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Introduetion. Let M = G/K be a eompact homogeneous spaee of a eompaet Lie

group G with a G-invariant Riemannian metrie g and N be a Riemannian manifold. A

homogeneous harmonie map from M to N means a p-equivariant harmonie map from

M to N relative to a homomorphism p of G to the isometry group of N . The existence

and eonstruction of harmonie maps are interesting and imponant problems in various

situations. Homogeneous harmonie maps make a simple and nice class of harmonie maps.

Coneerning the existenee of homogenous harmonie maps, in general it is known by the idea

of W-Y. Hsiang that given a noneonstant p-equivariant map C{J from a compact homo­

geneous Riemannian manifold M to a compact Riemannian manifold N , then C{J ean be

deformed to a noneonstant p--equivariant harmonie map C{J1 through a smooth homotopy

of p-equivariant map8 C{Jt (t E [0,1]) with 'PO = C{J . Naturally we are interested in

getting more explicit descriptions and detailed properties of homogeneous harmonie maps

for specifie homogeneous Riemannian manifolds M and N . In bis niee paper [Gu 1] ,

Guest pointed out many interesting connections of the research for homogeneous harmonie

maps with problems of differential geometry and mathematical physies. Moreover he gave

algebraie deseriptions of harmonie map equation for general homogeneous maps, and dis­

eussed the harmonicity of homogeneous maps into complex projeetive spaces and a con­

struction of homogeneous harmonie maps from flag manifolds into eomplex Grassmann

manifolds by the method of osculating flags and twistor spaces (cf. [E-W]). In this paper

we diseuss homogeneous harmonie maps and minimal immersions into eomplex projeetive

spaces in detail, by using the relation between complex line bundles and smooth maps into

complex projective Space8.

In Seetion 1 we shall recall the eorrespondence of a smooth map from a manifold into

a complex projective space with a system of smooth sections for a eomplex line bundle over

the manifold. We should remark a relationship between the homotopieal property of the

smooth maps and the equivalenee property of complex line bundles. Furthermore we shall

deseribe the harmonie map equation for a smooth map into a complex projeetive space in
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:t~rms of.the corresponding system' of.smooth sections for a complex line b,l:lndle. In Section

2 we ahall consider homogeneou8 complex line bundles over compact hOIDogeneous spaces.

Usi~g the spectral dec~mpositionof the spare of all sIDooth sections of a homogeneous line

bundle and results in Section 1, we give a description of all homogeneous maps into com­

plex projective spaces. Furthermore we ahall show a reault on the multiplicity in the

speetral decomposition over compaet symmetrie spaees, whieh plays an essential role in

Seetion 5. In Section 3 we shall g,ive a description of homogeneous harmonie maps Crom

eertain eompact homogeneous Riemannian manifolds into complex projective spaces in

terms of Section 1 and 2. In Section 4 we shall apply results of Section 3 to the ease when

the domain manifold is a compact homogeneous Kähler manifold and study some properties .

of homogeneous harmonie maps from such manifolds into eompex projeetive spaees. In

Seetion 5 we shall determine the spectral decompositions for all homogeneous eomplex line

bundles over every irreducible Hermitian symmetrie spate M = G/K of compact type.

We shall give a complete list of irreducible representations of the eompaet Lie group G

appearing in the space of sIDooth sections of eaeh eomplex line bundle. In Seetion 6 we shall

classify homogeneous harmonie maps and minimal isometrie immersions between complex

projective spaces. By this result we find a niee series of minimal isometrie immersions of

complex projective spaces into eomplex projective spaces, which contains neither

holomorphieJ antiholomorphic nor totally real immersions. 1t is a generalization of

homogeneous minimal 2--ßpheres in complex projeetive spaees given by [B-Q] J

[B-J-R-W] J [Gu 1] to higher dimension. In Section 6 we shall give aremark on

homogeneous minimal 2-Bpheres in Quaternionie projective spaces.

In the famous paper [Ta], Takahashi showed a conneetion of the Laplacian acting on

smooth functions with minimal immersions into spheres and a construetion of minimal

immersions of compaet homogeneous Riemannian manifolds wi~h the irreducible isotropy

representation by eigenfunetions of the Laplacian. This work ean be regarded also as a

natural extension of TakahashiJs results to eigensections of the Laplacian in complex Une
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-~':bundIes and harmonie maps, minimal immersions into eompelx projeetive .space8~

We hope to find more properties and more explicit descriptioos of harmonie maps and

minimal immersions into complex projective spaces obtained here.
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1. Complex line bundles and harmonie maps into a complex projeetive space

Let G:pn(e) be an n-dimensional complex projective spate with the Fubini-Study

metrie ge of constant holomorphie sectional curvature c > 0 and lRpD(c) be an n-di­

mensional real projeetive space with the standard metrie of eonstant metrie of eonstant

sectional curvature e > 0 . IRpn(e/4) is imbedded into G:pn(e) in the natural manner as a

totally real totally geodesie 8ubmanifold. Let Sn(e) be an n-dimensional sphere with thc

standard metrie of constant sectional curvature c > 0 . Then we have a natural isometrie

covering Sn(c) --+ IRpn(c) .

Let {E'O,... ,E'n} be the standard basis of (D+1 . We denote by <, > the standard

Hermitian inner product on {n+l i <z,w> = 2. ziwi. Let (,) = Re < I > denote
i=O

the associated real inner product on (n+l. Let 7r: (n+1\{O} ---+ (pn be tbc canonical

projcction. Then (n+l\{O} ia a principal bundle over (pn with thc atrueture group

* *
( J where ( denotes the group of non-zero compex numbers. The restrietion of 11'" to

S2n+l(c/4) is a Riemannian submersion. Let E = ((D+l\{O}) x *( be the universal
(

bundle over (pu: the fibre Ex over any a E (pn is the complex l-dimensional sub-_

space of (n+l determined by x. Thus E is a holomorphie subbundle of the trivial

bundle ,{n+l over (pD. Let E.l be the subbundle of ~n+l whose fibre at x is the

orthogonal complement of E in I n+ 1 . E, E* and E.l. have natural Hermitianx

connected structures. We give E*~ EJ. the tensor product Hermitian connected structure.

Then there exists a natural bundle isomorphism h: T(l,O)(pD ---+ E* ~ E.l. preserving

connections and satisfy <h(Z),h(W» = (c/2)gc(Z,W) for Z,W E Til,O)(pn (cf.

[E-W, p.224]).

Let <p: M ---+ (p~ be a sIDooth map frOID a manifold M to a complex projective

space. A map <p is called full if the image rp{M) ia not contained in any proper complex
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over M:

where i is the natural inclusion and j is given by the orthogonal projection along L:

We call the section 1 = i(l) E ~OO(CI'-l(E· ~ !n+l)) the uniyersallift of CI' (cf. [E-W]).

Pulling back h: T(l,O)(pn ---+ E* 0 E.l by l{J, we get a connection-preserving bundle

isomorphism h: CI'-l(T(l,O)(pn) ---+ qJ-l(E· ~ E.l) . Let D denote the covariant diffe-

. -1 * 1rentiation of the bundle cp (E ~ t n+ ) relative to the puB-back connection. Then the

following facts are known (cf. [E-W]):

(i) <1,1> =1 .

(ii) For any X E COO(TM(), Dxt E C(D(cp-l(E* 01n+1)) has image in

qJ-lE.l . Moreover it holds

(~.l)

for any X E T M( . Here (dcp)(l,O) denotes the (l,O)-romponent of dcp in (pn.
x .

We recall the relation between a map to a complex projective space and a system of

sections of a complex line bundle..

Let L = P x ( be a complex line bundle over a (paracompact) manifold M asso-u

ciated with a principal bundle (P,W",M,K). Here (u,() is a complex l-dimensional repre-

sentation of thc structure group K. Then the vector space Coo(L) of all sIDooth sections

of L can be identified ~ith thc vector space C(D(P '()K of a1l (-valued smooth functions

l' on P satisfying the condition 1(uk) = u(k)-11(u) for any u E P and k E K , by the
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Given a system {tt'O, ... ,tt'n} in CaJ(L) with no common zeros. Let {~o""'~n} be

the corresponding system in ClIJ(P'()K' We define a. sffiooth map ~: P -----+ (n+1\{o}

by ~ = (~O""'~n) . Since ~ satisfies ~uk) = u(k)-1~u) {ar any u E P and k E K ,

the map ~: P --+ (n+1\{O}. becomes a bundle homomorphisffi fro~ (P,~,M,k) to

( n+l\{ } 0 *)' . . -1 *( 0 ,~,(P,e: wlth the homomorphism u : K --+ ( of the structure groups.

Therefore ~ induees a sffiooth map tt': M -----+ (pn and the diagram

N

P tt' • (n+l\{O}

~lK ~l(*
M I (pn

tt'

*is commutative. Let H = E be the hyperplane bundle over (pn. Then we see that the

pull-back bundle tt'-IB ia isomorphie to L; <p-IR:: L . Conversely every smooth map

<p : M --+ (pn is obtained in this manner by considering the puB-back complex line

bundle <p-IB over M and a system of 0+1 sections of tt'-IR gotten by the homo­

geneous coordinates on (po. Hence giving a smooth map !rom M to (pn is equivalent

to giving a complex: line bundle Lover M and a system of n+1 smooth sections of L

with 00 commoo zeros.

Let C{J, rP : M --+ (po be two sIDooth maps. If 2n ~ dim M , then by the classifi­

cation theorem we have

N -1 - -1cp-, ~ tt' H=, H,

where cp ~ rP means that cp is homotopic to ,. Since an equivaleoce dass of eomplex line
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Hence the homotopy class of a smooth map cp: M --+ (pn is determined by the first

Chern dass cl(L) of the complex line bundle L = rp-1H . When M iS oriented and

H2(M,11) = 11 r the degree of a map cp: M --+ (pn is an integer deg cp defined by

Cl(L) = rp*Cl(H) = (deg ep)wI ' where wl denotes a positive generator of H2(M,7Z) . Then

we get

cp ':1., C=> deg <p = deg jJ .

Any two maps horn. M to (pn construeted horn systems of sections of the same

line bundle are homotopie each other if 2n ~ dirn M . It is an interesting and 'important

problem to find many harmonie map8 in a given homotopy dass of maps. We shall deseribe

the harmonic map equation for a map cp in terms of ~.

Assume that M is an m-dimensional Riemannian manifold. Denote by VM thc

Riemannian conection of M . We endow the principal bundle P with a connection r.

The connection r induee~ the covariant differentiation VL in the associated line bundle

L . For X,Y E CW(TM() , we denote by x*,Y* E CaJ(TP() the horizontal lifts of X,Y

to P with respect to the eonnection r. Let t be tbe universal lift of the map '{J. By

(1.1) we have
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= X cp - «X cp,cp> / <cp,cp»rp

Here we regard ~ as a section of the pull-back bundle rp-IL . By a straightforward com­

putation we get

We denote by T(l,O) E CW(rp-lT(l,O)(pn) the (1,O)-eomponent of the tension field T

for thc map rp. Then we have

h( T(1,O))~ = h(\ m (V (dcp)(1,O))(e.))~
L. 1 e. 1. 1= 1

where {ei} denotes a Ioeal orthonormal frame field on M. By virtue of [K-N,I,p. 115]

or [Oh, p. 162] , this equation becomes
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Proposition 1.1. (i) tp is a harmonie map if and only if the system {tt'O' ... 'fPn }·

satisfies

for sorne function J1. on M.

(ii) Assume that ~Ltp. = J1.tp. (j = O, ... ,n) for some function J1. on M. Ir
J J

~ : P ---+ (n+1,{O} map8 horizontal subspaces on P to horizontal subspaces on

(n+1\{O} , then tp is a harmonic map.

Note that in case M ia a complex manifold, tp is a holomorphic map if and ooly if

Dzt = 0 for each Z E T(l,O)M.

Let n be the curvature form of the connection r and RL be the curvature form of

the connection VL in the line bundle L. Then we have (RL)'" = 0-(0) . The 2-forrn

N LN
11(L) on M defined by (11(L)) = (Ff/2il")(R ) = (Ff/21r)u(0) represents the first

ehern dass cl(L) of the line bundle L.

*A smooth map cp: M ---+ (pn is called totally real if cp aatisfies cp w= 0 , where

w denotes the Kähler form of (pn .

Proposition 1.2. If tp: M ---+ (pn(c) is a totally real map from a simply connected

manifold M, then tp has a horizontal lift ~: M ---+ S2n+l(c/4) relative to the
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; '\i. Ri~annian submersion r: S2n+~(c/4)--I (pn(c) . Moreover in case M is a
. -,;" .'

N
Riemannian manifold, cp ia harmonie if and only if cp ia harmonie.

*Proof. The eondition cp w = 0 ia equivalent to the ßatness of the eonnection

induced from the eanonieal eonneetion of the principal bundle (S2n+l,~,(pn,Sl) through

<p. q.e.d.
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2. Homogeneous line bundles and homogeneous map8 into cOlnplex projective spaees

Let M = G/K be an m-dimensional compact bomogeneous space with a cornpact

conneeted Lie group G. We denote by 9 and t the Lie algebras of G and K, respec­

tively. Let (J) denote an Ad(G)-invariant inner product of 9 and m the orthogonal

complement of t in 9 with respect to ( ) ) . Let Aut(G:pD) be the group of all holomor­

phie isometries of (pD. Aut(G:pn) ia identified in a natural way with a projective unitary

group PU(n+l) = SU(~+l)/{ f In+l; fn+l = I} . For a given Lie group homomorphism

p : G --t Aut((pD) , a map cp: M --t (pn is ealled o-eauivariant if cp satisfies

p(a) 0 cp = cp 0 Ta for each a E G J where Ta denotes the natural action of G on M. A

map cp: M --t (pn ia called G--eguivariant if there exista a Lie group homomorphism

p : G --t Aut((pn) such that cp ia p-equivarlant.

In this section we consider tbe case when M is a cornpact homogeneous space GIK

of a compact connected Lie group G and the principal bundle (P, 7r,M,K) is the standard

principal bundle (GJ'K',M,K) of the homogeneous space M = G/K . We endow M with a

G-invariant Riemannian metric g on M. Suppose that (0" ,() is a complex I-dimen­

siona! unitary representation of K . Then the associated complex line bundle L = G )(u(

becomes a G-homogeneous vector bundle with a Hermitian fihre metric < , > . CCD(L)

and CCD(G'()K have (left) G-module structures in a standard manner so that tbe map A

preserves the actionB of G. Let !i1 (G) denote thc set of all equivalence classes of fini te

dimensional irreducible complex representations of G . Let for each A E 9J(G), (PA ,VA)

be a fixed representation of A . For each A E 9J(G) we assign a map AA from

VA ~ HomK(VA'() to CCD(G'()K by the rule AA(v ~ T)(a) = T(PA(a-1)v) . Here

HOIDK(VA'() denotes the space of all linear maps T of VA into ( such that

u(k) 0 T = T 0 PA(k) foreach k E K. For A E !t'(G) , set

CA(L) = A-l(AA(VA 0 HomK(VA,(») . Ey virtue of the Peter-Weyl theorem and the
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""Fro'benlus reciprocity law, thc alg~braic direct SUID l CJ:(L) is:uniformly dense
. AE ~(G) .

in CaJ(L) relative to thc uniform topology (cf. [Wa 2]):

(2.1)

Choose the canonical G-invariant connection r on thc principal bundle (G, j'f,M)K)

with th~ horizontal subspaces determined by thc subspaee m. Let VL be the eovariant

differentiation on thc complex line bundle L induced from the eonnection r. The Lap­

lacian AL gives the eigenspace decomposition of CaJ(L) in the same sense as (2.1):

(2.2)

,r,

where ~ v(L) = {f E CaJ(L) ; &Lf = vi} is the eigenspace of &L corresponding to the

eigenvalue J,I. Since ~L commutea with the action of G on CCD(L) I each 8 (L) ia a
, J,I

finite dimensional G-fmbmodule. Hence each ~ v(L) is a finite direct SUffi of some irredu-

cible G-modules.

Given a finite dimensional G-submodule V of CID(L) . Set n+1 = dime:V . Decom­

s
pose the G-module V into the direct sum: V = \ V. of irreducible G-module V.'s

l. 1 1 1
1=

s
with dim(V. = n. + 1 . For any real numbers (r1,... ,r) with \ r~ = 1 , we can con-

1 1 S l. 1 1
1=

struet a smooth map <p(Vjr1, ... ,rs): M --+ (pn as follows. Choose a unitary basis

{ 'PO" .. I'Pn} of V with respect to the L
2
-inner product such that { 'Pt(i-l)'"" ,'Pt(i)-1} is

i
a unitary basis of Vi ' where t(i) = l. 1dim(Vi and t(O) = 0 . Ey the G-invariance of

J=

< ,> and each Vi '
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is a positive constant on M. In particular the system

has no common zeros. By using this system of scetions of L , we obtain maps

~V; r 1,... ,fs): G ---+ (n+l\{O} and rp(Y; r1'".,r
8
): M --J (po. Note that the map

<p(V; 1I,,,.,rs) is full.

We define a unitary representation Py: G ---+ U{n+l) by

La{~o""'~n)= (~O'···'~n)PV{a) for each a E G . Note that

py(a) E U{n1+l) )( ... )( U(ns+l). Then the rnap rp(y; 11,.",f
S

) ia py--equivariant for

L
8 2each r1,... ,f

8
with r. = 1 . Hence we have

. 1 11=

N ) n+l}for each a E G . Here 0 = eK E M and Va = tp(y; r1,... ,Is (e) E ( \{O.

Under the identification m ~ ToM, choose an orthonormal basis {X1,... ,Xm } of m

with respect to g. By Proposition 1.1 the tension field T of rp(V; rl'".,rs) at 0 E M is

given by

(2.3)
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We describe the first Chern class cl (L) of the homogeneous line bundle L. The

curvature form n of r is given by

(2.4) O(X,Y) = -[X,Y] t

for X,Y Em (cf. [K-N,I, p. 103]). We choose an element ,\ E t such that(f

(f(X)v = 4=!('\(f'X)v for any X E t and v E ( . Then the 2-form

(2.5) (11(L))N(X,Y) = (1/21'")( ['\(f'X] ,Y ) for X,Y E m

represents the first Chern class cl(L) of L .

Assume that (G,K) is a compact symmetric pair. Let g = e+ m be the canoni.cal

decomposition of 9 associated with the symmetrie pair (G,K). Let a be a maximal

abelian subspaee of m .. Choose a maximal abelian subalgebra ~ of g containing a. Fix a

linear order < on ~. Let f:1 (C~) denote the root system of g relative to ~. We have

the root space decomposition of g( relative to f):

N ( +
where gQ = {X E g ; (ad H)X = 4=!( Q,H)X for any H E Q} . Let Aa be the set of

positive roots which do not vanish identically on a. Set n( = L + g . Then n is a
QE~a Q



-15-
1
! 1

, '

'- nilpotent Lie algebra and the Iwasawa decomposition gives a direct sum d.ecomposition

(2.6)

as vector spaces.

Lemma 2.1. Let p: G ----t GL(V) be a complex irreducible representation 01 G

with the highest weight {E f) and <, > be a G-invariant Hermitian inner product 01

V . Choose a weight vector v{(f 0) EV for the highest weight e. Suppose that there

exists a nonzero vector w E V and an element ,\ Et such that p(X)w = y'=I('\,X)w for

each X E t . Then we have <w,v{> t- 0 .

Proof. We define a complex valued linear function F by F(X) = <p(X)v{'w> for
(( (

X E g . For any YEn , we have F(Y) = 0 because p(Y)v { = 0 . For any H E a ,

we have F{H) = y'=I{{,H)<v{'w> . For any X E t , we have

F(X) = <p(X)v{,w> = -<v{,p(X)w> = y'=I('\,X)<v,\,w> . If <v{,w> = 0 , then by

(2.6) we get F:: 0 . By the irreducibility of p, we have w = 0 , a contradietion.

q.e.d.

Proposition 2.2. Let (G,K) be a compact symmetrie pair and p: G --+ GL(V) be

a complex irreducible representation of G . For auy ,\ E t , set.

w,\ = {w E V ; p(X)w = y'=I('\,X)w for eaeh X E t} .

Then we have dim(W,\ = 0 or 1.

Proof. Let ve denote the highest weight vector of p as in Lemma 2.1 and <, >
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.; be a G-invariant inner product o.f V . We define alinear map f: W ~. ----:+ ( .by

f(w) = <w,ve> for w E W~ . By Lemma 2.1, f ia injective. Therefore we have

dim(W~ = 0 or 1.

q.e.d.

Corollary 2.3. If (G,K) ia a eompact symmetrie pair, then in the deeomposition

(2.1) we have CA(L) ia isomorphie to VA or {O} for eaeh AE .!t'(G) .

Remark. These results for ~ = 0 are well-known and essential in the theory of

spherieal functions over compaet symmetrie spaces. The proof here was inspired by that of

[Te 1].
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3. Harmonicity of homgeneous maps to a complex projective space

Let <p: M = G/K ----+ (pn be a full, G-equivariant map compatible with a Lie

group homomorphisID p: G -+ Aut(G:pn) . Note that there exists a unitary

representation p: G-----+ SU(n+l) of the finite covering group Ö of G such that the

diagram

""G-----L...P----tl SU(n+1)

1 1
G ---p------+. PU( n+1)

ia commutative. Take voE S2n+l(c/4) with rp(O) = vo. Then we have

rp(a·O) = <p(a)rp(O) = rp(a)if(vO) = ~p(a)vo) for each a E G . In particular wc have

p(K)G: voC (: vo. Hence there is a real-valued linear form AO on t such that

p(X)vO= Fr AO(X)VO for auy X E t . Set t l = Ker AO= {X E t; p(X)vo= O} . We

have a decomposition t = t l mCo as Lie algebras, where Co is an orthogonal compliment

of t' in t. Note that dim Co = 0 OI 1 and Co is contained in the center of t.

Decompose the representation space (D+l of p into the direct Bum:

s
(n+l = \ V.

L. 1 1
1=

of irreducible G-fiubmodule Vi's, and let

8
Va = ~ v., v· E V. (1 ~ i ~ s) .L. 1 1 1 1

1=
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.. Then each v· does not vanish in virtue of the fullness of cp, and satisfies.
1

Put W = ( Va . Then W is a complex l-dimensional R4:iubmodule of (n+1 .
, *

Consider the associated homogeneous complex line bundle L = e )( *W over
0-

*M = e/~ , where (o-*,W ) denotes the dual ~-modu1e of W . We define a smooth map

N N N N * n+1 n+1 N N •
cp = (<t"""CPn) : \.j ------t (W ) R: ( by (ft'i(a))(w) = <p(a)w,Ei> (1 = O, ... ,n) to

each a E e and w E W . Since each ~i satisfies ~i(ak) = u(k)-l~i(a) , i.e.

*~i E CaJ(e,W )~, {~O""'~n} induces a system {<t'O""'CPn} of smooth sections of the

bundle L, and let V denote the ~-submoduleof CaJ(E) spanned by <t'O, ... ,ft'n' Then rp

s
is equivalent to rp(Vi r1,.",rs) for sorne real nurnbers satisfying L

i
=1 r~ = 1 .

We shall study harmonicity of the homogeneous map <t' = !p(V; rl' ... ,rs) . We

prepare a lemma. Choose a subspace m of 9 such that Ad(K)m = m and 9 = t + m is

a direcr SUffi as vector subspacea.

Lemma 3.1. p( [t,m] )v0 ia horizontal wi th respect to the Hopf Cibration

if: S2n+l(c/4) ------t (pn , that is, <p( [t,m] )vO,vO> = 0 . Therefore if [t,m] = m • then

p(m)vO ia horizontal. Here (t,m] denotea the vector subspace of m spanned by

{ [T,X] ; T E t, X Em} .

NE.!QQf. From the invariance of the lIermitian inner product <, > by the action p

of ~ , for any TEe and X E m we have
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Since p(T)vo . .pr ~O(T)vO ' we' have

and

Hence we obtain <p( [T,X] )vO,vO> = 0 .

q.e.d.

Remark. Set m= [t,m] + mO,where mO denotes tbe orthogonal complement of

[t,m] in m with respect to an Ad(G)-invariant inner product of g . Then mO is

Ad(K)-invariant and satisfies [t,mO] = 0 and [m,mO] Cm .

If the homogeneous space M = G/K satisfies one of the following conditions, then

we have m = [t,m] :

(1) The isotropy representation of M = G/K is irreducible.

(2) rank G = rank K .

(3) g ia semisimple and (g,t) is asymmetrie Lie algebra.

The eompaet homogeneous spaces with the irreducible isotropy representation wcre

classified by [Wo]. Hy a result of Hopf-Samelson M = G/K satisfies rank G = rank K

if and only if the Euler-Poincare characteristic of M is positive.
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Let g be a G-invariant lliemannian metric on M. Let gG denote. the G-invaraint

Riemannian metric on M induced by an Ad(G)-invaraint inner product (,) of g.

From Proposition 1.1, (2.3) and Lemma 3.1 we get the following.

Proposition 3.2. Suppose that the homogeneoUB space M = G/K satisfies the

condition [e,m] = m . Then the following statements for a G--€quivariant map

<P = cp(V; rp... ,rs) : (M,G) --+ ~pn are equivalent each other:

(1) <P is a harmonic map.,ffi IV 2
(2) (L

i
=IP(Xi ) )vOE IR va ' where {Xp... ,Xm} denotes an orthonromal basis of

m with respect to g.

(3) For some constant v, ALrpj = v <Pj (j = O, ... ,n) , that is, the subspace V or

CaJ(L) is contained in same eigenspace ~ (L) oe AL.v

By this proposition we see that if M = G/K satisfies [~,m] = m , then

{cp(Vj rp ... ,rs); V is a G-submodule of some eigenspace for AL, ri E IR (i = 1,... ,8)
a

with \ r~ = 1 } ia the set of all equivalence classes of G--€quivariant harmonic mapsL. 111=

horn (M = G/K, g) to a complex projective space. Here s denotes thc number of

e-irreducible components of V .

Let ~ denote the Casimir differential operator of G with respect to thc

t
Ad(G)-invariant inner product (,) of g , that is, 'G = 1: XAXA ,where

A=~

{XA}A=l,... ,t ia an orthonormal basis of g with respect to ( ,) and

{Xk}k=m+l,...,t ia contained in t. If g =ga ' then we have
m f.

p(I. XiXi) = p( ~ )--: ) p(Xk)2 . Ir tbe representation COJ(n+l) is irreducible,
1=1 Lx=m+l

then by Schur's lemma p( ~) is a constant operator --c(p)I for some c(p) > 0 . In this

m
case we have p(l. XiXj)vO= (--cCo) + ('\O''\O))vO. Therefore we obtain the following.

1=1
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Proposition 3.3. Suppose that M = G/K sati8fie8 the condition [e,m) = m . If V

ia irreducible (equivalenUyI (p, (0+1) ia irreducible), then

cp = cp(V; rl' ... ,ra) : (M,gG) ----i (pu is a harmonie map (8 = 1) .

We shall give an explicit formula for the energy density of a G-invariant map

cp : (M,gG) --t (pn .

Proposition 3.4. Suppose that M = G/K satisfies the condition [t,m] = m .

(1) The energy density e(cp) of a G-€quivariant map cp: (M,gG) --t ((pn,ge) is

given by

Moreover if Co,(n+l) is irreducible, then

f\I 2
e(lp) = (2/c)(c(p)-1 AQI ) .

*(2) Ir lp gc = r gG for some positive constant r > Q I then r is given by

~. Under the identification m ~ ToM, by Lemma 3.1 we compute
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N 2
= -{1/2){<p( 'fl )vO,vO> + (4fc) I"'0 I } .

From trus we get (1). Immediately (1) implies (2).

q.e.d.

By virtue of the formula of Freudenthal, the eigenvalue c(o) of the Casimir operator

p( ~) for an irreducible representation (p,(n+l) is given by

N

where AN denotes the highest weight of the representation p and 0 denotes half the
p

surn of the positive roots of g, relative to a maximal abelian subalgebra of g and a linear

order on it.

Remark. (1) The siInilar results and formulas can be found in [Gu 1], [Gu 3] for a

fiag manifold G/T. In [Gu 3] I [Gu 4] , Guest gives more results and interesting
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observations hom the viewpoint of twistor geo~etry and symplectic geom~try.

(2) If K has the discrete center, then the associated homogeneou8 complex line

bundle L is a flat vector bundle and any homogeneous map tp made from sections of L

is always ioially real.



-24-

4. Homogeneous harmonie maps of eompact homogeneous Kähler manifolds into

complex projective spaces

Let 9 be a eompact semisimple Lie algebra and t be a maximal abelian 8ubalgebra

01 g. Denote by g( and t( the complexification of g and t, respe~tivelY. t( is a

Cartan subalgebra of g{ . Let (.,) be an AdG-invariant inner product on 9 defined by

(-1) times Killing form of g. Let E (C t) denote the root system of 9 relative to t. We

have a root space decomposition of g{:

where g{ = {X E g{; (adH)X = y=I(a,H)X for any H E t} . Choose a lexicographic
Q

order > on E. Put E+ = {a E E; a > O} . Let TI e the fundamental root system oe :E

consisting oe simple roots with respect to the linear order > . We identify rr with its

Dynkin diagram. Let {Aa } oeIl(C t) be the fundamental weight system oe g{

corresponding to Il:

{

l if a=ß,
2(A Q ,ß)/(ß,ß) = 0

if a#ß.

Let flO be a subdiagram of Il . We may suppose that the pair (TI,TIO) is effective,

that is, " O contains no irreducible component oe TI . Put :EO= :E n {ßO}1Z ,where {IIO}ll

denotes the subgroup of t generated by IIO over 71. Define a subalgebra U of g{ by
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Let a( be the connected complex semisimple Lie group without center, whose Lie is

g( ,and U the connected closed complex subgroup of a( generated by u. yve define a

complex manifold M by M = a(tu , which ia known to be compact and simply

connected. Denote by J the comlex atructure of M. a( acta eITectively on M, Bince

G( has no center. The origin U of M ia denoted by o. Let G be a' compact connected

semisimple subgroup of G( gen~rated by 9 and put K = Gnu. Then K is connected

and G acta on M transitively, and hence the natural map G/K ----+ G(IU induces an

identification M = G/K as a sIDooth manifold. M ia called a generalized flag manifold.

The complexification t( of the Lie algebra t of K is given by

We define a subspace ( of l by

(=]: !RA,
aEn-11

0
0

Then c coincides with the center of t . We define lattices Z and Zc of t a.nd c

respectively by

Z=l 7lA
aEIl a

and
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z, = zn, = l 11. A .
aEn-lIo a

We define a cone ,+ in , hy

,+ (resp. c# ) = {A E c\{O}; (~,a) > 0 (resp. ~ 0 ) for each a E n-lIO}

andput z~=znc+ and z#=Znc#.Thenwehave ,+=}: IR+A and
c aen-n

O
a

z~ = l 7/.+A ,where IR+ and 71.+ denote the sets of positive real numbers and
oEn-lI

O
a

positive integers, respectively. Let m be the orthogonal complement of t in 9 with

respect to (,). Then we have a direct SUffi decomposition g = e+ m aB vector spaces.

The subspace m is K-invariant under the adjoint action and identified with the tangent

space TOM of M at the origin. Put :E; = :E+ -:EO J :Em =-:E; J and define

K-invariant subspaces m% of g{ by

(4.1)

Then iU'= = mT and the complexification m(: of m ia the direct SUffi m(: = m+ + m- .

Let ~(: be the un.lveraal covering group of a( and ~ be the simply connected

subgroup of ö( generated by g. Let 0 be the connected closed cornplex subgroup öf

ö( generated by u and put R= en 0 . Then we have also identifications

M = e(/0 = e/R . Let 'r be tbe toral subgroup of ~ generated by t.

We choose E a Eg~ for a EI; with the following properties and fix them onee for

all:



-27-

We denote by X~ X the compelx conjugation of g( with respect to the real form

g . Let {WB} aEI; be the linear forms on gf. dual to {Ea} aEZ ' more precisely, tbe

linear forms defined by

{

l if a=ß,
wa(E =

~ 0 if a '" ß.

Every G-invariant Kähler metric on M is given by

g(A) = (1/'1:) L + (A,a)w
Q

• WO for A E ,+ (cf. [B-H] , [Te 2]) .
aE~m

Denoted by W(A) the Kähler form (ar fundamental 2-form) of g(A),

w(A){X,Y) = g(A)(JX,Y) . Any G-invariant Riemannian metric on M is a Herrnitian

metric with the coclosed fundamental 2-form.

Given any A E Zc ' we can define a complex 1-dimensional unitary representation

u('\) of R by (u('\))(a) = exp(A('\,X)) for each a ER, whcre a = exp X and

X E t . We construct a homogeneous complex line bundle LA = Ö )(u(,,\)f. aver M = aIR
associated to the representation (11('\),() of R. Conversely for each homogeneous

complex line bundle Lover M = aIR, there exists a unique. element A E Z, such that

L = L,\ . The first ehern dass Cl(L,\) of the complex line bundle LA over M associated

to ,\ E Zc is represented by the closed 2-form



-28-

(4.2)

Because by (2.3) we have

Proposition 4.1. (cf. [B-H], [Te 2]). Let J~(M) and d'{2(M,g) be thc real

vector spaee of all G-invariant closed 2-forms on M and the real vector spaee of all

harmonie 2-forms on M with respeet to aG-invariant Riemannian metric on G,

respectively. Then we have thc following isomorphisms:

and the linear isomorphism between c and J~(M) is given by

for ,\ E c . Here note that" we ean identify H1(R,1l) and H2(M,ll) with subgroups of

Hl(~,IR) and H2(M JIR) since these integral cohomology groups have no torsion.
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Let .t'(M) be the complete set of equivalence classes of complex line bundles over

M . Then we get the bijective correspondencea among .2'(M), H2(M,71) and Z, by

cl(L,\) = 1]('\) tor ,\ EZ, .

For each ,\ EZ, ' there ia a unique holomorphic character X('\) of t1 such that

(X(A))(exp ~) = exp P(A,B) {or each H Et( .

Then we can identify L,\ wi th the holomorphic line bundle Ö( )( x(,\ )( over M

associated to the principle bundle (~(,~,MJt1) by X(A) . We have the identifications

L,\ = Ö )(u(,\)( = Ö( )( x(,\)( . Through these identifications we endow the complex line

bundle L,\ with the Hermitian metric and thc holomoprhic structure. Hence LA becomes

a holomorphic Hermitian line bundle. Let r be the canonical G-invariant connection on

the principal bundle (G, i1",M,K) and g = g(Jl) (J-l E ,+) be a G-invariant Kähler metric

on M. Ey (2.4) and (4.1) the curvature form n of r is of type (1,1). Let VA denote

the covariant differentiation of LA induced from the connection r. Then V,\ is the

Hermitian connection of the holomorphic Hermitian line bundle LA' Thc complex

Laplacian oA of LA ia defined by

*where 7J and 7J denote thc (O,1)-()perator of the holomorphic line bundle L,\ and its

adjoint operator respectively, and {ui} is a unitary basis of T~ l,O)M with respect to

g = g(J-l) . Then we have
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m m

D~f = -~ v~ - f = - ~ \ [V'\ - f + V~ f + R~(U.,ü.)fJl U"U' L. l U.,u. u· ,U. 1 1
'1 11 '1 11 111= 1=

where A~ and R~ denote the ~ough Laplacian relative to V~ and the curvature form of

V~ respectively. Hence if ,\ = /J , that ia, cl(L~)IR = [w(/J)] ,then it becomes

D~ = (1/2)(A~-2rnl.1) , where m = dim(M . Set v(~IJL) = 2", 1: +(~,O)/(/J,o) . In
QE~m

the next section we will determine all eigenvalues and eigenspaees of the Laplacians D~

and A'\ for each irreducible Hermitian symmetrie space M of compaet type.

Let r(L,\) be thc subspace of C(Il(L,\) consisting of all holomorphie sections of

L;\ . We see that r(L~l = {f E C(Il(L~); DAC = O} = {C E C(Il(L~); AAC = v(~,JL)f} . From

Borel-Weil theorem ([Bt] ) we know that f(L~) ia an irreducible G-ßubmodule of

CtD(L,\) with the highest weight ~, hence if ,\ E Zc\(Z1 U{O}) , then r(L~) = {O} . It

ia known that ,\ EZ~ if and only if LA ia very ample. Let ~ ,)L~) be the eigenspace of

/:i A with the eigenvalue- l/. The decomposition (2.2) of C(Il(L~) becomes

Let cp = lf'{V; rl' ... ,rs) : M ---+ (pn be a homogeneous map associated to a finite

dimensinal G-ßubmodule V of C(Il(L~) as in Section 2. We use the same notation as in

the preceding sections.



-31-

PropositiOn 4.2. (1) cp = cp(V; r
1

,... ,r
8
) : M ---t (pn i8 a full holomorphic map if

and only if ;\ E Z1 and V = f(L;\) (8 = 1) .

(2) If A E Z, 8atisfies (;\,a):f 0 for each a En- TIO ' then

cp = rp(V; r1"" ,rs) : M ---t (pn ia an immersion.

(3) If ,\ E z1 and V ( ~ v(L,\) for v > v('\,Jl) , tben

cp = <P(Vi rl'".,ra) : M ---t (pn ia a harmonie map which ia neither holomorphic,

antiholomorphie nor totally real. Moreover if a harmonie map

cp = cp(V; 11'... ,r
8

) : M ---t (pn with the simple compact Lie group G and dim(M ~ 2

is neither holomorphie nor antiholomorphie, then cp ia not even pluriharmonie map (cf.

[Ud], [O-U]).

(4) If cp: M = G/K ---t (pu is a G-equivariant, stable harmonie map of a

compact homogeneoua Kähler manifold M = G/K with the aecond Betti number

b2(M) = 1 , then cp ia holomoprhie or antiholomorphie.

~. (1) Note that by the G-invariance of cp and Lemma 3.1 we have

N *N N N N *N ( #
(Dxt)cp - <X cp,cp> / <cp,cp> = X cp for each X ETM . Assume that ,\ E Z, and

V = f(L,\) (s = 1) . From ,\ Ez1 we see f(L,\) f {O} . Since

(ILn.)N = (Vlo.)N = 'Z*~ = 0 for each Z E T(I,O)M , hellce we get
~ZY1. 0 h~l. 0

1= , ... ,n 1= , ... ,n

Dzt = 0 . Thus cp is holomorphic. Conversely assurne that cp is holomorphic. Therefore

for each Z E T(I,O)M we have 0 = (Dzt)~ = Z*~ = (Vlo.)N = (omo.)'''
h~l. 0 h~ 1. 0

1= ,,,.,n 1= ,... ,n

Hence {CPO,.",CPn} are nonzero holoffiorphic sections of L,\ . Thus by Borel-Weil theorem

we get ,\ E Z1 and V = f(L,\) .

(2) Let Wc denote the Kähler form or ((pn,gc) . Then the first Chern dass Cl (H)

of the hyperplane bundle H over (pn ia represented by 11(H) = (c/4'K)wc . Since

* *cP Cl (H) = Cl(L A) and cp 11(H), 11(L,\) are G-invariant closed 2-forms, by (4.2) and

*
Proposition 4.1 we get cp 11(H) = 11(L,\) , that is,
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* \ 0 -0
t.p tue = (2/c)y=f L + (~,a)tu A tu .

oEEm

*Hence we see that (~,o) f 0 for each 0 En-nO if and only if t.p Wc is nondegenerate,

and then t.p is an immersion.

(3) The first statement follows from (1). If t.p = t.p(V; rl',,,,rs) is a nonconatant

pluriharrnonic map, then bya result of [Ud] we have ranklRdt.p 5 2 1 hence

dimlR<P(M) = 1 or 2. Since G' = {a E G; ax = x for each x E <P(M)} ia anormal

closed subgroup of G and G is sirnpIe, G is Iocally isomorphic to G/ G'. Since G/ G I

acts effectively on <P(M) ,G must be of type Al' Thus dim(M = 1 .

(4) Hy (2) cp must be an immersion. By a result of [B-B] (cf. see also

[B-B-B-R]), we see that cp(M) is a eomplex submanifold of (pn . Hence by the

G-equivariance ol t.p the standard complex structure of (pn induces a G-invariant

complex structure J I on M through t.p. Hy Proposition 13.8 of [B-H] the complex

structure J I or -J I coincides with the complex structure J of M = G(/U . Thus t.p is

holomorphic or antiholomorphic.

q.e.d.

Remark. (1) The statement (1) of Proposition 4.2 is regarded as a very special ease

of the famous Kodaira's imbedding theorem. If ~ EZ~\Z~ J then the holomorphie map

cp = <p(r(L~)) : M~ (pn is not an immersion. For eaeh ~ E Z~ , we have a Kähler .

imbedding cp = cp(r(L~)) : (M,(4xic)g(~») -----t ((pn,ge) . These Kähler imbeddings were

investigated and classified in detail by [Te 2] .

(2) In case (G,K) is an irreducible Hermitian symmetrie pair, sinee the isotropy

representation of M = G/K is irreducible, the statement (3) of Proposition 4.2 gives
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neither holomorphie, antiholomorphie nor totally real, minimal isometrie i.mmersions

cp: (M,rga) --t (pD tor some r > 0 . The values r and eigenspaces Ev(L~) are

determined precisely horn Proposition 3.4 and resuolts of the next section.
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5. Spectral decomposition for complex line bundles over eompaet Hermitian

symmetrie spaees

In trus seetion we diseuss tbe ease when the generalized flag manifold M is a

Hermitian symmetrie spare.

Let n = {ap ... ,at} be an irreducible Dynkin diagram. A pair (ll,TIO) is ealled

irredueible symmetrie if n-nO= {Oj } and thc highest root a of the root system l;
o

with the fundamental root system I1 has an expression:

N lta = Q. + m. a. , m. E "D. , m· > °.
10 . 1 .J.' 1 1 1 1

1= ,lr10

A general pair (II,IIO) of Dynkin diagrams is said to be symmetrie i{ the pair (n,IlO) is a

diIeet suro of irreducible symmetrie pairs oe Dynkin diagrams. Let M = G/K be a

generalized flag manifold associated to &n.effective pair (II,JIO)' It is known that the pair

(G,K) is a symmetrie pair if and only if the pair (n,nO) ia symmetrie. In this case for any

G-invariant Riemannian metric g on M, (M,g) is a Bermitian symmetrie spaee and the

identityeomponent AutO(M,g) of all automorphisms of (M,g) is equal to . G . Every

Hermitian symemtric space of compact type ia obtained in this. way.

Proposition 5.1. (cf. [H-e], [He]). There exists a subset "Yl, ... ,7r of I;~

consisting of strongly orthogonal roote, i.e. 1j :i: 7j ~ E (1 Si,J Sr) such that
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is a maximal abelian subspace of m( . In particular

is a maximal abelian subspace of m .

Conaider the inner automorphism 11 of the Lie algebra g, so called Cayley

transformation;

r
where cO=exp(r/2)Ff.' (E -E_ )/(VlI,·I).Thenwehave v(a)Ct andL. 1 'Y. 'Y. 1

1= 'I 'I

v«(E7. - E_i)/Vl) = -'i/ Iii I for 1 ~ i ~ r (cf. [H-C]).
1 1

Set A. = A for i = l, ... ,l . In our case we have Z = llA. . For each
1 0j <: 10

A = kA
io

E Zc ' the first ehern dass cl (L A) is given by cl (L A) = kWI ' where !VI is a

positive generator of H2(M,ll) . For each k E II , set Wk = (u(kA. ),().
10

We shall determine the spectrum decompositions (2.1) of all eomplex line bundles

over eaeh irreducible Hermitian symmetrie spaee of eompaet type. Let D(G) be the set of

all dominant integral elements of t . By Proposition 2.2 we know dim Hom(V(A),Wk) = 0

OI 1 for eaeh AE D(G) . Set

D(G,K;k) = {A E D(G); dirn HomK(V(A),WK) = I}

for each k E 71 , and D(G,K) = D(G,K;O) .
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Theorem 5.2. The following is a complete list of D(G,K;k) (k E "8.) for each

compact irreducible Hermitian symmetric spate M = G/K . Here each diagra~ ia the

Satake diagram of (G,K) and @ represents the element of ß--ßO.

(1) (AIII)pq (1 ~ P ~ q) : M = Gp,q(()' t = p + q - 1 . In ~e 1 ~ p ~ t/2 ,

01 02 0p
o ----0 --- - - - - - -----@--- •

•
I
I
I

I
I

•

0---- 0 --------- 0 --_.

Q,t-1

In case 2p-1 = t. ,

°1 °2 (lp-lr r-------r-----® ltp

o ---0 -------o~
°t
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D(G,K;k) = {~1m.(A.+A. .+1) + m A. ;lj =1 1 1 "",-I P P

(2) (BD)m (m ~ 5) : M = .Qm(() . t = (m/2] + 1 ~ 3 . In case m ia odd (t ~ 3) ~

°1 °2 °3 °t-l °t
® --0 --e ------ e==) e

In case m ja even (t ~ 4) ,

(3) (CI)t (f. ~ 2) : M = Sp(t)/U(t) .
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IDi E 71. IDi ~ 0 (i = 1•...• t). IDCI k I ~ 0 ia even} ..

(4) (DIII)t (t ~ 5) : M = ~O(2t)/U(t) . In case t = 2r J

D(G,Kjk) = {~-lm.2A2' + m Ao ;l. 1 1 1 r (..
1=

In case t = 2r+l ,

°t-l
o

:2_:3 a~-(@J

°t
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(5) (ElII) : M = E6/Spin(~O)· T .

°2

•
aa a S a4 1 aa

@--- .---. ---. ---

°2

•

®
I

0 • • • 0

(};7 (};6 Os (};4 (};3 °1

IDi E 71, IDi ~ 0 (i = 1,2,3), m3-1 k I ~ 0 is even} .
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We will get Theorem 5.2 by showing the {ollowing lemma.

Lemma 5.3. Let p be the Satake involution o{ (G,K) (ar (Il,TIO))'

(I) If p(io) :J: iO' then

D(G,K;k) = D(G,K) + kAi for each k ~ 0 and
. 0

D(G,K;k) = D(G,K) - kA (' ) {ar each k < 0 .
P 10

(2) If p(io) = iO' then

D(G,K;k) = D(G,K) + Ik IA. for each k E 71 .
10

f.!QQf. Note that if p(io) :J: ia ,then kA i E D(G,K;k) for k ~ 0 and
o

-kA (' ) E D(G,K;k) for k < 0 , and if p(iO) = iO,then Ik IA. E D(G,K;k) for k E 71 .P 10 10

Let A E D(G,K;k) . We show that if k ~ 0 ,then A E D(G,K) - kAp(i
O

) . Let k be a

*nonnegative integer. Now we take the tensor product G-module (V(kA. )) 0 V(A) . Here
10

*V denotes the dual G-module of aG-module V . Then we have the direct surn

*decomposition oI the G-module (V(kA. )) ~ V(A) into irreducible G-modules V.
10 1

*(V(kA. )) 0 V(A) = VI ED U2 ED ••• ED U ,
. 10 S

*where VI denotes the highest component. Since (V(kA. )) = V(kA (' )) , we have
10 p 10

*VI = V(kA (' ) + A) . Choose a nonzero weight vector I E (V(kA.)) for the lowestp 10 10

weight -kA. and a nonzero veetor w EV(A) belonging to a K-submodule oI V(A)
10

isomorphie to W
k

. Then we see p(X)f = -y'=f(kA j ,X)! for each X E t and
a
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p(a)(f ~ w) = f ~ w for each a E K ,where p denotes the action of G on each
* .

representation space. MOrE~over choose a nonzero weight vector fI E (V(kA j )) for the
o

highest weight kAp(i
O

) and.a nonzero weight vector vI EV(A) for the highest weight

A . Note t bat fI ~ vI E U1 . For each H E t , we have

Write f ~ W= u1 + ... + Us ,where ui E Ui (i = 1'00.,8) . Then we see p(a)ui = ui for

each a E K and p(cO)(f~ w) = p(cO)U1 + 00. + p(cO)Us ,p(co)U j E Vi (i = 1,00.,s) . Since

<f1 ~ v!' p(cO)(f~w» = <fI G:D v!' p(cO)u1> f 0 ,we get p(CO)uI t 0 . Hence

0:/= u1 E U1 and p(a)u1 = u1 for each a EK . Thus we obtain kAp(i
o
)+ AE D(G,K) .

Similarly we can show that if k < 0 and A E D(G,K;k) ,then A E D(G,K) + kA. .
10

We have only to apply,the same argument to the tensor product G-module

V(-kA. ) 8 V(A) .
10

First we diSCUS8 the case when p(ia) =1= ia' that is, tbe pair (G,K) ia of type

(AIII)pq' (DIII)t.=2r+1 or (ElII) . Let A E D(G,K;k) . Assume k ~ 0 . Ey the above

assertion we can wri te :

A = mO' (A. +A (' ))-kA (' ) + [terms oI A. with j:/= iO' p(iO)]
10 P 10 P 10 J

for some mOE 71, mO~ 0 . Hence we get
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A' = ffiO(A, +A (' ))+kA, + [terms of A, with j f iO' p(iO)]
10 P 10 1

0
J

with roo= IDÜ-k ~ 0 , Thus we obtain A E D(G,K) + kAi ,Next assume k < 0 ,
o

Similarly by the above assertion we can write

A = m O' (A. +A (' "))+kA, + [terms of A, with j f iO' p(io)]
10 p 10 1

0
J

for some ID ÜE 71, IDÜ ~ 0 • Hence we get

A = mO(A, +A '(' ))-kA (' ) + [terms of A, with j f iO' p(io)]
10 p 10 P 10 J

with roo= IDÜ+k ~ 0 • Thus we obtain A E D(G,K)-kAp(i
O
) , Conversely if

A' E D(G,K) and k ~ 0 (resp, k < 0) ,then A' + kA, (resp, A' -kA (' ) E D(G,Kjk)),
10 P 10

In fact, if we let u E V(A') and v E V(kA, ) (resp, V(-kA (' ))) a nonzero K-fixed
10 p 10

element of V(A') and the highest (resp, lowest) weight vector of V(kA, ) (resp.
10

V(-kA (' ))) , then by Lemma 2.1 we see that the highest eomponent of the tensor produetp 10

V(A' ) ~ V(kA, ) (resp. V(A') ~ V(-kA (' ))) eontains a nonzero eomponent of u 18 v ,
10 P 10

and henee it contains a K-submodule isomorphie to Wk . Therefore we obtain (1),

Next we proceed to the case when p(ia) = ia ' that is, the pair (G,K) is of type

(BD)m' (CI)t, (DIII)t=2r and (EVII) ,Let A E D(G,Kjk) , From the above assertions

we already know A E D(G,K)-I k IA. . Hence from Satake diagrams we can write
10

A= IDo'2A. - Ik IA. + [terms of A. with j f io]10 10 J
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for same mOE' 11, mO~ 0 . Thus it beeomes

A = mOA. + [terms of A. with j ~ iO]
10 J

with Wo = 2mo-1 k I ~ 0 and mo-I kI even. We have to show mO~ IkI . By the

assumption V(A) eontains a K~ubmodule isomorphie to W IkI ' whieh is also denoted

*by W Ik I ' because V(A) is isomorphie to V(A) . Ey the irreducibility of V(A) and the

K-invarianee of W Ik I ' we have

( (:
for a sufficiently large integer N . Note that p(gß ) ... p(gß )W Ik I is eontained in the

1 q

weight spaee of V(A) for the weight Ik IA. +ß1 + ... +ß , or it is zero. Henee we ean
10 q

write

(5.1) A=lkIA. +ß1 +···+ß10 q

for same q ~ 0 and ßl'... ,ßq E~~ . Indeed J we have ooIy to ehoose {ßl' ... ,ßq} (~m of

the minimal number q such that p(Eß )... p(Eß )w is the nonzero highest weight vector
1 q

of V(A) , where w is a nonzero element of W Ik I . We check that

(5.2) 2(ß,a. )/(0. ,0. ) = 0,1 or 2
10 10 10
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for each ß E~~ . Indeed, we define an integer ja by ja = 2 if (G,K) is o[ type (BD)m'

jo = t-l if (G,K) ia of type (CI)l' jo = t-2 if (G,K) ia of type (DIII)l=2r and

jo = 6 if (G,K) ia of type (EVII). Then !rom the list of root systems we s~ that

(a. ,a.) = 0 for j ~ io,jo ' and 2( a. ,a. )/( Q. ,a. ) = -1 ,
10 J Ja 10 10 10 .

and for each ßE :E~ , ß has the, following form:

ß=

a·
10

a· + a· + [terms of a. with j:j= iO,jO] ,ar
10 Jo J

o· + 2 a · + [te r ms of o. w i t h j :/= i 0' j 0] .
10 Jo J

Hence we get (5.2). ThereCore !rom (5.1) we have

q
IDO= 2(A,0. ) = Ikl + 2\ (ß ,a. )/(0. ,a. ) ~ Ikl .Wegot

10 L.s=1 S 10 10 10

D(G,K;k) ( D(G,K) + Ik IA. . In the same way as the proof of (1) we can show
10

D(G,K) + Ik IA. C D(G,K;k) . We obtain (2).
10

q.e.d.

Proof of Theorem 5.2. The method oe determining D(G,K) by Satake diagram is

well-known in the theory oe spherical functions over compact symmetrie spaees (cf. [Te 1]

and references of [He]). Therefore Theorem 5.2 foUowa !rom Lemma 5.3.

q.e.d.
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6. Classifieation of homogeneous harmonie maps between eomplex projeetive spaees

In this section we discuss the ease when M ia an n-dimensional eomplex projeetive

spaee (pm. By Theorem 5.2, the Freudenthal'a formula and the Weyl'a dimension

formula, a simple computation gives the following.

Proposition 6.1. In case (AIlI)lm : M = (pm, for eaeh

A = fi l Al + m 2Am E D(G,K;k) with ml -ffi2 = k , the eigenvalue e(A) of the Casimir

operator for A relative to the inner produet of 9 = su(m+l) defined by (-1) times

Killing form and dimension d(A) of the representation of su(m+1) with the highest

weight Aare given aB followsj

By this proposition and results of the previous sections we get a nice series of

homogeneous harmonie maps between eomplex projective spaees.

Theorem 6.2. There exists aseries of SV(m+I)-€quivariant full minimal isometrie

immersions fJID (J : (pID(c(n,t.)) ----+ G:pN(n,t)(c) indiced by the set {(n,t) E 11 x 7ljn,(..

n ~ t. ~ O} , where
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c(n,t) = cm/{2k(n-t) + ron} ,

[
n-t+m-1] [t+m-1] m+nN(n,t) + 1 = - .

n-t t m

Moreover {,pm.,} satisfy the following:
D,.{..

(1) l = 0 if and only if ,pm.,· is holomorhic. In this case ,m., is the n-th Veronesen,.{.. n,~

imbedding of (pm (cf. [Te 2]).

(2)

(3)

(4)

t = n if and only if t/Jm., is antiholomorphie.
n,~

n ia even and 2t = n if and only if 1/JID., ia totally real. In thia ease "pm., ia a
n,~ n,~

eomposite of the k-th standard minimal immersion (pm ----t SN(e/4) (cf. [Wa 1])

tbe natural isometrie covering SN(c/4) ---t IRpN(c/4) and the totally real totally

geodesie imbedding IRpN(ej4) ---t (pN(c) .

The degree oe ,ffi D is equal to n-2t.
n,~

Remark. In case m = 1, ,1 D is congruent to , ., in Theorem 1 of [B-Q] (cf.n,.{.. n,.{..

[B-J-R-W], [Gu 1]). So this theorem is just a generalization of the result ,of [B-Q] to

higher dimensional complex projective spaces.

Proof. For each A = ffi1A1 + m2Am E D(G,K;k) , we set 1/J~ t = rp(VA) (8 = 1)
J

by Proposition 3.3, where n = ID1 + ffi2, t = ffi2 and k = 2t . Then we get the above

series.

q.e.d.

Theorem 6.3. Let cp: (pm --+ (pD be a full SU(m+1)-equivariant harmonie map

between complex projective spaces with the Fubini-Study metrics. Then there exists a pair
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of integers (n,t) with 0 ~ t ~ n such that N = N(n,t) and r.p is equivalent to p~ t .,

Remark. From thiB result we see immediately that if r.p: (Pm(c') ----. (PN(c) isa

full SU(m+1)-equivariant minimal isometric immersion, then there exiats a pair (n,t)

with 0 ~ t ~ n such that c' = c(n,f..), N = N(n,t.) and r.p ia congruent to pr;: t. .
• I

Proo!. Let k be the degr~ of r.p. Hy the results of Section 3, there exists a unique

homogeneous complex line bundle L with Cl (L) = k over (pm such that r.p is

equivalent to r.p(Vj rl' ... ,rs) for Borne G-fiubmodule V of an eigenspace of ~L in CaJ(L)

and sorne rl'0 .. ,r E IR with Ls r~ = 1 0It suffices to show s = 1 . Let Y =Ls y(i)
B i=l 1 i=l

be the direct SUffi decomposition into irreducible G-modules and

A(i) = mp)Al + m~i)Am E D(G,Kjk) be the highest weight of v(i) for i = l, ... ,s . Then

we have

(6.1)

m1i ) - m ~ i) = k for i = 1, ... ,s ,

(A(i)) (A (i +1)) r .C = C Jor 1 = 1) ... ,s-1 .

By (6.1) and Proposition 6.1, a simple computation shows mp) = mp+l) and

(i) _ (i+1) r . _ h . A(i) - A(i+1) r . - - C 11ID2 - m2 Jor 1 - 1, ... ,s-1 , t at IS, - Jor 1 - 1) ... )s 1. Hy ara ary

2.3, we get 8 = 1 .

q.e.d.

Remark. (1) It is important to investigate the rigidity of the above minimal

immersions. Refer to [Ca] for the rigidity of ,pm 0 or fJID and to [Wa 1], [Ur] forn, n,n

the rigidity of t/JID D with n = 2t .n,-t..
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(2) After the author finished this work, Dr. Burstall informed him that Toth also got

examples of non(anti)holomorphic harmonie maps (pm --+ (pn for m < n .
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7. Homogeneous minimal 2-fipheres in quaternionie projeetive spaces

It is interesting to study homogeneouB harmonie maps into quaternionie projective

spaees by applying our argument to quaternionie line bundles and smooth maps into

quaternionie projective spaces. Here we give homogeneou8 minimal 2-fipheres in

quaternionie projective spaees an~ some informations about them. They were diseussed

first by Salamon [Sa].

Let D-Ipn
( e) denote an n-dimensional quaternionie projective space with thc

standard metrie of the maximum C of seetional eurvatures.

Proposition 7.1. There exists aseries of SU(2)-equi variant minimal isometrie

immersions cp : (pl(c(n,a)) --+ IHpn(c) indiced by the set {(n,a) E 7I. )( 71;n,a

n ~ a ~ O} , where

c(n,a) = 1/{2a(2n+l-a) + 2n+1} for a = 1, ... ,n-1 ,

c(n,n) = 1/n(n+l) ,

and the image of eaeh cp is not contained in any proper totally geodesie submanifold ofn,Q'

IHpn . Moreover a = 0 or n if and only if cp is totaUy complex. Conversely they given,O'

all proper SU(2)--equivariant minimal immersions of (pI into Olpn .

Remark. (1) Refer the definition of a totally complex immersion to [Ta]. It is

equivalent to the inclusive condition in [E-S] as a sffiooth map.: In [8a] a connection of

these maps with the twistor spaces Sp(n+l)/Sp(n))( U(l) and Sp(n+l)/U(n)( Sp(l) .

aver D-Ipn was studied. This result shows that the statements in Lemma 2.10 and Theorem
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4.1 in [Ta] da not hold for 'P . (2) We conjeeture that {'Pn Q} exhauBt all proper. n,n J

minimal isometrie immersions of (pl(c') into lHpn(c) .
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