The work of Kolyvagin on the arithmetic of elliptic curves

Karl Rubin

Max-Planck-Institut für Mathematik	Department of Mathematics
Gottfried-Claren-Strasse 26	Columbia University
5300 Bonn 3	New York, NY 10027
West Germany	USA

The work of Kolyvagin on the arithmetic of elliptic curves

Karl Rubin*

Introduction

This paper gives a complete proof of a recent theorem of Kolyvagin [3, 4] on Mordell-Weil groups and Tate-Shafarevich groups of elliptic curves. Let E be an elliptic curve defined over Q, and assume that E is modular: for some integer N there is a nonconstant map defined over \mathbf{Q}

$$
\pi: X_{0}(N) \rightarrow E
$$

which we may assume sends the cusp ∞ to 0 . Here $X_{0}(N)$ is the usual modular curve over \mathbf{Q} (see for example [8]) which over \mathbf{C} is obtained by compactifying the quotient $\mathbb{J} / \Gamma_{0}(N)$ of the complex upper half-plane \bar{I} by the group

$$
\Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbf{Z}): c \equiv 0(\text { modulo } \mathrm{N})\right\}
$$

The points of $X_{0}(N)$ correspond to pairs (A,C) where A is a (generalized) elliptic curve and C is a cyclic subgroup of A of order N . Fix an imaginary quadratic field K in which all primes dividing N split, and an ideal \mathfrak{u} of K such that $\mathcal{O}_{K} / \mathfrak{n} \cong \mathbf{Z} / \mathbf{N Z}$. Write H for the Hilbert class field of K and x_{H} for the point in $X_{0}(N)(C)$ corresponding to the pair

$$
\left(\mathrm{C} / \boldsymbol{O}_{\mathrm{K}}, \mathfrak{n}^{-1} / \boldsymbol{O}_{\mathrm{K}}\right)
$$

Fix an embedding of $\overline{\mathbf{Q}}$ into \mathbf{C}; then the theory of complex multiplication shows that $x_{H} \in X_{0}(N)(H)$. Define $y_{H}=\pi\left(x_{H}\right) \in E(H), y_{K}=\operatorname{Tr}_{H / K}\left(y_{H}\right) \in E(K)$, and $y=y_{K}-y_{K}{ }^{\tau} \in E(K)$, where τ denotes complex conjugation on K.

Let $Ш_{E / Q}$ denote the Tate-Shafarevich group of E over \mathbf{Q}.

Theorem. (Kolyvagin [3, 4]) Suppose E and y are as above. If y has infinite order in $\mathrm{E}(\mathrm{K})$ then $\mathrm{E}(\mathrm{Q})$ and $Ш_{\mathrm{E} / Q}$ are finite.

[^0]Remarks. 1. The proof of this theorem given below is organized differently from
Kolyvagin's proof, and somewhat simplified, but the important ideas are all due to Kolyvagin and contained in $[3,4]$.
2. It is not difficult to show, using the Hecke operator w_{N}, that y has infinite order if and only if both y_{K} has infinite order and the sign in the functional equation of the L -function $\mathrm{L}(\mathrm{E}, \mathrm{s})$ is +1 .
3. The proof will give an annihilator of $\amalg_{\mathrm{E} / Q}$ which, via the theorem of Gross and Zagier [2], gives evidence for the Birch and Swinnerton-Dyer conjecture.
4. Observe that Kolyvagin's theorem makes no mention of the L-function of E. To relate his result to the Birch and Swinnerton-Dyer conjecture one needs the following:

Theorem. (Gross and Zagier [2]) With E and y as above, y has infinite order in $\mathrm{E}(\mathrm{K})$ if and onty if $\mathrm{L}(\mathrm{E}, 1) \neq 0$ and $\mathrm{L}^{\prime}\left(\mathrm{E}, \chi_{\mathrm{K}}, 1\right) \neq 0$, where χ_{K} is the quadratic character attached to K .

Analytic Conjecture. If E is a modular elliptic curve and the sign in the functional equation of $\mathrm{L}(\mathrm{E}, \mathrm{s})$ is +1 , then there exists at least one imaginary quadratic field K , in which all primes dividing N split, such that $\mathrm{L}^{\prime}\left(\mathrm{E}, \chi_{\mathrm{K}}, 1\right) \neq 0$.

This analytic conjecture, as yet unproved, together with the theorems of Kolyvagin and Gross and Zagier, would imply:
(*) For any modular elliptic curve E, if $\mathrm{L}(\mathrm{E}, 1) \neq 0$ then $\mathrm{E}(\mathrm{Q})$ and $山_{\mathrm{E} / \mathrm{Q}}$ are finite.

Assertion (*) is known for elliptic curves with complex multiplication, by theorems of Coates and Wiles [1] (for $\mathrm{E}(\mathrm{Q})$) and Rubin [6] (for $\mathrm{W}_{\mathrm{E} / \mathrm{Q}}$).

Acknowledgements. I would like to thank John Coates and Bryan Birch for helpful discussions, and the Mathematisches Institut (Erlangen), the Department of Pure Mathematics and Mathematical Statistics (Cambridge) and the Max-Planck-Institut für Mathematik (Bonn) for their hospitality.

Notation. For any abelian group A, A_{n} will denote the n -torsion in A and $A_{n^{\infty}}=\bigcup_{i} A_{n^{1}}$. If A is a module for the appropriate Galois group, we will write $H^{i}(L / F, A)$ for $H^{i}(\mathrm{Gal}(\mathrm{L} / \mathrm{F}), A), H^{i}(F, A)$ for $H^{i}(\overline{\mathrm{~F}} / \mathrm{F}, \mathrm{A})$, and $\mathrm{H}^{\mathrm{i}}(\mathrm{F}, \mathrm{E})$ for $\mathrm{H}^{\mathrm{i}}(\mathrm{F}, \mathrm{E}(\overline{\mathrm{F}})$).

Tools of the proof

Fix a prime number ℓ and a positive integer n. For any completion $\mathbf{Q}_{\mathbf{v}}$ of \mathbf{Q} we have the diagram
(1)

$$
\begin{array}{ccccccc}
0 \rightarrow \mathrm{E}(\mathbf{Q}) / \ell^{\mathrm{n}} \mathrm{E}(\mathbf{Q}) & \rightarrow & \mathrm{H}^{1}\left(\mathbf{Q}, \mathrm{E}_{\ell^{\mathrm{n}}}\right) & \rightarrow & \mathrm{H}^{1}(\mathbf{Q}, \mathrm{E})_{\ell^{\mathrm{n}}} & \rightarrow 0 \\
\downarrow & & \downarrow \mathrm{res}_{\mathrm{v}} & & & \downarrow \mathrm{res}_{\mathrm{v}} & \\
& & & & & \\
0 \rightarrow \mathrm{E}\left(\mathbf{Q}_{\mathrm{v}}\right) / \ell^{\mathrm{n}} \mathrm{E}\left(\mathbf{Q}_{\mathrm{v}}\right) & \rightarrow & \mathrm{H}^{1}\left(\mathbf{Q}_{\mathrm{v}}, \mathrm{E}_{\ell^{\mathrm{n}}}\right) & \rightarrow & \mathrm{H}^{1}\left(\mathbf{Q}_{\mathrm{v}}, \mathrm{E}\right)_{\ell^{\mathrm{n}}} & \rightarrow 0
\end{array}
$$

and we define the Selmer group $S^{\left(\ell^{n}\right)}$ and the ℓ^{n}-torsion in the Tate-Shafarevich group, $Ш_{\ell^{n}}$, by

$$
\begin{gathered}
S^{\left(\ell^{\mathrm{n}}\right)}=\bigcap_{\mathrm{v}} \mathrm{res}_{v}^{-1}\left(\text { image } \mathrm{E}\left(\mathrm{Q}_{\mathrm{v}}\right)\right), \\
0 \rightarrow \mathrm{E}(\mathbf{Q}) / \ell^{\mathrm{n}} \mathrm{E}(\mathrm{Q}) \rightarrow \mathrm{S}^{\left(\ell^{\mathrm{n}}\right)} \rightarrow \amalg_{\ell^{\mathrm{n}}} \rightarrow 0 .
\end{gathered}
$$

To prove Kolyvagin's theorem it will suffice to show that $S^{(\ell)}=0$ for almost all ℓ, and that for other ℓ the order of $S^{\left(\ell^{\mathrm{n}}\right)}$ is annihilated by a power of ℓ which is independent of n.

For $s \in S^{\left(\ell^{\mathrm{n}}\right)}$ write s_{v} for the inverse image of $\operatorname{res}_{\mathrm{v}}(\mathrm{s})$ in $\mathrm{E}\left(\mathbf{Q}_{\mathrm{v}}\right) / \ell^{\mathrm{r}} \mathrm{E}\left(\mathbf{Q}_{\mathrm{v}}\right)$. Our main tool for bounding $S^{\left(\ell^{\mathrm{n}}\right)}$ is the following, which is proved using the local Tate pairings.

Proposition 1. Suppose p is a prime such that $\mathrm{E}\left(\mathbf{Q}_{\mathrm{p}}\right)_{\ell^{n}} \cong \mathbf{Z} / \ell^{\mathrm{n}} \mathbf{Z}$, and suppose that for some integer k there exists a cohomology class $\mathrm{c}_{\mathrm{p}} \in \mathrm{H}^{1}(\mathbf{Q}, \mathrm{E})_{\ell^{n}}$ satisfying
(i) for all $\mathrm{v} \neq \mathrm{p}, \operatorname{res}_{\mathrm{v}}\left(\mathrm{c}_{\mathrm{p}}\right)=0$,
(ii) $\operatorname{res}_{\mathrm{p}}\left(\mathrm{c}_{\mathrm{p}}\right)$ has order ℓ^{nk}.

Then for every $\mathrm{s} \in \mathrm{S}^{\left(\ell^{\mathrm{n}}\right)}, \ell^{\mathrm{k}} \mathrm{s}_{\mathrm{p}}=0$.

Proof. For any place \mathbf{v} of \mathbf{Q} let \langle,\rangle_{v} denote the local Tate pairing

$$
\langle,\rangle_{\mathrm{v}}: \mathrm{E}\left(\mathbf{Q}_{\mathrm{v}}\right) / \ell^{\mathrm{n}} \mathrm{E}\left(\mathbf{Q}_{\mathrm{v}}\right) \times \mathrm{H}^{1}\left(\mathbf{Q}_{\mathrm{v}}, \mathrm{E}\right)_{\ell^{\mathrm{n}}} \rightarrow \mathbf{Z} / \ell^{\mathrm{n}} \mathbf{Z}
$$

For any $s \in S^{\left(\ell^{n}\right)}$ and $c \in H^{1}(\mathbf{Q}, E)_{\ell^{n}}$, let c^{\prime} be any lift of c to $H^{1}\left(\mathbf{Q}, E_{\ell^{n}}\right)$ in (1) and define an element $b(s, c)$ in the Brauer group of \mathbf{Q} by the cup product

$$
\mathrm{b}(\mathrm{~s}, \mathrm{c})=\mathrm{s} \cup \mathrm{c}^{\prime} \in \mathrm{H}^{2}\left(\mathbf{Q}, \mathrm{E}_{\ell^{\mathrm{n}}} \otimes \mathrm{E}_{\ell^{\mathrm{n}}}\right) \cong \mathrm{H}^{2}\left(\mathbf{Q}, \boldsymbol{\mu}_{\ell^{\mathrm{n}}}\right)=\operatorname{Br}(\mathbf{Q})_{\ell^{\mathrm{n}}}
$$

Here the isomorphism $\mathrm{E}_{\ell^{\mathrm{n}}} \otimes \mathrm{E}_{\ell^{\mathrm{n}}} \cong \mu_{\ell^{\mathrm{n}}}$ is given by the Weil pairing. By the definition of the Tate pairing ([5] §I.3, especially remark 3.5) we have

$$
\left\langle s_{v}, \operatorname{res}_{v}(c)\right\rangle_{v}=\operatorname{inv}_{v}(b(s, c)) .
$$

Thus

$$
\sum_{v}\left\langle s_{v}, \operatorname{res}_{v}(c)\right\rangle_{v}=\sum_{v} \operatorname{inv}_{v}(b(s, c))=0 .
$$

Applying this reciprocity law with a class c_{p} as in the statement of the proposition we conclude that $\left\langle\mathrm{s}_{\mathrm{p}}, \operatorname{res}_{\mathrm{p}}\left(\mathrm{c}_{\mathrm{p}}\right)\right\rangle_{\mathrm{p}}=0$. But

$$
\mathrm{E}\left(\mathbf{Q}_{\mathrm{p}}\right) / \ell^{\mathrm{n}} \mathrm{E}\left(\mathbf{Q}_{\mathrm{p}}\right) \cong \mathrm{E}\left(\mathbf{Q}_{\mathrm{p}}\right)_{\ell^{\infty}} / \ell^{\mathrm{n}} \mathrm{E}\left(\mathbf{Q}_{\mathrm{p}}\right)_{\ell^{\infty}} \cong \mathbf{Z} / \ell^{\mathrm{n}} \mathbf{Z}
$$

so if $\operatorname{res}_{\mathrm{p}}\left(\mathrm{c}_{\mathrm{p}}\right)$ has order $\ell^{\mathrm{n}-\mathrm{k}}$ the nondegeneracy of the Tate pairing shows that $\ell^{\mathrm{k}} \mathrm{s}_{\mathrm{p}}=0$. //

It remains now to construct such a cohomology class c_{p} for sufficiently many p, with k bounded and usually 0 . Kolyvagin constructs such a $\mathbf{c}_{\mathbf{p}}$ using Heegner points. Write τ for the complex conjugation on $\overline{\mathbf{Q}}$ induced by our embedding of $\overline{\mathbf{Q}}$ into \mathbf{C}, and [τ] for its conjugacy class in $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$. If A is any 2-divisible $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-module, the action of τ gives a decomposition $A=A^{+} \oplus A^{*}$. From now on, for simplicity we will assume that $\ell \neq 2$, and if $K=Q(\sqrt{ }-3)$ we also assume $\ell \neq 3$. Write D_{K} for the discriminant of K.

Lemma 2. Suppose p is a prime not dividing $\ell \mathrm{D}_{\mathrm{K}} \mathrm{N}, \mathrm{r}>0$, and $\operatorname{Frob}_{\mathrm{p}}\left(\mathrm{K}\left(\mathrm{E}_{\ell^{\mathrm{r}}}\right) / \mathrm{Q}\right)=$ $[\tau]$. Then if $\widetilde{\mathrm{E}}$ denotes the reduction of E modulo p and $\mathrm{a}_{\mathrm{p}}=\mathrm{p}+1-\#\left[\tilde{\mathrm{E}}\left(\mathrm{F}_{\mathrm{p}}\right)\right]$,
(i) $\left.\ell^{\mathrm{r}}\right|_{\mathrm{a}_{\mathrm{p}}}$ and $\left.\ell^{\mathrm{r}}\right|_{\mathrm{p}+1}$,
(ii) p remains prime in K ,
(iii) $E\left(\mathbf{Q}_{\mathrm{p}}\right)_{\ell^{\mathrm{r}}} \cong \tilde{\mathrm{E}}\left(\mathrm{F}_{\mathrm{p}}\right)_{\ell^{\mathrm{r}}} \cong \mathbf{Z} / \ell^{\mathrm{r}} \mathbf{Z}, \quad\left(\mathrm{E}\left(\mathrm{K}_{\mathrm{p}}\right)_{\ell^{\mathrm{r}}}\right)^{-} \cong\left(\tilde{\mathrm{E}}\left(\mathbf{F}_{\mathrm{p}^{2}}\right)_{\ell^{\mathrm{r}}}\right)^{-} \cong \mathbf{Z} / \ell^{\mathrm{r}} \mathbf{Z}$.

Proof. The characteristic polynomial of Frobenius acting on $E_{\ell^{r}}$ is $T^{2}-a_{p} T+p$, and the characteristic polynomial of τ acting on $\mathrm{E}_{\ell^{\mathrm{r}}}=\mathrm{E}(\mathrm{C})_{\ell^{\mathrm{I}}}$ is $\mathrm{T}^{2}-1$. Comparing these polynomials modulo ℓ^{r} proves (i). The second assertion holds because $\operatorname{Frob}_{\mathrm{p}}(\mathrm{K} / \mathrm{Q}) \neq 1$, and the third because $\mathrm{E}\left(\mathrm{Q}_{\mathrm{p}}\right)_{\boldsymbol{l}^{\mathrm{I}}} \cong\left(\mathrm{E}_{\boldsymbol{l}^{r^{1}}}\right)^{+} \cong \mathrm{E}(\mathrm{R})_{\boldsymbol{l}^{\mathrm{r}}}$ and $\mathrm{E}\left(\mathrm{K}_{\mathrm{p}}\right)_{\ell^{\mathrm{r}}} \cong\left(\mathrm{E}_{\boldsymbol{l}^{\mathrm{r}}}\right)^{+} \oplus\left(\mathrm{E}_{\boldsymbol{l}^{\mathrm{r}}}\right)^{-}$. //

Suppose p is a rational prime which remains prime in K and $\mathrm{p} \nmid \mathrm{N}$. Let \mathcal{O}_{p} be the order of conductor p in \mathcal{O}_{K}, and x_{p} the point in $\mathrm{X}_{0}(\mathrm{~N})(\mathrm{C})$ corresponding to the pair

$$
\left(\mathrm{C} / O_{\mathrm{p}},\left(\mathfrak{t} \cap O_{\mathrm{p}}\right)^{-1} / O_{\mathrm{p}}\right)
$$

The theory of complex multiplication shows that $\mathrm{x}_{\mathrm{p}} \in \mathrm{X}_{0}(\mathrm{~N})(\mathrm{K}[\mathrm{p}])$ where $\mathrm{K}[\mathrm{p}]$ denotes the ring class field of K modulo p . The field $\mathrm{K}[\mathrm{p}]$ is the abelian extension of K corresponding to the subgroup $K^{\times} \mathbf{C}^{\times} \prod_{\mathbf{q}}\left(\mathcal{O}_{\mathbf{p}} \otimes \mathbf{Z}_{\mathrm{q}}\right)^{\times}$of the ideles of K . It follows easily that $\mathrm{K}[\mathrm{p}]$ is a cyclic extension of H of degree $(\mathrm{p}+1) / \mathrm{u}_{\mathrm{K}}$ where $\mathrm{u}_{\mathrm{K}}=\#\left(\mathcal{O}_{\mathrm{K}}^{\times}\right) / 2, \mathrm{~K}[\mathrm{p}] / \mathrm{H}$ is totally ramified at p and unramified everywhere else, and τ acts on $\mathrm{Gal}(\mathrm{K}[\mathrm{p}] / \mathrm{K})$ by -1 . Define $y_{p}=\pi\left(x_{p}\right) \in E(K[p])$. The only facts about Heegner points which we will need (other than their natural fields of definition) are contained in the following proposition.

Proposition 3. i) $u_{K} \operatorname{Tr}_{K[p] / H}\left(y_{p}\right)=a_{p} y_{H}$.
ii) For any prime p of $\mathrm{K}[\mathrm{p}]$ above $\mathrm{p}, \tilde{\mathrm{y}}_{\mathrm{p}}=\tilde{\mathrm{y}}_{\mathrm{H}}{ }^{\text {Frob }} \in \tilde{\mathrm{E}}\left(\mathrm{F}_{\mathrm{p}} 2\right)$, where \sim denotes reduction modulo p .

Proof. Fix an elliptic curve A defined over H , with complex multiplication by $\boldsymbol{O}_{\mathrm{K}}$, so that ($A, A_{\mathfrak{n}}$) represents X_{H}. Without loss of generality we may assume that A has good reduction at all primes above p. The point x_{p} can be represented by ($A^{\prime}, A_{\mathfrak{n}}^{\prime}$) where $A^{\prime}=A / C_{p}$ is the quotient of A by a subgroup of order p. Let \mathcal{G} denote the collection of the $\mathrm{p}+1$ subgroups of A of order p . The Galois group $\mathrm{Gal}(\mathrm{K}[\mathrm{p}] / \mathrm{H})$ acts transitively on $\mathcal{G} / \operatorname{Aut}(E)$, which has order $(p+1) / u_{K}=[K[p]: H]$. Thus, writing T_{p} for the Hecke correspondence on $\mathrm{X}_{0}(\mathrm{~N})$,

$$
T_{p}\left(x_{H}\right)=\sum_{C \in \mathscr{E}}\left(A / C,(A / C)_{\mathfrak{n}}\right)=u_{K} \sum_{\sigma \in G a l(K[p] / H)} x_{p}{ }^{\sigma} .
$$

Projecting to E via π proves the first assertion, since $\pi \cdot T_{p}=a_{p} \pi$. For the second, consider the isogeny

$$
\varphi:\left(A, A_{\mathfrak{n}}\right) \rightarrow\left(A^{\prime}, A_{\mathfrak{n}}^{\prime}\right)
$$

of degree p. Since p remains prime in K, both A and A^{\prime} have supersingular reduction at p, so the reduced isogeny

$$
\tilde{\varphi}:\left(\tilde{\mathrm{A}}, \tilde{\mathrm{~A}}_{\mathfrak{H}}\right) \rightarrow\left(\tilde{\mathrm{A}}^{\prime}, \tilde{\mathrm{A}}_{\mathfrak{H}}^{\prime}\right)
$$

must be, up to an automorphism, Frobenius ([9] ח.2.12). This proves that $\tilde{\mathrm{x}}_{\mathrm{p}}=\tilde{\mathrm{x}}_{\mathrm{H}} \mathrm{Frob}$ in $\widetilde{\mathrm{X}}_{0}(\mathrm{~N})\left(\mathbf{F}_{\mathrm{p}^{2}}\right)$. By the universal property of the Neron model, π reduces to a morphism $\tilde{\pi}$ from $\widetilde{X}_{0}(N)$ to \widetilde{E}, and applying $\tilde{\pi}$ completes the proof.

Remark. One can avoid using the universal property of the Neron model by requiring instead that p not belong to a certain finite set of primes. This restriction does not interfere with the proof of Kolyvagin's theorem.

Suppose p is a prime not dividing $\ell \mathrm{D}_{\mathrm{K}} \mathrm{N}, \mathrm{r}>0$, and $\operatorname{Frob}_{\mathrm{p}}\left(\mathrm{K}\left(\mathrm{E}_{\ell^{\mathrm{r}}}\right) / \mathbf{Q}\right)=[\tau]$. By
 ℓ^{T} in $\mathrm{K}[\mathrm{p}]$. Define

$$
\mathrm{z}_{1}=\mathrm{u}_{\mathrm{K}} \operatorname{Tr}_{\mathrm{K}[\mathrm{p}] / \mathrm{H}^{\prime}}\left(\mathrm{y}_{\mathrm{p}}-\mathrm{y}_{\mathrm{p}}^{\tau}\right)-\left(\mathrm{a}_{\mathrm{p}} / \ell^{\mathrm{T}}\right)\left(\mathrm{y}_{\mathrm{H}}-\mathrm{y}_{\mathrm{H}}^{\tau}\right) \in \mathrm{E}(\mathrm{H}) .
$$

Corollary 4. Suppose $\mathrm{p} \nmid \ell \mathrm{D}_{\mathrm{K}} \mathrm{N}$ and $\mathrm{Frob}_{\mathrm{p}}\left(\mathrm{K}_{\left.\left(\mathrm{E}_{\ell^{\mathrm{r}}}\right) / \mathrm{Q}\right)}=[\tau]\right.$, and let z_{1} be as above.
(i) $\operatorname{Tr}_{\mathrm{H}^{\prime} / \mathbf{H}}\left(\mathrm{z}_{1}\right)=0$.
(ii) For any $\sigma \in \mathrm{Gal}(\mathrm{H} / \mathrm{K})$, let $\bar{\sigma}$ denote any lift of σ to $\mathrm{Gal}\left(\mathrm{H}^{\prime} / \mathrm{K}\right)$. Then

$$
\sum_{\sigma \in G a l(H / K)} \widetilde{z_{1}} \widetilde{\sigma}^{\bar{\sigma}}=-\left(\left(\mathrm{p}+1+\mathrm{a}_{\mathrm{p}}\right) / \ell^{\mathrm{r}}\right) \widetilde{\mathrm{y}}
$$

Proof. This follows without difficulty from Proposition 3.

For each place v of \mathbf{Q} let $m_{v}=\#\left[H^{1}\left(\mathbf{Q}_{v}{ }^{u n r} / Q_{v}, E\left(\mathbf{Q}_{v}{ }^{u n r}\right)\right)\right]$. By [5] Proposition I.3.8, each m_{v} is finite and all but finitely many are zero, so $\mathrm{m}(\ell)=\sup \left\{\operatorname{ord}_{\ell}\left(\mathrm{m}_{\mathrm{v}}\right):\right.$ all v of $\left.\mathbf{Q}\right\}$ is a well-defined integer, equal to zero for almost all ℓ.

Proposition 5. Suppose $\mathrm{p} \nmid \ell \mathrm{D}_{\mathrm{K}} \mathrm{N}$ and $\left.\mathrm{Frob}_{\mathrm{p}}\left(\mathrm{K}_{\ell^{\mathrm{r}}}\right) / \mathrm{Q}\right)=[\tau]$, where $\mathrm{r}=\mathrm{n}+\mathrm{m}(\ell)$. Then there is an element $\mathrm{c}_{\mathrm{p}} \in \mathrm{H}^{1}(\mathbf{Q}, \mathrm{E})_{l^{\mathrm{n}}}$ such that
i) $\operatorname{res}_{\mathrm{v}}\left(\mathrm{c}_{\mathrm{p}}\right)=0$ for all $\mathrm{v} \neq \mathrm{p}$,
ii) the order of $\mathrm{res}_{\mathrm{p}}\left(\mathrm{c}_{\mathrm{p}}\right)$ in $\mathrm{H}^{1}\left(\mathrm{Q}_{\mathrm{p}}, \mathrm{E}\right)_{\ell^{\mathrm{n}}}$ is equal to the order of y in $\mathrm{E}\left(\mathrm{K}_{\mathrm{p}}\right) / \ell^{\mathrm{n}} \mathrm{E}\left(\mathrm{K}_{\mathrm{p}}\right)$.

Proof. First suppose $\ell \nmid[\mathrm{H}: \mathrm{K}]$. Then there is a (unique) extension K^{\prime} of K of degree ℓ^{r} in $K[p]$, totally ramified at p and unramified at all other primes, and $H^{\prime}=\mathrm{HK}^{\prime}$. Define

$$
\mathrm{z}=\operatorname{Tr}_{\mathrm{H}^{\prime} \mathrm{K}^{\prime}}\left(\mathrm{z}_{1}\right) \in \mathrm{E}\left(\mathrm{~K}^{\prime}\right)
$$

By Corollary 4, $\operatorname{Tr}_{\mathrm{K}^{\prime} / \mathrm{K}}(\mathrm{z})=0$. Fixing a generator σ of $\mathrm{Gal}\left(\mathrm{K}^{\prime} / \mathrm{K}\right)$ gives rise to a group isomorphism (which is not τ-equivariant, see below)

$$
\left\{\alpha \in E\left(K^{\prime}\right): \operatorname{Tr}_{K^{\prime} / K}(\alpha)=0\right\} /(\sigma-1) E\left(K^{\prime}\right) \cong H^{1}\left(K^{\prime} / K, E\left(K^{\prime}\right)\right)
$$

Define

$$
c_{p}^{\prime} \in H^{1}\left(K^{\prime} / K, E(K)\right) \subset H^{1}(K, E)_{l^{T}}
$$

to be the image of z under this isomorphism.
Since τ commutes with $\operatorname{Tr}_{\mathrm{K}\left[\mathrm{p} / \mathrm{K}^{\prime},\right.} \mathbf{z}^{\tau}=-\mathrm{z}$. Since τ also acts by -1 on $\operatorname{Gal}\left(\mathrm{K}^{\prime} / \mathrm{K}\right)$, we conclude that $c_{p}^{\prime} \tau=c_{p}^{\prime}$. Thus $c_{p}^{\prime} \in\left(H^{1}(K, E)_{l^{r}}\right)^{+}$. But for $\ell>2$ the restriction map gives an isomorphism $H^{1}(Q, E)_{\ell^{\mathrm{r}}} \cong\left(\mathrm{H}^{1}(\mathrm{~K}, \mathrm{E})_{\ell^{\mathrm{r}}}\right)^{+}$, so $\mathrm{c}_{\mathrm{p}}^{\prime} \in \mathrm{H}^{1}(\mathbf{Q}, E)_{\ell^{\mathrm{r}}}$. Finally, define $\mathrm{c}_{\mathrm{p}}=\ell^{\mathrm{m}(\ell)} \mathrm{c}_{\mathrm{p}}^{\prime} \in \mathrm{H}^{1}(\mathbf{Q}, \mathrm{E})_{\ell^{\mathrm{n}}}$.

For $v \neq p$, since K^{\prime} / K is unramified at v,

$$
\operatorname{res}_{\mathrm{v}}\left(\mathrm{c}_{\mathrm{p}}\right)=\ell^{\mathrm{m}(\ell)} \operatorname{res}_{\mathrm{v}}\left(\mathrm{c}_{\mathrm{p}}^{\prime}\right) \in \ell^{\mathrm{m}(\ell)} \mathrm{H}^{1}\left(\mathbf{Q}_{\mathrm{v}}^{\mathrm{unf}} / \mathbf{Q}_{\mathrm{v}}, \mathrm{E}\left(\mathbf{Q}_{\mathrm{v}}^{\mathrm{unr}}\right)\right)_{\ell^{r}}=0
$$

by definition of $\mathrm{m}(\ell)$.
To complete the proof of the proposition we must determine the order of $\mathrm{res}_{\mathrm{p}}\left(\mathrm{c}_{\mathrm{p}}\right)$ in $H^{1}\left(Q_{p}, E\right)_{\ell^{\mathrm{n}}}$. Write I_{p} for the inertia subgroup of $\mathrm{Gal}\left(\overline{\mathrm{Q}}_{\mathrm{p}} / \mathrm{Q}_{\mathrm{p}}\right)$, and consider the sequence

$$
\mathrm{H}^{1}\left(\mathrm{Q}_{\mathrm{p}}, \mathrm{E}\right)_{\ell^{\mathrm{n}}} \rightarrow \mathrm{H}^{1}\left(\mathrm{I}_{\mathrm{p}}, \mathrm{E}\left(\overline{\mathbf{Q}}_{\mathrm{p}}\right)\right)_{\ell^{\mathrm{n}}} \rightarrow \mathrm{H}^{1}\left(\mathrm{I}_{\mathrm{p}}, \tilde{\mathrm{E}}\left(\overline{\mathbf{F}}_{\mathrm{p}}\right)\right)_{\ell^{\mathrm{n}}} \rightarrow \operatorname{Hom}\left(\mathrm{Gal}\left(\mathrm{~K}^{\prime} / \mathrm{K}\right), \tilde{\mathrm{E}}_{\ell^{\mathrm{n}}}\right) .
$$

The first map is injective because its kernel, $\mathrm{H}^{1}\left(\mathrm{Q}_{\mathrm{p}}{ }^{\mathrm{unr}} / \mathrm{Q}_{\mathrm{p}}, \mathrm{E}\left(\mathrm{Q}_{\mathrm{p}}{ }^{\mathrm{mrf}}\right)_{\ell^{\mathrm{n}}}\right.$, is 0 since E has good reduction at p . The second map is an isomorphism because the kernel of reduction modulo p is a pro-p group. The third map is an isomorphism because I_{p} acts trivially on $\tilde{E}\left(\bar{F}_{p}\right)$ and $K^{\prime} \mathbf{Q}_{p}{ }^{\text {urr }}$ is the unique abelian extension of $\mathbf{Q}_{\mathrm{p}}{ }^{\text {urr }}$ of exponent ℓ^{T}. It is easy to see that the image of c_{p} under this sequence of injections is the homomorphism which sends the chosen generator σ of $\mathrm{Gal}\left(\mathrm{K}^{\prime} / \mathrm{K}\right)$ to $\ell^{\mathrm{m}(\ell)} \tilde{z}$. Thus the order of $\operatorname{res}_{\mathrm{p}}\left(\mathrm{c}_{\mathrm{p}}\right)$ in $H^{1}\left(\mathbf{Q}_{\mathrm{p}}, E\right)_{\ell^{\mathrm{n}}}$ is the same as the order of $\ell^{\mathrm{m}(\ell)} \tilde{z}$ in $\tilde{\mathrm{E}}\left(\mathbf{F}_{\mathrm{p}^{2}}\right)$.

Corollary 4 shows that

$$
\ell^{\mathrm{m}(\ell)} \tilde{\mathbf{z}}=-\left(\left(\mathrm{p}+1+\mathrm{a}_{\mathrm{p}}\right) / \ell^{\mathrm{n}}\right) \tilde{\mathrm{y}} .
$$

Up to a factor of 2, \#[$\left.\tilde{\mathrm{E}}\left(\mathrm{F}_{\mathrm{p}^{2}}\right)^{-}\right]=\#\left[\tilde{\mathrm{E}}\left(\mathbf{F}_{\mathrm{p}}\right)\right] / \#\left[\tilde{\mathrm{E}}\left(\mathrm{F}_{\mathrm{p}}\right)\right]=\mathrm{p}+1+\mathrm{a}_{\mathrm{p}}$. By Lemma 2, $\left(\widetilde{\mathrm{E}}\left(\mathrm{F}_{\mathrm{p} 2}\right)_{\ell^{\infty}}\right)^{-}$ is cyclic, so we conclude that $\left(p+1+a_{p}\right) / \ell^{n}$ maps $\widetilde{E}\left(F_{p^{2}}\right)^{-/} \ell^{n} \widetilde{E}\left(F_{p^{2}}\right)^{-}$isomorphically to $\left(\tilde{\mathrm{E}}\left(\mathbf{F}_{\mathbf{p}^{2}}\right)_{\ell^{n}}\right)^{-}$. Therefore the order of $\ell^{\mathrm{m}(\ell)} \tilde{\mathbf{z}}$ in $\tilde{\mathrm{E}}\left(\mathbf{F}_{\mathrm{p}^{2}}\right)$ is the same as the order of y in $E\left(K_{p}\right) / \ell^{n} E\left(K_{p}\right) \cong \tilde{E}\left(F_{p^{2}}\right) / \ell^{n} \tilde{E}\left(F_{p^{2}}\right)$. This completes the proof when $\ell \nmid[H: K]$.

If $\ell \mid[\mathrm{H}: \mathrm{K}]$, there may not exist a field K^{\prime} as above. In that case, use the point z_{1} to define $c_{1, p}^{\prime} \in H^{1}(H, E)_{\ell^{r}}$. Then define c_{p}^{\prime} to be the corestriction of $c_{1, p}^{\prime}$ to $H^{1}(K, E)$ and proceed as above.

Corollary 6. Suppose $\mathrm{p} \nmid \ell \mathrm{D}_{\mathrm{K}} \mathrm{N}$, and $\left.\mathrm{Frob}_{\mathrm{p}}\left(\mathrm{K}_{\ell^{\mathrm{n}+\mathrm{m}(\ell)}}\right) / \mathrm{Q}\right)=[\tau]$. If $\mathrm{k} \geq 0$ and $\mathrm{y} \notin \ell^{\mathrm{k}+1} \mathrm{E}\left(\mathrm{K}_{\mathrm{p}}\right)$, then for all $\mathrm{s} \in \mathrm{S}^{\left(\ell^{\mathrm{n}}\right)}, \ell^{\mathrm{k}} \mathrm{s}_{\mathrm{p}}=0$.

Proof. This follows immediately from Propositions 1 and 4.

For any $t \in H^{1}\left(K, E_{\ell^{n}}\right)$, write \hat{t} for the image of t under the restriction map

$$
\begin{equation*}
\mathrm{H}^{1}\left(\mathrm{~K}, \mathrm{E}_{\ell^{\mathrm{n}}}\right) \rightarrow \operatorname{Hom}\left(\operatorname{Gal}\left(\overline{\mathrm{K}} / \mathrm{K}\left(\mathrm{E}_{\ell^{\mathrm{n}+\mathrm{m}(\ell)}}\right)\right), \mathrm{E}_{\ell^{\mathrm{n}}}\right)^{\operatorname{Gal}\left(\mathrm { K } \left(\mathrm{E}_{\ell}{ }^{\mathrm{n}+\mathrm{m}(\ell)) / \mathrm{K})} .\right.\right.} \tag{2}
\end{equation*}
$$

Lemma 7., Suppose $\mathrm{t} \in \mathrm{H}^{1}\left(\mathrm{~K}, \mathrm{E}_{\ell^{\mathrm{n}}}\right)^{ \pm}$and the image of $\hat{\mathrm{t}}$ is cyclic. Then the order of t is at most $\ell^{\mathrm{a}+\mathrm{b}}$, where ℓ^{a} is the order of the largest Q -rational cyclic subgroup of $\mathrm{E}_{\ell^{\infty}}$ and ℓ^{b} is the exponent of $\mathrm{H}^{1}\left(\mathrm{~K}\left(\mathrm{E}_{\ell^{\mathrm{n}+\mathrm{m}}(\ell)}\right) / \mathrm{K}, \mathrm{E}_{\ell^{\mathrm{n}}}\right)$.

Proof. Since $\hat{\mathrm{t}}$ is $\mathrm{Gal}\left(\mathrm{K}\left(\mathrm{E}_{\ell^{n+\mathrm{m}}(\ell)}\right) / \mathrm{K}\right)$-equivariant, its image is $\mathrm{Gal}(\overline{\mathrm{K}} / \mathrm{K})$-invariant. Since τ acts on \hat{t} by ± 1, the image is in fact rational over \mathbf{Q}. Thus if the image is cyclic, the order of \hat{t} is at most ℓ^{a}. The kernel of the restriction map (2) is $\mathrm{H}^{1}\left(\mathrm{~K}\left(\mathrm{E}_{\ell^{n+m}(\ell)}\right) / \mathrm{K}, \mathrm{E}_{\ell^{\mathrm{n}}}\right)$, so t has order at most $\ell^{\mathrm{a}+\mathrm{b}}$.

Proof of Kolyvagin's theorem

As above, we fix a prime ℓ not dividing $\#\left[\mathcal{O}_{\mathrm{K}}^{\times}\right]$. Suppose y has infinite order in $\mathrm{E}(\mathrm{K})$, and let $\mathrm{k}=\mathrm{k}(\ell)$ be the largest integer such that $\mathrm{y} \in \ell^{\mathrm{k}} \mathrm{E}(\mathrm{K})+\mathrm{E}(\mathrm{K})_{\text {tors }}$. Fix any integer $n \geq k+1$. First assume that

$$
\begin{equation*}
\text { E has no } \ell \text {-isogeny defined over } \mathbf{Q} \text {, } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{H}^{1}\left(\mathrm{~K}\left(\mathrm{E}_{\ell^{\mathrm{n}+\mathrm{m}}(\ell)}\right) / \mathrm{K}, \mathrm{E}_{\ell^{\mathrm{n}}}\right)=0 \tag{4}
\end{equation*}
$$

both of which hold for all but a finite number of ℓ by Serre's theorem [7] or the theory of complex multiplication. Under these assumptions we will show that $\ell^{k} S^{\left(\ell^{\mathrm{n}}\right)}=0$.

Write $\mathrm{r}=\mathrm{n}+\mathrm{m}(\ell)$. Fix $\mathrm{s} \in \mathrm{S}^{\left(\ell^{\mathrm{n}}\right)}$, and as in Lemma 7 write $\hat{\mathrm{s}}$ for the restriction of s to $\mathrm{Gal}\left(\overline{\mathrm{Q}} / \mathrm{K}\left(\mathrm{E}_{\ell} \mathrm{f}\right)\right.$) and write \hat{y} for the restriction of the image of y under the injection

$$
\mathrm{E}(\mathrm{~K})^{-} / \ell^{\mathrm{n}} \mathrm{E}(\mathrm{~K})^{-} \rightarrow \mathrm{H}^{1}\left(\mathrm{~K}, \mathrm{E}_{\mathrm{n}^{\mathrm{n}}}\right)^{-}
$$

Fix a finite extension F of $K\left(E_{\ell^{r}}\right)$ so that both \widehat{s} and \hat{y} factor through $G=\operatorname{Gal}\left(\mathrm{F} / \mathrm{K}\left(\mathrm{E}_{\ell^{r}}\right)\right)$.
Choose any $\gamma \in G$, and choose any prime p, not dividing $\ell D_{K} N$, such that

$$
\ell^{k} s_{p}=0 \Leftrightarrow \ell^{k} \hat{s}\left((\gamma \tau)^{2}\right)=0, \text { and } y \in \ell^{k+1} \mathrm{E}\left(\mathrm{~K}_{\mathrm{p}}\right) \Leftrightarrow \ell^{\mathrm{n}-\mathrm{k}-1} \hat{\mathrm{y}}\left((\gamma \tau)^{2}\right)=0
$$

Since $\hat{\mathrm{s}}^{\tau}=\hat{\mathrm{s}}$, and $\hat{\mathrm{y}}^{\tau}=-\hat{\mathrm{y}}$,

$$
\begin{aligned}
& \hat{s}\left((\gamma \tau)^{2}\right)=\hat{s}(\gamma)+\hat{s}(\tau \gamma \tau)=(1+\tau) \hat{s}(\gamma) \\
& \hat{y}\left((\gamma \tau)^{2}\right)=\hat{y}(\gamma)+\hat{y}(\tau \gamma \tau)=(1-\tau) \hat{y}(\gamma)
\end{aligned}
$$

 $\ell^{\mathrm{n}-\mathrm{k}-1} \hat{\mathrm{y}}(\gamma) \in\left(\mathrm{E}_{\ell^{\mathrm{n}}}\right)^{+}$. Therefore $\mathrm{G}=\left(\ell^{\mathrm{k}} \hat{\mathrm{s}}\right)^{-1}\left(\left(\mathrm{E}_{\ell^{\mathrm{n}}}\right)^{-}\right) \cup\left(\ell^{\mathrm{n}-\mathrm{k}-1} \hat{\mathrm{y}}\right)^{-1}\left(\left(\mathrm{E}_{\ell^{\mathrm{n}}}\right)^{+}\right)$. But a group cannot be the union of two proper subgroups, so either $\ell^{\mathrm{k}} \widehat{\mathbf{s}}(\mathrm{G}) \subset\left(\mathrm{E}_{\ell^{\mathrm{n}}}\right)^{-}$or $\ell^{\mathrm{n}-\mathrm{k}-1} \hat{\mathrm{y}}(\mathrm{G}) \subset\left(\mathrm{E}_{\mathrm{l}^{\mathrm{n}}}\right)^{+}$. By Lemma 7 (using assumptions (3) and (4)) we conclude that either
$\ell^{k} s=0$ in $S^{\left(\ell^{n}\right)}$ or $\ell^{\mathrm{n}-\mathrm{k}-1} \mathrm{y}=0$ in $\mathrm{E}(\mathrm{K}) / \ell^{\mathrm{n}} \mathrm{E}(\mathrm{K})$. Since the latter is impossible by our definition of k, we have shown that $\ell^{k} S^{\left(f^{n}\right)}=0$.

Since $\mathrm{k}=0$ for almost all ℓ, this proves Kolyvagin's theorem except for the finite number of ℓ-parts which we have ruled out above. Without assumptions (3) and (4), using Lemma 7 the proof above gives a somewhat weaker annihilator of $S^{\left(\ell^{n}\right)}$, but still one which is independent of n (again using [7] or the theory of complex multiplication to show that the exponent of $\mathrm{H}^{1}\left(\mathrm{~K}\left(\mathrm{E}_{\ell^{\mathrm{n}+\mathrm{m}}(\ell)}\right) / \mathrm{K}, \mathrm{E}_{\ell^{\mathrm{n}}}\right)$ is bounded independent of n$)$. Also, with a little more care, one obtains a suitable annihilator when $\ell \mid \#\left[\mathscr{O}_{\mathrm{K}}^{\times}\right]$. This completes the proof. //

References

1. Coates. J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39, 223-251 (1977)
2. Gross, B., Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84, 225-320 (1986)
3. Kolyvagin, V.A.: Finiteness of $\mathrm{E}(\mathbf{Q})$ and $\amalg(\mathrm{E}, \mathbf{Q})$ for a class of Weil curves. (Russian) To appear in Izv. Akad. Nauk SSSR Ser. Mat.
4. Kolyvagin, V.A.: On Mordell-Weil and Shafarevich-Tate groups of elliptic Weil curves. (Russian) preprint
5. Milne, J.S.: Arithmetic duality theorems. Persp. in Math. 1, Orlando: Academic Press (1986)
6. Rubin, K.: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math. 89, 527-560 (1987)
7. Serre. J-P.: Propriétes galoisiennes des points d'ordre fini des courbes elliptiques. Inv. Math. 15, 259-331 (1972)
8. Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Pub. Math. Soc. Japan 11, Princeton: Princeton University Press (1971)
9. Silverman, J.: The arithmetic of elliptic curves. Grad. Texts in Math. 106, New York: Springer (1986)

[^0]: *supported by grants from the NSF, the DFG, the SERC, the Max-Planck-Institut fur Mathematik and the Ohio State University.

