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A MATRIX POINCARE FORMULA FOR HOLOMORPHIC
AUTOMORPHISMS OF REAL ASSOCIATIVE QUADRICS

VLADIMIR V. EZOV AND GERD SCHMALZ

ABSTRACT. We introduce the class of real associative Hermitian quadrics of codi-
mension n in C?" (RAQ) having the property that their automorphisms can be
written by means of a matrix version of the Poincaré formula for Aut S3,

1. INTRODUCTION

Let z = (%), j =1,...,n, w = u4+iv = (W) = (& +9), 5 =1,...,k be
coordinates in C* x C¥, k < n;

(z,2) = ({2,2)},...,{z, 2)%)

a R*-valued Hermitian form.

The following set is called a quadric @ = {(z,w) € C"** : v = (2,2)}. Q is
presumed to be nondegenerate, i.e.

i) (z,b)) =0forall j =1,...,k 2z € C" implies b = 0
ii) (z,z)? are linearly independent j = 1,...,k.

Since @ is a homogeneous manifold (Aut @ acts transitively via the transformations
z+p+z,wr— ¢+ w+ 2i{z,p) with (p,q) € Q) then AutQ = Q x Auty Q, where
Autp @ is the isotropy group of a fixed point, say the origin.

Autg @ is a finite dimensional Lie group iff ) is nondegenerate (see [Bel89)).

- The problem of the description of Autg ) dates back to the work of H. Poincaré

1907 [P0i07], where he discoverd the formula of the holomorphic automorphisms of
the hypersphere §° C C?. N.Tanaka [Tan62] generalized the results of Poincaré for
arbitrary nondegenerate hyperquadrics @*"~! ¢ C".

The case of codimension k£ > 1 has not been completed yet. The question about
the description of Aut ) has been recently formulated once again by F. Forstnerié
[For92].

Below we list some known facts concerning Auto Q.

Using the reflection principle G.Henkin and A.Tumanov [HT83] proved that Auty @
consists of rational transformations.

Research of the first author was supported by Max-Planck-Institut Bonn.
Research of the second author was supported by Deutsche Forschungsgemeinschaft.
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V. Beloshapka [Bel90] gave a description of the Lie algebra of the infinitesimal
automorphisms of () and he proved also that the quadrics of codimension k& > 2 in
general position are rigid, i.e. their isotropy group consists of trivial automorphisms
z — az, w — |a|*w for some complex number @ (see [Bel91]).

For k = 2 A.Abrosimov [Abr92] discovered a sufficient condition for Auty @ to
consist of linear transformations: if in some coordinates the operator (H')"1H? (H’
. - the Hermitian matrix related to (z,z)’) has more than two different eigenvalues.

However, this result does not contribute anything to the case n = k = 2 as well as
the "rigidity” property of Beloshapka.

The case n = k = 2 happened to be rather interesting since the quadrics of
codimension 2 in C* (there are three different types of such quadrics, namely the hy-
perbolic, elliptic and parabolic) have relatively rich automorphism groups consisting
of rational transformations of degree < 2 ([ES92a]).

The method we used was based on the fact that the quadrics in C* admit a "ma-
trix representation”: there exist real, commutative matrix algebras A with unit of
dimension two realizing the quadric in the following sense: There is a linear iso-
morphism 7 : R? — ¥, 7(z) = X, such that 7({z,y)) = 7(z)7(y), and therefore,
Q={(2Z,W)e (A®C)?: ImW = ZZ}. Inserting matrices of this form into the
automorphism formula of the Heisenberg sphere in C? one immediately obtains an
automorphism formula for the given quadric. An analogue of Chern Moser’s normal-
ization procedure shows that these are all automorphisms.

This method was very helpful to describe Autg @ for another three different types
of quadrics in C%, k = 3 [ES92b)].

In the present paper we consider the case k = n and describe Auty @ for a certain
class of quadrics, we call them "real associative quadrics” (RAQ).

Definition 1. A quadric Q is called real associative (RAQ) iff there are coordinates
in which the Hermitian form defines a real, associative product, i.e.

(1) (x,y) is real for all real vectors z,y
(2) (z,(y,2)) = ((z,y),2) for all z,y, 2

It occurs that this type of quadrics is the only one that admits a "matrix repre-
sentation”, and we prove that the formula for the automorphisms is a generalized
Poincaré formula.

On the contrary to the mentioned above results of V.Beloshapka and A.Abrosimov
indicating the automorphism groups being either poor or trivial, the RAQ class pro-
vides us with the relatively rich groups consisting of rational transformations of degree
<n.

The RAQ construction gives us a hope to find the answer to the following open

questions:
b
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i) Are RAQ quadrics the only irreducible ones having nonlinear automorphisms?
ii) Is the degree of an element of Auty Q always < n?

i1i) Does the quadric which provides the maximal dimension of Aute @ belong to
the RAQ class?

2. RESULTS

Before we formulate the results we introduce two types of elementary quadrics with
matrix representations:

Definition 2. Let 2., . ,, be the m-dimensional (m = 1+43!_, r,) real, commutative,
associative algebra spanned by (1,nq,...,n7',...,n,,...,n}*) where 1 is the unit and

nint=ndt ifj 4 1< and 0if5+1> 1, nf:nin:O if i #m.
By A€ we denote the 2m-dimensional real algebra A,, ., ®r C.
1 F]

T1.oTs

Then the elementary quadric Q,,. ., of first type with parameters (ry,...,r,) is the
quadricinC*"* =CrpCr =2, ,, Qe C D U,,. ., ®r C defined by Imw = zz.

The elementary quadric QS of second type with paramters (r1,...,r,) is the
quadric in C'™ = Cim @ C¥™ = ngm,,' @r C®AC | ®r C defined by Imw = 2Z.

This type is only for even n defined.

The simpliest quadrics of this form corresponding to A = R are the Heisenberg
sphere @y = 5% in C? and the elliptic quadric Q% in C*. The hyperbolic quadric in
C* is equivalent to Qy x Qy, and the parabolic quadric to (.

The following proposition characterizes RAQ quadrics in terms of "matrix repre-
sentation”.

Proposition 1. A quadric Q admits a matriz representation, i.e. for some n-di-
mensional commutative real matriz algebra Ug Q = {(w,2) € U @ C x A @ C:
Imw = 2z}, if and only if it belongs to the RAQ class.

Theorem 1. A quadric Q is contained in the RAQ class if and only if it ts equivalent
to the direct product of elementary quadrics.

The theorem below gives the description of the isotropy groups of RAQ quadrics:
Theorem 2. Let @ € RAQ, then any automorphism preserving the origin is of the

form

z = C(z+aw)(l - 2iaz — (r + iad)w)™

w = pw(l — 2@z — (r + iad)w)™’

wherea € ARC,r € A, C € GL(n,C), p € GL(n,R), such that (C2,Cz) = p(z, z).
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3. RAQ CRITERIA
We start with the proof of Proposition 1.

Proof. 1t is clear, that (1) and (2) are necessary.
We show that they also are sufficient for having a matrix representation. In fact,
if (1) is satisfied, one can define the map

:R* — gl(n,R)
z +— {z,).
Then 7 is a homomorphism if and only if (2) is satisfied. O

We will show that any nondegenerate quadric @ satisfying (1) and (2) is a direct
product of some elementary quadrics. At first we translate the nondegeracy condition
into the language of 2gq.

Proposition 2. Let Q be a quadric satisfying (1) and (2) (with respect to some
coordinates). Then Q) is nondegenerate if and only if there ezists a real vector e such
that (e, z) = = for all real vectors z.

Remark. We will see in the proof that under the conditions of the proposition the
two properties in the definition of nondegeracy are equivalent.

Proof. Assume that there exists a vector e with the mentioned property. Consider a
linear combination of the Hermitian forms

E A, ) =0
Then

0

T Acle, o) = T Az

for all z. Hence A, = 0 for all «.

The second property also follows trivially: If {z,y) = 0 for all vectors y then
(z,e) =x=0.

We prove by induction with respect to the dimension n that from the nondegeracy
condition follows the existance of a vector e with the desired properties.

If n = 1 both of the nondegeneracy properties imply that for a nonvanishing vector
= there exists some A # 0 such that (z,z) = Az. Hence, A7!z is a unit.

Assume that the assertion is proved for n < no.

Let z € Ay and 7(z) = X the corresponding linear operator. Then one of the
following is true: either any X has only one eigenvalue or there is some X with two
different eigenvalues. Since the algebra is commutative, in the second case it spells
into two subspaces being invariant with respect to all Y = r(y). The dimension of
these subalgebras are less than ng, and both nondegeneracy conditions hold true for

Hl
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both subalgebras, hence the assertion is proved. In the first case we consider two
subcases. If for some X the unique eigenvalue is different from 0 then X is invertible
and X~!(z) is the unit. Indeed, for any y X~ !(z)y = X ' Xy = y.

It remains to consider the case when all X have only the eigenvalue 0. Then
the algebra g would be nilpotent. This contradicts to both of the nondegeneracy
properties. [J

Now Theorem 1 will be a corollary of the following

Proposition 3. Let 2% be a real n-dimensional, commutative, associative algebra with
unit then A ts isomorphic to the direct sum of some algebras A,, ,, and Qlf'l___r‘.
Proof. Since % is an Artinian ring it splits into local Artinian rings. We have to show

that any local Artinian ring which is a n-dimensional algebra over R is isomorphic to
o, ,, or AC

T1...Tg"

We will prove this by induction with respect to the dimension of the maximal ideal
m of 2.

If dim m = 0 then 2 is a field and therefore isomorphic to R or to C.

Assume, that the Proposition is proved for dim m < m and that dim m = m.
We have to consider the two cases: A/m = R or 2/m = C. In both cases, the
maximal ideal consists of nilpotent elements. Take a nilpotent element a of maxi-
mal order r. We consider a as linear operator A on m. There exists a basis of m
{a,a,...,a" 7 by,...,bs_,} in the first case and {a,ia,a?ia®... ,a" " ia"" ) by,...,
bm-2r } In the second case, such that the matrix of the operator A in this basis has Jor-
dan normal form. Then @A, being span of {1,b,...,b,_,.} resp. {1,4,by,...,bpn-2.}
forms a commutative, associative subalgebra with unit such that the dimension of
the maximal ideal is less than m, and az = 0 for any z from the maximal ideal of
A,. It follows now by induction that 2 is of the first type in the case %A/m = R, and
of the second type if A/m = C. O

Corollary 1. The number of pairwise nonequivalent irreducible RAQ quadrics in C?"
is m(n — 1) for odd n and w(n — 1) +7(2 — 1) for even n (where 7(s) is the number
of partitions of s).

An 1mportant class of quadrics is the class of strictly pseudoconvex quadrics, i.e.
the quadrics ¢} with the property that there exists a positive definite linear combi-
nation of the Hermitian forms defining Q.

These quadrics are automatically nondegerate. Any strictly pseudoconvex quadric
@ is the Shilov boundary of some Siegel domain of second kind. It was proved by
Tumanov [Tum89] that the automorphisms @ extend holomorphically to automor-
phisms of the corresponding Siegel domain. We will give the description of strictly
pseudoconvex RAQ quadrics.
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Corollary 2. Any strictly pseudoconvez RAQ quadric Q is equivalent to the direct
product of n spheres in C2.

Proof. Since @ is strictly pseudoconvex, (z,z) # 0 for all z # 0. Therefore, the
algebra g does not contain nilpotent elements.

Hence @ is, according to Theorem 1, the direct product of some copies of @5 and
Q-

If the direct product contained some Q$, then the cone C = {{z,2) : z € C"} would
contain an entire line. This contradicts to the strict pseudoconvexity. It follows that
@ is equivalent to the direct product of n copies of Qy. O

4, THE ISOTROPY GROUPS

Let @ be a RAQ quadric. It is easy to verify that then the mappings

z = C(z+ aw)(l — 2iaz — (r + tad)w)™!
w +— pw(l —2az — (r + iad)w)™*
witha € A®C,r € A, C € GL(n,C),p € GL(n,R), such that {Cz, Cz) = p(z, z),
are automorphisms.

We prove that any holomorphic automorphism preserving 0 has this form. Ther-
fore, we show that any automorphism & with

ad

_ =id
0z 7€

Q

has the form

z = (z+4aw)(l - 2az — (r + iad)w)™
w — w(l—2iaz— (r+iad)w)"?
withae AQC,re U
We recall that any ® € Auto S® with identical CR projection can be represented
as a composition ® = ®30 ®2o ®! (¢7,5 = 1,2, 3 are the steps of the "normalization”
of the equation) with
(®) 'z - z4 p(w) + 2it(z, w)
w = g(w)+ 2ig(z,w),

where the choice of p, q,t, g provides the property that the image of S* via &' does
not contain terms of degree (k,0),(k+1,1) and (3,2) with respect to (z, z) for £ > 1.



RAQ AUTOMORPHISMS 7

P2 * = 0wy,
w* = w,

where 8(u) € R. The choice of 8 provides the property that the term of degree
(2,2) in (z,z) is vanishing.

where h(u) € R and h'(0) > 0.

The map ®; can be represented as composition of two maps of this form corre-
sponding to functions h;, hg, where the function k, is chosen to eliminate the term
of degree (3,3) in (2, %) from the equation of S°. The function kg will be chosen so
that in the equation of S® do not occur new terms of degree (3,3).

The computations show that

plu) = 5 (- 1),
o(u) = 2;& (¥~ 1), aeC,
2+ 2it(z,w) = 1_2;'(11,)’
saw) = ok,
0u) = —3af*u,
hw) = 2l
ho(w) = T

The only free parameters in ®,,$,, &5 are a = zu(O) € Cand r = %‘1(0) € R.
These parameters have the following geometric sense.

A real curve on §? is called chain (according to Chern Moser) if it is the bi-
holomorphic image of the standard chain z = 0,Imw = 0. Thus any holomorphic
automorphism of S2 corresponds to some chain. For any hyperquadric chains are
exactly the intersections of the hyperquadric with complex lines z = aw. The pa-
rameter a = 55(0) determines the chain corresponding to the automorphism. The
parameter r = 2%2(0) determines the parametrization of the chain. Therefore we call
the map ®; with h = hg reparametrization map.
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All considerations from the hypersphere case can be applicated to @ if we prove
two things:
First, that any mapping

Fiz = z4+pw)+2i) t(z,w),

k=2
w - g(w)+2 Y gi(zw),
k=1

with the property that the equation of the image of Q via F does not contain terms
of degree (1,0),(k,0),(k,1) for k > 1,... has the the form:

F:z* = f: am(w)z™

m=0

g
1

C = S ba(w)em,
m=0

with multiplication in sense of the algebra % and a, (w), b,(w) can be represented
as

0o

!

ay = Zam';w
=0

& !

bm = Ebm’;w.
=0

The second thing what we have to show is that in the mapping ®; there does not
occur additional freedom from the fact, that the group of linear automorphisms can
be bigger than the group which is generated by AC.

We need the following

Lemma 1. Let A€ be a complex, commutative, associative algebra with unit, and
G : AC - AC be a holomorphic map defined in some neighbourhood of w € AC with
the property:

G(w + h) = G(w) + G'(w)h + o(|R]),

where G'(w) is some AC-valued map (in fact, G'(w) is then the partial derivative
of G with respect to the direction of the unit.)
then
= 1

m=0 ¢
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where G(™)(w) are the partial derivatives of G of order m with respect to the di-
rection of the unit.

Proof. We have to prove that for all m € N the differential of order m takes the form
1
= {m) m
!G (w)h

We prove this by induction. For m = 1 this is the condition of the Lemma. Assume
that the assertion is proved for m = my

Let 0y,. .., 0, be a basis of 2 where o, is the unit. Let (w!,...,w") be correspond-
ing coordinates. Then

oG

® B =
in particular,
oG ,
Sw! =G
Let
m 1ym n\Mp
D("‘)G(w,h)= Z oG (w (h) Lo (R)

my4..mp=m (awl)ml KR (awn)mn ml! e mn!

be the m-th differential of G. Then D™tV G(w, z) can be obtained from D™ G(w, z)
by means of the formula

D™V G(w, h) = 2 [ —D(m)G(wo 0, x, YL R dy

It follows from 3 that

(4) g "G mG .
Jw? (Qwl)™ ~ (Qw!)(m+1) "7
On the other hand, one easily shows that

3 (Oa wD&X’hH-l" ' 'ahn)m
/o m!
(0,...,0,A% ..., A" (0., 0, Rn)(m)
(m + 1)! B (m + 1)!
This implies that, if D™ G(w, k) has the desired form then so has D™tV G(w, k).
The proof is complete. O

gdy =
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Now we deduce that F' has the mentioned form. _
From the condition that the terms (0, k) in the new equation of ) vanish we derive

gi(z,w) = zp(w)
g (z,w) = t(z,w)p(w) for k > 1.

Here gy, t; and p are AC-valued functions.
The vanishing of terms (1, k) gives

(5) ta(z,w)z = z%(iz:‘:)
_ ap,.
(6) te(z,w)z = 2tk_1a(zzz) for k > 2
From (5) we obtain
op,.
tg(zl,W)ZQ = 218—2(12122),

and, setting z; = e,

ta(z,w) = 2oLz,

du
Since t, is a bilinear form with respect to z, we have
07 . 0p .
25123 = Zp7—121.
15,152 = 21,14

Setting here z; = e we obtain

op . dp
—iz = z2—{e).

Jdu Jdu

Thus p satisfies the condition of Lemma 1.
It follows that (6) takes the form

te(z,w) = 2itp_ 7' (w)z.

Since, according to Lemma 1, p can be represented as a power series in 2, this
implies immediately that F has the desired form.

It remains to prove that in the "reparametrization map”

o3 = Clw)z
w* = h{w),

with C(w)C(w) = £2(w) does not occur additional freedom.
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Therefore, we have to study the group of linear automorphisms Gg. This group
consists of mappings z — Cz, w — pw, where C € GL(n,C) and p € GL(n,R), such
that (Cz,Cz) = p(z,z2) for all z € C™.

G containes a subgroup Gg of (C, p) corresponding to the action of the invertible
elements ¢ € Ay ® C in the z-component, and of ¢¢ in the w-component.

Now any (C, p) can be uniquely represented as composition of some element of G3
and some (C', p') preserving the unit of 2. This property implies immediately that
C' = p'. In particular, this means that C’ is real.

It follows then, that any holomorphic map C(w) with C(0) = id has values only
in A3 ® C - the group of invertible elements of Ag @ C.

This completes the proof of Theorem 2.

For any quadric one can define an analogue to Chern-Moser chains. Let () be a
quadric in C*** of codimension k. Then a chain is the k-dimensional real submanifold
of @ being the image of z = 0,Imw = 0 under some holomorphic automorphism.

As a corollary from Theorem 2, we obtain the following description of the chains
for RAQ quadrics.

Corollary 3. Let Q be a RAQ quadric in C**. Then a chain is the intersection of
@ with a "matriz line”, i.e. a complex n-plane z = (w, a).

We return to the group Gg. We have already seen that any element of Gg can
be represented as a composition of some (C,CC), where C' = 7(c) for some ¢ € A§
and some (p, p), where p € GL(n,R) such that (pz, pz) = p(z,z). We denote the
subgroup of these (p, p) by Gg.

Since 7(pz) = pr(z)p~", G consists of all p € GL(n,R) preserving Ay with
respect to the adjungation. Thus, G is the factor group of the normalizer N(%g)
by its trivially acting normal subgroup.

Examples. 1. The algebra 2, ; defines for n = 2 the parabolic quadric, and for
n > 2 a nullquadric (i.e. any linear combination of the Hermitian forms defining
Q is degenerate). The group G} for this quadric consists of all nondegenrate linear
transformations of the maximal ideal in ¥, ;. Thus, it has dimension (n—1)?. Hence,
the dimension of the isotropy group of the nullquadric in C** is n% +3n+1. It is easy
to see, that these nullquadrics have the automorphism groups of maximal dimension
in the RAQ class.

2. Another example is the elementary quadric Q,,_; in C?". In this case, the subset
of nilpotent vectors of order n is invariant for all elements of G’b.

Let z, be such a vector. Then any vector with this property has the form y, =
1Ttz 4 an,_127 with @ # 0, o; - real. It is easy to verify that there exists
a uniquely determined element of G} mapping z, to y,. Thus, the isotropy group
of these quadrics has the dimension 6n — 1. (For n=2 this quadric is the parabolic
quadric as in the previous example.)
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Remark. According to Theorem 1, in C® any irreducible RAQ quadric is equivalent
either to @, from Example 1, or to @, from Example 2.

5. LINEAR REPRESENTATION OF Aut, @

Let A = AUy ® C for some RAQ quadric @, and A® be the 2 module of triples
(00, 0,,0;) with 6; € A. By A* we denote the group of invertible elements of A and by
23 the factor space under the action of A*: a(by, 0,,0;) = (abo, ab, ab;) for a € A*.
93 is a compact manifold which can be considered as a compactification of C?" = 22
by the embedding

(z,w) — (id, z, w).

Now, any automorphism of @ can be represented as a linear transformation of C3"
in the following way:

Let @ be given in the form Imw = 2z. Then the automorphisms can be written
as a composition of

z v (id =2az — (r + 1a@)w) (2 + aw)
w +— (id=2iaz — (r + tad)w) ' w,

where a,r € 2, with r = 7, and a linear (C, p) transformation.
Together these automorphisms induce the following mapping on 2%3:

00 [ 4 90 - 2‘11&91 - (R -+ 1AA)02,
8, — CO, +CAb,
0; — pb,.

This representation is an analogue to the representation of the fractional linear
automorphisms of the hyperquadrics in the projective space.
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