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A MATRIX POINCARE FORMULA FOR HOLOMORPHIC
AUTOMORPHISMS OF REAL ASSOCIATIVE QUADRICS

VLADIMIR V. EZOV AND GERD SCHMALZ

ABSTRACT. We introduce the dass of real aBSociative Hermitian quadrics of codi­
mension n in C2n (RAQ) having the property that their automorphisms can be
written by means of a matrix version of the Poincare formula for Aut 53.

1. INTRODUCTION

Let z = (zi), j = 1, ... ,n, w = u + iv = (wi ) = (u i + ivi ), j = 1, ... ,k be
coordinates in Cn X Ck , k ::; n;

(z,z) = ((z,z)t, ... ,(z,z)k)

a. Rk-valued Herrnitian form.
The fo11owing set is ca11ed a quadric Q = {(z, w) E Cn+k v - (z, z)}. Q is

presumed to be nondegenerate, i.e.

i) (z, b)i = 0 for a11 j = 1, ... ,k, z E Cn implies b = 0
ii) (z, z)i are linearly independent j = 1, ... ,k.

Since Q is a homogeneous manifold (Aut Q acts transitively via the transformations
z 1-+ P + z, W 1-+ q + tU + 2i(z,p) with (p, q) E Q) then Aut Q ~ Q x Auto Q, where
Auto Q is the isotropy group of a fixed point, say the origin.

Auto Q is a finite dimensional Lie group iff Q is nondegenerate (see [BeI89]).
The problem of the description of Auto Q dates back to the work of H. Poincare

1907 [Poi07J, where he discoverd the formula of the holomorphic automorphisms of
the hypersphere S3 C C2

. N.Tanaka [Tan62] generalized the results of Poincare for
arbitrary nondegenerate hyperquadrics Q'Jn-l C Cn •

The case of codimension k > 1 has not been completed yet. The question about
the description of Aut Q has been recently formulated once again by F. Forstneric
[For92].

Below we list some known facts concerning Auto Q.
Using tbe reflection principle G.Henkin and A.Tumanov [HT83] proved that Auto Q

consists of rational transformations.
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V. Beloshapka [BeI90] gave a description of the Lie algebra of the infinitesimal
automorphisms of Q and he proved a.lso that the qua.drics of codimension k > 2 in
general position are rigid, i.e. their isotropy group consists of trivial automorphisms
z !--+' az, W !--+' lal 1w for some complex number a (see [BeI91]).

For k = 2 A.Abrosimov [Abr92] discovered a sufficient condition for Auto Q to
consist of linear transformations: if in some coordinates the operator (H1)-1 H2 (Hj

. - the Hermitian matrix related to (z, z)i) has more than two different eigenvalues.
However, this result does not contribute anything to the case n = k = 2 as wen as

the "rigidity" property of Beloshapka.
The case n = k = 2 happened to be rather interesting since the quadrics of

codimension 2 in C" (there are three different types of such quadrics, namely tbe hy­
perbolic, elliptic and parabolic) have relatively rich automorphism groups consisting
of rational transformations of degree ~ 2 ([ES92a]).

The method we used was based on the fact that the quadrics in C4 admit a "ma­
trix representation": there exist real, commutative matrix algebras 21 with unit of
dimension two realizing the quadric in the following sense: There is a. linear iso·
morphism r: IR.2 ---+ 21, r(x) = X, such that r((x,y)) = r(x)r(y), and therefore,
Q = {(Z, W) E (21 0 C)2 : Im W = ZZ}. Inserting matrices of this form iota the
automarphis~ formula of the Heisenberg sphere in C1 one immediately obtains an
automorphism formula for the given quadric. An analogue of ehern Moser's normal­
ization procedure shows that these are all automorphisms.

This method was very helpful to describe Auto Q for another three different types
of quadrics in C6

, k = 3 [ES92b].
In the present paper we cODsider the case k = n and describe Auto Q for a certain

dass of quadrics, we call them "real associative quadrics" (RAQ).

Definition 1. A quadric Q is called real associative (RAQ) iff there are coordinates
in which the Hermitian form defines areal, associative produetJ i.e.

(1)

(2)
(x, y) is real for all real veetors x, y

(x,(y,z)} = ((x,y},z) for all X,y,z

It occurs that this type of quadrics is the only one that admits a "matrix repre­
sentation" , and we prove that the formula for the automorphisms is a generalized
Poincare formula.

On the contrary to the mentioned above results of V.Beloshapka and A.Abrosimov
indicating the automorphism groups being either poor or trivial, the RAQ dass pro­
vides us with the relatively rieh groups consisting of rational transformations of degree
~ n.

The RAQ construction gives us a hope to find the answer to the following open
questions:
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i) Are RAQ quadrics the only irreducible ones having nonlinear automorphisms?
ii) Is the degree of an element of Auto Q always :5 n?

iii) Does the quadric which provides the maximal dimension of Auto Q belong to
the RAQ dass?

2. RESULTS

Before we formulate the results we introduce two types of elementary quadrics with
matrix representations:

Definition 2. Let 21T1 ••• T • be the m-dimensional (m = 1+Ei=1 r 6 ) real, commutative,
associative algebra spanned by (1, n1, . .. ,nil, ... ,n6 , ••• , n:·) where 1 is the unit and

n! n~ = n!+l if j + I ~ ri and 0 if j + I > Ti, n!n~ = 0 if i # m.

By 2l~1 ...T. we denote the 2m-dimensional real algebra 21r1 ...r • 0R C.
Then the elementary quadric QT l r • of first type with parameters (rl, ... , r 6 ) is the

quadric in C2m = C: EB C:n = 21r1 r • 0R C E9 21T1 ...T • 0R C defined by Im w = zZ.

The elementary quadric Q~l ...r. of second type with paramters (rl, ... , r 6 ) is the
quadric in C4m = c~m EB c~m = 2l~ ...T. ®R C E9 21~ ...r. 0R C defined by Im w = zZ.
This type is only for even n defined.

The simpliest quadrics of this form corresponding to 21 = R. are the Heisenberg
sphere QH = S3 in C 2 and the elliptic quadric Q~ in C4

. The hyperbolic quadric in
(;4 is equivalent to QH X QH, and the parabolic quadric to Ql.

The following proposition characterizes RAQ quadrics in terms of "matrix repre­
sentation" .

Proposition 1. A quadric Q admifs a matrix representation, i.e. for some n-di­
mensional commutat ive real matrix algebra 21Q Q = {(w, z) E 2lQ 0 C x 2tQ ® C :
Im w = zz}, if and only if it belongs to the RAQ dass. .

Theorem 1. A quadric Q is contained in the RAQ dass if and only if it is equivalent
to the direct produet of elementary quadries.

The theorem below gives the description of the isotropy groups of RAQ quadrics:

Theorem 2. Let Q E RAQ, then any automorphism preserving the origin is of the
form

z ~ C(z + aw)(l - 2iaz - (r +iaä)w)-1
w ~ pw(l - 2iaz - (r + iaa)w)-1

where a E 2l®C,r E 2t,C E GL(n,C),p E GL(n, IR), such that (Cz,Cz) = p(z,z).
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3. RAQ CRITERIA

We start with the proof of Proposition l.

Proof. It is clear, that (1) and (2) are neces8ary.
We show that they also are sufficient for having a matrix representation. In fact,

if (1) is 8atisfied, one can define the map

T : IRn ~ gl(n, IR)
x 1-+ (x,,),

Then T i8 a homomorphism if and only if (2) is satisfied. 0

We will show that any nondegenerate quadric Q satisfying (1) and (2) is a direct
product of some elementary quadrics. At first we translate the nondegeracy condition
into the language of 21Q.

Proposition 2. Let Q be a quadric satisfying (1) and (2) (with respect to some
coordinates). Then Q is nondegenerate if and only if there exists areal vector e such
that (e, x) = x for all real vectors x.

Remark. We will see in the proof that under the conditions of the proposition the
two properties in the definition of nondegeracy are equivalent.

Proof. Assume that there exists a vector e with the mentioned property. Consider a
linear combination of the Hermitian forms

Then

E A,..(e, X}K = E A/(XK=0

for all x. Hence AI( = 0 for all K.

The second property also follows trivially: If (x, y) = 0 for all vectors y then
(x, e) = x = O.

We prove by induction with respect to the dimension n that from the nondegeracy
condition follows the existance of a vector e with the desired properties.

If n = 1 both of the nondegeneracy properties imply that for a nonvanishing vector
x there exists some A =f 0 such that (x, x) = AX. Hence, A- 1X i8 a unit.

Assume that the assertion is proved for n < no.
Let x E 21Q and T( x) = X the corresponding linear operator. Then one of the

following is true: either any X has only one eigenvalue or there is some X with two
different eigenvalues. Since the algebra is commutative, in the second case it speIls
into two subspaces being invariant with respect to all Y = T(Y). The dimension of
these subalgebras are less than no , and both nondegeneracy conditions hold true for
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both subalgebras, hence the assertion is proved. In the first case we eonsider two
subcases. If for some X the unique eigenvalue is different from 0 then X is invertible
and X-I (x) is the unit. Indeed, for any y X-I (x)y = X-IX Y = y.

It remains to eonsider the ease when all X have only the eigenvalue O. Then
the a.lgebra 21Q would be nilpotent. This eontradiets to both of the nondegeneraey
properties. 0

Now Theorem 1 will be a corollary of the following

Proposition 3. Let 21 be areal n-dimensional, commutative, associative algebra with
unit then 21 is isomorphie to the direct sum 01 some algebras 21q ...r. and 21~ ...r, .

Proof. Sinee 21 is a.n Artinian ring it splits into loeal Artinian rings. We have to show
that any loeal Artinian ring which is an-dimensional algebra over R is isomorphie to
2lr1 ..•T , or 21~ ...T,'

We will prove this by induetion with respeet to the dimension of the maximal ideal
m of 2l.

If dirn m = 0 then 21 is a field and therefore isomorphie to R or to C.
Assurne, that the Proposition is proved for dirn m < m and that dirn m = m.

We have to eonsider the two eases: 211m :: IR or 211m I"V C. In both eases, the
maximal ideal consists of .nilpotent elements. Take a nilpotent element a of maxi­
mal order r. We consider aas linear operator A on m. There exists a basis of m
{ 2 r 1 b b}' th fi d { . 2' 2 TI' r I ba, a , ... , a - , 1,"" m-T In erst case an a, ta, a ,ta ... , a - ,ta - , }, ... ,
bm - 2r } in the second case, such that the matrix of the operator A in this basis has Jor­
dan normal form. Then 211 being span of {l, b}, . .. , bm - r } resp. {I, i, b1) .. . , bm - 2r }

forms a eommutative, associative subalgebra with unit such that the dimension of
the maximal ideal is less than m, and ax = 0 for auy x from the maximal ideal of
211 , It follows now by induetion that 21 is of the first type in the ease 211m e! R, and
of the second type if 211m :: C. 0

Corollary 1. The number 01 pairwise nonequivalent irredueible RAQ quadrics in C2n

is 1r(n - 1) for odd n and 7r(n - 1) + 7r(~ - 1) lor even n (where 7r(s) is the number
01 partitions 01 s).

An important dass of quadrics is the dass of strictly pseudoconvex quadrics, Le.
the quadrics Q with the property that there exists a positive definite linear combi­
nation of the Hermitian forms defining Q.

These quadrics are automatieally nondegerate. Any strictly pseudoeonvex quadric
Q is the Shilov boundary of some Siegel domain of second kind. It was proved by
Tumanov [Tum89] that the automorphisms Q extend holomorphically to automor­
phisms of the corresponding Siegel domain. We will give the description of strictly
pseudoeonvex RAQ quadries.
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Corollary 2. Any strictly pseudoconvex RAQ quadric Q is equivalent to the direct
product 0/ n spheres in C2 •

Proo/. Since Q is strictly pseudoconvex, (x, x) =F 0 for all x =F O. Therefore, the
algebra 210 does not contain nilpotent elements.

Hence Q is, according to Theorem 1, the direct product of some copies of QH and
Q~.

If the direct product contained some Q~, then the cone C = {(z, z) : z E Cn
} would

contain an entire line. This contradicts to the strict pseudoconvexity. It follows that
Q is equivalent to the direct product of neopies of QH. 0

4. THE ISOTROPY GROUPS

Let Q be a RAQ quadrie. It is easy to verify that then the mappings

Z t--t C(z +aw)(l - 2iäz - (r + iaa)w)-1
w t--t pw(1-2iäz-(r+iaa)w)-1

with a E 210 C, r E 21, C E GL(n, C), p E GL(n, IR), such that (Cz, Cz) = p(z, z),
are automorphisms.

We prove that any holomorphic automorphism preserving 0 has this form. Ther­
fore, we show that any automorphism cI> with

8cI> I = id
8z TfQ

has the form

Z t--t (z +aw)(1 - 2iäz - (r + iaä)w)-1
w t--t w(l - 2iaz - (r + iaä)w)-1

with a E 210 C, r E 21.
We reeall that any cI> E Auto 53 with identical eR projeetion can be represented

as a eomposition cI> = cI>30 cI>2 0 «pI (<<Pi, j = 1,2, 3 are the steps of the "normalization"
of the equation) with

(cI>I)-I: Z t--t z+p(w)+2it(z,w)

w t--t q(w) +2ig(z,w),

where the ehoice of p, q, t, 9 provides the property that the image of S3 via cI>1 does
not contain terms of degree (k, 0), (k +1,1) and (3,2) with respect to (z, z) for k ;::: 1.
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w· - w,

7

where B(u) E IR. The choice of B provides the property that the term of degree
(2,2) in (z, i) is vanishing.

cI>3 : z· Jh'(w )z

w· - h(w),

where h(u) E IR and h'(O) > O.
The map cI>3 can be represented as composition of two maps of this form corre­

sponding to functions h1 , ho, where the function h1 is chosen to eliminate the term
of degree (3,3) in (z, z) from the equation of S3. The function ho will be chosen so
that in the equation of S3 do not occur new terms of degree (3,3).

The computations show that

p(u) = _1 (e2iaau _ 1)
2iä '

q(u) = _1_ (e2iaau _ 1) a E C,
2iaä '

z+2it(z,w)
z

-
1 - 2ip(w) '

g(z, w) =
p(w)z

1 - 2ip(w) '

O(u) = -3Ja12u,

ht{w)
tan(lal~w)

= lal 2

ho(w)
w

- ,
1- rw

The only free parameters in cI>1, cI> 2, cI>3 are a = ~(O) E C and r = ~(O) E R..
These parameters have the following geometrie sense.

Areal curve on 8 3 is called chain (according to ehern Moser) if it is the bi­
holomorphic image of the standard chain z = 0, Im w = O. Thus any holomorphic
automorphism of 8 3 corresponds to some chain. For any hyperquadric chains are
exactly the interseetions of the hyperquadric with complex lines z = aw. The pa­
rameter a = *-(0) determines the chain corresponding to the automorphism. The
parameter r = ~(O) determines the parametrization of the chain. Therefore we call
the map cI>3 with h = ho reparametrization map.
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All considerations from the hypersphere case can be applicated to Q if we prove
two things:

First, that any mapping

00

F : z ~ z +p(w) +2i L t k ( z, w),
k=2

00

w ~ q(w) +2i E 9k(Z, w),
k=l

with the property that the equation of the image of Q via F does not contain terms
of degree (1,0), (k, 0), (k, 1) for k > 1, ... has the the form:

00

F : z· = L: am(w)zm
m=O

00

w* = L: bm(w)zm,
m=O

with multiplication in sense of the algebra 2l and an(w), bn(w) can be represented
as

00

am = Eam,lw'
1=0
00

bm = L: bm,IW' .
[=0

The second thing what we have to show is that in the mapping ~3 there does not
occur additional freedom from the fact, that the group of linear automorphisms can
be bigger than the group which is generated by 21c.

We need the following

Lemma 1. Let 21c be a complex, commutative, associative algebra with unit, and
G : 2lc -t 21c be a holomorphie map defined in some neighbourhood 0/ w E 21c with
the property:

G(w + h) = G(w) + G'(w)h +o(lhl),

where G'(w) is some 21c -valued map (in fact, G'(w) is then the partial derivative
0/ G with respeet to the direetion 0/ the unit.)

then
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where G(m) (w) are the partial derivatives 01 G 01 order m with respect to the di­
rection 01 the unit.

Proof. We have to prove that for all m E N the differential of order m takes the form

J....G(m) (w)hm

m!

We prove this by induction. For m = 1 this is the condition of the Lemma. Assurne
that the assertion is proved for m = mo

Let 17}, • •• , (J'n be a basis of 21 where (J'l is the unit. Let (w1 , ••• , w n ) be correspond­
ing coordinates. Then

(3)

in particular,

Let

aac, = G'(J'j,
wJ

Be =G'
Bw1 •

be the m-th differential of G. Then D(m+l)G(w, z) can be obtained from D(m)G(w, z)
by means of the formula

n hi 8
D(m+l)G(w,h) = L: f -8iD(m)G(w,0, ... ,O,X,hi+1, ... ,hn)dX

i=l Jo w

It follows from 3 that

B 8m G 8(m+l)G

(4) 8wj (8w1)m = (8w1 )(m+l)O'j,

On the other hand, one easily shows that

h
i (0 ° h i+1 hn)m1 ,... , ,x, ,... , d

O'i X =
o m!

(0, ... ,0, h i , ... , hn)(m+l) (0, ... ,0, h i+1 , ... ,hn)(m+l)

(m + I)! (m + I)!

This implies that, if D(m)G(w, h) has the desired form then so has D(m+l)G(w, h).
The proof is complete. 0
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Now we deduce that F has the mentioned form.
From the condition that the terms (0, k) in the new equation of Q vanish we derive

91 (z, w) = zp(w)
9k(Z,W) = tk(Z,W)p(w) for k> 1.

Here 9k, tk and p are 21c-valued functions.
The vanishing of terms (1, k) gives

(5)

(6)

From (5) we obtain

and, setting Z2 = e,

t () ap (' -)
2 Z, W Z = z au tZ Z

tk(Z,W)Z - 2tk_l~~(izz)fork>2

( )
ap.

t2 z,w =zau'tz.

Since t 2 is abilinear form with respect to z, we have

apo apo
ZI au 1. Z 2 = Z2 au 1. Z1·

Setting here 22 = e we obtain

apo ap
8u 1. z = Z 8u (e).

Thus p satisfies the condition of Lemma l.
It follows that (6) takes the form

tk(Z, w) = 2itk- 1P'(W)z.

Since, according to Lemma 1, p can be represented as apower series in 21, this
implies immediately that F has the desired form.

It remains to prove that in the "reparametrization map"

cI>3 : z· = C(w)z

w· = h(w),

with C(w)C(w) = g:(w) does not occur additional freedom.
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Therefore, we have to study the group of linear automorphisms GQ • This group
consists of mappings z ~ Cz, W ~ pw, where C E GL(n, C) and p E GL(n, R), such
that (Cz, Cz) = p(z, z) for all z E Cn •

GQ containes a subgroup Gg of (C, p) corresponding to the action of the invertible
elements c E 21Q ~ C in the z-component, and of ce in the w·component.

Now any (C, p) ean be uniquely represented as composition of some element of Ob
and some (C', pi) preserving the unit of 21Q . This property implies immediately that
C' = p'. In particular, this means that C' is real.

It follows then, that any holomorphic map C(w) with C(O) = id has values only
in 21Q~ C - the group of invertible elements of 21q 0 C.

This eompletes the proof of Theorem 2.

For any quadrie one can define an analogue to ehern-Moser chains. Let Q be a
quadrie in cn+k of eodimension k. Then a chain is the k-dimensional real submanifold
of Q being the image of z = 0, Im w = 0 under some holomorphic automorphism.

As a corollary from Theorem 2, we obtain the following description of the chains
for RAQ quadries.

Corollary 3. Let Q be a RAQ quadric in C2n
• Then a chain is the intersection 0/

Q with a "matrix line", i. e. a complex n-plane z = (w, a).

We return to the group Gq. We have already seen that any element of Gq ean
be represented as a eomposition of some (C, Ce), where C = r(c) for some c E 218
and some (p, p), where p E GL(n, IR) such that (px, px) = p{x, x). We denote the
subgroup of these (p, p) by eh.

Sinee r(px) = pr(x)p-1, 0h eonsists of all p E GL(n,R) preserving 2lq with
respeet to the adjungation. Thus, Gb is the factor group of the normalizer N(21Q )

by its trivially acting normal subgroup.

Examples. 1. The algebra 211...1 defines for n = 2 the parabolic quadrie, and for
n > 2 a nullquadric (Le. any linear eombination of the Hermitian forms defining
Q is degenerate). The group Gh for this quadric eonsists of all nondegenrate linear
transformations of the maximal ideal in 211...1 . Thus, it has dimension (n _1)2. Hence,
the dimension of the isotropy group of the nullquadrie in C2n is n 2 +3n +1. It is easy
to see, that these nullquadries have the automorphism groups of maximal dimension
in the RAQ dass.

2. Another example is the elementary quadric Qn-l in C2n • In this case, the subset
of nilpotent veetors of order n is invariant for all elements of Gb.

Let X n be such a vector. Then any veetor with this property has tohe form Yn =
0'1Xn +0'2X~+ ... +O'n-l X~-1 with 0'1 # 0, Q'i - real. It is easy to verify that there exists
a uniquely determined element of eh mapping X n to Yn' Thus, the isotropy group
of these quadries has the dimension 6n - 1. (For n=2 this quadric is the parabolie
quadrie as in the previous example.)
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Remark. Aeeording to Theorem 1, in C6 any irreducible RAQ quadrie is equivalent
either to Qn from Example 1, or to Q'J from Example 2.

5. LINEAR REPRESENTATION OF Auto Q

Let 21 = 21Q ® C for some RAQ quadrie Q, and 213 be the 21 module of tripies
(0o, 0llB'J) with Oi E 21. By 21* we denote the group of invertible elements of 21 and by
21.3 the faetor spaee under the action of 21-: a(00,01 , O'J) = (aBo, aBll aB'J) for a E 21-.
21.3 is a eompaet manifold whieh ean be eonsidered as a eompaetifieation of C'Jn = 21'J
by the embedding

(z,w) ....... (id,z,w).

Now, any automorphism of Q ean be represented as a linear transformation of C3n

in the following way:

Let Q be given in the form Im w = zz. Then the automorphisms ean be written
as a eomposition of

z (id -2iäz - (r + iaä)w)-l(z + aw)
w (id-2iäz-(r+iaä)w)-lw,

where a, r E 21, with r = f, and a linear (C, p) transformation.
Together these automorphisms induee the following mapping on 213

:

00 Bo - 2iAB1 - (R + iAA)O'J'
O} CB} + CAB2 ,

B'J pB2•

This representation is an analogue to the representation of the fraetional linear
automorphisms of the hyperquadrics in the projeetive spaee.
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