each A € Z(G) we assign ‘a map A 4 from
V, @ Homg(V,,C) to Cm(G,C)K by the rule A,(v® T)(a) = T(pA(a_l)v) . Here
HomK(VA,C) denotes the space of all linear maps T of VA into € such that
o(k)o T=T o p,(k) foreach k €K .For A € (G), set
CR(L) = ATI(A,(V, ® Homy(V,,€))) . By virtue of the Peter—Wel theorem and the
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" Frobenius reciprocity law, the algebraic direct sum ) CR(L) is.uniformly dense

, A € 9(G)
in C®(L) relative to the uniform topology (cf. [Wa 2]):

(2.1) co(L) =Yy cR(L) .

A € 2(G)

Choose the canonical G—invariant connection I' on the principal bundle (G,r,M,K)
with the horizontal subspaces determined by the subspace m . Let VL be the covariant
differentiation on the complex line bundle L induced from the connection I' . The Lap-

lacian A" gives the eigenspace decomposition of C®(L) in the same sense as (2.1):
(22) L) =Y 5,1,
v

where & (L)={f€ c®(L); alg = v} is the eigenspace of AL corresponding to the
eigenvalue » . Since AL commutes with the action of G on C%L) , each &,(L) isa
finite dimensional G—submodule. Hence each & (L) is a finite direct sum of some irredu-
cible G—modules.

Given a finite dimensional G-submodule V of C®(L).Set n+1 = dim¢V . Decom-

8
pose the G-module V into the direct sum: V=) = V, of irreducible G—module V;’s
i=1

8
with dim V. =n. + 1. For any real numbers (r,,...,r ) with z =1 , We can con-
C'i™ 7 1 imq 1

struct a smooth map go(V;rl,...,rs) : M —— CP" as follows. Choose a unitary basis

. 2 . .
{gpo,...,gon} of V with respect to the L —inner product such that {wt(i—l)"""Pt(i)-l} is .
i
a unitary basis of V., where (i) = E dimgV. and t(0) = 0. By the G—invariance of
j=1

<, > and each Vi’
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8 2
) 1ri(<‘pt(i—1)"pt(i—1)> ot <O 1Py ()-1>)

1=

is a positive constant on M . In particular the system

{I'l(pt(i__l),...,l'iwt(l)_l; i= 1,...,3}

has no common zeros. By using this system of scetions of L , we obtain maps
oV; rl,...,rs) :G— Cn+1\{0} and @V, rl,...,rs) : M — CP™ . Note that the map
AV, rl,...,rB) is full.
We define a unitary representation py; : G — U(n+1) by
La(;O"”'gn) = (50,...,$n)pv(a) for each a € G . Note that
py(3) € U(n;+1) x ... x U(n,+1) . Then the map ¢(V;1y,...,r.) i8 py—equivariant for

8
each TR with 2 r? = 1. Hence we have

BV 1t )(8) = (py(8))¥y
o(V; rl,...,rs)(a-o) = r((pv(a))vo)

foreach a € G.Here 0=eK €M and v, = oV, rl,...,rs)(e) € Cn+1\{0} .

Under the identification m & ToM , choose an orthonormal basis {Xl,...,Xm} of m
with respect to g . By Proposition 1.1 the tension field 7 of ¢(V; rl,...,rs) at 0€EM is
given by

(2.3)- a(r(10)y
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-J((Z sov(xnv 2 <Py (Evovg>[<vgvg>)oy (X))

We describe the first Chern class cl(L) of the homogeneous line bundle L . The

curvature form 1 of T' is given by

for X,Y €m (cf. [K—-N,I, p. 103] ). We choose an element A s € & such that
o(X)v = ¢=I(A ,X)v forany X €¢ and v € €. Then the 2—form

(2.5) (7 (LYKY) = (1/27)([A,X1,Y) for X,Y €m
represents the first Chern class ¢, (L) of L.

Assume that (G,K) is a compact symmetric pair. Let g=¢ + m be the canonical
decomposition of g associated with the symmetric pair (G,K).Let a bea ma.ximalb
abelian subspace of m ..Choose a maximal abelian subalgebra f of g containing a . Fixa
linear order < on . Let A (Ch) denote the root system of g relative to h. We have

the root space decomposition of gc relative to b :

gt ="+ ,
zaEA “
where '50 ={X € gc; (ad H)X = 4~I(a,H)X for any H € b} . Let A+ be the set of

positive roots which do not vanish identically on a . Set nc = 2 + .Then n isa
aEA
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" nilpotent Lie algebrﬁ and the Iwéisawa decomposition gives a direct sum decomposition
(2.6) gc =t ql gl
as vector spaces.

Lemma 2.1. Let p: G — GL(V) be a complex irreducible representation of G
with the highest weight £ € h and <, > be a G-invariant Hermitian inner product of
V . Choose a weight vector v 5(# 0) € V for the highest weight ¢ . Suppose that there
exists a nonzero vector w € V and an element A € ¥ such that p(X)w = y=I(3,X)w for

each X € . Then we have WV > $0.

Proof. We define a complex valued linear function F by F(X) = <p(X)v V> for

XE€E gc .Forany Y€ nd , we have F(Y) =0 because p(Y)vf =0.Forany HE ol ,

we have F(H) = FI(.{,H)<VE,W> .Forany X € ¢, we have
F(X) = <p(X)v£,W> = —<v£,p(x)w> = ,Fl'(A,X)<vA,w> I KVpw> = 0, then by
(2.6) we get F =0 . By the irreducibility of p, we have w =0, a contradiction.

q.e.d.

Proposition 2.2. Let (G,K) be a compact symmetric pair and p: G — GL(V) be

a complex irreducible representation of G . Forany A € ¢, set.
W, ={weV;p(X)w=~I(AX)w foreach X €t}.
Then we have dichA =0orl.

Proof. Let Ve denote the highest weight vector of p asin Lemma 2.1and <, >
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'+ be a G—invariant inner product of V. We define a linear map f: W, — ¢ by
f(w) = <w,v6> for w€ W, . By Lemma 2.1, f is injective. Therefore we have
dichA =0 or 1.
q.e.d.

Corollary 2.3. If (G,K) is a compact symmetric pair, then in the decomposition
(2.1) we have Cj(L) is isomorphic to V, or {0} foreach A € P(G).

Remark. These results for A = 0 are well-known and essential in the theory of
spherical functions over compact symmetric spaces. The proof here was inspired by that of

[Te1].
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3. Harmonicity of homgeneous maps to a complex projective space

Let ¢: M =G/K — CP™ be a full, G—equivariant map compatible with a Lie
group homomorphism p : G — Aut(CP") . Note that there exists a unitary
representation p: & — SU(n+1) of the finite covering group G of G such that the

diagram

& P » SU(n+1)
l l
G 5 -+ PU(n+1)

is commutative. Take v, € 82n+1(c/4) with ¢(0) = v, . Then we have

w(a-0) = p(a)p(0) = p(a)x(vy) = u(z(a)vo) for each a € G . In particular we have
2(K)C vp € C v, . Hence there is a real—valued linear form A, on £ such that

;(X)\.r0 = ¢-1 Ay(X)vy forany X €t. Set ¢/ = Ker Ag={XE€Y ;(X)VO =0} . We
have a decomposition ¢ =¢’ @ ¢y 38 Lie algebras, where ¢ i8 an orthogonal compliment
of ¢/ in E. Note that dim ¢g=0 or 1 and ¢, is contained in the center of ¢.

Decompose the representation space ¢t of Z into the direct sum:

of irreducible 8—submodule Vi’s , and let

8

"0=Z

o €Y (i<
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"

""Then each \ does not vanish in virtue of the fullness of @ , and satisfies |
P(X)v; = =T Ay(X)v; foreach X €E .

Put W=( vg - Then W is a complex 1—dimensional K—submodule of €n+1 .
Consider the associated homogeneous complex line bundle L = & xa,.,W* over
M = 8/K , where (a*,W*) denotes the dual K—module of W . We define a smooth map
b= (BBy) : & — (WL €F by Ba))(w) = <Bla)w,e> (i =0,.m) to
each a € 8 and w € W . Since each 53 satisfies $i(ak) = a(k)_lai(a) ,1.e.
%i € Cm(ﬁ,W*)R , {&0,...,511} induces a system {cpo,...,cpn} of smooth sections of the
bundle L, andlet V denote the 8—submodule of C®(E) spanned by Pgre-¥y - Then @

8
is equivalent to (V; r,,...,r.) for some real numbers satisfyin r? =1.
1 8 ying (=]

1
We shall study harmonicity of the homogeneous map ¢ = ¢(V; rl,...,rs) . We

| prepare a lemma. Choose a subspace m of g such that Ad(K)m=m and g=%t 4+ m is

a direcr sum as vector subspaces.

Lemma 3.1. p([t,m] )V is horizontal with respect to the Hopf fibration
T S2n+1(c/4) — €P", that is, <p([&,m] Jgvg> =0. Therefore if [t,m] = m, then
S(m)v0 is horizontal. Here [£,;m] denotes the vector subspace of m spanned by

{[TX]; T€t, X Em}.

Proof. From the invariance of the Hermitian inner product <, > by the action p

of B ,forany TEt and X € m we have

<;(T);;(X)V0:V0> + <;(X)V0:;(T)V0> =0.
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Since z(T)v0 = =1 Ay(T)v, , we have
BRI RTIvg> = —T A(T)<FX)vgvg>

and
<;(T);(XJV0:V0> = <;( [T,X] )VO,V0> + <;(X)S(T)v0:"0>
= <p([T,X])vgvp> + =T Ay(T)<p(X)vg,v> -

Hence we obtain <p( [T,X] )vo,v0> =0.
q.ed.

Remark. Set m= [¢m] + mg » where m, denotes the orthogonal complement of
[¢,m] in m with respect to an Ad(G)—invariant inner product of g. Then my is
Ad(K)—invariant and satisfies [E,mo] =0 and [m,mU] Cm.

If the homogeneous space M = G/K satisfies one of the following conditions, then

we have m = [¢m] :

(1)  The isotropy representation of M = G/K is irreducible.
(2) rank G =rankK.

(3) g is semisimple and (g,t) is a symmetric Lie algebra.

The compact homogeneous spaces with the irreducible isotropy representation were
classified by [Wo]. By a result of Hopf-Samelson M = G/K satisfies rank G = rank K

if and only if the Euler—Poincaré characteristic of M is positive.
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Let g be a G—invariant Riemannian metricon M . Let gq denote the G—invaraint
Riemannian metricon M induced by an Ad(G)—invaraint inner product (,) of g.

From Proposition 1.1, (2.3) and Lemma 3.1 we get the following.

Proposition 3.2. Suppose that the homogeneous space M = G/K satisfies the
condition [&,m] = m . Then the following statements for a G—equivariant map

¢ =@V; rl,...,rs) : (M,G) — C_Pn are equivalent each other:

(1) ¢ is a harmonic map.

m
(2) (2i=1;(xi)2)v0 ER v, , where {X{"X,} denotes an orthonromal basis of

m with respect to g .
(3)  For some constant v, ALgoj = v (j=0,...,n), that is, the subspace V of
C®(L) is contained in some eigenspace & (L) of Al

By this proposition we see that if M = G/K satisfies [¢,;m] = m, then
{o(V; rl,...,rs) ; V is a G—submodule of some eigenspace for AL L ER (i=1,..5)
8
with )
i=1
from (M = G/K, g) to a complex projective space. Here s denotes the number of

r? =1} is the set of all equivalence classes of G—equivariant harmonic maps

G—irreducible components of V .

Let ¢ denote the Casimir differential operator of & with respect to the
3
Ad(G)—invariant inner product (,) of g, thatis, ¥ = 2 XX, » where
A=1

{XA}A 1.0 is an orthonormal basis of g with respect to (,) and

{Xk}k—m+1,...,£ is contained in t.If g =g, then we have

p(E XX,)=p(%¢)- Zk p(X, )" . If the representation (p,C"" ") is irreducible,
i=1 =m-+1

then by Schur’s lemma p( ¢ ) is a constant operator —c(p)I for some ¢(p) > 0. In this

m
case we have p(zi=1)(i)(i)v0 = (—(p) + (AO,AO))VO . Therefore we obtain the following.
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i’rgposition 3.3. Suppose that M = G/K satisfies the condition [¢,m] =m.If V
is irreducible (equivalently, (5,€211) is irreducible), then
o =¢(Virgr)  (Mgg) — CP" is a harmonic map (s =1).

We shall give an explicit formula for the energy density of a G—invariant map

@ (M,gG) —
Proposition 3.4. Suppose that M = G/K satisfies the condition [¢,m] =m.

(1) The energy density e(p) of a G-equivariant map ¢ : (M,g) — (CPn,gc) is
given by

e(p) = =(1/2)<P( 6 Jvgvy> — 21 Ayl %/c.

cn+1

Moreover if (p, ) is irreducible, then

~ 2
e(p) = (2/c)(c(p)—[2o1") -
*
(2) I ¢ 8. = I B for some positive constant r > 0, then r is given by

r = —(1/dim M){<B( ¢ vg,vy> + (4/¢) [ |} .

Proof. Under the identification m~ T 0M , by Lemma 3.1 we compute
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o) = 1/2)], (08X, X)
—(1/2)2 <p(X vgr P(X;)vg>
g 1
= -(1/2)<p(}:l=1XiXi)v0,v0>

3
= H{1/2)(<H( Irgg> + 2k=m+1"°(xk)2 vo1%)

= —(1/2){(;( € )VO’VO> + (4/0) | "0 | 2} :

From this we get (1). Immediately (1) implies (2).

q.ed.

By virtue of the formula of Freudenthal, the eigenvalue c(p) of the Casimir operator

?)'( ¥ ) for an irreducible representation (Z, is given by

2 = ~N ~ 2
c(p) = (A, Ax +26)

where A; denotes the highest weight of the representation p and 6 denotes half the
sum of the positive roots of g, relative to a maximal abelian subalgebra of g and a linear

order on it.

Remark. (1) The similar results and formulas can be found in [Gu 1], [Gu 3] for a
flag manifold G/T . In [Gu 3], [Gu 4], Guest gives more results and interesting
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observations from the viewpoint of twistor geometry and symplectic geometry.
(2) ¥ K has the discrete center, then the associated homogeneous complex line

bundle L is a flat vector bundle and any homogeneous map ¢ made from sections of L

is always totally real.
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4. Homogeneous harmonic maps of compact homogeneous Kiahler manifolds into

complex projective spaces

Let g be a compact semisimple Lie algebra and t be a maximal abelian subalgebra

¢ and tc the complexification of g and t, respectively. tq: isa

C

of g. Denote by g
Cartan subalgebra of g~ . Let (,) be an AdG—invariant inner product on g defined by
(1) times Killing form of g.Let X {Ct) denote the root system of g relative to t. We

have a root space decomposition of gc :

¢ C C
g =t + g.
2c’.-EE a

where gﬁ ={XE€ gc; (adH)X = y~I(a,H)X for any H € t} . Choose a lexicographic
order > on ¥.Put Xt = {a €X; a>0}.Let II ethefundamental root system of ¥
consisting of simple roots with respect to the linear order > . We identify I with its
Dynkin diagram. Let {A } e1(C¢) be the fundamental weight system of gf‘

corresponding to I :

1if a=4,

2(A )/ (B) = {0 it a8

Let II0 be a subdiagram of Il . We may suppose that the pair (H,HO) is effective,
that is, Il; contains no irreducible component of II. Put Xy =X n {Il )}, where {Ily},
denotes the subgroup of t generated by IIO over I . Define a subalgebra u of gc by

C C
u=+%"+ g .
zaEEOUE'*' —a
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Let Gc be the connected complex semisimple Lie group without center, whose Lie is
gc , and U the connected closed complex subgroup of GC generated by u. We define a
complex manifold M by M = GC/U , which is known to be compact and simply
connected. Denote by J the comlex structureof M. Gc acts effectively on M , since
GC has no center. The origin U of M is denoted by o.Let G be a‘ compact connected
semisimple subgroup of GC generated by g and put K=GnU. Then K is connected
and G acts on M transitively, and hence the natural map G/K — Gq:/ U induces an
identification M = G/K as a smooth manifold. M is called a generalized flag manifold.
The complexification ¢C of the Lie algebra t of K is given by

tc

=1L + z gE .
a€X,
We define a subspace ¢ of t by

c-—-z RA .
aEH—HO a

Then ¢ coincides with the center of €. We define lattices Z and Z ¢ of £ and ¢

respectively by

= 2aEl[ZZ Aa

and
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¢ aEII—-HO a’

+

We define a cone ¢ in ¢ by

ct (resp. ot ) = {2 € \{0}; (2,a) > 0 (resp. 2 0) for each a € NIy}

and put Z'i' =7Znc¢t and Z# =ZnN c# . Then we have ¢' = z RYA_ and
c a
aEII—HO

7t = E ItA , where RY and Z" denote the sets of positive real numbers and
4 a

positive integers, respectively. Let m be the orthogonal complement of € in g with
respect to (, ) . Then we have a direct sum decomposition g =% + m as vector spaces.
The subspace m is K—invariant under the adjoint action and identified with the tangent
space TyM of M at the origin. Put E;: . EO , E; = —2:‘1 , and define |

K—invariant subspaces m® of gq: by

(4.1) m* =

C +

Then ™ =m" and the complexification m™ of m is the direct sum mc =m' +m .
Let Gc be the universal covering group of GC and @ be the simply connected
subgroup of Gc generated by g.Let U be the connected closed complex subgroup of
Gm generated by u and put K =8nT. Then we have also identifications
M= GC/U =8/K . Let T be the toral subgroup of & generated by t.
We choose E a € gg for a € ¥ with the following properties and fix them once for

all:
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[EpE_,] =+Ta,(EE_)=LE =E_, for a€X.

C

We denote by X +——— X the compelx conjugation of g~ with respect to the real form

g . Let {“’a}aEE be the linear forms on gf‘ dual to {Ea} €7z » ore precisely, the

linear forms defined by
(1% = {0},
a 1if a=g,
w (Eﬁ) =
0if a$ p

Every G—invariant Kahler metric on M is given by

g(A) =(/n)) et (A,a)u® - 5% for A €ct (cf. [B-H],[Te2]).

Denoted by w(A) the Kahler form (or fundamental 2—form) of g(A),
w(A)(X,Y) = g(A)IX)Y) . Any G—invariant Riemannian metricon M is a Hermitian

metric with the coclosed fundamental 2—form.

Givenany A€ Z ¢» Wecan define a complex 1—dimensional unitary representation
o()) of K by (¢(A))a) = exp(y=I(1,X)) for each a € K, where a = exp X and
X € t. We construct a homogeneous complex line bundle L, = g XU(A)E over M = G/K
associated to the representation (0(1),€) of K . Conversely for each homogeneous
complex line bundle L over M = ﬁ/R , there exists a unique ‘element AEZ c such that
L= L, . The first Chern class cl(L,\) of the complex line buﬁdle L, over M associated
to A€Z is represented by the closed 2—form
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(4.2) | 7(Ly) = (\Fl'/mr)iaez L (e AT

Because by (2.3) we have
HE(ELED = (1/25)([AE,], Ep
= (VT/27)(),a)(E, B -

Proposition 4.1. (cf. [B-H], [Te 2]). Let J&(M) and #(M,g) be the real
vector space of all G—invariant closed 2—forms on M and the real vector space of all
harmonic 2—forms on M with respect to a G—invariant Riemannian metricon G,

respectively. Then we have the following isomorphisms:

¢ v BY(RR) 2 BA(MR) @ #%(M,g) = JE(M)

]

1 2
z. 2 (K1) 2 B M,7)
and the linear isomorphism between ¢ and JG(M) is given by

70 = (FI/20] oy (ha)u® AT € ITG0)
m

for A € c. Here note that we can identify HI(R,H) and H2(M,H) with subgroups of

Hl(ﬁ,m) and H2(M,IR) since these integral cohomology groups have no torsion.
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Let (M) be the complete set of equivalence classes of complex line bundles over
M . Then we get the bijective correspondences among .#{M), H2(M,ﬂ) and Z . by
¢y (L,) =n(a) for A€Z,.

For each A € Z_, there is a unique holomorphic character x(A) of U such that

(x(A))(exp H) = exp y=T(A,H) for each H € (.

Then we can identify L A with the holomorphic line bundle GC x X A)C over M
associated to the principle bundle (Gc,x,M,U) by x(A) . We have the identifications
L,= G xa( A)ﬂl = 8¢ xx( ,‘)QI . Through these identifications we endow the complex line
bundle L Y with the Hermitian metric and the holomoprhic structure. Hence L 1 becomes
a holomorphic Hermitian line bundle. Let I' be the canonical G—invariant connection on
the principal bundle (G,r,M,K) and g=g(u) (u€ c+) be a G—invariant Kihler metric
on M. By (2.4) and (4.1) the curvature form 0 of T is of type (1,1). Let VA denote
the covariant differentiation of L ) induced from the connection I' . Then V’\ is the
Hermitian conneétion of the holomorphic Hermitian line bundle L 3 The complex

Laplacian n’\ of L 1 is defined by

m
Ae o Aode ol
f=Fd=-) |[V'V2{-V
- 2 [“i U gMg

= =1
i=1 u;

f] for 1€ CP(L,) ,

*
where J and J denote the (0,1)—operator of the holomorphic line bundle L ) andits
adjoint operator respectively, and {“i} is a unitary basis of Tl()l'O)M with respect to

g = g(u) . Then we have
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m m
M=y Vi gi=-3 3 [V si+ W .0+ R
i=1 1’1 =1 1’1 1M

! {AAf- 2r D:aez t_:(/\,a)/(p,a)] f} :

where A* and RA denote the fough Laplacian relative to V)‘ and the curvature form of
A respectively. Hence if A = p, that is, cl(LA)IR = [w(p)] , then it becomes
ot = (1/2)(A’\-27rm- 1), where m = dim¢M . Set ¢(A,p) = 272 E_'_(A,a)/(p,a) .In
at
m

the next section we will determine all eigenvalues and eigenspaces of the Laplacians t:l"

and A’]t for each irreducible Hermitian symmetric space M of compact type.

Let T'(L;) be the subspace of Cm(LA) consisting of all holomorphic sections of
L, . Wesee that T(L,) = {f € C*(L,); o*f = 0} = {f € C°(L,); A*f = »(A,p)f} . From
Borel-Weil theorem ([Bt]) we know that I'(L,) is an irreducible G—submodule of
Cm(LA) with the highest weight A , henceif A € Zc\(Z#’: U {0}), then I'(L,) = {0} . 1t
is known that A € Z'i' if and only if L, is very ample. Let & AL A) be the eigenspace of
A* with the eigenvalue v . The decomposition (2.2) of C®(L 4) becomes

C®(L,) =T(L,) + 2» £ (L)

(A1)

Let ¢ = (V; rl,...,rs) : M — CP" be a homogeneous map associated to a finite
dimensinal G—submodule V of C®(L A) as in Section 2. We use the same notation as in

the preceding sections.
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Proposition 4.2. (1) ¢ = ¢(V; rl,...,rs) : M — CP™ s a full holomorphic map if
and only if A € 2% and V=T(L,) (s=1).

(2) If A €7, satisfies (A,a) #0 foreach a €EM—II, then
¢ =(V; rl,...,rs) : M — CP® is an immersion.

(3) I A€z% and VC & (L)) for v> »(A), then
v=eV; rl,...,ra) : M — CP" is a harmonic map which is neither holomorphic,
antiholomorphic nor totally rea.l.‘ Moreover if a harmonic map
¢ =@V T)ntg) : M — CP" with the simple compact Lie group G and dimeM 2 2
is neither holomorphic nor antiholomorphic, then ¢ is not even pluriharmonic map (cf.
[ud], [0-U]).

(4) If ¢: M= G/K — CP" is a G—equivariant, stable harmonic map of a
compact homogeneous Kihler manifold M = G/K with the second Betti number

b2(M) =1, then ¢ is holomoprhic or antiholomorphic.

Proof. (1) Note that by the G—invariance of ¢ and Lemma 3.1 we have
(Dxé)ga— <X g,p>[<p,p> =X @ foreach X € TMC . Assume that A € Zf and
V=I(L,) (s= 1).From A € Zf wesee T'(L,) # {0} . Since

@g)"_ =(z9)

~ *
=7 @=0 foreach Z € T(I'O)M , hence we get
.| i=0,...,n

DZQ = 0. Thus ¢ is holomorphic. Conversely assume that ¢ is holomorphic. Therefore
*
for each Z € T(0M we have 0 = (D,8)5 =Z p = (o)) = (3g0)

i=0,...,n i=0,...,n

~
Hence {qpo,...,cpn} are nonzero holomorphic sections of L, . Thus by Borel-Weil theorem
weget A €2% and V=T(L,).
(2) Let w, denote the Kahler form of (CPn,gc) . Then the first Chern class ¢, (H)
of the hyperplane bundle H over CP" is represented by 7,(H) = (c/4m)w . - Since
* *
@ ¢/ (H) = CI(I‘,\) and ¢ 7,(H), 71(1‘).) are G—invariant closed 2—forms, by (4.2) and

*
Proposition 4.1 we get ¢ 7,(H) = 71(LA) , that is,
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0w, = (2/°)Fr2aez : (A,e)u® A BT .

Hence we see that (A,a) # 0 for each a € i, if and only if tp*wc is nondegenerate,
and then ¢ is an immersion.

(3) The first statement follows from (1). If ¢ = ¢(V; 14,...,1;) i8 @ nonconstant
pluriharmonic map, then by a result of [Ud] we have rankpdy <2, hence
dimpp(M) =1 or 2. Since G’ = {a € G; ax =x for each x € p(M)} is a normal
closed subgroup of G and G is simple, G is locally isomorphic to G/G’ . Since G/G’
acts effectively on (M), G must be of type A;.Thus dimM =1.

(4) By (2) ¢ must be an immersion. By a result of [B—B] (cf. see also
[B-B—B—R] ), we see that (M) is a complex submanifold of CP" . Hence by the
G—equivariance of ¢ the standard complex structure of CP" induces a G-invariant
complex structure J’ on M through ¢ . By Proposition 13.8 of [B—H] the complex
structure J/ or —J’ coincides with the complex structure J of M = GC/U . Thus ¢ is
holomorphic or antiholomorphic.

g.ed.

Remark. (1) The statement (1) of Proposition 4.2 is regarded as a very special case
of the famous Kodaira's imbedding theorem. If A € zf\zf , then the holomorphic map
Q= ga(I‘(LA)) : M — CP" is not an immersion. For each A € Zt , we have a Kahler .
imbedding ¢ = p(I'(L,)) : (M,(4x/c)g(})) — (CPn,gC) . These Kahler imbeddings were
investigated and classified in detail by [Te 2].

(2) In case (G,K) is an irreducible Hermitian symmetric pair, since the isotropy

representation of M = G/K is irreducible, the statement (3) of Proposition 4.2 gives



neither holomorphic, antiholomorphic nor totally real, minimal isometric immersions
Q: (M,rgG) — CP" for some r > 0. The values r and eigenspaces & AL ,\) are

determined precisely from Proposition 3.4 and resuolts of the next section.



5. Spectral decomposition for complex line bundles over compact Hermitian

symmetric spaces

In this section we discuss the case when the generalized flag manifold M is a
Hermitian symmetric space. _

Let I = {al,...,ae} be an irreducible Dynkin diagram. A pair (II,IIO) is called
irreducible symmetric if TI-I, = {aio} and the highest root @ of the root system I

with the fundamental root system Il has an expression:

L
~
a= a -+ ma m €L, m >0 .
10 2i=1’i#0 17171 1

A general pair (II,IIO) of Dynkin diagrams is said to be gymmetric if the pair (II,HO) is a
difect sum of irreducible symmetric pairs of Dynkin diagrams. Let M = G/K be a
generalized flag manifold associated to an effective pair (ILII)) . It is known that the pair
(G,K) is a symmetric pair if and only if the pair (H,HO) is symmetric. In this case for any
G—invariant Riemannian metric g on M, (M,g) is a Hermitian symmetric space and the
identity component AutO(M,g) of all automorphisms of (M,g) is equal to G . Every

Hermitian symemtric space of compact type is obtained in this way.

Proposition 5.1. (cf. [H~C], [He]). There exists a subset 7,,...,7, of E;:;

consisting of strongly orthogonal roots, i.e. 7; % 7 £X (1<1,j<r) such that

C T
a’ = CE,+E_.)
2i=1 ( nTh
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is a maximal abelian subspace of mc . In particular

R )
a= R(E + E
i=1t 4 TN

is a maximal abelian subspace of m .

Consider the inner automorphism v of the Lie algebra g, so called Cayley

transformation;

v= Ad(co) ,

where ¢; = exp(r/z)\/:fzil(E,ri - E_7i)/(\/2| 7;1) . Then we have +(a) Ct and

V((E,,i -E_.,i)/ v2) ==7/| %l for 1<i<r (cf. [H-C]).

Set Ai = Aa for i =1,...,2 . In our case we have Zc = HAi . For each
i 0

A= kAiO € Z_, the first Chern class c¢,(L,) is given by ¢,(L,) = kw; , where v, isa

positive generator of H2(M,H) .Foreach k € 7, set W, = (o(kA; ),C).
0

We shall determine the spectrum decompositions (2.1) of all complex line bundles
over each irreducible Hermitian symmetric space of compact type. Let D(G) be the set of
all dominant integral elements of t. By Proposition 2.2 we know dim Hom(V(A),W,) =0
or 1 for each A € D(G) . Set

D(G,K;k) = {A € D(G); dim Hom (V(A), W) = 1}

for each k € 7, and D(G,K) = D(G,K;0) .
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Theorem 5. .2. The following is a complete list of D(G,K;k) (k € Z) for each
compact irreducible Hermitian symmetric space M = G/K . Here each diagram is the
Satake diagram of (G,K) and ©) represents the element of I, .

(1) (AIII)pq(lSpﬁq):M:Gp’q(C), £=p+q—1.Inf:a.se 1{p</2,

01 02 ap

0 0 —_————— © °

T T ‘ T
[ ]
1
I
t
I
!
®

J |

o o o °

o g1 p—p+1

. |
D(G,K;k) = [Zi=1mi(Ai+Al—-i+l) tmpA e pyr
m, € 7, m, 20 (i =1,..,p+1), mp—m = k} .

In case 2p—-1=1(,

T ay ap—l
o 0 e e — 0
\
O
o] 0 — ——— — — 0 /
ap a1 ap-f-l



—-37 -

mi(A+Agpq) +mpAp s

D(G,K;k) = {Ep_

1
i=1
m, €, m, 20(=1,..,p), mp—|k| 20 is even]» .

(2) (BD), (m25):M=Q_(C).¢=[m/2] +123.Incase m isodd (£ 23),

a9 a9 a3 @p-1 ap
© o ° —————— » Ye |
In case m is even (£ 2 4),
a1
°
a @9 a3 ap2
© o ™ ———— o\
°
ap

D(GKik) = {mA; + m m, € 7, m, 20(i=12),

oho;

m,—|k| 20 iseven} .

(3) (CI)g (£ 22): M =5p(2)/U(L).

al 02 03 aﬂ_% GR'

o o ° —_———— °
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2—1
i=1mi2Ai + mﬂ,AP, ;

D(G,K;k) = {2

m, € 7, m, 20(i=1,.,L), m£—|k| 20 is even} .

(4) (DII), (£ 2 5) : M = SO(22)/U(2)

-1
D(G K;k) = [E;lmium +mAy;
m, € Z, m, 20(i=1,..1)

In case £ = 2r+1,

.In case €& =2r,

,m—{k| 20 is even} .
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' —1
D(G,K;k) = {XI m2hg; +mAy tm g

i=1

m, € Z, m; 20(=1,.,r+1), m-m = _k]

(5) (EIIl): M = E6/Spin(10)-T .

D(G,K;k) = {mIA1 + myA, + mahg
m, € 7, m, 20(1=123), ml—m'3 = —k} .

(6) (EVIL): M =E,/Es-T.

a9
°
@ o ° ° °

D(G,K;k) = {mll\1 + myAs + mah

m, € 7, m, 2 0 (i = 1,2,3), my—|k| 20 iseven} .
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We will get Theorem 5.2 by showing the following lemma.

Lemma 5.3. Let p be the Satake involution of (G,K) (or (ILII,)).

(1) I p(iy) #iy, then
D(G,K;k) = D(G,K) + kA, foreach k20 and
0

D(G,K;k) = D(G,K) —kA_,. | foreach k< 0.
P(lo)

(2) If p(iy) =iy, then
D(G,Kk) = D(G,K) + |k|A; foreach k€T.
0

Proof. Note that if p(iO) # ig, then kA, € D(G,K;k) for k 2 0 and
0

kA .
P(10

Let A € D(G,K;k) . We show that if k20, then A € D(GK) kA . et k bea
0
*
nonnegative integer. Now we take the tensor product G—module (V(kA, )) ® V(A) . Here
0

V* denotes the dual G—module of a G—module V . Then we have the direct sum
%*
decomposition of the G-module (V(kA; )) @ V(A) into irreducible G-modules U,
: 0

(V(kA; ) ®V(A)= U, ©U,®..0U_,
g

2

*
where U, denotes the highest component. Since (V(kA; )) = V(kA )) , we have
0

P(ig

*
U, = V(].@:Ap(i ) + A) . Choose a nonzero weight vector f € (V(kA; )) for the lowest
0 0

weight —kA. and a nonzero vector w € V(A) belonging to a K—submodule of V(A)
0

isomorphic to W, . Then we see p(X)f = -\/:f(kAiO,X)f foreach X € ¢ and

) € D(G,Kk) for k <0,andif p(ij) =iy, then |k|A;, €D(GKk) for k€.
0
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p(a)({®w)=1®@w foreach a € K, where p denotes the action of G on each

* B
representation space. Moreover choose a nonzero weight vector f; € (V(kA; )) for the
0

highest weight kA ) and a nonzero weight vector v, € V(A) for the highest weight

P(ig
A . Note that fl ®v1 € U, . For each H € t, we have

p(E)(E) ® v;) = I(kA ) + AH)(E; @ v)) .
Since <p(c0)_1f1,f> #0 and < p(co)_lvl,w> # 0 by Lemma 2.1, we have
<pleg) (i, @ w )@ w> = <p(c)) M I><p(cy) Wy w> #0.

Write f®w =u; + ...+ u, where u; € U, (i = 1,...,8) . Then we see p(a)y; = u; for

each a € K and p(cp)(f® w) = plcy)u; + ... + plcgluy , p(cg)y; € U; (i = 1,...,8) . Since

<f; ® vy, plcg)f® w)> = <f; ®v,, p(cyu;> #0, weget p(cy)u; #0 . Hence

0#u, €U, and p(a)u, = u, foreach a € K. Thus we obtain kA _,. y + A € D(G,K).
1 1 171 p(lo)

Similarly we can show that if k <0 and A € D(G,K;k) , then A € D(GK) + kA,
0

We have only to apply the same argument to the tensor product G—module

V(-kh; ) @ VIA)

First we discuss the case when p(iO) # i » that is, the pair (G,K) isof type
(AII) , (DI o ) or (EII). Let A € D(GK;k). Assume k 2 0. By the above
assertion we can write

— _
A= mO(AiO+A )—kA

+ [terms of Aj with j#io, p(io)]

P(io) P(ig)

for some m6 €1, m(’] > 0 . Hence we get



—42 -

A= mO(Ai0+Ap(i0))+kAio + [terms of Aj with j# igs p(iO)]

with m, = ma——k 2 0. Thus we obtain A € D(G,K) + kA; . Next assume k < 0.
0

Similarly by the above assertion we can write

)+kA; + [terms of Aj with j# i, p(ij)]

A=m/(A. +A_,.-
mo( l0+ P(lo) 0

for some m6 €1, m6 2 0. Hence we get
A= mO(Ai0+Ap'(iO))—-kAp(i0) + [terms of A.i with j# iy, p(iy)]

with m, = m[+k 2 0. Thus we obtain A € D(G,K)-kA ;. . Conversely if
0~ ™o p(ig)

A’ € D(G,K) and k20 (resp. k <0), then A" + kA, (resp. A”—kA ) € D(G,K;k)).
0

P(lg

In fact, if welet u € V(A’) and v € V(kA, ) (resp. V(—kA ))) a nonzero K—fixed
0

i0 p(i
element of V(A’) and the highest (resp. lowest) weight vector of V(kA, ) (resp.
0

V(—kAp(i ))) , then by Lemma 2.1 we see that the highest component of the tensor product
0
V(A") @ V(kA, ) (resp. V(A') @ V(—kAp(i ))) contains a nonzero component of u® v,

0 0

and hence it contains a K-submodule isomorphic to W, . Therefore we obtain (1).

Next we proceed to the case when p(iO) = i , that is, the pair (G,K) is of type
(BD)» (CI)y, (DIM), _,  and (EVII).Let A € D(G,K;k) . From the above assertions
we already know A € D(G,K)—| k|)\iO . Hence from Satake diagrams we can write

A= m62Aj0 - |k|1\iO + [terms of Aj with j#ig]
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for some m €1, mg 2 0. Thus it becomes

A = myA, + [terms of Aj with j#i,]

0

with m, = 2m(’)—|k| 20 and m;—|k| even. We have to show mj 2 k| . By the
assumption V(A) contains a K—submodule isomorphic to W ME which is also denoted

*
by w[k| , because V(A) isisomorphic to V(A) . By the irreducibility of V(A) and the

K—invariance of W NE we have

N
C C
V(A) = w

™) 2q=0 Eﬂlv"-:ﬁqezmp(gﬁl) p(gﬁq) [kl

for a sufficiently large integer N . Note that p(gg ) p(gg )W|k| is contained in the
1 q
weight space of V(A) for the weight |k[A; + 8, + ... + ﬁq , or it is zero. Hence we can
0

write
(5.1) A=|k|Ai0+ﬂ1+...+ﬂq

for some q 2 0 and ﬁl,...,ﬁq € 2:1 . Indeed, we have only to choose {ﬁl,...,ﬂq} CxX  of

the minimal number q such that p(E, )...p(E4 )w is the nonzero highest weight vector
g PEg, 6

of V(A), where w is a nonzero element of W ME We check that

(5.2) 2(ﬂ,ai0)/(ai0,ai0) =0,1 or 2
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for each S € E:_'l - Indeed, we define an integer j, by jj, =2 if (G,K) is of type (BD)_,
jo = &1 if (G,K) is of type (CI),, j, = &2 if (G,K) is of type (DIIT), _, and

jo =6 if (G,K) isof type (EVII). Then from the list of root systems we see that

. ,a.)=0 for j¥i,j,,and 2(a, ,a. ., ) =-—1,
(a:r10 arJ) or j#igjg,an (arJO alo)/(a10 alO) .

and for each S € E:r: , B has the following form:

a.
1
0

g=1 “i0+aj0 + [terms of a; with j# ig,jp] ,or

~ai0+2aj0 + [terms of a; with j #io,jo].

Hence we get (5.2). Therefore from (5.1) we have
q
m, =2(A,a, )= |k| +2 B.,a. }/(a, ,a. )2 |k| . We got
0=2he; ) = 1kl +2) _ (Boay )(e; oy
D(G,K;k) C D(G,K) + |k|A; .In thesame way as the proof of (1) we can show
0
D(G,K) + |k[A; CD(G,K;k). We obtain (2).
0

q.e.d.

Proof of Theorem 5.2. The method of determining D(G,K) by Satake diagram is

well-known in the theory of spherical functions over compact symmetric spaces (cf. [Te 1]
and references of [He]). Therefore Theorem 5.2 follows from Lemma 5.3.

q.e.d.
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6. Classification of homogeneous harmonic maps between complex projective spaces

In this section we discuss the case when M is an n—dimensional complex projective
space CP™ . By Theorem 5.2, the Freudenthal’s formula and the Weyl’s dimension

formula, a simple computation gives the following.

Proposition §.1. Incase (AII); :M= CP™ | for each
A=mA; +myA  €D(GKk) with m—m, =k, the eigenvalue c(A) of the Casimir
operator for A relative to the inner product of g = su(m+1) defined by (—1) times
Killing form and dimension d(A) of the representation of su(m+1) with the highest

weight A are given as follows;
¢(A) = (1/2(m+1)%){mm? + 2m m, + mm + m(m+1)(m +m,)} ,

¢(A) - kA, |? = (1/2(m+1)){2m m, + m(m +m,)} ,

m

) = [

m--1 +m, m—1 +m, | m+m, +m,
m Mo
By this proposition and results of the previous sections we get a nice series of

homogeneous harmonic maps between complex projective spaces.

Theorem 6.2. There exists a series of SU(m+1)—equivariant full minimal isometric
immersions ¢': E ¢P™(c(n,e)) — CPN(H’P‘)(C) indiced by the set {(n,L) € Z x 7,
n2 €20}, where
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¢(n,L) = cm/{2k(n—L) + mn} ,

N(ng) 4 1= [n—£+m—1] [ f.+m—1] min

n—g L m

Moreover {1&11111’&} satisfy the following:

(1) £ =0 if and only if ¢':'£' is holomorhic. In this case ﬁl;ll’t is the n—th Veronese
imbedding of CP™ (cf. [Te 2]).

(2) £ =n if and only if ¢‘§’£ is antiholomorphic.

(3) n isevenand 2¢ =n if and only if ﬁ,e is totally real. In this case ¢‘§'Q is a
composite of the k—th standard minimal immersion CP™ — SN(c/4) (cf. [Wal])
the natural isometric covering SN(c/4) — [RPN(c/4) and the totally real totally
geodesic imbedding IRPN(c/4) — CPN(C) :

(4) The degree of ;’!I::,P_ is equal to n—2¢ .

Remark. Incase m =1, g‘;]ll g is congruent to ¢ , in Theorem 1 of [B—O] (cf.
[B=J-R-W], [Gu 1]). So this theorem is just a generalization of the result of [B—O] to

higher dimensional complex projective spaces.

m

Proof. For each A =m;A; + m,A_ € D(G,Kk), we set gén’ﬂ =p(Vy)(s=1)
by Proposition 3.3, where n =m, + m,, L= m, and k = 2£ . Then we get the above
series.

q.e.d.

Theorem 6.3. Let ¢: CP™ — CP™ be a full SU(m+1)—equivariant harmonic map

between complex projective spaces with the Fubini—Study metrics. Then there exists a pair
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of integers {n,L) with 0 { £ < n such that N = N(n,L) and ¢ is equivalent to wlrlll ¢

Remark. From this result we see immediately that if ¢ : CP™(c’) —s CPN(c) isa
full SU(m+1)—equivariant minimal isometric immersion, then there exists a pair (n,2)

with 0 < 2 <n such that ¢/ = ¢(n,2), N = N(n,L) and ¢ is congruent to ¢r;ll g

Proof. Let k be the degree of . By the results of Section 3, there exists a unique
homogeneous complex line bundle L with ¢ (L) =k over CP™ such that ¢ is

equivalent to (V;ry,...,r.) for some G-submodule V of an eigenspace of A in Cc®(L)
8 8 .
and some T reenlg ER with z r? = 1. It suffices toshow s =1.Let V= 2 V(l)
i=1 i=1
be the direct sum decomposition into irreducible G—modules and
A(i) = mgi)Al + mgi)Am € D(G,K;k) be the highest weight of V(i) for i =1,...,8. Then

we have

mgi)-mgi) =k fori=1,...8,

(6.1) 1 ' .
' c(A(l)) =c(A(l+1)) for i=1,.5-1.

By (6.1) and Proposition 6.1, a simple computation shows mgi) = mgi-"l) and
mgi) = mgl'l'l) for i =1,...,s—1, that is, A(l) = A(1+1) for i =1,...,5-1. By Corollary
23, weget s=1.

q.e.d.

Remark. (1) It is important to investigate the rigidity of the above minimal
immersions. Refer to [Ca] for the rigidity of ¢I:11 0 Or ¢11111 o, andto [Wa 1], [Ur] for
the rigidity of $7 g With n=2¢.
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(2) After the author finished this work, Dr. Burstall informed him that Toth also got

examples of non(anti)holomorphic harmonic maps P —— ¢P" for m<n.
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7. Homogeneous minimal 2—spheres in quaternionic projective spaces

It is interesting to study homogeneous harmonic maps into quaternionic projective
spaces by applying our argument to quaternionic line bundles and smooth maps into
quaternionic projective spaces. Here we give homogeneous minimal 2—spheres in
quaternionic projective spaces and some informations about them. They were discussed
first by Salamon [Sa].

Let HP™(c) denote an n—dimensional quaternionic projective space with the

standard metric of the maximum ¢ of sectional curvatures.

Proposition 7.1. There exists a series of SU(2)—equivariant minimal isometric
immersions @ CPl(c(n,a)) — HP"(c) indiced by the set {(n,a) € X x I;
n2 a0}, where

¢(n,a) = 1/{2a(2n+1-a) + 2n+1} for a=1,..,n—-1,
¢(n,n) = 1/n(n+1),

and the image of each Yy a is not contained in any proper totally geodesic submanifold of
HP™ . Moreover a =0 or n ifand onlyif ¢ is totally complex. Conversely they give

all proper SU(2)—equivariant minimal immersions of ¢! into MPY .

Remark. (1) Refer the definition of a totally complex immersion to [Ts]. It is
equivalent to the inclusive condition in {E—S] as a smooth map. In [Sa] a connection of
these maps with the twistor spaces Sp(n+1)/Sp(n) x U(1) and Sp(n+1)/U(n) x Sp(1) .

over HP" was studied. This result shows that the statements in Lemma 2.10 and Theorem
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4.1in [Ts] do not hold for ¢_ . (2) We conjecture that {p_ a} exhaust all proper

minimal isometric immersions of d:Pl(c') into HP"(c) .
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