The work of Kolyvagin on the arithmetic of elliptic curves

Karl Rubin

Max-Planck-Institut für Mathematik Gottfried-Claren-Strasse 26 5300 Bonn 3 West Germany Department of Mathematics Columbia University New York, NY 10027 USA

MPI 88/38

The work of Kolyvagin on the arithmetic of elliptic curves

Karl Rubin*

Introduction

This paper gives a complete proof of a recent theorem of Kolyvagin [3, 4] on Mordell-Weil groups and Tate-Shafarevich groups of elliptic curves. Let E be an elliptic curve defined over \mathbf{Q} , and assume that E is modular: for some integer N there is a nonconstant map defined over \mathbf{Q}

$$\pi: X_0(N) \to E$$

which we may assume sends the cusp ∞ to 0. Here $X_0(N)$ is the usual modular curve over Q (see for example [8]) which over C is obtained by compactifying the quotient $\mathcal{D}/\Gamma_0(N)$ of the complex upper half-plane \mathcal{D} by the group

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}.$$

The points of $X_0(N)$ correspond to pairs (A, C) where A is a (generalized) elliptic curve and C is a cyclic subgroup of A of order N. Fix an imaginary quadratic field K in which all primes dividing N split, and an ideal \mathfrak{n} of K such that $\mathcal{O}_K/\mathfrak{n} \cong \mathbb{Z}/N\mathbb{Z}$. Write H for the Hilbert class field of K and x_H for the point in $X_0(N)(C)$ corresponding to the pair

$$(\mathbf{C}/\mathcal{O}_{\mathbf{K}}, \mathfrak{n}^{-1}/\mathcal{O}_{\mathbf{K}}).$$

Fix an embedding of $\overline{\mathbf{Q}}$ into C; then the theory of complex multiplication shows that $\mathbf{x}_{\mathrm{H}} \in X_0(\mathrm{N})(\mathrm{H})$. Define $\mathbf{y}_{\mathrm{H}} = \pi(\mathbf{x}_{\mathrm{H}}) \in \mathrm{E}(\mathrm{H})$, $\mathbf{y}_{\mathrm{K}} = \mathrm{Tr}_{\mathrm{H/K}}(\mathbf{y}_{\mathrm{H}}) \in \mathrm{E}(\mathrm{K})$, and $\mathbf{y} = \mathbf{y}_{\mathrm{K}} - \mathbf{y}_{\mathrm{K}}^{\tau} \in \mathrm{E}(\mathrm{K})$, where τ denotes complex conjugation on K.

Let $\coprod_{E/Q}$ denote the Tate-Shafarevich group of E over Q.

Theorem. (Kolyvagin [3, 4]) Suppose E and y are as above. If y has infinite order in E(K) then E(Q) and $\coprod_{E/Q}$ are finite.

^{*}supported by grants from the NSF, the DFG, the SERC, the Max-Planck-Institut für Mathematik and the Ohio State University.

Remarks. 1. The proof of this theorem given below is organized differently from .

Kolyvagin's proof, and somewhat simplified, but the important ideas are all due to Kolyvagin and contained in [3, 4].

2. It is not difficult to show, using the Hecke operator w_N , that y has infinite order if and only if both y_K has infinite order and the sign in the functional equation of the L-function L(E, s) is +1.

3. The proof will give an annihilator of $\coprod_{E/Q}$ which, via the theorem of Gross and Zagier [2], gives evidence for the Birch and Swinnerton-Dyer conjecture.

4. Observe that Kolyvagin's theorem makes no mention of the L-function of E. To relate his result to the Birch and Swinnerton-Dyer conjecture one needs the following:

Theorem. (Gross and Zagier [2]) With E and y as above, y has infinite order in E(K) if and only if $L(E, 1) \neq 0$ and $L'(E, \chi_K, 1) \neq 0$, where χ_K is the quadratic character attached to K.

Analytic Conjecture. If E is a modular elliptic curve and the sign in the functional equation of L(E, s) is +1, then there exists at least one imaginary quadratic field K, in which all primes dividing N split, such that $L'(E, \chi_K, 1) \neq 0$.

This analytic conjecture, as yet unproved, together with the theorems of Kolyvagin and Gross and Zagier, would imply:

(*) For any modular elliptic curve E, if $L(E, 1) \neq 0$ then E(Q) and $\coprod_{E/Q}$ are finite.

Assertion (*) is known for elliptic curves with complex multiplication, by theorems of Coates and Wiles [1] (for $E(\mathbf{Q})$) and Rubin [6] (for $\coprod_{E(\mathbf{Q})}$).

Acknowledgements. I would like to thank John Coates and Bryan Birch for helpful discussions, and the Mathematisches Institut (Erlangen), the Department of Pure Mathematics and Mathematical Statistics (Cambridge) and the Max-Planck-Institut für Mathematik (Bonn) for their hospitality. *Notation.* For any abelian group A, A_n will denote the n-torsion in A and $A_{n^{\infty}} = \bigcup_{i} A_{n^{i}}$. If A is a module for the appropriate Galois group, we will write Hⁱ(L/F, A) for Hⁱ(Gal(L/F), A), Hⁱ(F, A) for Hⁱ(F/F, A), and Hⁱ(F, E) for Hⁱ(F, E(F)).

Tools of the proof

Fix a prime number \mathcal{X} and a positive integer n. For any completion Q_v of Q we have the diagram

$$(1) \qquad \begin{array}{cccc} 0 \rightarrow & E(\mathbf{Q})/\mathcal{L}^{n}E(\mathbf{Q}) \rightarrow & H^{1}(\mathbf{Q}, E_{\mathcal{L}^{n}}) \rightarrow & H^{1}(\mathbf{Q}, E)_{\mathcal{L}^{n}} \rightarrow & 0 \\ \downarrow & \downarrow & \mathsf{res}_{v} & \downarrow & \mathsf{res}_{v} \\ 0 \rightarrow & E(\mathbf{Q}_{v})/\mathcal{L}^{n}E(\mathbf{Q}_{v}) \rightarrow & H^{1}(\mathbf{Q}_{v}, E_{\mathcal{L}^{n}}) \rightarrow & H^{1}(\mathbf{Q}_{v}, E)_{\mathcal{L}^{n}} \rightarrow & 0 \end{array}$$

and we define the Selmer group $S^{(\ell^n)}$ and the ℓ^n -torsion in the Tate-Shafarevich group, \coprod , n, by

$$S^{(\ell^{n})} = \bigcap_{v} \operatorname{res}_{v}^{-1}(\operatorname{image} E(Q_{v})),$$
$$0 \to E(Q)/\ell^{n} E(Q) \to S^{(\ell^{n})} \to \coprod_{\ell^{n}} \to 0$$

To prove Kolyvagin's theorem it will suffice to show that $S^{(\ell)} = 0$ for almost all ℓ , and that for other ℓ the order of $S^{(\ell^n)}$ is annihilated by a power of ℓ which is independent of n.

For $s \in S^{(\ell^n)}$ write s_v for the inverse image of $\operatorname{res}_v(s)$ in $E(\mathbf{Q}_v)/\ell^n E(\mathbf{Q}_v)$. Our main tool for bounding $S^{(\ell^n)}$ is the following, which is proved using the local Tate pairings.

Proposition 1. Suppose p is a prime such that $E(Q_p)_{\ell^n} \equiv Z/\ell^n Z$, and suppose that for some integer k there exists a cohomology class $c_p \in H^1(Q, E)_{\ell^n}$ satisfying

- (i) for all $v \neq p$, $res_v(c_p) = 0$,
- (ii) $\operatorname{res}_{p}(c_{p})$ has order ℓ^{n-k} .

Then for every $s \in S^{(\ell^n)}$, $\ell^k s_p = 0$.

3

Proof. For any place v of Q let \langle , \rangle_{v} denote the local Tate pairing

$$\langle , \rangle_{\mathbf{v}} : E(\mathbf{Q}_{\mathbf{v}})/\mathcal{L}^{\mathbf{n}}E(\mathbf{Q}_{\mathbf{v}}) \times H^{1}(\mathbf{Q}_{\mathbf{v}}, E)_{\mathcal{L}^{\mathbf{n}}} \rightarrow \mathbb{Z}/\mathcal{L}^{\mathbf{n}}\mathbb{Z}.$$

For any $s \in S^{(\ell^n)}$ and $c \in H^1(Q, E)_{\ell^n}$, let c' be any lift of c to $H^1(Q, E_{\ell^n})$ in (1) and define an element b(s, c) in the Brauer group of Q by the cup product

$$b(s, c) = s \cup c' \in H^2(Q, E_{\ell^n} \otimes E_{\ell^n}) \cong H^2(Q, \mu_{\ell^n}) = Br(Q)_{\ell^n}.$$

Here the isomorphism $E_{\ell^n} \otimes E_{\ell^n} \cong \mu_{\ell^n}$ is given by the Weil pairing. By the definition of the Tate pairing ([5] §I.3, especially remark 3.5) we have

$$\langle s_v, res_v(c) \rangle_v = inv_v(b(s, c)).$$

Thus

$$\sum_{\mathbf{v}} \langle s_{\mathbf{v}}, \operatorname{res}_{\mathbf{v}}(\mathbf{c}) \rangle_{\mathbf{v}} = \sum_{\mathbf{v}} \operatorname{inv}_{\mathbf{v}}(\mathbf{b}(\mathbf{s}, \mathbf{c})) = 0.$$

Applying this reciprocity law with a class c_p as in the statement of the proposition we conclude that $\langle s_p, res_p(c_p) \rangle_p = 0$. But

$$E(\mathbf{Q}_p)/\mathcal{X}^n E(\mathbf{Q}_p) \cong E(\mathbf{Q}_p)_{\mathcal{X}^{\infty}}/\mathcal{X}^n E(\mathbf{Q}_p)_{\mathcal{X}^{\infty}} \cong \mathbb{Z}/\mathcal{X}^n \mathbb{Z},$$

so if $res_p(c_p)$ has order ℓ^{n-k} the nondegeneracy of the Tate pairing shows that $\ell^k s_p = 0$. //

It remains now to construct such a cohomology class c_p for sufficiently many p, with k bounded and usually 0. Kolyvagin constructs such a c_p using Heegner points. Write τ for the complex conjugation on \overline{Q} induced by our embedding of \overline{Q} into C, and $[\tau]$ for its conjugacy class in Gal(\overline{Q}/Q). If A is any 2-divisible Gal(\overline{Q}/Q)-module, the action of τ gives a decomposition $A = A^+ \oplus A^-$. From now on, for simplicity we will assume that $\ell \neq 2$, and if $K = Q(\sqrt{-3})$ we also assume $\ell \neq 3$. Write D_K for the discriminant of K.

Lemma 2. Suppose p is a prime not dividing $\mathcal{L}_{K}N$, r > 0, and $\operatorname{Frob}_{p}(K(E_{\ell}r)/Q) = [\tau]$. Then if \tilde{E} denotes the reduction of E modulo p and $a_{p} = p + 1 - \#[\tilde{E}(F_{p})]$, (i) $\mathcal{L}^{r}|a_{p}$ and $\mathcal{L}^{r}|p+1$,

(ii) p remains prime in K,

(iii)
$$E(\mathbf{Q}_p)_{\ell} \mathbf{r} \cong \widetilde{E}(\mathbf{F}_p)_{\ell} \mathbf{r} \cong \mathbf{Z}/\ell^{\mathbf{r}}\mathbf{Z}, \quad (E(\mathbf{K}_p)_{\ell}\mathbf{r})^{-} \cong (\widetilde{E}(\mathbf{F}_p2)_{\ell}\mathbf{r})^{-} \cong \mathbf{Z}/\ell^{\mathbf{r}}\mathbf{Z}.$$

Proof. The characteristic polynomial of Frobenius acting on $E_{\ell}r$ is $T^2 - a_pT + p$, and the characteristic polynomial of τ acting on $E_{\ell}r = E(C)_{\ell}r$ is $T^2 - 1$. Comparing these polynomials modulo ℓ^r proves (i). The second assertion holds because $\operatorname{Frob}_p(K/Q) \neq 1$, and the third because $E(Q_p)_{\ell}r \cong (E_{\ell}r)^+ \cong E(R)_{\ell}r$ and $E(K_p)_{\ell}r \cong (E_{\ell}r)^+ \oplus (E_{\ell}r)^-$. //

Suppose p is a rational prime which remains prime in K and $p \nmid N$. Let \mathcal{O}_p be the order of conductor p in \mathcal{O}_K , and x_p the point in $X_0(N)(C)$ corresponding to the pair $(C/\mathcal{O}_p, (\mathfrak{n} \cap \mathcal{O}_p)^{-1}/\mathcal{O}_p).$

The theory of complex multiplication shows that $x_p \in X_0(N)(K[p])$ where K[p] denotes the ring class field of K modulo p. The field K[p] is the abelian extension of K corresponding to the subgroup $K^{\times}C^{\times}\prod_{q}(\mathcal{O}_p\otimes \mathbb{Z}_q)^{\times}$ of the ideles of K. It follows easily that K[p] is a cyclic extension of H of degree $(p+1)/u_K$ where $u_K = \#(\mathcal{O}_K^{\times})/2$, K[p]/H is totally ramified at p and unramified everywhere else, and τ acts on Gal(K[p]/K) by -1. Define $y_p = \pi(x_p) \in E(K[p])$. The only facts about Heegner points which we will need (other than their natural fields of definition) are contained in the following proposition.

Proposition 3. i) $u_K \operatorname{Tr}_{K[p]/H}(y_p) = a_p y_H.$ ii) For any prime **p** of K[p] above p, $\tilde{y}_p = \tilde{y}_H^{\operatorname{Frob}} \in \tilde{E}(F_{p^2})$, where ~ denotes reduction modulo **p**.

.

Proof. Fix an elliptic curve A defined over H, with complex multiplication by \mathcal{O}_{K} , so that (A, A_n) represents x_H. Without loss of generality we may assume that A has good reduction at all primes above **p**. The point x_p can be represented by (A', A'_n) where $A' = A/C_p$ is the quotient of A by a subgroup of order p. Let \mathcal{C} denote the collection of the p+1 subgroups of A of order p. The Galois group Gal(K[p]/H) acts transitively on $\mathcal{C}/Aut(E)$, which has order (p+1)/u_K = [K[p]:H]. Thus, writing T_p for the Hecke correspondence on X₀(N),

$$T_{p}(x_{H}) = \sum_{C \in \mathcal{C}} (A/C, (A/C)_{\mathfrak{n}}) = u_{K} \sum_{\sigma \in Gal(K[p]/H)} x_{p} \sigma.$$

Projecting to E via π proves the first assertion, since $\pi \cdot T_p = a_p \pi$. For the second, consider the isogeny

$$\varphi: (A, A_n) \rightarrow (A', A'_n)$$

of degree p. Since p remains prime in K, both A and A' have supersingular reduction at **p**, so the reduced isogeny

$$\widetilde{\phi}: (\widetilde{A}, \widetilde{A}_{\mathfrak{n}}) \rightarrow (\widetilde{A}', \widetilde{A}_{\mathfrak{n}}')$$

must be, up to an automorphism, Frobenius ([9] II.2.12). This proves that $\tilde{x}_p = \tilde{x}_H^{Frob}$ in $\tilde{X}_0(N)(F_{p2})$. By the universal property of the Neron model, π reduces to a morphism $\tilde{\pi}$ from $\tilde{X}_0(N)$ to \tilde{E} , and applying $\tilde{\pi}$ completes the proof.

Remark. One can avoid using the universal property of the Neron model by requiring instead that p not belong to a certain finite set of primes. This restriction does not interfere with the proof of Kolyvagin's theorem.

Suppose p is a prime not dividing $\mathcal{L}D_KN$, r > 0, and $\operatorname{Frob}_p(K(E_{\ell}r)/Q) = [\tau]$. By Lemma 2, $\ell^r | a_p$ and $\ell^r | u_K[K[p]:H]$, so there is a (unique) extension H' of H of degree ℓ^r in K[p]. Define

$$z_1 = u_K Tr_{K[p]/H'}(y_p - y_p^{\tau}) - (a_p/\mathcal{X}^r)(y_H - y_H^{\tau}) \in E(H').$$

Corollary 4. Suppose $p \not\downarrow \mathcal{L}D_K N$ and $\operatorname{Frob}_p(K(E_{\ell}r)/Q) = [\tau]$, and let z_1 be as above. (i) $\operatorname{Tr}_{H'/H}(z_1) = 0$.

(ii) For any $\sigma \in \text{Gal}(H/K)$, let $\overline{\sigma}$ denote any lift of σ to Gal(H'/K). Then

$$\sum_{\mathbf{p} \in \text{Gal}(H/K)} \widetilde{\mathbf{z}_1^{\sigma}} = -((p+1+a_p)/\ell^r) \widetilde{\mathbf{y}}_.$$

Proof. This follows without difficulty from Proposition 3.

//

 \parallel

For each place v of Q let $m_v = \#[H^1(Q_v^{unr}/Q_v, E(Q_v^{unr}))]$. By [5] Proposition I.3.8, each m_v is finite and all but finitely many are zero, so $m(\ell) = \sup\{\operatorname{ord}_{\ell}(m_v) : \operatorname{all } v \text{ of } Q\}$ is a well-defined integer, equal to zero for almost all ℓ .

Proposition 5. Suppose $p \nmid \ell D_K N$ and $\operatorname{Frob}_p(K(E_{\ell}r)/Q) = [\tau]$, where $r = n + m(\ell)$. Then there is an element $c_p \in H^1(Q, E)_{\ell}n$ such that

- i) $\operatorname{res}_{\mathbf{v}}(\mathbf{c}_{\mathbf{p}}) = 0$ for all $\mathbf{v} \neq \mathbf{p}$,
- ii) the order of $\operatorname{res}_p(c_p)$ in $H^1(\mathbb{Q}_p, E)_{\ell^n}$ is equal to the order of y in $E(K_p)/\ell^n E(K_p)$.

Proof. First suppose $\ell \nmid [H:K]$. Then there is a (unique) extension K' of K of degree ℓ^r in K[p], totally ramified at p and unramified at all other primes, and H' = HK'. Define $z = Tr_{H'K'}(z_1) \in E(K')$.

By Corollary 4,
$$Tr_{K'/K}(z) = 0$$
. Fixing a generator σ of Gal(K'/K) gives rise to a group isomorphism (which is *not* τ -equivariant, see below)

$$\{\alpha \in E(K') : \operatorname{Tr}_{K'/K}(\alpha) = 0\}/(\sigma \cdot 1)E(K') \cong H^1(K'/K, E(K')).$$

Define

$$c_{p} \in H^{1}(K'/K, E(K')) \subset H^{1}(K, E)_{\ell}$$

to be the image of z under this isomorphism.

Since τ commutes with $\operatorname{Tr}_{K[p]/K'}$, $z^{\tau} = -z$. Since τ also acts by -1 on Gal(K'/K), we conclude that $c_p^{\tau} = c_p'$. Thus $c_p' \in (\operatorname{H}^1(K, E)_{\ell} r)^+$. But for $\ell > 2$ the restriction map gives an isomorphism $\operatorname{H}^1(Q, E)_{\ell} r \cong (\operatorname{H}^1(K, E)_{\ell} r)^+$, so $c_p' \in \operatorname{H}^1(Q, E)_{\ell} r$. Finally, define $c_p = \ell^{\mathfrak{m}(\ell)} c_p' \in \operatorname{H}^1(Q, E)_{\ell} n$.

For $v \neq p$, since K'/K is unramified at v,

$$\operatorname{res}_{\mathbf{v}}(\mathbf{c}_{p}) = \lambda^{m(\ell)} \operatorname{res}_{\mathbf{v}}(\mathbf{c}_{p}) \in \lambda^{m(\ell)} \mathrm{H}^{1}(\mathbf{Q}_{\mathbf{v}}^{\mathrm{unr}}/\mathbf{Q}_{\mathbf{v}}, \mathrm{E}(\mathbf{Q}_{\mathbf{v}}^{\mathrm{unr}}))_{\ell} = 0$$

by definition of $m(\mathcal{X})$.

To complete the proof of the proposition we must determine the order of $\operatorname{res}_p(c_p)$ in $H^1(\mathbb{Q}_p, \mathbb{E})_{\ell^n}$. Write I_p for the inertia subgroup of $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$, and consider the sequence $H^1(\mathbb{Q}_p, \mathbb{E})_{\ell^n} \to H^1(I_p, \mathbb{E}(\overline{\mathbb{Q}}_p))_{\ell^n} \to H^1(I_p, \widetilde{\mathbb{E}}(\overline{\mathbb{F}}_p))_{\ell^n} \to \operatorname{Hom}(\operatorname{Gal}(K'/K), \widetilde{\mathbb{E}}_{\ell^n})$. The first map is injective because its kernel, $H^1(Q_p^{unr}/Q_p, E(Q_p^{unr}))_{\ell^n}$, is 0 since E has good reduction at p. The second map is an isomorphism because the kernel of reduction modulo p is a pro-p group. The third map is an isomorphism because I_p acts trivially on $\tilde{E}(\overline{F_p})$ and $K'Q_p^{unr}$ is the unique abelian extension of Q_p^{unr} of exponent ℓ^r . It is easy to see that the image of c_p under this sequence of injections is the homomorphism which sends the chosen generator σ of Gal(K'/K) to $\ell^{m(\ell)}\tilde{z}$. Thus the order of $\operatorname{res}_p(c_p)$ in $H^1(Q_p, E)_{\ell^n}$ is the same as the order of $\ell^{m(\ell)}\tilde{z}$ in $\tilde{E}(F_p2)$.

Corollary 4 shows that

$$\ell^{m(\ell)}\widetilde{z} = -((p+1+a_p)/\ell^n)\widetilde{y}.$$

Up to a factor of 2, $\#[\tilde{E}(\mathbf{F}_{p2})^{-}] = \#[\tilde{E}(\mathbf{F}_{p2})]/\#[\tilde{E}(\mathbf{F}_{p})] = p+1+a_{p}$. By Lemma 2, $(\tilde{E}(\mathbf{F}_{p2})_{\ell^{\infty}})^{-}$ is cyclic, so we conclude that $(p+1+a_{p})/\ell^{n}$ maps $\tilde{E}(\mathbf{F}_{p2})^{-}/\ell^{n}\tilde{E}(\mathbf{F}_{p2})^{-}$ isomorphically to $(\tilde{E}(\mathbf{F}_{p2})_{\ell^{n}})^{-}$. Therefore the order of $\ell^{m(\ell)}\tilde{z}$ in $\tilde{E}(\mathbf{F}_{p2})$ is the same as the order of y in $E(K_{p})/\ell^{n}E(K_{p}) \cong \tilde{E}(\mathbf{F}_{p2})/\ell^{n}\tilde{E}(\mathbf{F}_{p2})$. This completes the proof when $\ell \nmid [H:K]$.

If $\mathcal{X} \mid [H:K]$, there may not exist a field K' as above. In that case, use the point z_1 to define $c'_{1,p} \in H^1(H, E)_{\mathcal{X}^r}$. Then define c'_p to be the corestriction of $c'_{1,p}$ to $H^1(K, E)$ and proceed as above.

Corollary 6. Suppose $p \nmid \mathcal{L}D_K N$, and $\operatorname{Frob}_p(K(E_{\mathcal{L}^{n+m}(\mathcal{L})})/Q) = [\tau]$. If $k \ge 0$ and $y \notin \mathcal{L}^{k+1}E(K_p)$, then for all $s \in S^{(\mathcal{L}^n)}$, $\mathcal{L}^k s_p = 0$.

Proof. This follows immediately from Propositions 1 and 4.

For any $t \in H^1(K, E_{\ell^n})$, write \hat{t} for the image of t under the restriction map (2) $H^1(K, E_{\ell^n}) \to Hom(Gal(\overline{K}/K(E_{\ell^{n+m(\ell)}})), E_{\ell^n})^{Gal(K(E_{\ell^{n+m(\ell)}})/K)}.$

Lemma 7. Suppose $t \in H^1(K, E_{\ell^n})^{\pm}$ and the image of \hat{t} is cyclic. Then the order of t is at most ℓ^{a+b} , where ℓ^a is the order of the largest Q-rational cyclic subgroup of $E_{\ell^{\infty}}$ and ℓ^b is the exponent of $H^1(K(E_{\ell^n+m(\ell)})/K, E_{\ell^n})$.

$$\parallel$$

Proof. Since \hat{t} is Gal(K(E_{ℓ}^{n+m(ℓ)})/K)-equivariant, its image is Gal(\overline{K}/K)-invariant. Since τ acts on \hat{t} by ± 1 , the image is in fact rational over Q. Thus if the image is cyclic, the order of \hat{t} is at most ℓ^{a} . The kernel of the restriction map (2) is $H^{1}(K(E_{\ell}^{n+m(\ell)})/K, E_{\ell}^{n})$, so t has order at most ℓ^{a+b} .

Proof of Kolyvagin's theorem

As above, we fix a prime ℓ not dividing $\#[\mathcal{O}_K^{\times}]$. Suppose y has infinite order in E(K), and let $k = k(\ell)$ be the largest integer such that $y \in \ell^k E(K) + E(K)_{tors}$. Fix any integer $n \ge k + 1$. First assume that

(3) E has no ℓ -isogeny defined over Q,

(4)
$$H^{1}(K(E_{\rho n+m(\ell)})/K, E_{\ell}n) = 0,$$

both of which hold for all but a finite number of \mathcal{L} by Serre's theorem [7] or the theory of complex multiplication. Under these assumptions we will show that $\mathcal{L}^k S^{(\mathcal{L}^n)} = 0$.

Write $r = n + m(\ell)$. Fix $s \in S^{(\ell^n)}$, and as in Lemma 7 write \hat{s} for the restriction of s to $Gal(\overline{Q}/K(E_{\ell^n}))$ and write \hat{y} for the restriction of the image of y under the injection

 $E(K)^{-}/\ell^{n}E(K)^{-} \rightarrow H^{1}(K, E_{\ell^{n}})^{-}.$

Fix a finite extension F of $K(E_{\ell}r)$ so that both \hat{s} and \hat{y} factor through $G = Gal(F/K(E_{\ell}r))$.

Choose any $\gamma \in G$, and choose any prime p, not dividing $\mathcal{L}D_K N$, such that $\operatorname{Frob}_p(F/Q) = [\gamma \tau]$. Then $\operatorname{Frob}_p(K(E_{\ell} \tau)/Q) = [\tau]$, and $\operatorname{Frob}_p(F/K(E_{\ell} \tau)) \in [(\gamma \tau)^2]$ so

$$\begin{split} \mathcal{\ell}^{k}s_{p} &= 0 \iff \mathcal{\ell}^{k}\widehat{s}((\gamma\tau)^{2}) = 0, \text{ and } y \in \mathcal{\ell}^{k+1}E(K_{p}) \iff \mathcal{\ell}^{n-k-1}\widehat{y}((\gamma\tau)^{2}) = 0. \\ \text{Since } \widehat{s^{\tau}} &= \widehat{s}, \text{ and } \widehat{y^{\tau}} = -\widehat{y}, \end{split}$$

$$\widehat{s}((\gamma\tau)^2) = \widehat{s}(\gamma) + \widehat{s}(\tau\gamma\tau) = (1+\tau)\widehat{s}(\gamma)$$
$$\widehat{y}((\gamma\tau)^2) = \widehat{y}(\gamma) + \widehat{y}(\tau\gamma\tau) = (1-\tau)\widehat{y}(\gamma)$$

By Corollary 6, we conclude that for every $\gamma \in G$, either $\ell^k \widehat{s}(\gamma) \in (E_{\ell^n})^-$ or $\ell^{n-k-1} \widehat{y}(\gamma) \in (E_{\ell^n})^+$. Therefore $G = (\ell^k \widehat{s})^{-1}((E_{\ell^n})^-) \cup (\ell^{n-k-1} \widehat{y})^{-1}((E_{\ell^n})^+)$. But a group cannot be the union of two proper subgroups, so either $\ell^k \widehat{s}(G) \subset (E_{\ell^n})^-$ or $\ell^{n-k-1} \widehat{y}(G) \subset (E_{\ell^n})^+$. By Lemma 7 (using assumptions (3) and (4)) we conclude that either

//

 $\ell^k s = 0$ in $S^{(\ell^n)}$ or $\ell^{n-k-1}y = 0$ in $E(K)/\ell^n E(K)$. Since the latter is impossible by our definition of k, we have shown that $\ell^k S^{(\ell^n)} = 0$.

Since k = 0 for almost all ℓ , this proves Kolyvagin's theorem except for the finite number of ℓ -parts which we have ruled out above. Without assumptions (3) and (4), using Lemma 7 the proof above gives a somewhat weaker annihilator of $S^{(\ell^n)}$, but still one which is independent of n (again using [7] or the theory of complex multiplication to show that the exponent of $H^1(K(E_{\ell^{n+m(\ell)}})/K, E_{\ell^n})$ is bounded independent of n). Also, with a little more care, one obtains a suitable annihilator when $\ell |\#[\mathcal{O}_K^{\times}]$. This completes the proof. //

References

- 1. Coates. J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. *Invent. Math.* 39, 223-251 (1977)
- 2. Gross, B., Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84, 225-320 (1986)
- 3. Kolyvagin, V.A.: Finiteness of E(Q) and III(E, Q) for a class of Weil curves. (Russian) To appear in *Izv. Akad. Nauk SSSR Ser. Mat.*
- 4. Kolyvagin, V.A.: On Mordell-Weil and Shafarevich-Tate groups of elliptic Weil curves. (Russian) preprint
- 5. Milne, J.S.: Arithmetic duality theorems. *Persp. in Math.* 1, Orlando: Academic Press (1986)
- 6. Rubin, K.: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. *Invent. Math.* 89, 527-560 (1987)
- 7. Serre. J-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Inv. Math. 15, 259-331 (1972)
- 8. Shimura, G.: Introduction to the arithmetic theory of automorphic forms. *Pub. Math. Soc. Japan* **11**, Princeton: Princeton University Press (1971)
- 9. Silverman, J.: The arithmetic of elliptic curves. *Grad. Texts in Math.* 106, New York: Springer (1986)