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Abstract

Let /1 : T"M — R be an convex Hamiltonian. We show that Anosov energy
levels of I can only arise at high energy levels, not containing conjugate points.

1 Introduction

Let A/ be a manifold without boundary, T*M its cotangent bundle, 7 : T"M — M
the canonical projection and, if # € T M, let, V{(0) C TpT=M be the vertical fibre at
0, defined as usual as the kernel of dmg : ToT* M — Trpy M.

Let. H be a Hamiltonian on T7M, lei JVH be its symplectic gradient and let
¢y denote its assoclated Hamiltonian flow. It is well known that ¢, preserves the
canouical symplectic form of T M and leaves all the level sets £, gy (o) invariant.
We shall always assume that £, is conuected and that ¢, |g, is complete.

Recall that a Hamiltonian H @ T*AM — R is said to be convex il {or each ¢ € M
the function H(y,.) regarded as a function on the linear space T7M has positive
definite Hessian.

Onr subject will be the Anosov energy levels of H, with H couvex, 1.e. regular
values o of H such that £, is compact and the flow ¢, |g, is an Anosov flow. Owr
main result (i fact a corollary of a more general result to be stated below) is that
Anosov energy levels can only arise at high energy levels, not containing
conjugate points. More precisely:

Theorem 1.1 If o is an Anosov encryy level, then:
(0) 7(E,) = M. In purticular M is compact.
(b) E. does not contain conjugate points,
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Conjugate points, means, as usual, pair of points 0; # 0; = ¢,(6) such that
d¢,(V(6,)) intersects V(fy) non-trivially.

Suppose that {or each ¢ € M, %(q,ﬂ) = 0, i.e. the Hamiltonian is “centered”,
then Property (a) implies ¢ > maxgep H(q,0) and it makes possible to see the
dynamics of ¢, |y, as the geodesic flow on the unit sphere bundle of an appropriatedly
chosen Finsler structure on M. In particular if H is of the form kinetic energy plus
a potential, then an Anosov energy level of [ is equivalent to an Anosov geodesic
flow of the associated (non-degenerate) Maupertuis metric corresponding to the fixed
energy level.

We also note that for surfaces of genus > 1, given any Riemannian metric -since
any metric is conformally equivalent to a metric of constant curvature —1- 1t is possible
to add a potential to it so that we obtain Anosov energy levels.

For Hamiltonians arising from Riemannian metrics, Theorem 1.1 was proved by
Klingenberg [6]. For a different proof and exposition of Klingenberg’s result that also
covers the non-compact case see [8].

Theorem 1.1 will be obtained as a corollary of a more general result (Theorem 1.2
below), where the Anosov Liypothesis is replaced by a much weaker one, namely the
existence of a continuous invariant Lagrangian subbundle, i.e. a continuous subbundle
E ol T(IT*M) |, such that for all # € E, the fibre £(0) 1s a Lagrangian subspace
of ToT™M and E(¢(0)) = dé(£(0)) for all £ € R. Tt is well known that under the

Anosov hypothesis both the stable and unstable subbundles are Lagrangian. We will

also see (cf. Remark 2.6) that Theoremn 1.2 extends to the general symplectic setting,
e, T*M is replaced by an arbitrary symplectic maunifold, (NV**,w) with w™™!
and H is an optical Hamiltonian [2] respect to a fixed Lagrangian distribution.

exact,

In our last theorem (Theorem 1.3 below) we shall prove the same result dropping
the compactness hypothesis but adding two assnmptions: the symmetry of the Hamil-
tonian (i.e. the invariance of A under the involution (¢, p) — (¢, —p)) and that every
point in ¥, is non-wandering. We do not know whether the result still holds without
the symmetry assumption. The recurrence hypothesis is necessary as we shall see
through an example.

Theorem 1.2 Suppose thal o is a veqular value of H, that S, is compact and that
¢ |5, admits a continuous invariant Lograngian subbundle E. Then,

(0) E(YNV(0)={0} VOe&X,.

(b)) =(E.) =M. In particular M is compact.

(c) B, contains no conjugate poinls,

Theorem 1.3 Suppose thal o is « reqular value of H, that coery point in L, is
non-wandering, that H is symmectric and that ¢, |z, admits o continvous imvariant
Lagrangian subbundle., Then,

(«) E@Q)NV(#)={0} Ve E,.

(b)) 7(E,) =M.

(¢) Z, contains no conjugate poinds.



As we mentioned before the recurrence hypothesis is necessary, even in the geodesic
flow case. Consider the paraboloid of revolution z = a*+y?. The obvious circle action
together with the field of the geodesic flow span a contiunous invariant Lagrangian
subbundle but there are conjugate points.

Let us remark that onr results also include the results of A. Knauf in [7], who uses
ideas similar to ours in the proofl of Theorem 1.3.!

In [10] the second anthor showed that if the geodesic flow on a compact surface
M 1s expansive, then there are no conjugate points. Recall that a flow ¢, : X — X
on a compact metric space (X, d) is said to be expansive if given ¢ > 0 there exists
8 > 0 such that if there is an homeomorphism 7: R — R, 7(0) = 0, such that

(b (y), du()) < 6,

for all t € R, then y = ¢(x) where | © ]< €. Auosov tlows are expansive flows.
Results analogous to Theorem 1.1 also lold for convex expansive Hamiltonians with

two degrees of freedom [9].

We are very grateful to M. Bialy, M. Brunella, R. Mané, L. Polterovich and
to the participants of the Dynamical Systems Seminar at. Montevideo for numerous
conversations. We also thank B. Kleiner for pointing oul a mistake in a previous
version of the manuscript.

2 Proof of Theorem 1.2

The Theorem will be a consequence of Propositions 2.1, 2.3 and 2.4 below.

Let ¢ be a flow on a compact manifold W, We will say that C C W is a codimen-
sion one trausversal cycle, il C is a closed connected simooth stratified submanifold
(in the sense of Whitney [5]), such that ¢, is transversal to C' at every point, the
top dimensional strata has codimension one in W, and all the other stratas have
codimension > 3 in W,

Proposition 2.1 Let H be o Hamiltonian on the symplectic manifold (N, w) with

n—1

w exact. Then the Homiltonian flow of H rvestricted to « compact reqular eneryy

level has no codimension one transversal cyele.

Remark 2.2 We observe that Schwartzimann [t1] showed that Hamiltonian flows on
a symplectic manifold N have no simooth cross sections ou N, However they may have

1 iy exact

them on energy levels (take a symplectic suspension); nevertheless if w™~
this cannot happen either as the proposition shows. Our arguments are a variation of
Schwartzinann’s arguments and we include them for the sake of completeness. Note
that i the case of (1M, wy) where wy is the standard symplectic form, wi™" is always
exact. Moreover if (TM,w) is a twisted cotangent bundle, i.e. w = wy, + 7*y, where
1y € H*(M,R), then w1 is exact, provided n > 3.

'We thank the referee for calling our atention to Knanf’s paper.
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Let £, be a compact regular energy level. Let A denote the Lagrangian-Grassmanu
bundle over ,, i.e. lor each § € E,, the fibre A(0) consists of all Lagrangian sub-
spaces of TpT™M. Let Ay denote the subbundle whose filire at § is the subset of A(#)
given by all Lagrangian subspaces that have intersection with V(#) of dimension k.
Now set Ay = Up>1Ax. Then Ay is a closed stratified submanifold where each strata
Aj has codimension "—(@ [, 2, 4].

Consider now the induced flow, ¢7 : A — A, given by ¢7(0, £) = (6:(0),d¢.(E)).
Let £(9, ) o ,;—'i li=o ¢7(0, E). The following Proposition can be found in {2, Propo-
sitious 1.6, 1.8, 2.2] and [4].

Proposition 2.3 Assume H : T*M — R is conver. The vector field € is transnersal
to Ay and morcover, there exists o nwmber v > 0 so that for any (0, E) € Ay we
have,

dest(£(0, E), T(B,E)AV) >
where dist s any distance function compatible with the topology of TA.

Proposition 2.4 Assume H : T"M — R is conver and It E C TpT*M be a
Lagrangian subspace. If dg,(E) N V(¢ (0)) = {0} for t € [0,a], then the segment
{@:(0), 1 € [0,a]} does wot have conjugale points, i.c. the set of 1 € [0,a) such that
dg () € V((0)) consists al most of onc point for all non-zero a: € ToT™"M .

Proof of Theoren: 1.2:

We explain now how to derive Theorem 1.2 from Propositions 2.1, 2.3 and 2.4.
First we observe:

Remark 2.5 Suppose that there exists a continuons invariant Lagrangian subbundle
E of T(T*M) |z,. Then, there exists another one B, satislying JVH(0) € E(8), for
all 0 € S,. Just set £(0) = {JVH(O)} + (E(0)NTyE,). Thus from now on we shall
assume without loss of generality that JNVH(0) € £(0).

We claim that to prove Theorem 1.2, 1t suftices to show Property (a), that is; for
all 0 € ., E()NV(0) = {0}.

Proof of the claim: To show that 7(E,) = M observe that if for all § € &,
E(0) N V(0) = {0}, then = |g, is a submersion. Indeed, when dmy |15, is not
surjective, JVH(#) € V(#) and then E() N V(0) D {JVH(#)} # {0}. Then since
m(E.) is compact, it is open and closed and thus 7(S,) = M. Also if for all § € Z,,
E(@)nV(#) = {0}, then by Proposition 2.4, ¥, does not contain conjugate points
concluding the proof of the claim.

Now note that a continunons Lagrangian subbundle £ s a continuous section,
E: Y, — A, of the bundle, A — X,. Suppose now that £ is invariant. Thus we can
uniformly approximate £ by a C™-section £, so that the maps

! N
) — (_ |r.—_u E(Q—"t”),
i
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0 — E(0, E(0)),
E($:0) = £(0, [2(0))). By the Transversality

Theorem ([r, p. 38]) we can (,lloo-.P E, so that £ is transversal to Ay. On the other
hand, if £ is sufficiently close to E in the way described above, it follows from
Proposition 2.3 that there exist a number v/ > 0 so that, if (0, £(#)) € Ay, then

are also uniformly close (1

o od . , .
(hsf(-;—f =0 B(8:0), Typ paydv) > 1. (1)

Set K = {0 € &,: E@)NV(0) # {0}} = E7'(Av). Suppose that K is not
e-ml)ty, hen if £ is sufficiently close to E, the set £~ ( v ) is also not empty. Indeed,
if B is sufficiently close to £, it follows that E and £ are homotopic, We will see n
Propoesition 3.3, that if A is not empty, there exists a closed curve, o : ST — ¥, so
that £ oa : ST — A has positive intersection number with Ay (i.e. positive Maslov
index). It follows then, that E(So) nmst intersect Ay otherwise the intersection
munber would be zero.

Next note that if C' = E"([\ ) 1s not empty, it 1s a closed stratified submanifold
of codimension one with low dimensional siratas of codimension > 3. Moreover on
account of equation (1), ¢, is transversal to C. Then if the set K is not empty, there
exists a codimension one transversal cycle contradicting Proposition 2.1.

o

Remark 2.6 Let (N** w) be a symplectic manifold with w"™! exact. We endow N
with a Lagrangian distribution o, i.e. a section of the Lagrangian-Grassmann bundle
over N. Suppose now H is an optical Hamiltonian on N respect to o [2] (optical
Hamiltonans naturally generalize convex Hamiltonians on cotangent bundles). Then
il on some compact regular energy level of H, the Hamiltoman flow of H, admits
a coutinuous invariant Lagrangian subbundle £, then £ and o must be transversal.
The proof is exactly as the proof of Theovem 1.2 above, since Proposition 2.3 also lold
in this general setting. We also note that if /f is optical, proper and bounded {rom
below, then necessarily w"™! is exact for n > 3. Indeed, since optical Hamiltonians
are open, and the index ol a non-degenerate critical point of an optical Hamiltonian
does not exceed n [3], it follows from Morse theory that N has the homotopy type of
a CW-complex with dimension < n. Thus H**74(M,R) = 0 for n > 3 and therefore
any closed 2n — 2-form is exact.

Next, we prove Propositions 2.1 and 2.4.

Proofl of Proposition 2.1: We livst show:



Lemuma 2.7 If X is a C" vector field on « compact manifold W, and §) is a volume
form such that X is erxact with respect to 0 (i.e. 1x8) is exact), then X has no
codimension one transversal cycles,

1

Proof: If X had a codimension one transversal cycle C', then

/C-ftXQ £0,

but iy Q = dy, hence

0 /wQ:/ —
# o LA o

since C is a cycle. This contradiction proves the lemima.

We complete now the proof of Proposition 2.1. The exactuess hypothesis implies
w1 = dA, where A is a 2n~3-form. Take a vector field ¥ so thal w, (Y (2), JVH(2)) =
L for all w € H™' (). Then denoting X = JVH, we have

’IT/\"Ij)f(w AL /\w) |H-l{ﬁ)= wA AW,

n n—1

Hence defining the volnme form Q := ¢y (w A ... Aw), it follows that
N

13

iy d=wA ... Aw=d\

n—1

Hence X is an exact vector field on H=' (o) with respect to the volume form §2. By
the previous lemma JYVH |y-1(4) has no codimension one transversal cycle.
<

Before proving Proposition 2.4 we recall hriefly the hnear equation and the Riccat
equation associaled with H.

Fix a Riemanvian metric on M, then TpT™M splits as a direct sum of two La-
grangian subspaces: the vertical subspace V(#) and the horizontal subspace H(0)
given by the kernel of the connection map. Both subspaces can be canonically iden-
tified with TyayM. Let 2 C TyT"M be a subspace of dimension » and with the
property £EN V() = {0}. Then £ is the graph of some linear map S H(#) — V(0).
It can be easily chiecked that [ 1s Lagrangian il and only if S is synunetric with
respect to the inner product given by the Riemmanian metric.

Take 0 € T*M and @« = (h,v) € T,1"M = HO)Y & V() = TroyM @ TrgyM. Now
consider a variation

ay(1) = (.(), po(1))

G



such that for each s € (—¢,€), a, is a solution of the Hamiltonian H such that
ap(0) = 0 and 4 |20 o,(0) = . Then if we write (A(t),v(t)) = dé,(v) we have that
h and v verify the following linear equation

h= Ho,h+ Hyv,

o=—-H,h—H,uv, (2)

where covariant devivatives are evaluated along w(ay(t)), and H,,, Hyq, Hyy and Hy,
are linear operators on TrM, that in local coordinates coincide with the matrices

PH DH aH 2H
t"mi’v;')’ (91'430,')’ (arnaru) and ((‘"nﬂw

of partial derivatives ( ). Moreover H,, is positive
definite 1f A is convex.

Next we will derive the Riccati equation. Let £ be a Lagrangian subspace of
TeT* M. Suppose for £ some interval (—e, ¢), dg(£) N V(g (0)) = {0}. Then we
can write dg(E) = graph S(1), where S(t) : H($(0)) — V(¢:(#)) is a symunetric
map. That is, if © € £ then

déi(a) = (h(t), SHYR(t)).

By means of the equation (2) we obtain:

Sh+ S(H, b+ H, Shy=—H, h~ H, Sh.

ar pp 1 e
Since this works for every @ € E we obtain tlie Riccati equaiion:
S+ SH,S8+SH, + H,,S+ H, =0, (3)

Proof of Proposition 2.4:

Take the symumetric map S(#) that gives d¢,(E) as a graph and let (h(1),v(1))
represent déy(x) (a € TeT*M). Suppose hic) = 0 for some ¢ € [0,a]. Suffices to
show that h(t) # 0 for all t € [0, «¢] different [rom ¢. Consider Y(1) a family of linear
isomorplisms satistying .

Y =(H,, + H,S)Y,

Y (0) = id.

If we take w such that (w, S(0)w) € £ aud define
ha(h) = Y (1),

n (f) = S(f.)}"(f.)w,

we get -using equation (3)- that (hy,0p) is a solution of the equation (2). Since dé¢,
preserves the symplectic form we get

< h(t),n(t) > — < o(t), (1) >= — <olc), Y{c)w >



and hence

<Y (O)SW(1),w > — < Y ()o(t),w >= ~ < Y(c) 0(c),w > .

Therefore
o(t) = SR + (Y) ()Y (¢) v (e).
Since .
h = H,h+ Hyyv,
we get

b= (Hp,+ HypSYh+ H, (Y)Y (¢) 0(c)

and hence
(1) = Y ()Y He)h(c) + Y (1) /C' Y ) Ho (Y5) T ) Y () o ¢) du.

Since h(e) = 0 we obtain

t
< YU )h(1), Y(c) o(e) >= / < Hop(Y) @)Y () vle), (YY) (w)Y () v(c) > du.
Then the convexity ol I implies that h(t) $# 0 for all £ € [0, «] different [rom ¢ and
hence there are no conjugate points along the segment.

o

3 Proof of Theorem 1.3

Let A/ : T*M — R be a convex Hamiltonian aud let ¢, denote the flow associated
to H. Let X C 7™M be an arbitrary connected ¢p-invariant submanifold. Suppose
a continnous mvariant Langrangian subbundle I is given on X, 1.e. for each ## € X,
E(0) is Lagrangian, § — E(0) is continnous and E(¢,(0)) = dé, (£ (0)).

For each continnons closed curve o @ [0,7] — X we can define the Maslov index
of o, p(er), as the Maslov index of the curve £ — (a(t), E(«(1))) tn the Lagrangian-
Grassimann bundle ([1, 2, 4, 8]). This index defines in turn an element p € H'Y(X, Z)
called the Maslov class of the pair (X, £).

We will say that a continuous closed curve o 2 [0, 7] — X s a pseudo-orbit of the
Hamiltonian flow ¢, if for all £, € [0,T] where

E(n'('f.[,)) M V(”'(tll)) 7é {ﬂ}’

there exists € > () such that
(Y‘I‘(‘f- + ‘I.“) = ¢f((:lj(t(])),

8



by e

for t € (—e,€) (for ty, = 0 or £y = T we take the continnous periodic extension of « to
the real line).

The following lemma is an 1mportant consequence of the convexity of H and can
be found in {2, 4, §].

Lemma 3.1 [f o : {0,T] = X s a closed psendo-orbil, then p(a) > 0. Moreover of
there cwists soma ty € [0,T] for which E(ca(te)) N V{(a(te)) # {0}, then () > 0.

Definition 3.2 Suppose X is invariant under the involution (q,p) — (¢,—p). For
acurve o : [0,T] — X, a(t) = (q(#),p(1)), let & : [0,T] — X be the curve a(t) =
(((T = 1), =p(T — 1))

Let @ C X denote the set of non-wandering points of ¢, in X.

Proposition 3.3 Suppose there exists € Q0 so that E(0)NV(0) # {0}, Then there
exists « closed pscudo-orbil o 2 [0,T] = X so that o(0) = 0 and thus with p(a) > 0
by Lemma 8.4, If tn addition H is sspmnctric and X is invaviant under the involution
(q,p) = (q,=p), then o can be chosen so that & is also a pseudo-orbit.

Proof: (cf. also [8]) By Proposition 2.3 there exists € > 0 so that for all 1 €
(—2¢,2¢) and 1 # 0 we have d¢,(E(0)) N V(¢ (#)) = {0} and the arc of trajectory
$e(0), 1 € (—2¢,2¢) is in a flow box. Let U, and U, be neighborhoods in X of ¢.(#)
and ¢_.(0) respectively so that £ does not touch the vertical non-trivially for any
point in them. Since # €  there exists s > 0 and 5 € Uy so that ¢,(n) € U,. Connect
now ¢ (#) with i by a path v contained in Uy, and ¢,(y) with ¢_.(0) by a path 7,
contained 1 {/,.

Consider the closed curve o obtained by jomiug the following sequence of paths:
{,0): t € [=e, ¢}, 7, {Delyy) s t €[0,5]}, 5. Clearly v is a psendo-orbit through
f as desired.

[t H is synmunetric and X is invariant under the involution (¢, p) — (¢, —p), then
if A is an orbit of ¢;, A is also an orbit. Then a small modification of the arguments
above shows that the curve o can he cliosen so that & is also a psendo-orbit (cf. [8]).

<

Proof of Theorem 1.3:

First note that if H is convex and symmetric, then 7(X, ) is closed even if £, is not
compact; indeed 7(%,) = U™ (—oo, 7], where J : M — R is given by U(q) = H(q,0).
Hence as in the proof of Theorem 1.2, we only have to show that E(#) N V() = {0}
for all # € E,. Suppose that for some # € E,, E(0)N V(0) # {0} and we will derive
a contradiction. By Proposition 3.3 there exists a closed psendo-orbit o through 0 so
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that yi(e) > 0. Let o7 (1) = o(T — 1) and observe that o~! and & are homotopic,?
where & is the curve defined in Definition 3.2. Thus 0 < j(o) = —p(a™') = —pu(a).

But since & is also a pseudo-orbit (cf. again Proposition 3.3) it has non-negative
Maslov index (Lemma 3.1) which is a contradiction.

0

Remark 3.4 The argument above also shows that if ihe non-wandering set Q C £,
touclies the zero section of T*M then ¢, |z, does not admit a continuous invariant

Lagrangian subbundle.
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