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Introduction
This paper gives a complete proof of a recent theorem of Kolyvagin [3, 41 on Mordell-Weil
groups and Tate-Shafarevich groups of elliptic curves. Let E be an elliptic curve defined over
Q, and assume that E is modular: for some integer N there is a nonconstant map defined
over Q

n: Xo(N) - E
which we may assume sends the cusp e to 0. Here Xy(N) is the usual modular curve over
Q (see for example [8]) which over C is obtained by compactifying the quotient T9/To(N) of
the complex upper half-plane Th by the group

T = {[25]e S : c=0 (moduloy }.

The points of Xy(N) correspond to pairs (A, C) where A is a (generalized) elliptic
curve and C is a cyclic subgroup of A of order N. Fix an imaginary quadratic field K in
which all primes dividing N split, and an ideal 1t of K such that Og/tt = Z/NZ. Write H
for the Hilbert class field of K and xy for the point in X (N)(C) corresponding to the pair

(C/Ok, n0g).
Fix an embedding of Q into C; then the theory of complex multiplication shows that
xy € Xo(N)(H). Define yy =n(xy) € EH), yg = TerK(yH) € E(K), and
y =Yk - ¥k* € E(K), where T denotes complex conjugation on K.

Let g, denote the Tate-Shafarevich group of E over Q.

Theorem. (Kolyvagin [3, 4]) Suppose E and y are as above. If y has infinite order in
E(K) then E(Q) and Wlgxy arefinite.
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Remarks. 1. The proof of this theorem given below is organized differently from .
Kolyvagin's proof, and somewhat simplified, but the important ideas are all due to Kolyvagin
and contained in [3, 4].

2. Itis not difficult to show, using the Hecke operator wy, that y has infinite order if and
only if both yg has infinite order and the sign in the functional equation of the L-function

L(E, s) is +1.

3. The proof will give an annihilator of gy which, via the theorem of Gross and Zagier
[2], gives evidence for the Birch and Swinnerton-Dyer conjecture.

4. Observe that Kolyvagin's theorem makes no mention of the L-function of E. To relate his

result to the Birch and Swinnerton-Dyer conjecture one needs the following:

Theorem. (Gross and Zagier [2]) With E and y as above, y has infinite order in E(K)
if and only if L(E, 1)# 0 and L'(E, X, 1) #0, where yy is the quadratic character
attached to K.

Analytic Conjecture. If E is a modular elliptic curve and the sign in the functional
equation of L(E, s) is +1, then there exists at least one imaginary quadratic field K, in

which all primes dividing N split, such that L°(E, xg, 1) #0.

This analytic conjecture, as yet unproved, together with the theorems of Kolyvagin and Gross

and Zagier, would imply:

(™) For any modular elliptic curve E, if L(E, 1)#0 then E(Q) and I.IJBQ are finite.

Assertion (¥*) is known for elliptic curves with complex multiplication, by theorems of Coates

and Wiles [1] (for E(Q)) and Rubin [6] (for LLgg).
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Notation. For any abelian group A, A, will denote the n-torsionin A and

A ~=U A} If A isamodule for the appropriate Galois group, we will write H(L/F, A)
1

for H(Gal(L/F), A), H'(F, A) for H'(F/F, A), and H'F, E) for H'(F, E(F)).

Tools of the proof

Fix a prime number £ and a positive integer n. For any completion Q, of Q we have the

diagram

0 » EQ/EQ — HNQ,E;n) — HNQ,E)n - 0
(1) { | res, J res,
0 - EQ)4{"EQ,) - H(Q,Em - HY{Q,BE,;, - 0

and we define the Selmer group S“™ and the 4™-torsion in the Tate-Shafarevich group,
Il ,n, by
sUY = N res, ' image E(Q,),
0 - EQY2"EWQ) » S¥7 5 W n — 0.
To prove Kolyvagin's theorem it will suffice to show that S =0 for almost all £, and that
for other £ the order of S is annihilated by a power of £ which is independent of n.
For s e S“ write s, for the inverse image of res,(s) in E(Q,)/£"E(Q,). Our main

tool for bounding SUY s the following, which is proved using the local Tate pairings.

Proposition 1. Suppose p is a prime such that E(Q,) n= Z/2"Z, and suppose that
for some integer k there exists a cohomology class c, € H(Q, E) ;n satisfying
@) forall v#p, rcsv(cp) =0,

(i) resy(c,) has order K ;

Then for every se S(in), ,Eksp =0.



Proof. Foranyplace v of Q let ( , ), denote the local Tate pairing

(, Wi EQY/A"EQ,) xH!(Q,, E)n — Z/2"Z.
Forany se S®” and c € HI(Q,E),n, let ¢’ be any lift of ¢ to H/(Q,E n) in (1) and
define an element b(s, c¢) in the Brauer group of Q by the cup product

b(s,c) = suc” € HYQ, E;n®E ;n) = HXQ, p,n) = Br(Q) pn.
Here the isomorphism E ;n®E jn = 1 ,n is given by the Weil pairing. By the definition of the
Tate pairing ([5] §1.3, especially remark 3.5) we have
(s,» 1eS,(C))y = inv,(b(s, c)).

Thus

z (s, rES (C))y = 2 inv,(b(s, c)) = 0.

Applying this reciprocity law with a class ¢, as in the statement of the proposition we
conclude that (s, resy(cp)), = 0. But
E(Q,)/2"E(Q,) = E(Q) ;oo/ £"E(Qy) yoo = Z/£"Z,

so if res,(c,) hasorder 2™k the nondegeneracy of the Tate pairing shows that iksp =0. //

It remains now to construct such a cohomology class ¢, for sufficiently many p, with k
bounded and usually 0. Kolyvagin constructs such a c,, using Heegner points. Write 1 for
the complex conjugation on Q induced by our embedding of Q into C, and [t} forits
conjugacy class in Gal(Q/Q). If A is any 2-divisible Gal(Q/Q)-module, the action of T
gives a decomposition A = A" @ A". From now on, for simplicity we will assume that £ # 2,

andif K = Q(\/—3) we also assume £ #3. Write Dy for the discriminant of K.

Lemma 2. Suppose p is a prime not dividing ADgN, r>0, and Froby(K(E ,)/Q) =
[1]. Then if E denotes the reduction of E modulo p and a,=p+1-#[E(F,)],

@ £la, and 2|p+1,

(ii) p remains primein K,

(i) EQp) yr= E(F) r= Z/2Z, B(K)) 1) = EF2),0) =Z/2'Z.



Proof.  The characteristic polynomial of Frobenius actingon Er is T2-a,T +p, and the
characteristic polynomial of © actingon E,r=E(C) is T2- 1. Comparing these
polynomials modulo £" proves (i). The second assertion holds because Frob(K/AQ) # 1,
and the third because E(Q,),r= (E ;)" = E(R) yr and E(K}),r= (E0)" @ (E ). /

Suppose p is a rational prime which remains prime in X and p*N. Let O, be the
order of conductor p in &, and x the pointin Xo(N)C) corresponding to the pair
(C/0, (u00p)'1/0p).
The theory of complex multiplication shows that x, & XoMN)(K[pD) where K[p] denotes the
ring class field of K modulo p. The field K[p] is the abelian extension of K corresponding

to the subgroup K*C* 1_[(0I,®Zq)>< of the ideles of K. It follows easily that K[p] isa
q

cyclic extension of H of degree (p+1)/ug where ug = #(%)/2, K[pl/H is totally ramified at
p and unramified everywhere else, and T acts on Gal(K[p]/K) by -1. Define
Yp= n(xp) e E(K[p]). The only facts about Heegner points which we will need (other than

their natural fields of definition) are contained in the following proposition.

Proposition 3. i) uKTrK[p] ,H(yp) = a,¥H-
ii) For any prime p of K[p] above p, §p=§HF’°be E(Fpg), where ~ denotes

reduction modulo .

Proof. Fix an elliptic curve A defined over H, with complex multiplication by {Jy, so

that (A, A;) represents xy. Without loss of generality we may assume that A has good
reduction at all primes above p. The point x;, can be represented by (A, Ay) where
A’=A/C, is the quotient of A by a subgroup of order p. Let & denote the collection of the
p+1 subgroups of A of order p. The Galois group Gal(K[p]/H) acts transitively on
G/Aut(E), which has order (p+1)/ugx = [K[p]:H]. Thus, writing T, for the Hecke
correspondence on Xy(N),



Tp(xH) = E (A/C, (A/C)u) = Uk Z xp°.
Ce8 oeGal(K[p)/H)

Projecting to E via m proves the first assertion, since 7+ T, = aym. For the second, consider
the isogeny

0:(AAy) = (AL A
of degree p. Since p remains prime in K, both A and A’ have supersingular reduction at
p. so the reduced isogeny

¢:(AA) = ALAY
must be, up to an autdmorphism, Frobenius ([9] 11.2.12). This proves that ;Ep = fHFmb in
5'(0(N)(Fp2). By the universal property of the Neron model, n reduces to a morphism &
from Xy(N) to E, and applying © completes the proof. Vi

Remark. One can avoid using the universal property of the Neron model by requiring
instead that p not belong to a certain finite set of primes. This restriction does not interfere

with the proof of Kolyvagin's theorem.

Suppose p is a prime not dividing £DgN, r>0, and Frob,(K(E ;n)/Q) = [1]. By
Lemma 2, £'|ap and 2" | ug[K[p]:H], so there is (unique) extension H” of H of degree
£ in K[p]. Define

21 = ugTry ) (YpYp?) - @/ ) (yuryn®) € EH).

Corollary 4. Suppose p*iDKN and Frob(K(E ;)/Q) =[], and let z, be as above.
Q) TrH,m(zl) =0.

(i) Forany o € Gal(H/K), let ¢ denote any lift of ¢ to Gal(H/K). Then

Z 2% = - ((p+1+a,)/2"y.
0eGal(H/K)

Proof.  This follows without difficulty from Proposition 3. M



For each place v of Q let m, = #[H!(Q,"/Q,, E(Q,"")]. By [5] Proposition 1.3.8,
each m, is finite and all but finitely many are zero, so m(£) = sup{ord(m,) : all v of Q}
is a well-defined integer, equal to zero for almost all £.

Proposition 5. Suppose p* £DgN and Frobp(K(E 0/Q) =[], where r=n+m(2).
Then there is an element ¢, € HY(Q, E) ;n such that

i) res(c))=0 for all v#p,

if) the order of resy(cy) in Hl(Qp, E) yn is equal to the order of y in E(Kp)//tnE(Kp).

Proof.  First suppose th:K]. Then there is a (unique) extension K” of K of degree

2" in K[p], totally ramified at p and unramified at all other primes, and H" = HK". Define
z = TrH,/K,(zl) e E(X").
By Corollary 4, TrK,,K(z) =0. Fixing a generator ¢ of Gal(K’/K) gives rise to a group
isomorphism (which is not tT-equivariant, see below)
{ae EK): Try (@) =0}/(o-1EK") = H'(K /K, E(X")).
Define
¢, € H(K/K, E(K")) € HYK,E)
to be the image of z under this isomorphism.

Since T commutes with TrK[p] K L= L Since 1 also acts by -1 on Gal(K/K), we
conclude that c",“ = Cl;' Thus ¢y € (HY(K, E) Ir)+. But for £ > 2 the restriction map gives an
isomorphism HY(Q, E) ,r = (H!(K, E) lr)+, so ¢, e HY(Q, E) r. Finally, define
¢, = £™Pc € HIQ, E) pn.

For v #p, since K°/K is unramified at v,

res,(Cp) = 2" Pres, (cp) € AMVHNQ,"™/Q,, B(Q,™) r = 0
by definition of m(%).
To complete the proof of the proposition we must determine the order of resp(cp) in

Hl(Qp, E)n. Write I for the inertia subgroup of Gal(ﬁp/Qp), and consider the sequence
H(Q,, E);n — HI(I,, E@Qp)) ,n — HI(1, E(F))) ,n» = Hom(Gal(K/K), E ;n).



The first map is injective because its kernel, HI(QP““'/QP, E(Q,™))n, is O since E has
good reduction at p. The second map is an isomorphism because the kernel of reduction
modulo p is a pro-p group. The third map is an isomorphism because I, acts trivially on
E(F, » and K’Q,"™ is the unique abelian extension of Qp““r of exponent £'. Itis easy to
see that the image of ¢, under this sequence of injections is the homomorphism which sends
the chosen generator ¢ of Gal(K/K) to 2™P7 Thus the order of resp(cp) in
HY(Q,, E)n is the same as the order of £™*Z in E(F .

Corollary 4 shows that

27D = (p+1+a /ANy

Up to a factor of 2, #[E(F,2)] = #[E(F2)I/H(E(F,)] = p+1+a, By Lemma 2, (E(Fy2),=)
is cyclic, so we conclude that (p+1+a.p)/,2n maps E(Fpg)'/,i"ﬁ(sz)‘ isomorphically to
(E(F,2) ;n)". Therefore the order of 277 in E(Fpg_) is the same as the order of y in
E(K,)/£"E(K) = E(F2)/£"E(F 2). This completes the proof when 24[H:K].

If 2 | (H:K], there may not exist a field K” as above. In that case, use the point z; to
define c{ ;€ HI(H, E) ;. Then define ¢, to be the corestriction of ¢ to H!(X,E) and

proceed as above.

Corollary 6. Suppose p*lDKN, and Frobp(K(E 1n+m(;))/Q) =[1]. If k=20 and
y e ZMEK), thenforall se SU7, 2%, =0.

Proof. This follows immediately from Propositions 1 and 4.

For any te H(K, E n), write t for the image of t under the restriction map

) H!(K, En) — Hom(Gal(K/K(E ;nsm(2))), E gn) =K E prem()/K),

Lemma 7., Suppose te H'(K,E in)t and the image of t is cyclic. Then the order of t
is at most 2““’, where £° is the érder of the largest Q-rational cyclic subgroup of E ,~
and £° is the exponent of HI(K(E e /K, E jn).



Proof.  Since T is Gal(K(E jnsm(2)/K)-equivariant, its image is Gal(K/K)-invariant.
Since T acts on ?by +1, the image is in fact rational over Q. Thus if the image is cyclic,
the order of t is at most £°. The kernel of the restriction map (2) is

HIK(E jnsm(t))/K, Epn), so t has order at most 2570 ,

Proof of Kolyvagin's theorem
As above, we fix a pime £ not dividing #[Of(]. Suppose y has infinite order in E(K),
and let k =k(£) be the largest integer such that y e ,£kE(K) +E(K),, Fix any integer
n 2k + 1. First assume that
(3) E has no 2-isogeny defined over Q,
(4 HYK(E nim)/K, Epn) = 0,
both of which hold for all but a finite number of £ by Serre's theorem [7] or the theory of
complex multiplication. Under these assumptions we will show that 25N =,

Write r=n+m(4£). Fix se Sun), and as in Lemma 7 write s for the restriction of s
to Gal(Q/K(E ) and write 3? for the restriction of the image of y under the injection

E(K)/2"E(K)” = HY(K, E jn)".

Fix a finite extension F of K(E ,») so that both S and S? factor through G = Gal(F/K(E ;).

Choose any ye G, and choose any prime p, not dividing £DgN, such that
Frob,(F/Q) = [1t]. Then Froby(K(E ;)/Q) = [1], and Frob,(F/K(E 1) € [(yr)?] so

Fs,=0 & 5(H =0, and ye £'EK) o £ (2 = 0.
Since st =S5, and yi= -y,

S = 5 +3(er) = (1+05W)
V() = ) + ¥ = -0y

By Corollary 6, we conclude that for every ye G, either 2"?(7) € (E;n) or
150 e (B n)*. Therefore G = (£55)(E,n)) U (4" ) Y(E 2)"). Buta group
cannot be the union of two proper subgroups, so either ikg(G) C (Em) or

G c E . By Lemma 7 (using assumptions (3) and (4)) we conclude that either
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£5=0 in UV or £"¥ly=0 in E(K)/2"E(K). Since the latter is impossible by our
definition of k, we have shown that 255" =0,
Since k=0 for almost all £, this proves Kolyvagin's theorem except for the finite

number of £-parts which we have ruled out above. Without assumptions (3) and (4), using

Lemma 7 the proof above gives a somewhat weaker annihilator of Sun), but still one which is
independent of n (again using [7] or the theory of complex multiplication to show that the
exponent of HI(K(E pnem( /K, E yn) is bounded independent of n). Also, with a little more

care, one obtains a suitable annihilator when £ |#[(9’I((]. This completes the proof. Y/
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