ENVELOPES OF HOLOMORPHY AND HOLOMORPHIC DISCS

BURGLIND JORICKE

ABSTRACT. The envelope of holomorphy of an arbitrary domain in a two-dimensional Stein
manifold is identified with a connected component of the set of equivalence classes of analytic
discs immersed into the Stein manifold with boundary in the domain. This implies, in particular,
that for each of its points the envelope of holomorphy contains an embedded (non-singular)
Riemann surface (and also an immersed analytic disc) passing through this point with boundary
contained in the natural embedding of the original domain into its envelope of holomorphy.
Moreover, it says, that analytic continuation to a neighbourhood of an arbitrary point of the
envelope of holomorphy can be performed by applying the continuity principle once. Another
corollary concerns representation of certain elements of the fundamental group of the domain
by boundaries of analytic discs. A particular case is the following. Given a contact three-
manifold with Stein filling, any element of the fundamental group of the contact manifold whose
representatives are contractible in the filling can be represented by the boundary of an immersed
analytic disc.

0. Introduction

The notion of the envelope of holomorphy of domains in C" (or, more generally, in Stein
manifolds) is as classical as the notion of pseudoconvex domains. Nevertheless, basic questions
about envelopes of holomorphy are open. For instance, not much is known in general about the
number of sheets of the envelope of holomorphy. It is not clear in general when the envelope of
holomorphy is single-sheeted or at least (say smoothly) equivalent to a domain in the same Stein
manifold (see e.g. [22]) .

One of the most interesting problems in this respect is to understand invariants of the envelope
of holomorphy in terms of invariants of the original domain. It is known that the first Betti number
of the envelope of holomorphy does not excceed that of the original domain [13]. Moreover, it is
proved in [13] that the natural homomorphism between fundamental groups is surjective. In the
same vein the natural map between first Cech cohomologies is injective [20], but in the general
situation not too much is known beyond these results. Naive hopes are not justified (see e.g. the
paper [2].)

The problem of understanding invariants of the envelope of holomorphy in terms of invariants
of the domain is even interesting in the following particular case. The domain is a suitable one-
sided neighbourhood of the boundary of a strictly pseudoconvex domain a Stein manifold (for
instance, it equals the set {—e < p < 0} for a strictly plurisubharmonic defining function and
a small positive constant ) and the envelope of holomorphy is the domain itself. This case
reduces to understanding the topology of the Stein fillings of a contact manifold in terms of
the topology of the contact manifold and is well-known to symplectic geometers. Despite recent
progress and breakthroughs many problems remain open. For instance, there are examples of
contact three-manifolds that have a Stein filling with second Betti number strictly exceeding that
of the three-manifold and an estimate of the second Betti number of Stein fillings of a given contact
three-manifold is not known in general. For a contemporary account see [17].
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The general problem motivates the search for a geometric description of the envelope of holo-
morphy. It is well-known that any domain in a Stein manifold has an envelope of holomorphy.
Several constructions are known (see e.g. [10], [18], [14] ). It is not obvious how to obtain from
these constructions geometric information about the envelope of holomorphy.

We give here a new description of the envelope of holomorphy of a domain in a Stein manifold in
terms of equivalence classes of analytic discs. This description, in particular, implies that analytic
continuation to a neighbourhood of each point in the envelope of holomorphy can be performed
by applying the continuity principle once along a family of immersed analytic discs (see below for
details).

The approach has further geometric consequences which were not known before. To men-
tion only one of them, for each of its points the envelope of holomorphy contains an embedded
(non-singular) Riemann surface (and also an immersed analytic disc) passing through this point
with boundary contained in the natural embedding of the original domain into its envelope of
holomorphy. This is in contrast to what is known for polynomial hulls.

In the paper we focus on the case of Stein manifolds of dimension 2, which is in several aspects
the most interesting case. We believe that the main results are true in higher dimensions. It seems
they are true even in more general situations and we intend to work this out later.

1. STATEMENT OF RESULTS

Denote by X2 a Stein surface, i.e. a two-dimensional Stein manifold. Let G C X? be a domain.
For the description of the envelope of holomorphy we use analytic discs immersed into X? with
boundary in G. More precisely, we need the following definition.

Definition 1. Consider a holomorphic immersion from a neigbourhood of the closed unit disc
D C C into X2. The restriction d : D % X2 is an analytic disc.

If the boundary d(OD) of the disc is contained in G we will call the disc a G-disc. The set of
G-discs is denoted by G.

Fix a metric on X2. For this we fix a proper holomorphic embedding § : X2 :— C” into
Euclidean space C™ of suitable dimension n and pull back the metric induced on §X? by C*. (By
[3] one can always take n = 4.) Having in mind this metric on X? we will usually endow the set
G of G-discs with the topology of C'-convergence on the closed disc D.

When dealing with an individual G-disc we usually consider the generic case when its boundary
is embedded. The following definition selects those G-discs which participate in the continuity
principle.

Definition 2. A G-disc d is G-homotopic to a constant, or for short d is a Gy-disc, if there is a
continuous family of G-discs joining d to a constant disc. The set of Go-discs is denoted by Gy.

More detailed, the existence of the G-homotopy means, that there is a continuous mapping
F(t,z), t € I =10,1], z in a neighbourhood of D, such that for each ¢t € (0,1] the mapping
z — F(t,z) is a G-disc, moreover, F'(1,z) = d(z) and the mapping z — F(0, z) maps the disc to
a point which is then automatically contained in G.

Notice that the existence of a G-homotopy to a constant is equivalent to the existence of a
G-homotopy to an analytic disc which is embedded into G and whose image has small diameter.
In other words, Gy is the connected component of G that contains small analytic discs embedded
into G.

For convenience, in the sequel we will frequently use two ways of notation for a continuous map
A defined on a subset of R x C, namely A(¢, z) = A¢(z2).

The reason to consider Gg-discs is the following lemma which can be considered as continuity
principle applied to G.

Lemma 1. Any Go-disc d : D — X? can be lifted to a (zfm'quely deﬁned) immersiond, d : D % G
into the envelope of holomorphy G of G, such that P od = d and d(0D) C i(G).
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Here P : G — X2 is the natural projection and i : G — G is the natural embedding of G into
the envelope of holomorphy G with Poi=id on G.

Note that the lifted disc d may have less self-intersections than the disc d. We do not know a
description of those Gy-discs which lift to embedded discs in the envelope of holomorphy.

The proof of the lemma will be given below in section 3.

We are interested in the whole image d(ID), but it will be convenient to obtain each point in
the image as center of another analytic disc obtained by precomposing with an automorphism of
the unit disc. In detail, let d be a G-disc and p = d(z), z € D. Denote by ¢, an automorphism
of the unit disc D which maps 0 to z and consider d o ¢, : D — X2. The disc d o ¢, is a G-disc
with center p = d o ¢,(0). Multiple points of an immersed disc p = d(z1) = d(z2) correspond to
centers of different discs d o ¢, and d o p,,.

Points in the envelope of holomorphy may occur as centers of many different lifted G-discs.
Introduce an equivalence relation in the set Gy of Gy-discs. Notice that equivalent discs have the
same center.

Definition 3. The equivalence relation on Gy is the relation generated by the following two con-
ditions.

(1) Go-discs contained in G and having common center are equivalent.
(2) FEquivalence is preserved under homotopies of equally centered G-disc pairs.

Equivalently, in condition (1) we may consider analytic discs with images of small diameters
embedded into G instead of all Gy-discs with image in G.

The second condition can be rephrased in more detail as follows. A homotopy of pairs of equally
centered Gp-discs is a continuous family of ordered pairs of G-discs, i.e. a continuous family of
pairs of mappings (F(t, z), Fa(t,2)),t € I, z in a neighbourhood of D, such that for each ¢ € [0, 1]
both mappings Fj(t,z), z € D, j = 1,2, define Gp-discs and their centers p(t) = Fy(t,0) = Fy(t,0)
coincide (but may depend on the parameter ).

Condition (2) says the following: Suppose the initial pair of discs of the homotopy (i.e. the pair
corresponding to the parameter ¢ = 0) consists of equivalent discs, then so does the terminating
pair (i.e. the pair corresponding to the parameter t = 0).

In section 2 below we describe a construction which leads to building all possible pairs of
equivalent Go-discs according to definition 3. The construction will be given in terms of trees.
The motivation for considering the introduced equivalence relation is the following lemma which
will be proved in section 3.

Lemma 2. Centers of equivalent Go-discs lift to the same point in the envelope of holomorphy:
If dy and dy are equivalent Go-discs then di(0) = d(0) € G.

Our main theorem is the following.

Theorem 1. Let G be a domain in a Stein surface X2. Then the set of equzvalence classes of
Go-discs can be equzpped with the structure of a connected Riemann domain G over X2. The
natural projection P:G — X2 assigns to each equivalence class of discs their common center.
There is a natural embedding i : G — G Poi= id, which assigns to a point in G the equivalence
class represented by discs embedded into G (of small diameter) and centered at this point.

The Riemann domain G coincides with the envelope of holomorphy G of G.

The number of sheets of G over a point p € X? equals the number of equivalence classes of
Go-discs with center p.

It has been a classical fact that the whole envelope of holomorphy G of a domain G in a Stein
manifold X2 can be covered by the following successive procedure.

Put Dy = i(G) C G. Consider analytic discs immersed into G with boundary in Dy and call
them Dy-discs. See definition 1, but now G is replaced by Dy = i(G) and X? is replaced by
G. A continuous family of Dy-discs which jons a given Dy-disc d with a constant disc is called a
continuity-principle-family. The points in the image of d are said to be reachable by applying the
continuity principle once. See definition 2 with G replaced by Dy = i(G) and X? replaced by G.
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By the continuity principle (see e.g. [6]) any analytic function in #(G) has analytic continuation
to a neighbourhood of the image of d. This distinguishes the present situation from that of lemma
1. The discs of the family in Lemma 1 are immersed into X2 rather than into G. In the situation
of Lemma 1 near self-intersection points of the disc multi-valued analytic continuation may occur.

Let Dj;q, j = 0,1,...., be the open subset of G obtained from D; by adding all points of G
reached from D; by applying the continuity principle once. The classical fact is that G is equal
to the union of all Dj.

The theorem states that, actually, all points of the envelope of holomorphy G can be reached
from i(G) by applying the continuity principle only once. Moreover, another observation of Theo-
rem 1 is the following. Information about the topology of the envelope of holomorphy is contained
in the intersection behaviour of homotopies of Gp-discs (which depends on the Stein manifold in
which the domain is included).

Notice that there is no unique definition of Riemann domains in the literature. Here we use the
terminology of Grauert (see [8]). In this terminology a Riemann domain over an n-dimensional
Stein manifold X™ is a complex manifold of dimension n with no more than countably many
connected components which admits a locally biholomorphic mapping (called projection) to X™.
Such Riemann domains are separable ([11]). We do not require (as done e.g. in [10]) that analytic
functions on a Riemann domain separate points.

Together with the projection PG — X2 we will use the projection Py : Go — X? which
assigns to each individual Gy-disc its center, and the mapping Py : Go — G which assigns to each
Gy-disc the equivalence class it represents. Notice that Py = Po 750. Later we will use liftings
of mappings with respect to different projections. For instance, let E be a topological space and

1 : E — X? be a continuous mapping. A continuous mapping 9 : E — Gy is a lift of ¥ to Gy if

Py o1 = 1. Respectively, a continuous mapping 1& . E — G with Po 1/3 =1 is a lift of ¥ to G. To
specify which lift is meant we will either indicate the projection itself or the source and the target
space of the projection.

As a corollary of the theorem we obtain the following result which was surprisingly not known
before.

Corollary 1. Let G be a domain in a Stein manifold X2 and G its envelope of holomorphy. Then
for each of its point p the envelope of holomorphy G contains a (non-singular) embedded Riemann
surface (and also an immersed analytic disc) passing through p and having its boundary in i(G).

The proof of the corollary will be given below in section 11.

Corollary 1 should be contrasted to counterexamples known for polynomial hulls. Namely,
there are compact subsets K of C",n > 2, with the following property. There is a point in the
polynomial hull K such that for any small enough neighbourhood U of K there is no Riemann
surface with boundary in U passing through this point.

The following question seems natural.

Question 1. For a point p € G, what is the minimal genus of a (non-singular) Riemann surface
in G passing through p with boundary in i(G)?

This genus may serve as a measure how ”far” the point p is from i(G).

The second corollary states that for each closed orientable surface in G there is a homotopy
that moves a big part of it to i(G); what remains in G \ i(G) is an immersed analytic disc in G
with boundary in i(G). We may assume that the disc is either empty or belongs to G \ Go.

Corollary 2. Let G and G be as in the preceding corollary. Let f : S — G be a connected
closed orientable surface embedded into G. Then there exists a homotopy to a (singular) surface
F:S — G (F a continuous mapping), such that either F(S) is contained in i(G) or there is a
disc A C S such that F(S\ A) is contained in G and (for a suitable complex structure on A)
F: A — G is an immersed analytic disc in the envelope of holomorphy G.

In particular, F : S — G represents the same homology class in Hg(é) as the original surface.
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The condition that f is an embedding can be skipped. It is sufficient that f is continuous.

The obstruction to move a surface f : S < G to the lift i(G) of the original domain can be
described in different terms.

Denote by £¢ the set of loops in G that bound analytic discs in X? (equipped with the topology
of C! convergence). Let £& be the connected component of £ which contains constant loops. In
the situation of Corollary 2 a non-trivial analytic disc F : A — G emerges from the existence of a
non-contractible closed curve in the set £3 (see below section 11).

There is a variant of Corollary 2 for surfaces with boundary in i(G). We formulate only the
following special case of it.

Denote by ¢ the natural homomorphism from 7 (G) to 71 (G) which is induced by inclusion
i: G — G. Tt is known that ¢ is surjective ([13]). (Notice that this result of ([13]) can also be
obtained as an immediate consequence of Theorem 1, see below section 11.)

Corollary 3. Any element of the fundamental group of G which is in the kernel of ¢ can be
represented by a loop in i(G) which bounds an analytic disc that is immersed into G.

A reformulation of the corollary is the following. Any loop in ¢(G) which is contractible in G is
homotopic in i(G) to a loop that bounds an immersed analytic disc in G.

The corollary can be slightly strengthened. Namely, given any point p € G, the analytic disc
of Corollary 3 may be taken to pass through p. An analoguous remark holds for Corollary 2.

We do not know which elements of the kernel ¢ can be represented by boundaries of embedded
holomorphic discs.

We state separately the versions of Corollary 2 and 3 for Stein fillings. A relatively compact
strictly pseudoconvex domain {2 in a Stein surface is a Stein filling of the contact three-manifold
M3 if M? is contactomorphic to S with the contact structure induced by the complex tangencies.

Corollary 4. Let Q be a relatively compact strictly pseudoconver domain in a Stein surface X2
with boundary 0Q = M?3. Let f : S — Q be a connected closed orientable surface embedded into
Q. Then there exists a homotopy to a (singular) surface F : S — Q (F a continuous mapping),
such that either F(S) is contained in OQ = M3 or there is a disc A C S such that F(S\ A) is
contained in M3 and (with a suitable complex structure on A) F : A — § is an immersed analytic
disc in Q with boundary in M3,

In particular, F : S — Q represents the same homology class in Hy(Q) as the original surface.

Corollary 5. Let as before () be a relatively compact strictly pseudoconver domain in a Stein
surface X? with boundary 02 = M3. Denote by ¢ the homomorphism from m (M?) to m(Q)
induced by inclusion M3 — Q.

Then any element in the kernel keryp can be represented by the boundary of an analytic disc
immersed into Q.

Again, for any point p € € the disc can be chosen passing through p.

We do not know whether in the situation of Corollary 5 one can always find an embedded
analytic disc (in other words whether a "holomorphic version” of the loop theorem holds) or
whether the minimal number of self-intersections of analytic discs whose boundaries represent a
given element of the fundamental group of M3 determines a non-trivial invariant depending on
the contact manifold M3, the filling  and the element of the fundamental group.

Stepan Orevkov proposed to consider the following example where €2 is a tubular neighbourhood
of a Lagrangian torus in C2. In this case all elements in the kernel of the homomorphism ¢ can
be represented by boundaries of embedded analytic discs.

Example. Let T be the tube domain A @ iR? where A is the unit disc A {z? + 22 < 1} in R2.
The map exp : (z1,22) — (exp(z1),exp(z2)) is a covering from T onto a neighbourhood 2 of the
standard torus 9D x dD. The image of 9A x {0} (with counterclockwise orientation) under the
aforementioned mapping represents a generator of the kernel of the homomorphism ¢ : w1 (9Q) —

71(2). The analytic discs f+(2) = (z,Fiz),z € D, are embedded into the closure of T. Their
boundaries are homotopic to A x {0} with counterclockwise, respectively, clockwise orientation.
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The images of the discs under the map exp are embedded analytic discs in © whose boundaries
represent a generator of the kernel o, respectively, its inverse. Multiples of the generator can
be represented by the boundary of the following embedded discs. Consider N discs fy ;(z) =
(2,—iz +i¢;) in T,z € D, for N different points ¢; € [0,7). The analytic discs expofy ; are
embedded and pairwise disjoint. Join the boundaries of two consecutive discs by a Legendrian
arc. Suppose all Legendrian arcs are pairwise disjoint, without self-intersections and meet the
union of the boundaries of the discs exactly at the endpoints . Approximate the union of all the
analytic discs and all the arcs by a single analytic disc. (See below section 11 for details.) In the
same way we proceed with multiples of the inverse of the generator. The boundaries of such discs
represent all elements of the kernel.

Question 2. Let p,q and r be pairwise relatively prime integers and € # 0 a small complex number.
Consider the Milnor-Brieskorn spheres M (p, q,r) = {27 + 234 25 = e} S® € C? and their natural
filling.  What is the minimal numbers of self-intersections of an analytic disc whose boundary
represents a given element of the fundamental group of M(p,q,r)? What are these numbers for a
collection of elements that generate the fundamental group in the sense of semigroups?

We conclude with the following observation for the case M3 = 0 is a homology sphere.
Consider any embedded loop f : D — M? which bounds an analytic disc in the filling Q. We
may always assume that the loop passes through a given base point in M? (see below the sketch
of Lemma 23). The loop determines a unique element s; of the second homology H5(f2). Indeed,
consider the analytic disc f : D — € bounded by this loop and attach to it along the loop a
compact surface with boundary, the surface contained in M?3. We obtain a closed surface in Q.
Since Ho(M?) = 0 the homology class represented by the closed surface in Ho(Q2) does not depend
on the choice of the surface contained in M?3 that was attached to the loop. Further, two loops fi
and fa, f; : OD — M3 for j = 1,2, both bounding analytic discs in Q determine the same element
in Hy(Q) if they are homotopic in O through loops bounding analytic discs. We do not have a
satisfactory description of such homotopies. Notice that the set of homotopy classes of boundaries
of analytic discs (passing through a given base point) has the structure of a semigroup.

The present work was done at the Max-Planck-Institut fiir Mathematik and at Toulouse Uni-
versity with a CNRS grant. The author gratefully acknowledges the unbureaucratic support and
hospitality of these institutions. The author would like to thank N.Kruzhilin, S.Nemirovski and
S.Orevkov for enlightening discussions and a group of visitors of a Mittag-Leffler semester, in-
cluding N.Kruzhilin, L.Lempert, S.Nemirovski, S.Orevkov and A.Tumanov for their interest. The
author is also grateful to F.Forstneric and L.Stout for useful information concerning references.

2. A CONSTRUCTIVE DESCRIPTION OF THE EQUIVALENCE CONDITION
Call a pair of equally centered Go-discs an ec-pair for short.

Lemma 3. The set of all pairs of equivalent Gy-discs can be constructed by successively choosing
and applying a finite number of times one of the following procedures.

(i) Take a pair of small equally centered embedded analytic discs contained in G.
(ii) Take a pair of Go-discs that is homotopic through ec-pairs to a pair of equivalent discs.
(iii) Let dy, da, ..., dy be Go-discs such that consecutive discs di, dx4+1, k=1,2,...,N — 1,
are equivalent. Take the pair (di,dy).

Proof. Procedures (i) and (ii) give pairs of equivalent discs by conditions (1) and (2) of definition
3, respectively. Since an equivalence relation is transitive (iii) gives pairs of equivalent discs.

It remains to see that all pairs of equivalent discs can be obtained in this way. Consider the
property of a pair of discs to belong to the set constructed by the procedure described in Lemma 3.
This is an equivalence relation since it is symmetric and transitive. Moreover, it satisfies conditions
(1) and (2), and it is minimal with the latter property. Therefore it coincides with the previous
equivalence relation.

O
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Lemma 3 allows to characterize pairs of equivalent discs as those for which there exists an
associated planar rooted tree. (Such a tree is not uniquely determined for a given pair of discs.)
This goes as follows.

Recall that a rooted tree is a connected graph without simple closed paths with a vertex chosen
as root. If the root of the tree is not a multiple vertex we call the rooted tree simple. Vertices
that are different from the root and have only one adjacent edge are called leaves. For each pair
of vertices there is a unique path joining them. This allows to orient the edges of the graph
”towards the root”. We call the two endpoints of an oriented edge its minus-end and its plus-end
respectively. (Orientation is towards the plus-end.)

We will consider trees that are (embedded) subsets of the plane with edges being straight line
segments. The following additional structure is given. Edges whose plus-end is a common vertex
of the graph (incoming edges for this vertex) will be given a label and placed in the following way.
When surrounding the common vertex counterclockwise starting from a point on the first labeled
edge, we meet the edges in the order prescribed by labeling. There is at most one edge whose
minus end is a given vertex (outgoing edge for this vertex). The outgoing edge is always placed
between the last and the first labeled incoming edge (with respect to counterclockwise orientation).

Pairs of discs constructed by lemma 3 produce planar rooted trees in the following way.

Pairs of small equally centered embedded analytic discs contained in G correspond to leaves.
A single leaf (see procedure (i)) can be considered as a tree without edges with its root coinciding
with its leaf.

Providing procedure (ii) with a pair of discs corresponds to attaching an edge to the root of
its tree. The attached edge corresponds to the homotopy of ec-pairs, in particular, each point on
the edge corresponds to a single ec-pair. The minus-end of the attached edge is the root of the
previous tree, it corresponds to the original pair of equivalent discs, the plus-end is the root of the
new tree, it corresponds to the pair of discs obtained from the original one by applying procedure
(ii).

Procedure (iii) obtains a pair of discs dy, dy from the pairs (d,ds),...,(dn—1,dn) of equivalent
discs. This procedure corresponds to gluing trees together along their common root. More,
detailed, consider the rooted trees Ty, 15, ,..., Tn_1 corresponding to the aforementioned pairs
together with their label. Identify their roots. The obtained tree may be represented as subset of
the plane, so that the previous trees are ordered counterclockwise around the common root. We
obtain a new rooted tree, its root corresponds to the pair (dq,dy).

We proved the following lemma.

Lemma 4. To each pair of equivalent Go-discs corresponds a planar rooted tree such that the
root of the tree corresponds to this pair. Leaves correspond to pairs of small equally centered
analytic discs embedded into G. Edges correspond to ec-homotopies. For each multiple vertex
those edges that have the vertex as plus-end are ordered. In this order their ends correspond to
pairs (di,dz),(da,ds),..., (dy—1,dn). The respective multiple vertex of the tree corresponds to the
pair (di,dn).

There is a continuous mapping br:T — X2 It assigns to each point of T the class represented
by the equivalent discs corresponding to this point. The mapping ®p = Podp assigns to each
point of the tree the center of the equivalent discs corresponding to this point.

Consider a planar tree T that has a non-trivial edge. Its complement ® \ T in the Riemann
sphere is a simply connected domain. Consider a conformal mapping ¢ : D — C \T. The mapping
¢ extends continuously to the closed disc D. Consider the boundary curve ¢ : 9D — C of the
conformal mapping and reverse its orientation. Note that this curve is the limit of the simple closed
curves ¢(|z| = r), r < 1, r — 1, oriented suitably. The image of the limit curve is contained in
the tree T. We may think about the curve ”surrounding the tree counterclockwise along its sides.”
We have in mind that we associate to each edge of the tree its left side and its right side (copies of
the edge which are the limit of its shifts to the left, respectively to the right, when moving along
the edge according to orientation; recall that trees are oriented ”towards the root”).
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4

d da djg %d

FIGURE 1. Planar rooted trees associated to pairs of equivalent discs (leaves
indicated by white dots, roots by black dots)

Definition 4. For a planar tree T the non-parametrized curve represented by the curve ¢(9D)
with reversed orientation is called the pellicle of the tree T .

The punctured pellicle of the tree is obtained by removing from the pellicle the point over the
root and adding instead two endpoints over the root.

This means that the initial point of the punctured pellicle is related to the tree in the following
way. Consider all edges of the tree adjacent to the root and have them labeled as above, i.e.
counterclockwise when traveling around the root. Take the point over the root on the left side of
the first labeled edge. This is the initial point of the punctured pellicle of the tree.

Respectively, the terminating endpoint of the punctured pellicle is the point over the root on
the right side of the last labeled edge.

FIGURE 2. A planar rooted tree T" and a curve approximating its punctured pellicle

We will parametrise the punctured pellicle by an interval (standardly it will be the unit interval
[0,1]) with affine parametrization on the sides of the edges. We denote the punctured pellicle by
mr : [0,1] — C. The image of m covers the open edges of the tree T twice and covers the vertices
with, maybe, higher multiplicity.

We need the following definitions.

Definition 5. Let o be a curve in the plane and let ® o o be a curve in X2. A curve & in Go for
which Pyoa = ® o« is called a halo assigned to o and P.

Notice that the halo is a continuously varying family of analytic discs around points in the
image of the curve Py o & in X2. The latter curve is the curve of centers of the discs constituting
the halo. The curve & can be considered as a mapping with values in X2 of the trivial disc fibration
over the curve a. The restriction of the mapping to the respective circle fibration has values in G.

Definition 6. A planar rooted tree T with punctured pellicle mp together with a continuous
mapping ®1 : T — X? is called a dendrite. The mapping ®1 o myp is called the punctured pellicle
of the dendrite (opposed to the punctured pellicle mr of the underlying tree). If the mapping
O omy lifts to a mapping ’I%T to Go (i.e. Pyo ﬁ@T = ®pomy) we call ﬁzT the punctured halo of
the dendrite. The set (T, mr, (I)T,TC;LT) is called a dendrite with punctured halo and denoted by T.
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Recall that for each point ®7 o mp(t) in the punctured pellicle of the dendrite the value of the
halo at this point is an analytic disc centered at this point.

Note that we do not require here that the tree is associated to a pair of equivalent discs. In
particular, we do not require that the values of ® at the leaves are contained in G and the values
of %T at the leaves are discs embedded into G.

The following lemma holds.

Lemma 5. Let (dy,ds) be a pair of equivalent Go-discs. Then there exists a dendrite (T, mr, P, ﬁ%T)
with punctured halo rC;LT such that (for standard parametrization) T?LT(O) =d; and TC;LT(l) =ds.

Moreover, at each of the leaves of the tree the value of mr is an analytic disc of small diameter
embedded into G and its center, the value of 1 o mrp, is a point in G.

Further, there is a lift dr:T — G of ¢, Podp = by, such that Pyo mp = ®r omrp.

A dendrite with the properties described in Lemma 5 is said to be associated to the pair (dy, d2)
of equivalent discs.

Proof of Lemma 5. Let T be the planar rooted tree associated to the pair (di,ds) by Lemma 4.
Let ®7 be the mapping from the tree into X2 defined in that Lemma. We want to show that for
the punctured pellicle mp of the tree T' the mapping @ o mp lifts to a continuous mapping mr
with ’I(;lT(O) = d1 and T(;LT(I) = d2.

Recall that edges of the tree T correspond to homotopies of (ordered) ec-pairs. A homotopy
of pairs of G-discs consists of two homotopies of Gy-discs, namely the homotopies defined by the
first labeled, respectively second labeled, discs. Assign the first homotopy of Gy-discs to the left
side (i.e. to the first side when surrounding the edge counterclockwise starting from the root), and
the second homotopy to the right side of the edge.

The statement of the lemma can be proved by induction using the successive procedure of
construction described in lemma 3.

First we consider trees consisting of an edge adjacent to a leaf. Change slightly those pairs
of discs which correspond to points close to the leaf so that the pair associated to the leaf itself
consists of two equal discs. Then the above described procedure gives a continuous mapping from
the punctured pellicle of the edge into the set of Gy-discs with the desired values at the sides over
the root. The value of the punctured halo at the leaf is a small disc embedded into G.

In the case corresponding to procedure (iii) there are several rooted trees T;, J =1,..., N — 1,

and we assume that for each tree T; there is a continuous lift 7%7*_7. of &7, o mr,; to Go which
coincides at the left, respectively right sides over the roots with d;, respectively d;;1. The trees
are glued together at their root and placed in the plane counterclockwise around the common
root. The punctured pellicle of the new tree is obtained by gluing the right side over the root of
T} to the left side over the root of T}, ;. It is clear now that the values of the punctured halo of
the trees T; match so that for the new tree 7" we obtain a continuous lift of ®7 o my into Gy. At
the leaves the halo takes values in the set of small analytic discs embedded into G.

The general case corresponding to (ii) is easier and left to the reader. O

We will identify rooted trees realized as subsets of C if there is a piecewise affine homeomorphism
of the plane mapping one tree to the other fixing the root and mappings edges (i.e. straight line
segments joining vertices) to edges. We will identify the parametrised punctured pellicle and halo
of such trees if they are obtained by precomposing with the mentioned homeomorphism.

We will not distinguish between different parametrizations of the pellicles and of the halo for a
given embedding of a tree into C if the parametrization does not play a role.

3. PLAN OF PROOF OF THE THEOREM
The proof of the theorem is divided into three steps according to the following propositions.

Proposition 1. The set of equivalence classes of Go-discs can be equipped with the structure of a
connected Riemann domain (G, P) over X2. The projection P associates to each equivalence class
its center. There is a natural embedding i : G — G of G into G, such that P oi =id on G.
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FiGURE 3. Matching the halo at common endpoints of punctured pellicles of two trees

Proposition 2. For each analytic function on G its push-forward to i(G) extends to an analytic
function on G.

The most subtle part of the proof of the theorem is the following proposition.
Proposition 3. The Riemann domain G is pseudoconvex.

The concept of pseudoconvexity of Riemann domains over C" goes back to Oka ([15]). Oka
showed that pseudoconvex Riemann domains over C™ are holomorphically convex (i.e. hulls of
compacts with respect to analytic functions on the Riemann domain are compact.) In the paper
[1] the notion of pseudoconvexity of an arbitrary complex manifold is introduced. Moreover, the
authors present several equivalent characterizations of pseudoconvexity and extend Oka’s result
to Riemann domains over arbitrary Stein manifolds. Together with results of Grauert ([8]) this
implies the following theorem.

Theorem DGO. A pseudoconvexr Riemann domain over a Stein manifold is a Stein manifold.

This theorem shows, in particular, that holomorphic functions on pseudoconvex Riemann do-
mains separate points (see [8] and [1]).

The three propositions imply the Theorem 1. Indeed, propositions 1 and 3 show that the set of
equivalence classes of G-discs can be equipped with the structure of a Riemann domain (G’, ’ﬁ)
over X2, and moreover G is a Stein manifold. Proposition 2 shows that Gis a holomorphic
extension of G (see [10] , chapter 5..4). Therefore G coincides (up to a holomorphic isomorphism)

with the envelope of holomorphy G (see [10] , theorem 5.4.3). O
We will provide now proofs of the propositions.

Proof of Proposition 1. We start with the construction of a complex atlas on the set of equivalence
classes of Gg-discs. Take an equivalence class d and choose a representative d € d. Denote the
point d(0) € X2 by p. Associate to d a Riemann domain Ry = (Vy, Fy) over X2 such that d lifts to
it as an embedded disc and, moreover, R4 is foliated by analytic discs close to the lifted one. Such
a Riemann domain may be constructed in a standard way. Take a small tubular neighbourhood
Vg = (14+¢)D x 6D of D x {0} in C2. Here ¢ > 0, § > 0 are small numbers. Put Fy(z;,0) = d(z1),
|21] < 1+ ¢, and choose a holomorphic vector field V : V; — TX? such that V|(1 + ¢)D x {0} is
transversal to Fyy(z,0), z € (1+¢)D. Denote by ® its flow. Then, taking Fy(z1, 22) = @, (F4(z1,0))
and shrinking the Riemann domain (Vy, Fy) if necessary, we arrive at a Riemann domain that has
the required properties. For each 2o, |22| < d, the analytic disc Fy | D x {2} is a Gp-disc since
the central disc d is a Gy-disc.

Consider now the set of equivalence classes of Gg-discs. Take an arbitrary element d of this set,
choose a representative d and associate to it a Riemann domain R;. We want to define a Euclidean
set in the set of equivalence classes that contains d. For this purpose we use the discs of the foliation
of R4 in the following way. Choose a neighbourhood Ny of zero in Vj so that Fj is biholomorphic
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from Ny onto a neighbourhood Qg of p in X?2. Associate to each point ¢ € Qg the unique disc
d? of the foliation of Rd which passes through ¢, normalized so that ¢ becomes its center. Take
the equ1valence class d? which is represented by d?. Define the set Nd = {dq 1 q € Qq} and the
mapping Py : N4 — Qd Pd(dq) = ¢. Call this set a standard nelghbourhood of d associated to
the representative d € d the Riemann domain R4 and the set Q4. Call Pd the related standard
projection.

The following lemma implies that standard neighbourhoods form a basis of a Hausdorff topology
in the set of equivalence classes of G-discs.

Lemma 6. Let dl, and dy respectwely, be equivalence classes of Go discs. Suppose N1 and Ny
are standard neighbourhoods of di and dg, respectively, and Py Ny — Q1 and Py Ny — QQ
are the related standard projections onto the open subsets Q1 and Qg of X2. Suppose Ni and Ny
intersect. Let d be a point in their intersection, hence Py(d) = Py(d). Denote the latter point by
p. It is contained in Q1 N Q5.

Then Ny and Ny intersect over the whole connected component QP of the intersection Q1 N Q2
which contains p. In other words, for q € QP the inclusion Py *(q) = P; ' (¢) € Ny N Ny holds.

It is clear from the lemma, that standard neighbourhoods form the basis of a topology. The
lemma also implies that this topology is Hausdorff. Indeed, equivalence classes of Gy-discs with
different center have obviously non-intersecting standard neighbourhoods. Let now a?l, and d» be
distinct equivalence classes with equal center. Take standard neighbourhoods ’ﬁ N — @ of cz
] =1,2. Let QP° be the connected component of Q1) Q2 that contains the common center pg of
dy and dy . Then by the lemma 73 (QPO) are disjoint standard neighbourhoods of the d

Proof of lemma 6. Let ¢ be any point in QP. Join p with ¢ by a curve v in QP, v : [0,1] —
QP, v(0) = p, v(1) = q. Let 'ijdéfﬁfl o~, j = 1,2. By construction the equivalence class
45(t), j = 1,2, t € [0,1], is represented by the unique disc of the foliation of R4, which passes
through ~(¢) normalized so that its center becomes «y(¢). Denote the respective normalized disc
by d]”(t). For t = 0 the discs dj“’(t), j = 1,2, coincide with the central discs d; of the foliation.
By the conditions of the lemma the discs d; and dy are equivalent, hence for ¢ = 0 the pair
(d,"®,dy YD) consists of equivalent discs. Therefore, by Definition 3 (see (ii)) for each t € [0,1]
the pair consists of equivalent discs. For t = 1 the pair coincides with (d;7,d2?). By construction
the respective equivalence classes d1 = dgq coincide with the respective points of N over q. The
lemma is proved. O

The standard neighbourhoods equip the set of equivalence classes of Gy-discs with the structure
of a Riemann domain over X? which we denote by (G,’ﬁ) The projection P assigns to each
equivalence class of Go-discs its center.

Prove that there is a natural holomorphic embedding of G into G. Indeed, take any point
p € G. All analytic discs with center p and sufficiently small diameter are entirely contained in G
and equivalent to each other (see Definition 3, (i)). Associate to p € G this equivalence class of
discs which is a point p € G. The mapping 7, which maps p to p is locally biholomorphic according
to the way an atlas is introduced on G. The mapping is globally injective and Poiis the identity
mapping on G. Hence 7 is biholomorphic onto its image.

It remains to show that G is connected. This is an easy consequence of the following two
lemmas which will also be needed further.

Lemma 7. Letd: D — X2 be a Gy-disc. Let U be the connected component of {¢ € D : d(¢) € G}
which contains OD. Then for any z € UND the disc d o ¢, is equivalent to (small) discs centered
at d(z) = do ,(0) and contained entirely in G.

Lemma 8. Consider the set of analytic discs d : D — X? such that d extends to an analytic
mapping in a neighbourhood of D. Endow the set with the topology of C'-convergence on the
closed disc D. Then the set of Go-discs is open in this space and the mapping which assigns to
each Go-disc its equivalence class in G is continuous.
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Postpone the proof of the lemmas for a moment and finish the proof of proposition 1.

End of proof of proposition 1.

We show that any point in G can be connected with a point in #(G) by a path. Let d € G and
let d be a representative of d. Take a segment [0,7] C D in the unit disc with d(r) € G. Then
do s, t €[0,7], is a (continuous) curve of Go-discs. By lemma 7 the disc d o ¢, is equivalent
to small discs through d(r) € G that are entirely contained in G. Taking equivalence classes
dy = @, t € [0,7], and applying lemma 8 we obtain a curve in G with dy = d and d, € i(G).
The proposition 1 is proved. U

Proof of lemma 7. Since d is a Go-disc there is a homotopy of Go-discs ds, s € [0, 1], which joins
dy = d with a small disc dy embedded into G. Consider a continuous path z; in D, s € [0, 1],
such that for each s the point z, is in the connected component U of {¢ € D : ds(¢) € G} which
contains OD. The normalized discs d o ¢, are centered at ds(zs) € G.

Consider a second continuous family of Go-discs Dy, s € [0, 1], consisting of small analytic discs
embedded into G and centered at ds(zs). Then the two discs dgo ., and Dy are equivalent, hence
so are the discs dy o p,, and D; (see conditions (1) and (2) defining the equivalence relation). O

Proof of lemma 8. Let d be a Gy-disc and d € G its equivalence class. Choose a Riemann domain
Ra = (Vy, Fy) foliated by Go-discs with d being the central leaf. Let Ny C V; be a neighbourhood of
zero and let Q4 C X2 be a neighbourhood of d(0) in X2 such that F,; : Ny — Qg is biholomorphic.
Let D : D — X? be an analytic disc that is close to d in the topology of C'-convergence on D such
that D extends analytically to a neighbourhood of D. Then D is an immersion of a neighbourhood
of D with D(0D) C G and D(0) is close to d(0). After possibly decreasing the neighbourhood of
D on which D is given there is a unique lift of D to the Riemann domain R4 that passes through
the point F;*(D(0)). The lifted disc is equivalent to the disc of the foliation of Ry that passes
through this point. Continuity of the mapping and openess of the set of Gy-discs are now clear.
O

The following two lemmas concern genericity of one-parameter families of analytic discs and
will be used in the sequel. Denote the unit interval by I = [0, 1].

Lemma 9. Let ¢ > 0 be a small number. Any continuous mapping F : I x (1+¢)D — X? that
is fiberwise holomorphic can be approvimated uniformly on I x (1+ 5)D by a continuous mapping
that is fiberwise a holomorphic immersion.

The approximation may be done keeping the centers of the discs fized.

Lemma 10. Let € be a small positive number. A continuous mapping F : I x (1 +&)D — X?
that is fiberwise a holomorphic immersion can be approzimated uniformly on I x (14 5)D by
a holomorphic mapping F in a neighbourhood of I x (1 + 5)D that is fiberwise a holomorphic
immersion. Moreover, the approzimation can be made in such a way that F coincides with F on
{1} x (1 + £)D and is locally biholomorphic in a neighbourhood of {1} x (1 + 3&)D.

Proof of Lemma 10. Assume first that X2 equals C2. Decreasing € > 0 we may replace F by a
C'-mapping which coincides with the previous one on {1} x (1+¢)D and has injective differential
on [1 —6,1] x (14 ¢)D for some small positive number §. This can be done so that the new
mapping is uniformly close to the old one and is fiberwise a holomorphic immersion. Denote the
new mapping as before by F.

The mapping F' can be expressed by Taylor series in the z-variable that converge uniformly for
telandz€ (14 3)D:

F(t,z) =) ap(t)z".
k=0

We obtain a uniform estimate for the coefficients

lax(t)] < M(1+ Zs)*k, k=12 .. tel,
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for a constant M not depending on k and ¢t. A similar estimate holds for the ¢-derivatives aj (t) of
the coefficients. The functions

o) N
Fn(t,2) =Y ar(1)zF + ) (ak(t) — ar(1))2"
k=0 k=0

converge to F uniformly on I x (1+ §)D and £ Fy(t,2) converge uniformly to 2 F(t, z) on this
set. It remains to approximate finitely many of the a; in C'([0,1]) by analytic functions in a
neighbourhood of [0, 1] so that their value at 1 is fixed and the derivative at 1 converges to aj (1).

For general Stein surfaces X2 we consider a holomorphic embedding § : X2 — C* and proceed
as above with the coordinate functions of the mapping § o F. The image of the approximating
mappings is contained in a small tubular neighbourhood of FX?2. It remains to compose with a
holomorphic projection of the tubular neighbourhood onto FX?2. O

Proof of Lemma 9. The lemma follows from the holomorphic transversality theorem ([12], see also
[4]) by standard dimension counting. For convenience of the reader we give the short argument.

After uniform approximation on I x (14¢)D we may assume that the mapping F' is holomorphic
on Y2¥/U x (1+ %s)]D) for a neighbourhood U of I in C, in other words F' is a holomorphic mapping
from the Stein surface Y2 into the complex manifold X2. We may assume that the restriction
F[0,1] x {0} is the same as before and the mapping is a fiberwise immersion near the set U x {0}.

Denote by A the set of all elements in the space of 1-jets J} (Y2, X?) of holomorphic mappings
from Y2 to X2 which have vanishing derivatives in the z-direction. A is an analytic submanifold
of Ji (Y2 X?). A mapping F from a subset of Y2 to X? is fiberwise (for fixed t-variable) an
immersion if its 1-jet extension j1F avoids A.

Since the 1-jet extension of F restricted to |U x {0} avoids A, by the holomorphic transversality
theorem ([12], see also [4]) the mapping F' can be uniformly approximated on relatively compact

[e]

open subsets Y of Y2 by holomorphic mappings F with 1-jet extension transversal to A, fixing its
I-jet on U x {0}. Take for Y a set of the form U x (1 + 5)D for a relatively compact open subset

U of U containing I.
Note that A has real codimension 4 in J,%Ol(Yz,X 2) and j'F maps the real 4-dimensional

manifold Y into J}. (Y2, X?). Hence for a curve J C U which is a small perturbation of I the
restriction of F to J x (1 + §)D has the desired property: its 1-jet extension avoids A. O

Proof of lemma 1. Consider the subsets ¢=([0,1) x D) {J ([0,1] x dD) and ¢¢ = ({0} x D) U
([0,1] x dD) of R x C and their convex hull €=/[0,1] x D.

Recall that the most elementary version of the continuity principle states that any holomorphic
function in a neighbourhood of the set ¢ (more generally in a neighbourhood of ¢g) in C? extends
to a holomorphic function in a neighbourhood of € in C2.

The proof is completely elementary: The Cauchy type integral over the circles {t} x (1 + )0D
(¢ > 0 small and t € [0,1]) defines an analytic function in a neighbourhood of € which coincides
with the original function in a neighbourhood of the bottom disc {0} x D.

Let d be a Gyp-disc. Let F be the mapping of lemma 10. For any analytic function ¢ in G the
function g o F is analytic in a neighbourhood U of ¢¢ = ({0} x D) U ([0,1] x D) . By the
continuity principle g o F extends analytically to a neighbourhood of ¢ = [0, 1] x D, in particular
it extends analytically to a neighbourhood V' of {1} x D.

The neighbourhood V' together with the mapping F define a Riemann domain over X?2. Use
the mapping F to glue the Riemann domain to the domain G along a suitable connected neigh-
bourhood of {1} x dD. Any analytic function g on G extends analytically to the union of G with
the Riemann domain.

Identify points in the union which are not separated by extensions of holomorphic functions on
G. This factorization gives a Hausdorff space (see [10] for the case of C? and [18] for the general
case), and hence a Riemann domain which is an extension domain of G the points of which are
separated by analytic functions. It is biholomorphically equivalent to a subset of the envelope of
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holomorphy (the biholomorphic mapping being compatible with projection), see e.g. [10] The
described procedure gives an immersion d of the Gy-disc into G such that d = P o d and d(@]D)) is
contained in 7(G). The lemma is proved. O

Proof of lemma 2. The lemma is true for two discs of small diameter embedded into G. Indeed, the
mapping ¢ maps the center of both of them to the same point in 7(G). The statement of the lemma,
is preserved under homotopies of pairs of equally centered G-discs. Indeed, let (F} (¢, ), Fa(t,+)),t €
I, be such a homotopy. Suppose for d; = F;(0,-) the desired equality d;(0) = d(0) holds.

Apply lemma 1 to each disc Fj(t,-) with t € I, j = 1,2. We obtain a unique lift Fj (t,-) of each
of the discs to G. As in the proof of lemma 8 for fixed j the lifts of the discs depend continuously
on the parameter t. For j = 1,2 the curve F;(t,0) is a lift to G’ of the same curve in X2, namely,
of the curve of the common centers Fj(t,0) = F5(t,0) of the pairs. Since by assumption the lifts
of the centers coincide for ¢ = 0, by uniqueness the lifts of the whole curve coincide. The lemma
is proved. O

Proof of proposition 2. Take for each equivalence class of G-discs a representative and consider
the lift of its center to the envelope of holomorphy G, (see Lemma 1). By Lemma 2 this point
does not depend on the choice of the representative but only on the equlvalence class. This defines
a continuous mapping p : G — G which respects projections: Po p = P. Hence p is locally
biholomorphic.

This map maps the set i(G) to i(G) so that P o p = P on (G). The analytic continuation of
functions from Z(G) to the envelope of holomorphy G determines analytic continuation of functions
from E(G) to G. The statement of the proposition follows. O

4. PSEUDOCONVEXITY OF THE RIEMANN DOMAIN G

We come to the most subtle part of the proof of the theorem, namely the proof of Proposition
3. In this section we reduce Proposition 3 to a lemma with which it is more convenient to work.

Our goal is to prove that the Riemann domain G is p-convex in the sense of Docquier and
Grauert (see [1], p. 105/ 106). Docquier and Grauert proved that this convexity notion is the
weakest of the equivalent conditions for pseudoconvexity of a Riemann domain over a Stein man-
ifold.

Recall the notion of pi-convexity for convenience of the reader. Denote by CD? the set D? U
(D x OD). This subset of the closed bidisc is obtained by removing from D its ”open face” 9D x D.
Following Grauert we denote by dG the "boundary of G in the sense of ends” defined by filters
([1], p- 104, [6], p.100). The notion of pi-convexity uses the definition of an R-mapping. An
R-mapping into the Riemann domain G is a continuous mapping ¢ from the closed unit bidisc D
into the closure G U G of the Riemann domain G that has the following properties.

M (D) ¢ G,

(I) ¢(CD?) C G

(IIT) The mapping P o ¢ extends to a biholomorphic mapping of a neighbourhood of the closed

bidisc D into X2.

According to the definition of Docquier and Grauert Gis pi-convex, equivalently pseudoconvex,
if each end p € OG of G has a neighbourhood U (p) in G U dG such that no R-mapping with image
in U(p) exists. We will prove that any mapping satisfying (II) and (III) will violate (I). More
precisely, denoting the extension of the mapping Po ¢ to a neighbourhood of the closed bidisc
(see (III)) by ¥ and the mapping ¢ extended to a neighbourhood of CD? in C? by \il, proposition
3 reduces to the following statement.

Proposition 3’. Let U be a biholomorphic mapping from a neighbourhood ./\/’(72) C C2 of the
closed bidisc onto a subset of X2. Suppose the restriction of U to a nezghbourhood N(CD?) of CD?
lifts to a biholomorphic mapping ¥ onto a subset of G such that P oV = U on N(CD?). Then
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the mapping ¥ lifts to a biholomorphic mapping, again denoted by 0, from a neighbourhood of the
closed bidisc onto a subset of G, such that P oW =W on this neighbourhood.

To prove proposition 3’ we have to show that for any point p in the face 9D x D (= D \ CD?)
of the bidisc there is a neighbourhood U of p and a lift of the mapping ¥ | U to G which coincides
with ¥ on U ND2. After rotation in the first variable we may assume that p € {1} x D.

Consider the intersections of the closed bidisc, respectively of the set CD?, with the set [0, 1] x D.
The first intersection is equal to € = [0,1] x D, the second equals ¢ = ([0,1) x D) {J ([0, 1] x D).

It will be enough to prove proposition 3’ for N° (@2) replaced by a neighbourhood of € and
N(CD?) replaced by a neighbourhood of ¢ . Moreover, since lifting is an open property it is
enough to prove the following proposition.

Proposition 3”. Suppose ¥ : € — X2 is a continuous mapping which is fiberwise a holomorphic
immersion (of a neighbourhood of the closed disc D in C into X?). Suppose W|c lifts to a continuous
mapping ¥V : ¢ — G with P oV = W. Then the mapping ¥ on the whole set € admits a lift to G.

Recall the following reformulation of the property to admit a lift to G.

A mapping ¥ from a set E C € into X? lifts to a mapping U : E — G iff for each point
(t,z) € E there exists a Go-disc d(; ) with center at W(¢, z) which represents the equivalence class
\i/(t7 z) = ci(t,z) and, moreover, the equivalence classes dA(tyz) depend continuously on (¢, z).

Let ¥ : ¢ — X? be a mapping for which the restriction to ¢ lifts to a continuous mapping into
G. Write U, ()2 W(t,-) and let U,(-) be the lifted mapping where it is defined.

The following simple lemma allows to modify the family ¥; to obtain a family with a stronger
property of the initial disc: Namely, one can assume that the initial disc has small diameter and
is embedded into G instead of assuming that through each of its points there is a Gg-disc.

Lemma 11. Under the conditions of Proposition 3” there is a continuous family of analytic discs
O, = ®(t,:), ®: ¢ =1[0,1] xD — X2, which coincides for t close to 1 with the family of the
previous discs, i.e. ®(1,z) = U(1,z) for z € D and t close to 1, and has the following properties:
(1) @ | ¢ lifts to a mapping ® : ¢ — G.
(2) The lift o : D — G of the disc D¢ is embedded into i(G). Its projection ®o(D) = Pody (D)
is an analytic disc of small diameter embedded into G.

Proof. We will extend the family ¥(¢, z) for negative values of ¢ and reparametrize in the parameter
t to obtain property (2).

The extension is constructed as follows. According to the conditions the disc ¥o = (0, -) lifts
to a mapping \ilo :D— G

For t € [—1, 0] we define a mapping U, as a contraction of ¥y along the radius. More precisely,
choose a small enough positive number o and define ¥, ()= ¥y (p(t)z), z € D, for an orientation
preserving diffeomorphism p : [-1,0] — [o, 1].

Connect the center Wy (0) of the lifted disc o with a point on i(G) by a curve h : [-2,—1] — G.
Associate to the curve a continuous family of analytic discs ¥, : D — G, ¢ € [—2, —1], such that
the curve of centers W,(0) coincides with h(t), ¢t € [—2,—1] and the analytic disc ¥_; coincides
with the previous analytic disc z — \ilo(oz). If o > 0 is small enough such a family can be found.
Indeed, one can take small analytic discs embedded into G with center h. Moreover, this family
can be chosen so that U_, is an embedding into E(G) Projecting to X? gives a family ¥, = 750@,5,
t € [-2,—1], which is a continuous extension of the family ¥, ¢ € [0, 1].

The mapping @ is obtained by changing the parameter ¢ by an orientation preserving diffeo-
morphism of the interval [—2,1,] onto [0, 1] which is the identity near 1. O

Lemma 13 below will be the key for proving proposition 3”. We will state the Lemma after
formulating the weaker lemma 12 which considers a single analytic disc instead of a family of discs.
Lemma 12 is easier to state than Lemma 13. Later we will formulate a more elaborate version of
lemma 12 which will be used in the proof of the corollaries (see Lemmas 17 and 18 below).
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Lemma 12. Let ® : D — X2 be an analytic disc such that its boundary lifts to G. Then through
each point ®(2),z € D, passes a G-disc (but maybe, not a Go-disc).

Lemma 13. Let ® : € — X2 be a continuous family of analytic discs that satisfy conditions (1)
and (2) of Lemma 11. Then the mapping ® lifts to a mapping d:¢-G.

Lemmas 11 and 13 imply proposition 3”. In the following sections we will prove Lemmas 12
and 13.

5. NEURONS

This section is based on the key observation stated in Lemma 14 below. Start with the following
definition.

Definition 7. Let « be a piecewise smooth curve in the plane. (It may be a mapping of a closed
interval or of the circle). We call a piecewise smooth curve o* in the plane an excrescence of «
if o is obtained by cutting o at finitely many points and pasting each time on the “right” of «
(according to its orientation) the punctured pellicle of a planar rooted tree. We require that the
trees are pairwise disjoint and meet o exactly at their roots.

Let o be a continuous mapping of the image of a into X? which has a continuous lift & to G,
Pos=o0.

Suppose there is an excrescence o and extensions o* and 6* of o and & defined on the image
of a*, Pos* = o*, with the following property. There is a halo o for which Pyo o’ =6%oa*.

Then we say that o has an excrescence o with halo o associated to 6.

Lemma 14. Let o be a piecewise smooth curve in the plane such that small shifts to the right of
the smooth parts do not meet the curve. Let o be a continuous mapping from its image into X2
which admits a lift 6 to G. Then there exists an excrescence o with halo o associated to .

Proof. Let a be a mapping of the unit circle into X2. (For mappings of an interval the proof is
the same.) Cover the circle by a finite number of closed arcs with pairwise disjoint interior so that
on each arc one can choose a continuous family of Gy-discs representing 6 o a. At each common
endpoint of two of the closed arcs we obtain two equivalent Go-discs dj_ and dj (limits from the
left, respectively from the right of the point). Consider for each of the discontinuity points ¢; a
tree T} rooted at a(t;) and corresponding to the respective pairs of equivalent Go-discs by Lemma
4. Realize the trees as pairwise disjoint subsets of the plane, each attached to the curve on its
"right” side and meeting the curve exactly at the root. Associate to each tree T} the structure of

a dendrite with halo 7(7)”LTJ, such that T(;’LT]. takes the value dj_ at the initial point and the value dj at
the terminating point of the punctured pellicle of the tree T;. Cut the curve at each discontinuity
point and paste the punctured pellicle of the respective tree. Denote the obtained curve by a*.
Extend o and ¢ by the mappings @7, and qBT]. (see Lemma 5) to each of the trees and hence to
each punctured pellicle and denote the extended mappings by ¢* and 6*. By the choice of the
dendrites the mapping o* o o lifts to Gy. The lift is the required halo o’

O

Lemma 14 will be applied, in particular, to boundaries of analytic discs. We need the following
terminology. It will be convenient to consider analytic discs up to reparametrization by conformal
mappings of simply connected planar domains to the unit disc.

Definition 8. 1)(Generalized disc) Let D be a relatively compact simply connected domain in
the complex plane with smooth boundary. Let T; be a finite collection of pairwise disjoint planar
trees. Suppose the trees have pairwise different root on 0D and meet the closure D of the domain
ezactly at the root. Denote by T the union \JT; of the trees. The set v = D|JT is called a
generalized disc, the set v\ D is called the boundary of the generalized disc v and the excrescence
of D (traveled counterclockwise) determined by the union of the trees is called the pellicle of the
generalized disc v and is denoted by m.
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2) (Preneurons) Suppose, moreover, that there is a continuous mapping ® : v — X? that is
analytic on D. Then the triple (v, m,®) is called a preneuron. We will call ® o m the pellicle of
the preneuron.

Points on the circle which are not roots of attached trees are called regular points.

3) (Halo of a preneuron) If the pellicle ® o m of the preneuron admits a continuous lift m to Go
then the preneuron together with the mapping m is called a preneuron with a halo.

4) (Main body) The restriction of the mapping ® to the closure of the domain, ® : D — X2, is
called the main body of the preneuron.

5) (Azon and neuron) A non-empty dendrite whose tree consists of a single edge with leaf mapped
into G (or consists of a single leaf mapped into G) is called an axon. A preneuron with an azon
attached is called a neuron. A halo of a neuron is a lift m of the mapping ® om to Gy with the
additional property that the value ofr(;z at the leaf of the axon is a small disc embedded into G.

6) (Continuity) We will say that a family vy of generalized discs depends continuously on the
real parameter t if suitable parametrizations my of their pellicles are continuous functions in all
parameters. A family of (pre)neurons (v¢, my, @) is continuous if in addition the mapping @, omy
is continuous in all parameters. For continuity of a family of neurons with halo we have to add
the condition that the mappings my are continuous in all parameters.

T

FIGURE 4. a) An excrescence of an interval and b) a generalized disc and a
surrounding curve that approximates the pellicle

With this terminology, any analytic disc in X? is a preneuron, but it admits the structure of a
neuron only if some part of its boundary is contained in G. In the latter case any boundary point
contained in G can be chosen to serve a one-vertex (or degenerate) axon. There are many ways
to extend the unit disc to a generalized disc and to give it the structure of a preneuron whose
main body is the original disc. If the generalized disc has non-empty trees attached and ® maps
at least one leaf of certain tree into G the preneuron can be given the structure of a neuron. This
is always the case if a non-empty tree of the generalized disc together with the mapping ® form
a dendrite related to a pair of equivalent discs according to lemma 5. Any edge of its tree that is
adjacent to a leaf may serve as the tree of an axon. Notice that the notion of the halo of a neuron
is stronger than that of the halo of a preneuron.

The main reason for constructing neurons out of analytic discs is the following fact: If an
analytic disc is performed into the main body of a neuron with halo then the neuron structure
may be used for obtaining G-discs which approximate the original disc uniformly along compacts
(see below the proof of Lemma 12; for a refinement of this assertion see the proof of Lemma 13).

The following lemma extends Lemma 14 to preneurons.
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Lemma 15. Suppose the pellicle of a preneuron n = (v,m,®), ® om — X2, has a lift m to G.

o *
Then there is a neuron with halo n* = (V*,m*, O, m ) whose generalized disc v* contains v with
the followmg properties. The pellicle m* of v* is an excrescence of the pellicle m of v such that

the halo m of m* is associated to m. The values ofm over each leaf of a tree contained in v*\ v
(not only over the leaf of the azon) is a small disc embedded into G.

The lemma can be rephrased as follows. If the boundary of a preneuron lifts to G then after
further attachment of dendrites a neuron is obtained with the following property. There is a closed
curve v : 0D — L§ meeting the set of small discs contained in G and such that the curve described
by the centers of the discs v({), ¢ € 9D, coincides with the pellicle of the neuron.

Proof. Apply lemma 14 to the pellicle m of the generalized disc v. We obtain an excrescence
m™ which is the pellicle of a generalized disc v*, which is obtained from v by attaching further
trees (either with root at the circle or with root at a tree of v). Moreover, m* is chosen so that

the mappings ® and ® extend to the image of m* in such a way that ® o m* lifts to a halo m
with Poom = & om*. We may assume that v* differs from v by at least one non-trivial tree

o *
corresponding to a pair of equivalent discs. We obtained a neuron n* = (v*,m*, ®,m ) with halo.
The second assertion of the lemma is clear. O

Let n = (v,m, ® TL;L) be a neuron. Parametrize the pellicle m of v by the unit circle 9. Consider

the evaluation mapping of the halo m: m(¢,2)<m(¢)(z), ¢ € 8D, z € D. This evaluation
mapping is a continuous mapping from the the set 0D x D into X2 which is holomorphic on the
disc fibers. (Recall that the mapping mp is a continuous mapping of dD into the space A'(D)
of holomorphic mappings from the unit disc into X2 that have C! extension to the closed unit
disc.) Let m((p) be the tip of the axon tree of the neuron. Consider the (image of the) disc fiber

T(;L(CQ)(i) and the union of all (images of) circle fibers Jqcop m(¢)(8D). The union of the two

sets, Kp = UCGBD m(¢)(OD) Um(¢o)(D) is a compact subset of G associated to the neuron n.

The idea of the proof of Lemma 12 in case X2 = C? is the following (see below section 7
for details).

Let ® : D — C2 be an analytic disc with boundary lifting to G. Lemma 15 produces a neuron
n with halo whose main body coincides with the analytic disc ®. A neuron can be considered as
a degenerate analytic disc. Mergelyan’s theorem allows uniform approximation of the neuron by
a true analytic disc ("fattening of dendrites”, see below section 6).

The domain of definition of the disc is a simply connected smoothly bounded domain D, whose
closure contains the generalized disc of the neuron and approximates it.

If the original neuron had a halo the approximating disc-neuron may be given a halo. Denote
the new disc-neuron with halo by (D, mp,® D,?’(I)l p). Here mp just denotes the boundary curve
of the domain D. In other words, the disc-neuron is an analytic disc ®p : D — X? with a halo
mp : @D — Go. The halo defines the following (image of a) torus Ucean mp(¢)(8D) consisting
of the union of the boundaries of Gy-discs. Call them meridians of the torus. The torus is a
compact subset of G contained in a small neighbourhood of k,,. Approximate solutions of the
Riemann-Hilbert boundary value problem for this torus produce holomorphic discs fp : D — X2
with boundary in a small neighbourhood of the torus. Such discs are G-discs. Approximate
solutions of Riemann-Hilbert boundary value problems are constructed in [5]. There is a closed
arc I' C 9D (an arc that is close to the tip of the axon tree of n) such that for ¢ € ' the meridian

mp(¢)(OD) bounds an analytic disc of small diameter contained in G. This implies the following
additional property of approximate solutions of the Riemann-Hilbert boundary value problem.
Given any compact subset K C D|JT, after possibly squeezing some meridians along the analytic
discs bounded by them, the value maxg |fp — ®p| is small compared to the distance of &, to the
boundary of G. Hence, for each point in ®p(K) a small translation of the disc fp : D — X2
produces a G-disc through this point. For more detail see below section 7.
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We give an argument different from that in [5] to construct approximate solutions of the
Riemann-Hilbert boundary value problem. For a curve ¢ — ((,9(¢)), ¢ € 9D, with ¢g(¢) €
mp(¢)(8D) for each ¢ € &D, we consider the winding number around the meridians. For the
approximate solutions of the Riemann-Hilbert boundary value problem given in [5] the winding
number of the boundary curve grows uncontrolled with the rate of approximation. This fact and
the hope to handle more general situations are the reasons to choose here an argument that differs
from that in [5]. Namely, instead of squeezing some meridians of the original torus, we take an open

arc I whose closure is contained in the interior IntI" such that K N 9D C I', and approximate the
° o o .
mapping mp : 0D — Gy on OD\T by a continuous mapping M from D into G that is holomorphic
[e] [e]

on D. Moreover, M is choien so that the evaluation mapping of M (¢) at the point 0 € D equals
®p(¢) for each point ¢ € D. Here we call a mapping from D into G holomorphic if it is locally
the sum of a power series with coefficients being G-discs. (The metric in G is the C'-norm of the

— o
mappings on . We use the notion of holomorphic mappings M into G only here for the purpose

of explaining the concept. Later we will only use the evaluation mapping M (¢)(z), ¢ € D, z €D,
of such a holomorphic mapping which is a continuous mapping from D x D that is holomorphic

on the interior of this set.) The approximating mapping M defines a new torus over the boundary
o

of the domain D. The part of the new torus over 9D \ I is close to the respective part of the old
torus. Squeeze the meridians corresponding to points in I' as much as needed along the analytic
discs bounded by them. The thus obtained tori are still contained in a small neighbourhood of
Kn . There are exact solutions of the corresponding Riemann-Hilbert boundary value problem
with winding number of the boundary curve not depending on the rate of approximation and of
squeezing of meridians. For details see below section 7.

The proof of lemma 13 is more subtle. Under the conditions of Lemma 13 there is a homotopy
of the disc ®; to an analytic disc 3 where ®( is embedded into G and lifts to E(G) The homotopy
consists of analytic discs ®; whose boundaries lift to G. We have to take a G-disc related to P,
as constructed by Lemma 12 and find a GG-disc homotopy to an analytic disc embedded into G.

The key point is to obtain a continuous family ¢; of neurons with continuously changing halo
and continuously changing axons such that for ¢ in neighbourhoods of 0 and of 1 the main bodies
of the ¢; coincide with the analytic discs ®;.

Indeed, the scheme of proof of lemma 12 applies not only for an individual neuron with halo
but also for continuous families of such neurons. This observation allows to obtain from the
aforementioned continuous family of neurons a homotopy of G-discs. The homotopy of G-discs
joins the given G-disc obtained in lemma 12 to a disc embedded into G. The conclusion is that
each point in ®;(ID) is contained in the projection of G. The existence of a continuous lift of ®;
to G follows from lemma 7 (see below section 8 for details).

The first step towards the construction of the continuous family of neurons ¢; (see below Lemma
19) is to convert the continuously family of analytic discs ®; : D — X2 into a piecewise continuous
family of preneurons with the following property. To each of the preneurons an axon can be
attached and the axons can be chosen continuously depending on the parameter .

The tips of the axons form a curve that is mapped into G. Fatten the axons continuously
depending on ¢ (see section 6 below). We obtain a piecewise continuous family ¥, of neurons and
a fixed arc T of the circle mapped into G by all ¥;. More precisely, the mapping (¢,z) — ¥, is a
continuous mapping from [0,1] X I" into G. We may assume that 1 € T".

The mapping ¥, U(t, ()déf‘llt(CL restricted the set [0, 1] x T lifts to Gy. Indeed, any continuous

[e] [e]

mapping ¥ into the set of small discs embedded into G such that the center of ¥(t,() equals
U(t, ) may serve.

Attaching further dendrites we associate with each of the thus obtained neurons a new neuron
n; which has already a halo. We do it in such a way that the halo on [0, 1] x I equals the above
chosen one and the family n; is piecewise continuous.
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From the piecewise continuous family we get a continuous family of neurons in the following
way. Let to be a discontinuity point of the family n;. Let n; , and nfo respectively, be the limit
neurons at ty from the left and, from the right respectively. We show that we can attach a dendrite
T4, to my at a point of I' in such a way that n:; U %, has a halo and there is a homotopy of
neurons with halo joining n, with njo U %¢,- A continuously changing copy of the dendrite %y,
will be attached to all neurons n; with ¢ > t;. We proceed in this way with each discontinuity
point of the family n,.

The most subtle part of the aforementioned proof is the construction of the homotopy joining
ny, with ”Z) U %4, (see below Lemma 20). This construction will be a procedure which preserves
the main body (which is common for n;  and n;g ) and can be considered as continuously ”peeling
off the halo of the left neuron n; 7 starting at a point in I' and letting "grow the halo of the right

neuron n;~ on the peeled places and symmetrically on the inside of the removed peel”.
to p p y y 1%

R

6. PARTIAL FATTENING OF DENDRITES.

Here we describe in detail the procedure of ”fattening dendrites” which is used in the proof of
Lemmas 12 and 13. In the proof of lemma 12 the procedure is applied to a single neuron. In the
proof of lemma 13 it is applied to a family of neurons. We will describe the version for families.

Consider a single generalized disc v = DU|JT}. For each tree T; we consider a connected open
(in the topology induced on T; by C) subset S; C T; which contains the root of T;. The closure
S; of S; is again a tree with root coinciding with that of 7;. Each set S; contains together with
each point the path on T} connecting it with the root of T}. A rooted tree gj obtained in this way
is called a subtree of Tj.

Any connected component of T; \ S; is also a tree (if the set is not empty). A vertex of such a
component may belong to §j. Since T} is a tree there is exactly one such point in each connected
component. (This point may be a multiple vertex.) With this point chosen as root the connected
component becomes a rooted tree. Note that a connected component of T} \ S; may consist of
several trees adjacent to this root.

Provide a ”cutting of trees” : replace each tree Tj by §j, Denote by S the union of trees UEj
and consider the generalized disc vg = DUS. For a positive number 7y we associate to vg a family
E%, ™ € (0,70,], of bounded smoothly bounded simply connected domains with the following
properties.

(1) The sets EZ\ D, 7 € (0, 7], are contained in a small neighbourhood of S (i.e. EZ\ D are
fattenings of \S).

(2) For each 7 € (0,79] the set EF contains D|J|JS;. Moreover for each 7 and each j all
leaves of S; are on the boundary of E7 and ET does not intersect (J(Z} \ S;).

(3) The family decreases, i.e. E{' C EZ for 0 < 71 < 75 < 79. Moreover, the family is
continuous and converges to vg for 7 — 0. We put Egdéfys(: lim,_o EY).

Consider the set v™ =< Ez U|J T} for 7 € [0, 70]. Note that #° = v. The v™ are generalized discs.
The trees of v7 correspond to the connected components of T; \ S;.

The described procedure is a ”partial fattening of trees”. The sets EZ \ D are the fattenings
of S. We always assume that the connected components Eg ; of E§ \ D are in a one-to-one
correspondence with the trees S;.

Note that for a continuous family v, t € [0, 7], of generalized discs and continuous families of
unions of subtrees (J(S;): of [J(T}); the "partial fattening of trees” can be arranged continuously
depending on the parameter t. In other words, it can be made so that it leads to a family v]
which is continuous in both parameters ¢ and .

In the following lemma we consider neurons. The lemma extends the procedure of partial
fattening of trees to a ”partial fattening of dendrites”. For each t the generalized disc is the union
of the closed unit disc with attached trees.

Lemma 16. Suppose ny = (v, my, ®4),t € [0,1], is a continuous family of neurons. Let Sy =
U (Sj)e be a continuous family of unions of subtrees of the trees of their generalized discs Ty =
UTy)e. Let vi = Ef UU(T))e, t € [0,1], 7 € [0,70], be a continuous family of generalized discs
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FI1GURE 5. Partial fattenings of trees of a generalized disc

obtained from the vy by fattening the trees constituting Sy. Then there is a continuous family of
mappings ®7 : v — X2, t € [0,1], 7 € [0,70], that are holomorphic on the interior E] of v such
that ® = ®,. If the restriction of ® to Usepo,{th x (u\D) has a lift @ to G then the restrictions
of @7 to U,epo.1{tt X OET, T € [0, 70], have lifts &7 depending continuously on 7.

Let m;; be the punctured pellicle of (T;): and m7, the arc of the pellicle of v{ whose image
is contained in OE ;\J(T; \ Sj). If for some j all dendrites (Tj)e = ((Tj)e, muj, Pe|(T))e), t €
[0,1], have punctured halo ﬁ@jyt associated to ® that depends continuously on t then (possibly after

oT ~
decreasing 7o) also the curves m7 , have a halo m;, associated to &7 that depends continuously on

[e]
t and T and converges to m;; for T — 0.

Proof. In case X? = C? the first assertion of the lemma is a standard approximation lemma for
the coordinate functions of the mappings ®;. Let EJ be the generalized discs obtained by fattening
the trees constituting S. The idea of proof of this approximation lemma is to extend for each ¢
the function ®; to a continuous function in the whole plane C and to smoothen the extension (in
dependence on 7) in such a way that the d-derivative is small near points of (vs); and vanishes
on a big compact subset of D. For details we refer to the book [19] (see the proof of theorem
20.5). The construction can be made continuously depending on ¢ and 7. The approximating
function @7 is obtained by correcting the extended and smoothened function by the solution of a
O-equation related to the interior of v .

Prove the second assertion for the case X? = C?. For suitable parametrizations of m; ; and
mj ; by s € [0, 1] we have uniform convergence my ; — my ; for 7 — 0, hence the arc ®7 ;om] ; in
X? converges to the arc ®; ; om;; for 7 — 0. It remains to make for s € [0,1] and small 7 the

following choice for r%;t Take the parallel translation in C? of the Gy-disc ﬁ@t}j (s) for which the

T T
center equals 7 ; o m] ;(s).

For general Stein surfaces X2 we consider a holomorphic embedding § : X2 — C*. The
approximation of § o ®, works as in the proof of the first assertion for C2. Given the halo
o

Somyg; on § o my;, the halo on the approximating arcs in C* can be chosen by using small
translations. It remains to compose all constructed mappings (they all have image in a small
tubular neighbourhood of F(X?)) with a holomorphic projection from the tubular neighbourhood
onto §(X?). The assertions of the Lemma are proved in the case of general Stein surfaces.

O

7. PROOF OF LEMMA 12

The proof of Lemma 12 is based on the following approximation lemmas which will be needed
also in section 11 below. Let D be a bounded, smoothly bounded simply connected domain in
the complex plane and let T' C 8D be an arc. Put Sop= (D x {0}) U ((8D) x D). Notice that
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suitable neighbourhoods of Spp are usually called Hartogs figures. In other words, Syp is the core
of Hartogs figures. Denote the compact subset (9D x dD) |J (T' x D) of Sspp by Or.

Recall that for defining a metric on X2 we fixed a holomorphic embedding of X? into C* and
pulled back the Euclidean metric. e-approximation of mappings into X? refers to this metric.
Note that the second part of Lemma 17 below concerns continuous families of mappings and is
needed in the proof of Lemma 13.

Denote by Ax2(D x D) the space of continuous mappings from D x D into X? that are holo-
morphic on the interior D x D.

Lemma 17. Let Jp : Ssp — X2 be a continuous mapping that is analytic on D x {0} and
fiberwise analytic on 0D x D. Let T C 0D be a closed arc.
Then for each positive number ¢ and each neighbourhood V' of Jp(Sap) in X? there exists a
mapping H € Ax2(D x D), such that
(1) HID x {0} = Jp|D x {0},
(2) H(OD x 9D) is contained in an e-neighbourhood of Jp(Qr).
(3) the image of H is contained in V', moreover, for each compact subset K of D\ JT the
mapping H can be chosen so that for each ( € K the whole fiber H({¢} x D) is contained
in an e-neighbourhood of ®p(¢).

Suppose Dy, t € [0,1], is a continuous family of simply connected bounded and smoothly bounded
planar domains. Let 21, be continuously changing closed arcs, Ay C OD;. Let further Ky, t € [0,1],
be a family of compact subsets of Dy Ul depending continuously on the parameter t (hence
Ute[o,l] {t} x K¢ is a compact subset of R x C). Consider the continuously changing family of sets
Sop, and Q' (9D, x D) | (A; x D).

Suppose JtDt : Sop, — X2, t € [0,1], is a continuous family of mappings, each of it being
analytic on all analytic discs contained in Spp, .

Then for any number € > 0 there exists a continuous family of mappings Hy € Ax2(Dy x D),
such that each Hy, t € [0,1], satisfies conditions (1),(2) and (8) above with respect to the objects
specified for the number t.

Fix K. Let T' be as in section 5 an open arc, I' € IntI', K C D{JT. Denote the set (D x
{0}) U (OD\T x D) by S

OO\’ The proof of Lemma 17 is based on the following variant of the

o
Weierstrafl approximation theorem for the arc 9D \ T.

Lemma 18. For any positive number ¢ and any neighbourhood V' of Jp(Ssp) there exists a
neighbourhood U of S(aD\f) in D x D and a continuous mapping $ : U — V C X? that is
holomorphic on the interior IntU of U such that $H|D x {0} = Jp|D x {0} for ¢ € D and $ is
uniformly e-close to Jp on (9D \T') x D.

Proof. In case X? is different from C? we compose the mapping Jp with the holomorphic embed-
ding § of X? into C*. Denote the composition by Jp. The target space for this mappings is C*.
In case X2 = C? the target space was C? from the beginning. For unifying notation we use the

fat letter Jp for the mapping Jp in this case as well. So in any case Jp is a mapping into some
C™ (either n =2 or n = 4).

Notice that for r € (0,1), » — 1, the mappings Jp ,, Ip.,(C, z)défJD(C,rz), ¢ €0D\T,z €D,
converge uniformly to Jp(¢,2), ¢ € 9D\ T,z € D.
Write the mapping Jp|(0D \ T') x D in form of power series:

Zak(g)zk, CE(‘?D\I’O‘7 z €D.
k=0

Choose a number r < 1 sufficiently close to 1 and a big enough number N so that the mapping
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N
Iprn(C,2)E Y ar(Q)rF2¥, (€dD\T, 2 €D,
k=0

approximates the mapping J p sufficiently well on (9D \T') x D. Note that both mappings, Jp and
Jp,rn coincide on D\ T x {0} with Jp. Approximate each of the coefficients ay({), k= 1,..., N,

uniformly for ¢ € D \ T’ by holomorphic mappings from a neighbourhood of D to C*. We obtain
a continuous mapping Z from D x D into C" which is holomorphic on D x I, approximates the
mapping Jp uniformly on (9D \T') x D and coincides with Jp on D x {0}.

Being uniformly close to Jp on S(aD\f‘) the mapping Z maps a neighbourhood U of this set
(in D x D) into a small tubular neighbourhood of F(X?). (Recall that JD(S(&D\E)) C F(X?))

Consider the composition Bt oZ of the mapping Z with a holomorphic projection Bt of a tubular
neighbourhood of F(X?) onto F(X?) and apply to it the inverse of § we obtain a holomorphic

mapping $ from U into X2 that approximates Jp on (0D \T') x D. If U is chosen small enough
depending on V' the image of §) is contained in V.
O

Proof of Lemma 17. Notice that for each ¢ € 9D \ I" the set U of Lemma 18 contains the fiber
{¢} x D. For ¢ € T the set U may not contain the respective fibers but it contains a small
neighbourhood of T x {0}. We want to shrink the fibers over points in I" suitably. Take a smooth
positive function p on 9D that equals 1 outside I', does not exceed 1 everywhere on 9D and is as

[e]

small as needed in a neighbourhood of the closure of I'.
Consider an analytic function g on D with boundary values having absolute value p. The
function g is smooth up to the boundary if p is smooth. (Recall that D has smooth boundary.)

o
Moreover, on the compact subset K of D|JT the absolute value |g| of the function does not
exceed a small constant depending on the compact set K and the function p and tending to 0
o]

if the maximum of the function p on I' tends to 0 . This is a consequence of an estimate of the

harmonic measure of l(i on K. o

Define the mapping Y9, T9((, 2)“ (¢, g(¢)z) of the closed bidisc D x D onto UY, Ugdéf{(C, z) €
DxD:|z| <g(¢)|}. With a suitable choice of p for each fixed z € D the distance |T9((, z) — (¢, 0)]
is as close as needed uniformly for ¢ € K.

Increasing the compact subset K of D |JTI" we may assume that each point ¢ outside the compact

K is as close as needed to D \ I'. Therefore the choice of the function p can be made in such a
way that the set Uy is contained in the small neighbourhood U of SaD\f in D x D.

Let H be the composition of the mapping $) with the mapping 17, TI(¢, z)dif(g,g(g)z) of the
closed bidisc D x D onto U9, H = $ o T9. The mapping H has the required properties.

Indeed, since p has absolute value 1 on 9D \ I and absolute value not exceeding 1 on I’ \f‘ the
set H(0D \f‘ x 0D) is contained in a small neighbourhood of Jp(Qr). (See Lemma 18 for the
properties of $) and use the fact that Or D (0D \19‘ x oD) J (T \19‘ x D).) If p is small enough on

[e] [e]

I then also H(I" x D) is contained in a small neighbourhood of Jp(Qr).
Property (3) is a consequence of the properties of Y.
The proof of the respective assertion for continuous families of mappings J,’é,t is straightforward.
Lemma 17 is proved. O

Proof of Lemma 12. Let ® : D — X2 be an analytic disc whose boundary lifts to a mapping

$ : 9D — G. Lemma 15 produces a neuron n = (v, m,®) which has halo m associated to ®
and has the disc as main body. Apply Lemma 16 (”fattening of dendrites”) for the single neuron
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n, its halo and the set of all trees of its generalized disc v, so that we obtain a true analytic
disc with halo (D, mp, (I)D,T(;LD). We assume that ®p is an e-approximation of ® and 79rLD is an
e-approximation of m. The evaluation mapping of the halo mp defines a continuous mapping
from the set D x D into X2 which is fiberwise holomorphic. Moreover, mp(¢)(0) = ®p(¢) for
all ¢ € 0D. Thus, ®p : D — X? and mp : 0D x D — X2 define a continuous mapping Jp from
the set Sop = (D x {0}) U ((0D) x D) into X2.

Let ®p : T' — X2, T C 0D, be a closed arc of the pellicle of D that is close enough to the tip
of the axon tree of the original neuron. Then for the subset Qr = (9D x D) |J (T x D) of Spp
the set Jp(Qr) is contained in a 2e-neighbourhood of k,, C G (see the definition of k,, after the
proof of Lemma 15). An application of Lemma 17 with the same number £ and with a compact

subset K of D|JT provides a mapping H € Ax2(D x D), such that H(0D x dD) is contained in
an e-neighbourhood of Jp(Qr) and for each fixed ¢ € K the fiber H({¢} x D) is e-close to ®p(()
on K.

For each z € 9D the disc f*(¢) = H((,2), ¢ € D, has its boundary in a 3s-neighbourhood of
Kn C G. The family f7%,r € [0, 1], provides a homotopy joining ®p(-) = Jp(-,0) and f*. If H is
chosen to satisfy (3) for given K C D UT then maxg |Pp — f*|] < e for each r € [0,1]. Choose
the point z € dD. An e-approximation of f# provides an immersed analytic disc, hence a G-disc
provided ¢ is small.

In case X? = C? a suitable translation of the disc passes through ®(p) and has boundary
contained in a 5e-neighbourhood of x,,.

In the case of general Stein manifolds X? translations can be replaced by diffeomorphisms close
to the identity from a suitable relatively compact subset of X2 onto another subset of X2. Such
diffeomophisms are defined as compositions of the holomorphic embedding § of X? into C*, a
small translation in C*, a holomorphic projection of a tubular neighbourhood of F(X?) to F(X?)
and the inverse of the mapping §.

We proved that through each point of ®p(K) passes a G-disc. Given ¢ € D the compact set K
can be chosen to contain (. Lemma 12 is proved. O

8. A PIECEWISE CONTINUOUS FAMILY OF NEURONS WITH CONTINUOUSLY CHANGING AXON

This paragraph is a preparation for the proof of Lemma 13.
Let ®; : D — X2, t € [0,1], be a continuous family of analytic discs enjoying properties (1)
and (2) of Lemma 11. The following lemma allows a further improvement of the properties of the

family of analytic discs without changing the discs &y and ;.

Lemma 19. There is a continuous family of analytic discs ¥, : D — X2 t € [0,1], coinciding
with the previous family @4 fort close to 0 and close to 1 such that condition (1) and (2) of Lemma
11 hold and the following additional condition is satisfied.

The curve a(t) = (t,1), t € [0,1], in [0,1] x 0D C ¢ has the following property: the mapping
W, (a(t), t €[0,1], admits a lift & to Gy such that Py o & = Py (a(t)).

Proof. Consider the mapping ®(, z) £ ®,(2), t € [0,1], z € D with values in X2. By the condition
(1) of Lemma 11 the restriction of this mapping to [0,1] x 9D lifts to G, hence the mapping
®oa(t), t € [0,1], lifts to G. The curve « is contained in the cylinder [0,1] x dD. It can
therefore be considered as a planar curve and Lemma 14 applies. It will be convenient to realize
the excrescence of « in a slightly different way. Namely, consider a tree and its punctured pellicle
which participate in the construction of the excrescence of « in the cylinder. Let the root of the
considered tree be the point (¢;, 1) of the cylinder. We may assume that all points ¢, are contained
in the open interval (0,1). We take another realization of the tree and its pellicle, namely, we
consider a tree T} in the complex plane with root at the point 1 that meets the closed disc D exactly
at the root and which is a homeomorphic copy of the tree in the cylinder. Call the product of the
one-point set {t;} with the punctured pellicle of the tree T; C C the punctured pellicle of {¢;} x T;.
Cut « at the point (¢;,1) and paste the punctured pellicle of the tree {¢;} x T;. Doing this with
all trees we obtain the realization of the excrescence a* we will work with.
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The trees T; define a piecewise continuous family of generalized discs v4,t € [0, 1], given by the
relation v, D, if ¢ is not equal to one of the t;, and v, D |J T}, if t = t;. The new curve o has

values in Ute[o 1]{t} X 14. By Lemma 14 there are continuous extensions of the mappings ® and

® to the image of a* such that the curve ® o o* has a lift to Gy that is associated to . Take a
C%-small deformation of the curve a* which fixes the punctured pellicles of the trees and provides
small changes of the original part « of the curve a® so that the image of the deformation of the
part « of a* is the union of finitely many vertical segments of the form I, x {z} for an interval
I, C [0,1] and a point z € JD, and finitely many horizontal arcs of the form {¢;} x 3; for one
of the aforementioned points ¢t; € [0,1] and an arc 8; in the unit circle. We may assume that
the perturbed curve coincides with the previous one near the points (0,1) and (1,1). Denote the
approximating curve again by o*. Still, ® o a* has a lift to Gy that is associated to ®.

Consider the piecewise continuous family of generalized discs v, t € [0, 1], that was defined
above. Notice that the image of o* is contained in ;[ 1{t} x (v \ D) and the mappings ® and

® extend continuously to the union {t} x (vt \ D) of the boundaries of the generalized discs.
Replace the family of generalized discs v; by a continuous family of generalized discs v} in
the following way. Choose small disjoint intervals I; C (0,1) around ¢; and define a continuous
family of trees T'(t), t € [0, 1], with root 1 such that T'(¢;) = T; and T'(¢) is equal to a one point
(degenerate) tree for t close to the endpoints of the I; and outside the I;. This is possible since
each rooted tree is contractible to its root. Put Vfdéfyt UT(t).
The intervals and the contractions of the trees can be chosen in such a way that the mappings

® and & extend continuously to Usepo,1{t} x (vf \ D). Denote the extended mappings again by ¢
and ®.

Lemma 16 provides fattenings of the dendrites T; depending continuously on the parameter
t. This yields a continuous family of simply connected domains Dy, t € [0, 1], and a continuous
mapping ) : Ute[o,l] {t} x Dy — X? which is holomorphic on each {t} x D;, approximates ®
uniformly on (J{t} x v+ and coincides with ® for values of ¢ close to 0 and close to 1. Moreover, the
restriction of the mapping ¢ to the set (J,¢(o 1) {t} x D U Usepo,1){t} x 9Dy) lifts to a mapping
1[) into G which coincides with & for ¢ close to 0 and close to 1.

Deform the arcs of a® contained in the set ¢ = ¢; into arcs that are CP-close to the previous
ones and run along the boundary {t;} x dD;;. Denote the deformed curve by al.

/\/—\

—

\

I N
FIGURE 6. Fattening of trees of a family and deformation of the excrescence

Provide a further deformation of the curve so that its t-coordinate is strictly increasing. Pa-
rametrize the thus obtained curve by the ¢-coordinate of its image and denote it again by a®. The
mapping 1 o a® admits a lift to Gy which is associated to 1[)

Choose a continuous family of conformal mappings ¢; : D — D; (which extend to a continuous
family of homeomorphisms between the closed unit disc and the closures of the domains) that
map the point 1 € dD to the point a®(t) € D,. The mappings ¥, 1), 0y (with ¢y (z) = (L, 2)
for t € [0,1] and z € D) have the desired property.

O
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Choose an arc I' of the unit circle containing the pomt 1 so that the mapping (¢,¢{) — \Il(t () =

W,(¢), (t,¢) €0,1] x T, lifts to a continuous mapping m : [0,1] x I' — Gy for which Pyom = .
Ip other words, the analytlc discs ¥; have continuously changing halo on I'" that is associated to
\I/t.

According to Lemma 15 by attaching dendrites each disc ¥, : D — X2 can be performed into
a neuron with halo associated to the lift \i/t\am). This can be done so that the halo of the neuron
on T coincides with m(t,-), ¢ € [0,1]. In particular, for each ¢ the arc T consists of regular points
for the neuron. Further, the attaching of dendrites may be done in such a way that the neurons
depend piecewise continuously on the parameter t.

Consider the constructed neurons as preneurons and attach for each ¢ € [0,1] an axon T¢* to
the respective (pre)neuron such that the root of its tree is the regular point 1. The trees T2% of
the axons T¢” are chosen to depend continuously on ¢, for ¢ close to 1 being equal to the edge
T7® = [1,2] which is orthogonal to the unit circle, and degenerated to a point for ¢ close to 0. In
particular, the tips of the axon trees, a; depend continuously on ¢. Since the restrictions of the
halo of the (pre)neurons to I depend continuously on the parameter, the halo of the axon T¢* may
be chosen to depend continuously on t. We define it in the following way. Let mq, (1), 7 € [0, 1],
parametrize the punctured pellicle of T*. The parametrization is chosen symmetric with respect
to the sides of the edge TP%, i.e. mq,(7) = mp, (1 —7), 7 € [0,1]. For the halo on the first
side, my, (1), 7 € [0,1/2], we choose a Go-homotopy of the disc m,(0) to a disc embedded into
G which is the value of the halo over the tip of the axon. The halo on the second side is chosen
symmetrically.

We obtain a piecewise continuous family of neurons with halo, which we denote by n; =
(v, my, Uy, ﬁlt), t € [0,1]. The neurons have a continuously changing axon attached whose halo
at the tip is a small analytic disc embedded into G. For t close to 0 the neuron coincides with
the original analytic disc which is embedded into G. For ¢ close to 1 the main body of the neuron
coincides with the original disc.

In the next section we obtain from this family a continuous family of neurons with halo with a
continuously changing axon attached.

9. A CONTINUOUS FAMILY OF NEURONS. ”PEELING”

This section is the key of the proof of Lemma 13.
Let tg be the first discontinuity point of the constructed family n; of neurons with halo. Denote

o % . S .
by nto = (utio, mto, \Ilifw my, ) the respective limits from the left and from the right. Note that the

. S o+ ..
main bodies \I/i : D — X2 of the neurons ntiO coincide. Moreover, the values of m;, coincide on

T.
There may be no homotopy joining the neurons n; and nt The following lemma shows that
there is such a homotopy after attaching a special dendrite to nto.

Lemma 20. There is a dendrite %, with punctured halo and a neuron with halo n(t)o = n% U<,
obtained in the following way. The tree of T, is attached to the generalized disc I/th of n;g at a point
¢* € . The pellicle (respectively, the halo) of the neuron nt"; punctured at * and the punctured
pellicle (respectively, the punctured halo) of %, match and define the pellicle (respectively, the
halo) of the neuron n?; U %:,. Moreover, there is a homotopy of neurons with halo joining the

— i 0 _ +
neuron ny, with the neuron ny, = n; Uy, .

Proof. In the proof we will skip everywhere the index tg.
To ease reading we will first work out the proof in simple but typical situations before giving
the formal proof in the general situation.

Step 1 of the proof. Peeling for n™ -reqular points . Let (o = exp(ibp), o > 0, be a point in
T (counterclockwise from 1). We let a one-edge dendrite grow out of n~ at the point (o and let
its root run counterclockwise along the circle. More precisely, let { = exp(it¢), tc > 6o, be a
point on the unit circle situated counterclockwise from (y. Let 7¢ be the arc between (p and ¢,
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Yo = {7c(t) = exp(it) : Oy < t < tc}. Assume that all points of 4, are regular for the neuron n*.
Let e¢ be a closed straight line segment attached to D at the endpoint ¢ of 7, which is transversal
to OD and meets D exactly at (.

Consider the generalized disc Vcdéfu_Uec. Give it the structure of a neuron n¢ = (v¢, ¥¢, me, 7?14)
with halo in the following way.

Remove the point {y from the unit circle and close up the arc by adding two points over (. We
refer to this set as the punctured circle (punctured at (p). In the same way we define the pellicle
of v~ punctured at {y. Denote by O the union of the closed arc D \ v, of the circle with the
“outer” side of e¢ (i.e. the "right” side of the edge e, with orientation towards the root, in other
words, the second side when surrounding the edge counterclockwise starting from the root). This
side is pasted to 0D \ ¢ at the point (.

Consider the excrescence £~ of the punctured circle which is equal to the pellicle of n~ punc-
tured at (p. Let A¢ be a homeomorphism of £~ onto an excrescence Oz of O¢. Suppose A¢ is
the identity on 0D \ 7¢, maps ¢ onto e. and fixes (. Moreover, assume that A, is affine on each
segment of £~ that is contained in an edge of an n™-tree.

Assign a halo to Of in the following way. Let for some interval I the mapping me- (), t € I,
be a parametrization of £~. Then mo; (t)défAc omg-(t), t € I, parametrizes Of and we put

def O

moz () Eme- (1), t € 1.
Assign to the arc ¢ — ~¢(t), t € [fo,tc], the nT-halo: choose the parametrization m™(t) =

o]

o +
Ye(t),t € [fo, tc], for the arc of the pellicle of n™ and put m, (t) = m (t), t € [0o, tc].
Finally, parametrize the ”inner” (i.e. ”left”) side elg of e¢ by el( (t) = Acom™ (1), € [0o, 1], and

(o) (o) +
define the halo on elC by Ml (t)=m (t), t € [0o,tc]. Note that the halo on eé is 7 A¢c-symmetric”

(i.e symmetric with respect to the homeomorphism A¢) to the halo on 7.

The three arcs OF, ¢ and eé cover the pellicle of the generalized disc v¢. The values of the
halo match at the common endpoints of the arcs. Indeed, they match at the tip of e; because this
point is the image of (o € I under the map A¢ and for points in I' the nt-halo takes the same
value as the n™-halo. They also match at the point ¢ because A, fixes this point.

We obtained a neuron n¢ with halo. It has a distinguished attached dendrite ec.

The construction proceeds as long as no n*- dendrite is attached to the interior of the arc . It
is arranged so that it provides a family of neurons n¢ that depend continuously on the parameter
¢ so that the values of the halo of each of it is contained in the union of the set of values of the
halo of njo and n;, . Notice that the parametrization of the pellicle of nt can be chosen so that
the arc t — m™(t), t € [fo, ], of the pellicle of the generalized disc v is identical to the arc
t — 7¢(t) of the circle.

Step 2. Reaching edge-like dendrites of n™. Suppose the construction of step 1 has been made
up to a point ¢ € JD. We obtained a continuous family of neurons joining n~ with a neuron
ne = (VC,\IIC,mC,v%C). Recall that no n*-neuron is attached to the interior Int(y¢) so that
e =m™T ([0, tc]) C OD for a parameter t..

Suppose that ¢ is the root of a tree T, of the neuron n*. Hence t; parametrizes the initial
point of the pellicle of the tree T¢. Let t’C parametrize the terminating point of the pellicle of 7.

Denote by B, the (closed) ray that bisects the angle between 7. and the edge e obtained at
step 1 (more precisely, the angle between the tangent ray to ¢ at ¢ and e¢; we mean the angle
which is covered moving in counterclockwise direction around the point ¢.) Choose a closed convex
cone U¢ with vertex ¢ and non-empty interior which is symmetric with respect to reflection in the
symmetry ray B, (hence, it contains B¢) and is contained in the sector between v, and e,.

Suppose the tree T; of the n™-dendrite T attached at ¢ consists of a single edge.

Our goal is to construct a continuous family of neurons which differ only by a dendrite whose
tree is attached at ¢ and situated inside the cone Us. The family is constructed so that it joins the
neuron n¢ with a neuron n'C so that n'C has the following property. The pellicle of its generalized
disc v} contains an arc that coincides with ¢ — mt(t), t € [0o,t;] (i.e. the arc is constituted by
v¢ together with the punctured pellicle of T¢).
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For defining the family of neurons it is enough to describe the family of dendrites.

Realize T as a straight line segment in the plane in the direction of B; meeting the general-
ized disc v exactly at (. Reparametrize the punctured pellicle mz, of T¢ by the interval [0, 1]
and symmetrically with respect to its sides. More precisely, denote by mg. : [0,1] — T¢ the
(reparametrized) punctured pellicle of T;;. We require that this mapping has the following sym-
metry property: for each t € [0, 1] the points mr,(t) and mr (1 —t) are at different sides of the

pellicle over the same point. The halo T(;LT< is reparametrized accordingly by the interval [0, 1].
Construct a continuous family of dendrites T%, s € [0, 1], with punctured halo, the tree 1z of
which has root ¢ and such that

e for each s the tree T¢ is contained in Uc and meets the boundary of U¢ exactly at ;
e for each s the values of the punctured halo of T¢ at the initial and terminating point

coincide and are equal to ’I%T< (0); the dendrites are mirror symmetric with respect to
reflection in the symmetry ray Be;

° Tg is a one-point dendrite;

° Té consists of the union of two dendrites attached at ¢ (”dendrite twins”). The first of
the two dendrites (i.e. its underlying tree, its punctured pellicle and punctured halo) is
a homeomorphic copy of T, and is (by a slight abuse) denoted again by T.. Its tree is
placed in the closed part U;" of the cone U¢ which is clockwise from B¢, and meets the
boundary of UC_ exactly at (;
The second dendrite is mirror symmetric to the first one with respect to reflection in the
symmetry ray B¢ and is denoted by TZ.
The value of the punctured halo of the dendrite Té at the point that lies over ( between
the dendrite twins coincides with the value at the terminating point of the pellicle of T.

We call this procedure ”growing of dendrite twins” (see below Lemma 21 for the general case).

The construction is the following. For s = 0 we obtain a one-point dendrite Tg. The procedure
of attaching this dendrite Tg does not change n.

For s € (0,1/2] the tree T of the dendrite T is an edge and consists of the points mr, ([0, s}).

Parametrize the pellicle of the tree T by the interval [0,2s] and symmetrically with respect
to the sides of the tree: take mzy|[0, NE mr,|[0, 5] (parametrization of the first side of the tree),

and symmetrically, mr; (7')”léfmTC (2s — 1) for T € [s,2s] (parametrization of the second side of the
tree).

Respectively, the halo of the dendrite T¢ is defined by the relations %Tf [0, s]défrcﬁTc [0, s] on the
first side, and symmetrically, ﬁzTZ (T)défﬁzTCs (s —7), T € [s,2s], on the second side of the dendrite.

For s € (1/2,1] the tree T¢ of the dendrite becomes a letter ”Y” which is symmetric with
respect to the symmetry ray.

Describe the tree T¢. Denote by a¢ the segment mze([0,1 — s]) of T¢ which is adjacent to ¢

(note that the number 1 — s is less than %) Denote the remaining segment bzidéfTC \ az. The
segment ai C B is the "trunk” of the letter Y. The "first branch of the letter Y7 is the image

R (b) of b under a rotation R¢ around the common endpoint mgg (1 — s) of ag and bZ. The

rotation is chosen so that the rotated segment R¢ (bZ) is placed in U~ and meets the boundary of

Us exactly at mry (1 — s). The rotations Rt are chosen continuously depending on s.

The second branch of the letter Y is chosen symmetric to the first one with respect to mirror
reflection in the symmetry ray Bc.

Describe the punctured pellicle m¢ of the tree T and the halo of the dendrite T¢. The part
of the pellicle of T¢ corresponding to the first side of a; coincides with the corresponding part
of the pellicle of T¢: mi(7) = m¢(7) for 7 € [0,1 — s]. Respectively, for the halo the relation

def O

e (1)L (r) for 7 € [0,1 — 5] holds.
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FIGURE 7. ”Peeling” in case of a single n™-edge at ¢

For 7 in the interval [1 — s, s] the relation is mg(7) = R¢ o m¢(7). This part of the pellicle m¢
surrounds Rg(bg) The halo of T¢ for those parameters 7 is defined by the halo of T¢: we put
m(T) = me(r) for 7 € [1 — s, 8].

The remaining part of the punctured pellicle and punctured halo of the dendrite T¢ is mirror
symmetric to the just described part.

For s = 1 we arrive at a mirror symmetric pair of dendrites with the properties described above.
The construction for this case is completed.

Step 8. The general case. Let {y be as above a point in I' situated counterclockwise from the root
1 of the axon. Suppose ¢ € dD \ T is reached by moving counterclockwise from ¢y and -y, is the
closed arc of the circle between (y and ¢ (counterclockwise traveling). Let m™ parametrize the
pellicle of n™ punctured at ¢y, m™*(6p) = (o.

If ¢ is a regular point for n™ then there is a unique parameter t in the pellicle of n™ for
which the equality m™ (t¢) = ¢ holds. If ¢ is not regular for n™ then there is a finite collection
of increasing parameters té, ...,tlC for which m™ (té) = (. Here t% parametrises the initial point

of the nT-tree attached at ¢ and té parametrises its terminating point. The points té and té“
parametrise the initial, respectively the terminating, points of the simple trees constituting the
tree at (.

The plan is the following. Let ¢ € 0D\ I' be any point counterclockwise from ¢y and let ¢,
denote one of the parameters for which m*(t¢) = ¢. Assume a neuron n; is constructed such
that the pellicle of its tree contains the arc 7 — m™(7),7 € [0, t¢]. We will construct a neuron
such that an arc of its pellicle coincides with 7 — m™(7), 7 € [0, t], for some parameters ¢ > tc.

Here is the precise description of the induction hypothesis.

Suppose a neuron n;, is constructed with the following properties. Its generalized tree v has
an edge e¢ attached at . Let as in step 2 B, be the (closed) ray that bisects the angle between
7¢ and the edge e;. The main property of n;, is the following. The pellicle of v¢ (considered as a
curve parametrized by the unit circle D) has a partition into three parts each reparametrized by
an interval.

(1) The first part is the excrescence O¢ of O¢. Its halo is defined by £~ as in step 1.
(2) The second part is the excrescence vz(t)défer(t), t € [0, tc], of y¢. We assume the
excrescence is chosen so that its image m™([fo,t]) is situated clockwise from B; and

meets B, exactly at the points m+(t2) =(, j=1,...,i, where t. = t; . The halo on the

+
second part is defined by m (t), t € [6o,tc]
(3) To define the third part we consider an extension of the homeomorphism A, from £~
to the image m™ ([0, t¢]) such that A. is affine on each straight line segment contained



30 B. JORICKE

in m*([0o,tc]). Moreover, the image A o m™([6p,t¢]) is contained in the closed angle
between B¢ and e (i.e. counterclockwise from B¢) and meets B¢ exactly at the points

mt(t) =¢ j=1,..i,.
The third part is the excrescence (elc)*(t) = Acom™(t), t € [0o,tc]. The halo is defined

o] O+
by me(é)*(t) =m (t), t € [0o,tc]-

FIGURE 8. "Peeling”: The generalized disc vy,

Two possibilities may arise.

(a) Points in the pellicle of nt parametrized by ¢ > ¢, and close to t; are regular points
contained in dD.

(b) t¢ is the initial point of one of the simple trees that constitute the n*-tree attached at (.
We denote this tree for short by T, and the respective dendrite by T¢. (Notice that the
structure of the whole n"-dendrite that is attached at ¢ does not play a role in the proof.)
Let t; parametrize the terminating point of the pellicle of T¢. So m™(t;) = ¢ and the arc
t—m*(t), t € [t, t'c], of the pellicle of v is the punctured pellicle of the tree T¢.

Here are the constructions in cases (a) and (b). In the first case (a) we proceed like in step
1 of the proof. We change the root of the main edge e; in counterclockwise direction along the
circle and let the edge grow. More precisely, let ¢’ € 9D be counterclockwise of ( and let the arc
between ¢ and (" consist of regular points. At ¢’ we attach an edge e and equip it with the
following structure. For a segment of e adjacent to the leaf we take an excrescence on each of
the sides of the edge (and the respective halo on it) that is homeomorphic to the respective one
for ec. For the remaining segment of e.s that is adjacent to the root ¢’ we proceed as in step 1.

In the second case (b) we will construct a continuous family of neurons that connects n, with
a neuron n'C so that the final neuron n’C has the following properties. As for the original neuron
the pellicle of n’C has a decomposition into three parts satisfying properties (1), (2) and (3) with
tc replaced by t¢. Thus, the pellicle of n’c contains the arc t — m™¥(t), t € [Go,t’c]. (Recall that
t —m*(t), t € [te,t;], is the punctured pellicle of T¢).

To construct the family of neurons it is enough to construct the respective family of dendrites
attached to n¢ at the point . The following lemma provides this construction.
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Lemma 21. (On growing of dendrite twins) Let ¢, ec and B¢ be as above. Let U¢ be a closed
convex cone with vertex ¢ which is symmetric with respect to reflection in B¢ and contained in the
sector between ~y¢ and e¢c. Denote by U the closed part of Uc which is situated clockwise from Be.

Let T = (T, mr, @T,&T) be a dendrite with halo. Suppose the pellicle of the underlying tree T is
parametrized by [t',t"].

Consider a point £ € B¢ and a closed convex cone Us C Uy with vertex & which is symmetric
with respect to reflection in Be.

Then there exists a continuous family of dendrites TE, se [0, 1], with root & with the following
properties:

(1) For all s € [0,1] the tree of T¢ is contained in the cone Ug and meets the boundary of the
cone exactly at &.
oS
(2) For all s the values of the halo mr, at the initial point and at the terminating point coincide

and equal T?’L; (t'). The dendrites are mirror symmetric for reflection in the ray Bc.

(3) The dendrite Tg is a one-point dendrite.

(4) The dendrite Té is a dendrite twin attached at &. The tree of the first labeled twin dendrite
s contained in UgdéfUE N Ue and meets the boundary of Ug exactly at &. The first
labeled dendrite (i.e. its underlying tree, its punctured pellicle and punctured halo) is a
homeomorphic copy of T. The second dendrite is mirror symmetric to the first one with
respect to reflection in the symmetry ray. The value of the halo of the dendrite twin at the
point between the twins equals mp(t").

Proof. If the tree of the dendrite T consists of a single edge the proof was given in step 2. Prove
the lemma by induction on the number of edges of the tree T.

Suppose first that the (planar) tree T is not simple, i.e. it has more than one (non-empty)
edges adjacent to the root. Then the tree is the union of two (planar) trees 7" and 7" with the
same root labeled so that 7" is counterclockwise of T'. Each of the trees 7’ and T" has less edges
than T. By induction hypothesis the required family T';, s € [0, 1], of dendrites rooted at & exists

for the first dendrite T’. The final dendrite T’é is the union of mirror symmetric twins. The first
of the twins is denoted by T, (situated clockwise from B.) and the second twin is denoted by
(T'¢)* (situated counterclockwise from Bc)).

Consider a smaller closed convex cone Ug C Ug with vertex { which is symmetric with respect
to B¢ and meets the trees Tg’ and (Té)* exactly at the point &.

An application of the induction hypothesis to the point &, the cone U and the second dendrite
T” finishes the proof in this case.

Consider the remaining case when the tree T is simple, i.e. it has a single edge E adjacent to its
root. Realize E as a segment F¢ with initial point £ on the symmetry ray B¢ (traveled in positive
direction of B¢). Associate to the tree E¢ the following dendrite E, with halo. The tree of E; is
chosen equal to E¢. The halo on the first side of E¢ is taken to coincide with the halo of T along
the first side of the edge I of its tree. The halo on the second side of E¢ is chosen symmetrically.
There is a continuous family of dendrites which join the one-point dendrite with root & with the
dendrite Eg

Denote by TF the dendrite obtained by removing E from T. In other words, the tree of T
equals TE/T\ E. The halo of the dendrite T is the restriction of the halo of T.

The tree T has an edge less than 7. The induction hypothesis applied to 7%, the endpoint 7
of the tree E¢ and a closed convex cone U,, C Ug symmetric with respect to B gives a continuous
family of dendrites that join the one-point dendrite at n with a dendrite twin Tf U(T,];J)* rooted
at 1. Here Tf C U, is situated clockwise from B; and (Tf )* C U, is counterclockwise from B¢.
Cut the punctured pellicle of E at the tip n and paste the punctured pellicle of TEU(TE)*.
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F1GURE 9. Growing of dendrite twins

The punctured halo of the twin dendrite T2 |J(T5)* matches with that of E; at the point 7.
The result of pasting is a dendrite with halo which can be joined with the one-point dendrite at
& by a continuous family.

The rest of the construction is based, as in step 2, on splitting the segment E¢ into a letter Y
but with copies of TEE (respectively (TgE )*) attached at the tip of the first branch (respectively, of
the second branch) of the letter Y.

It remains to define the halo on the Y. The pellicle of the Y punctured at the bottom point has
a partition into three arcs: the part, seen from the right (the union of the first side of the steam
and the first side of the first branch), the part seen from above (the union of the second side of
the first branch and the first side of the second branch) and the part seen from the left (the union
of the second side of the second branch and the second side of the steam). The halo on the part
seen from the right (respectively seen from the left) is the halo on the first side (respectively on
the second side) of E; after a change of variables. The halo on the part seen from above is defined
as in step 2.

We defined a continuous family of dendrites with halo. The final dendrite of the family is the
required twin dendrite. The proof of lemma 21 is finished.

O

To finish step 3 of the proof of Lemma 20 we apply Lemma 21 to the dendrite T¢, the point ¢
and a closed convex cone U contained in the sector between v+ and e which meets the trees of
n¢ at most at (. The desired continuous family of neurons is obtained by pasting the constructed
family of dendrites obtained in Lemma 21.

The general ”peeling”-procedure described in step 3 can be continued until a point ¢* € I' C 9D
situated clockwise (within I') from the point 1 is reached.

By assumption '\ {1} consists of regular points for both, n™ and n~, and the n™-halo coincides
with the n~-halo on I' \ {1}. Hence, the obtained neuron n¢- has the required property: it differs
from n* by a dendrite attached at ¢*. Lemma 20 is proved. O

Lemma 20 yields a continuous family of neurons with halo that joins the neuron ng with the
neuron n;g U %,. By a change of the t-variables we may assume that the parameter set is again
the interval [0,%p]. For ¢ close to 0 the new neurons coincide with the previous ones and for t = ¢
the new neuron coincides with njt UT,,.

For all t > ty we attach to the neuron n; a dendrite ¥; with halo and root * of the underlying
tree. The family of dendrites with halo ¥; is chosen continuously depending on ¢ and converging
to %y, for t — to. A continuous choice of the dendrites can be made since the halo of the neurons
on the arc I" changes continuously.
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We obtain a piecewise continuous family of neurons with halo. Moreover, the family of neurons
has one discontinuity point less than the previous family. Shrink the arc T’ (keeping the same
notation) so that the arc still contains the point 1 and "\ {1} is free from roots of attached trees
for all t € [0,1].

Consider all (finitely many) discontinuity points t; (in increasing order) of the family n,. Apply
Lemma 20 successively to each n;, and attach to the n;, ¢ > ¢;, dendrites that depend continuously
on t. At each step the arc I' is shrinken suitably.

We arrive at a continuous family of neurons with halo. Denote the neurons by

Ny = (v}, ¢, My, My). All generalized discs v] coincide with the closed unit disc with a number of
trees attached. In particular, each generalized disc v] contains the tree T of an axon attached
at the point 1. For each ¢ there is a number ¢ such that the restricted mapping ¢;|D coincides
with the original mapping ®; from Lemma 13. Moreover, for ¢ close to 1 the restrictions coincide
with the mappings from Lemma 13: ¢;|D = ®,; for ¢ close to 1. For t close to 0 the generalized
discs v} coincide with the unit disc D and the neurons coincide with the original analytic discs of
Lemma 13. They are small discs embedded into G and the values of their halo are small discs

embedded into G. For all ¢ the halo M, is associated to the lift of ®;|0D to G. Tn other words,

the restriction of the mapping M, = Py o M, to D coincides with Cilt|8]D).
In the sequel we need also the following property of the neurons. Choose parametrizations
M (€), t €1]0,1], £ € ID, of the pellicle of v; which depend continuously on ¢. The property is the

following. There exists a compact subset « of G such that ;¢ (o 1) ccon J\Olt (€)(0D) C k. Moreover,

let for each t the point M;(£o) be the tip of the axon tree of 1. Then U,¢( J\Oﬂ(fg)(]D)) C & and,
hence, in particular, ;¢ (g 1 ¢+ © M:(&o) C  and bp 0 My(&) C (G).

10. PROOF OF LEMMA 13

Using the continuous family of neurons IV; with halo obtained in the previous section the proof
of Lemma 13 can be completed essentially along the same lines as the proof of lemma 12. Here
are the details.

Fix an € > 0 which is small compared to the distance of x to the boundary of G. Apply
the procedure of continuous fattening of dendrites (Lemma 16) to all neurons NV; and all attached
dendrites. We obtain a continuous family of analytic discs with continuously varying halo, denoted

by (Dy,my, g, my), t € [0,1], for which max,; [ty — ¢¢| < € and my is e-close to the halo M, of
the respective original neuron. (We abuse notation for the pellicle and the halo using the same
letter as for the objects related to the original family ®;). The sets D; are closures of continuously
changing bounded simply connected and smoothly bounded domains in the complex plane. The
sets D, are obtained from the closed unit disc by attaching ”closed thickened trees”. The ”closed
thickened axons” play a special role. These are thin closed neighbourhoods of the interiors of the
axon trees T** that depend continuously on ¢ and are pasted to the closed unit disc along an arc
of the circle. For each t the tip a; of the axon is the only point of the axon that is located on the
boundary of the respective domain Dj.

Since for each ¢ the inclusion ¢y(a;) € i(G) holds, there are closed arcs 2; contained in dDy,
a; € Ay, for which () C #(G), provided ¢ is small enough. Choose continuously changing open
arcs AY which are relatively compact in Int2l, with a;, € 2.

Use the same notation as in the proof of lemma 12: Spp, = (D, x{0}) U (0D, xD), Sop,\20 (D x
{01 U(OD;, \ 29 x D) and Q< (8D, x dD) |J (A x D).

Define, as in the proof of Lemma 12, for each ¢ a mapping J; on Spp, which equals 1, on the
central disc D; x {0} and is equal to the evaluation map for ﬁzt on the disc fibers over 0D;. The
mappings J; depend continuously on t.

For each neighbourhood V of k the number ¢ and the arcs 2; may be chosen so that

Usepo,1) Je(Q) C V.
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Let K, denote the following compact subset of D |J 77%: K,</rD (J [r,1] U T* .(Recall that
for each ¢t we denote by T£* the tree of the axon of the neuron n;.) Note that K; is a compact
subset of D, |J AY. For ¢ close to 1 K; = rD |J [0, 2].

By Lemma 17 there is a continuous family of mappings H; € Ax2(D; x D) such that for an
arbitrary point z € D the mappings f7, t € [0,1], f7(O)=H, (¢, 2), ¢ € Dy, define a continuous
family of analytic discs with boundary in V satisfying the inequality maxg, |1y — fF| < € for all

€ [0,1]. Moreover, by the special choice of 19 = ®; Lemma 17 implies that the disc (D) is
entirely contained in G.

Fix a point z € 0D. An application of lemma 9 to the family f7 produces a family of immersed
discs f; with all above listed properties preserved. In particular the boundaries of the discs f;(OD)
are contained in V.

Take an arbitrary point p € ®1(D). Choosing r close enough to 1 we may assume that p €
®;(K;). Further, we may assume that the family f; is chosen so that p € f1(K7). (This can be
achieved considering, in case X2 = C2, small translations of the discs of the family and in the
general case by applying compactly defined holomorphic mappings close to the identity on X2. )
We proved that p is contained in the projection P(G).

To choose a standard lift of a neighbourhood of p to G we reparametrize f1. More precisely,
consider the composition f; o ¢ with a conformal mapping ¢ from the unit disc onto Dy such
that f1 o 1(0) = p. For a number r < 1 and close to 1 we consider the function ¢ — f1 o 1(r¢)
and denote it by d,. Let cf be the equivalence class represented by dp.

Consider a standard neighbourhood PV - Qp of d associated to the representative d, (see
section 3). Here @, is a neighbourhood of p in X 2 73 is biholomorphic and for ¢ € @, the classes
1, = (P|V)~1(q) are represented by a continuous farnlly of analytic discs d,. For ¢ = p the disc
coincides with the one defined before.

It remains to see that this standard lift of @, to G is compatible with the lift d of ®. More
precisely, let (t,2') € [0,1) x D be close to (1, z), so that ¢ ®(t,2’) is contained in Q,. We have
to prove the following Lemma 22.

Lemma 22. The equivalence classes qu and ®(t,2') coincide.

Proof of Lemma 22. Recall that for ¢ close to 1 (M(')]D) = <f>t|8]D. For ¢ < 1 close to 1 we extend ¢; to
D by qgt@déf(i)t. It is enough to find two curves 44 and ¢ in G with equal projections Pody = Pode
such that for the initial points of the curves 44(0) = qu and 44 (0) = ®(¢, 2/)(= §(t, 2')) and the
terminating points of the curves 94 and ¢ coincide.

Each curve will be the sum of two curves. To define the first part of 43 we choose a number
a € [0,2] close to 2 and let 8 : [0,a] — {t} x K; be a curve that joins the point (¢,z’) with the
point (t,a). Recall that for ¢ close to 1 the set K; has the form 7D U [0,2]. Define the first part
of 44 by 4a(7) = $(8(7)), T € [0, a]. Hence, as required 9 (0) = ¢(t, z'). For the projected curve
we have P o 5o (1) = ¢(8(7)), 7 € [0, q].

Since for ¢ close to 1 the point 2 is the tip of the axon tree T* the inclusions ¢1(2) = ¢(1,2) € &
$(1,2) =120 4(1,2) € i(G) hold (see the end of section 9). Hence we may assume that ¢(3)(a) is
contained in the neighbourhood V of & and ¢(3(a)) = i o ¢(3(a) is in i(G).

To define the first part of 44 we find a continuous family of G-discs d” that are all close to d,
and have center d"(0) = ¢(8(7)) so that d® = d,. For this we recall that f; is 2e-close to ¢; on
K (since it is e-close to 11 on K; and v is e-close to ¢ on v1) and ¢; = ®1 on D. Also, dp
differs from f; by a reparametrization. Further, if (¢,2’) is close to (1, z) then d, is e-close to d,
on D. Moreover, for ¢ close to 1 maxg, |f(t,2) — ¢(1,2)| < e. Hence, in case X2 C?, there are
points z, € D depending continuously on 7 € [0,a] and a continuous family of translatlons dg of
dg such that the relation dj (z;) = ¢(8(7)), 7 € [0, a], holds and dg = d,. For general X? instead
of translations one can use a continuous family of compactly defined holomorphic maps close to
the identity on X?. Renormalize the discs df so that the centers becorne @(B(7))) and let Y4(7)
be the equivalence class represented by the renormahzed disc d™! dT oY, .
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For defining the second part of the curves we consider an arc v : [a,3] — V C G C X?
which joins the point ¢(3(a))) with a point ¢; in the image d,(D) = f1 o ¢1(rD) which is close to
$1(2) = ¢(1,2) € k. Define 44 on [a,3] to coincide with the lift 7 0 v of .

To define 44 on [a, 3] we consider again a continuous family of small perturbations of d, such
that for each 7 the respective disc passes through ~(7), for 7 = a the disc coincides with the disc
dy defined before and for 7 = 3 the disc equals d,,.

Reparametrize the discs so that the centers become ~(7), and consider the equivalence classes
represented by the reparametized discs. We obtain a curve 94/[a, 3] which is the second part of 4.
Note that 44(3) is represented by a reparametrization of d, for which the center is the point ¢;.
With a suitable choice of ¢ € d,(D) we may assume that the conditions of Lemma 7 are satisfied
and, hence, 94(3) coincides with the class represented by small discs in G centered at y4(3). Since
the same is true for ¢(7(3)) the proof of Lemma 22 is completed. O

Lemma 13 and, hence, the theorem are proved. O

11. PROOF OF THE COROLLARIES

Proof of Corollary 1. By Theorem 1 and Lemma 1 for each point p in the envelope of holomorphy
G there exists an immersed analytic disc d : D — G such that d(0) = p and d(dD) C i(G) C G.
We may assume that d extends to an analytic immersion of (1 + ¢)D for some positive number
€. The mapping can be uniformly approximated on (1 + 1/2¢)D by an immersion of the disc with
only double self-intersection points and transversal self-intersection. This is a standard Morse-
Sard type argument. The obtained disc can be considered as a nodal curve with boundary, i.e. as
a singular Riemann surface with boundary all singularities of which are nodal singularities. By
results of Ivashkovich and Shevchishin on the moduli space of Riemann surfaces (see [9], theorem
3.4 and lemma 3.8) the nodal curve is uniformly close to a smooth Riemann surface embedded
into G. O

Remark. Theorem 1 implies the result of [13] that the natural homomorphism ¢ : 71 (G) — 71'1(@)
induced by inclusion is surjective. Indeed, by the following argument any closed curve v in G is
homotopic in G to a curve in i(G). Take an excrescence v* of 'y, : 0D — @G, which lifts to a

mapping %* : 0D — Go. Note that v* is homotopic to . Let ~ (C)( ), ¢ € 9D, z € D, be the

o* ~
evaluation mapping. The curve ( — v (¢)(1) is homotopic in G to v*and contained in i(G).

Proof of Corollaries 2 and 3. Consider the following slightly more general situation which includes
the case of each of the two corollaries. Let S be an orientable compact connected surface with or
without boundary. Let f : S — G be a continuous mapping. If the boundary 95 is not empty
we will assume that f(9S) C i(G). In case of a closed surface S we think about f : § — G
representing a homology class in Hy(G). The case when S = b2 is a disc corresponds to the
homotopy of the loop representing an element in the kernel of the homomorphism ¢ in Corollary
3. We may always deform the surface so that f(S) contains the point p. Say p = f({*).

Since G = G and locally each mapping into G lifts to a mapping into Gy we may consider a
simplicial decomposition of S which is fine enough so that the following properties hold:

(1) On each 2-simplex o; of the decomposition there is a continuous lift f i — Gy of

deEff | o0; to Go.

(2) Consider an arbitrary edge ey of the simplicial complex. Let o; and o; be the adjacent

2-simplices. For ¢ € e, we denote by (f;(¢), f;(¢)) the equivalent discs corresponding to
the two simplices by property (1). We require that there is a family of dendrites T; ;(¢)

with punctured halo associated to the family (f;(¢), f;(¢)) of pairs of discs by lemma 5,
depending continuously on the point ( and such that the underlying trees of the dendrites
are homeomorphic.

(3) The point ¢* is a vertex of the simplicial decomposition.
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We will use now properties (1) and (2) to obtain a homotopy of the mapping f to a new mapping
f': S — G with the following property. There is a tree ¥ C S such that f![S\ ¥ lifts to Go.
Moreover, the lifted mapping extends continuously to the pellicle of ¥ (the latter defined in the
above sense assuming a simply connected neighbourhood of ¥ in S being extended to a sphere).

To find a suitable tree ¥ we will color each 1-simplex either white or black in such a way that
the union of black simplices constitutes a (connected) tree wich contains each of the vertices of the
triangulation. The coloring is done as follows. Since S is connected the union of all 1-simplices
(edges) of the triangulation is connected. If the boundary 95 is not empty then all edges contained
in it are colored white. Since for each 2-simplex no more than one adjacent edge is contained in
0S the union of uncolored edges is connected and contains all vertices of the triangulation. If the
union of uncolored edges contains a closed loop we give white color to one of the edges constituting
the loop. The union of uncolored edges still constitutes a connected set and contains all vertices.
After finitely many steps the union of uncolored edges is a connected set without closed loops
containing all vertices. Color the so far uncolored edges black. We obtained a coloring with the
desired properties. Denote the tree constituted by the union of all black edges by ¥'.

Consider the barycentric subdivision of the simplicial complex. Associate to each edge ey, of the
original complex the union & of those four 2-simplices of the subdivision that contain a ”half” of
ex. The 6 have pairwise disjoint interior and cover S.

Let e be a white edge. We describe now a homotopy of the restriction f|5 to a mapping
ft |6 which fixes the values at the boundary of 6%. Let o; and o be the 2-simplices of the original
simplicial complex that are adjacent to e, and let T; ;(¢), ¢ € eg, be the dendrites associated to
er, according to property 2. Let further m; ;(t,¢), t € [0,1],{ € eg, be a parametrization of the
pellicles of the trees T; ;(¢) depending continuously on (.

Cut 7 along ex and glue back the union g 11 cee, 4,5 (¢, ¢) with the natural gluing homeo-
morphism on the two sides of ey, (the point m; ;(0, () (respectively, the point m; ;(1,()) is identified
with the point on the side of o; (respectively, o) over ¢ € ex). We obtain a (singular) closed square
oj. The mapping f|6) extends to a continuous mapping on &5 U Ute[071]7<e€k T;.;(¢), moreover,
it extends to a continuous mapping f; on o} which lifts to Gg. Moreover, reparametrize o}, in
the following way. Consider disjoint trees Ty = Té“ and T} = TF, both homeomorphic to the
underlying tree of the dendrites T; ;(¢), having their root respectively at the endpoints {y and (;
of the edge eg, being contained in &5 and each meeting the boundary of &5 exactly at its root.

Let ¢ be a homeomorphism of the set &4 \ (Tp U T1) onto of \ (T5,(¢o) U T; ;(¢1)) which is
the identity on the boundary 06%. Require, moreover, that ¢ extends continuously to the pellicle
of Ty (T4, respectively) and maps it homeomorphically onto the pellicle of T; ;(¢o) ( T3,;(C1),
respectively). Put f115, \ (To UT))= £ 0 9|61 \ (To UT1). This mapping extends to a continuous
mapping on &y, also denoted by f'. Since each rooted tree is contractible to its root and the
construction an be made for subtrees and so that it depends countinuously on the choice of
subtrees, the mappings f|6, and f!|5) are homotopic.

As required, the restriction f!|G) \ (Tp U Ty) lifts to Go. The lift extends continuously to the
punctured pellicle of Ty and T;. Attach the trees Ty = T4 and Ty = Tf to T'.

Proceed in the same way with each of the white edges. We obtain a new tree € C S and a
homotopy of f on the whole of S to a mapping f!. The restriction f!|S\ T of the final mapping

f! admits a lift f! to Gy which extends continuously to the pellicle of the tree T .
Approximate the mapping f! : € — G of the tree by a true analytic disc f2 : A — G. Here
A denotes a small simply connected neighbourhood of € on S which we endow with complex
structure. Extend the mapping to a continuous mapping f2 : S — G which equals f! outside
a small neighbourhood of the closure A. If f2 is close to f! on S then the two mappings are
[e]

homotopic and f2]S \ A lifts to a mapping f?|S \ A — Go.
Note that the (images of the) circle fibers (Jeco\a f2(¢)(OD) are contained in G. Moreover,

there is an open subset Uy of S such that for ¢ € Uy the (image of the) whole disc fiber f2(¢)(D)
is contained in G. For each k the points in 6; which are close to a leaf of T or T¥ belong to
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Up. If A is a sufficiently small neighbourhood of ¥ its boundary A intersects Uy since ¥ contains
the trees Té“ and le for each white edge ej, . Hence, the mapping f2|A is a disc neuron and the

o
restriction f2|0A is its halo.

We may consider the lift f 2 of 12 up to changing it on the set Uy. More preclsely7 consider lifts
F2 of f2 on S\ A such that F2 f2 outside Uy and for all ¢ in Uy the property FQ(C)( )C G

holds. We call such lifts F' "2 admissible changes of f2 3
Lemma 17 and 18 apply to f2|A and its halo (and the Stein manifold G). Lemma 18 provides an

approximation (take, for instance, the mapping $(¢, ) in the notation of lemma 17) of f2(¢), ¢ €
5‘A\Uo, and (the proof of) Lemma 17 states that after an admissible change on Uy we obtain a new

lift f3 on OA of the same mapping f2|0A buch that the Riemann- Hllbert boundary value problem

is solvable: There exists a section OA > — f?’(()(g( Q) € Uceon f3 (¢)(OD) which coincides with
the boundary values of an analytic disc in G. This disc is a G-disc. Denote it by F(¢), ¢ € A. The

mappings A 5 ¢ — f3(0)(rg(Q)) € Uceon F2(¢)(D), r € [0,1], provide a homotopy of mappings
into G joining f?|A with F|A.

Extend f3 to the whole set S\ A as a continuous lift of f2 such that the extended mapping equals
f? outside a neighbourhood of OA. Denote the mapping again by f3. After admissible changes

of the mapping f3 on Up it remains to find a section S\ A 5 ¢ — f3(g9(¢)) € Ucesra 3(¢)(oD)
extending the section found before on JA. Since Uy intersects & for each white edge ey this is

always possible. The new mapping F is now defined on S\ A by this section: FI(¢) = f3(g(¢)),¢ €

S\ A, and the homotopy is given by f3(rg(¢)), r € [0, 1].

Note that the disc A contains the point ¢*. The construction can be made in such a way that
F is close to f in a neighbourhood of ¢*. A small perturbation of the surface F : § — G will pass
through p.

Corollaries 2 and 3 are proved. ]

Proof of Corollaries 4 and 5. The proof uses Corollaries 2 and 3. Let 2 be a strictly pseudoconvex
domain in a Stein surface X2, Q = {p < 0} for a strictly plurisubharmonic function p defined in a
neighbourhood of the closure Q of . Let G = {0 < p < €} for a small positive number ¢ so that
p does not have critical points in G. Then G = Q. {p < ¢}. Denote by J a retraction of Q. onto
Q.

Let f : S — Q be a continuous mapping of an orientable connected compact surface. If the
boundary 95 is not empty we require that f(9S) C €. Consider f as a mapping into G = Q..
If 0S is not empty we perturb the mapping slightly so that f(8S) C G. By the proof of the
Corollaries 2 and 3 there is a homotopy of f (in §2.) to a mapping F; : S — Q. and a disc A C S
such that Fy|A is an analytic disc and Fy(S \ A) is contained in G. We may assume that A
is not empty. After a small perturbation of F; the analytic disc Fy(A) has no self-intersection
pomts on J0f) and intersects 02 transversally. Let A; be the subset of A that is mapped into €2

AE{¢ e A: Fi(¢) € Q). By the maximum principle for the function p the set A; is the union
of simply connected planar domains. If A; is connected then J o F} is the desired mapping.

If Ay is not connected, let dy,...,05 be its connected components. There are pairwise disjoint
arcs i, ...yn—1 on A without self-intersections such that =; joins a point in 9§; with a point in
06;+1 and does not meet the union of the &; otherwise. After a further (small) homotopy of
the mapping F1|A \ |J§; inside Q. \ G which fixes the mapping on the union of the boundaries
J0d; we may assume that the arcs Fi(7;) are contained in 052, are pairwise disjoint without
self-intersection points and meet the union of the F;(d9;) exactly at the endpoints of the arcs.
After approximating the arcs and the mapping F; we may assume that the arcs are Legendrian
arcs in 0. (It is well-known in contact geometry that arbitrary curves in contact manifolds may
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be CY approximated by Legendrian curves, for an elementary proof see, e.g. [7]). We arrived at
the union of analytic discs with Legendrian arcs Fy : Ud; |JUy; — Q.

Lemma 23. Let E C C be a connected compact simply connected set consisting of the union
of pairwise disjoint closed discs and pairwise disjoint arcs meeting the discs at most at their
endpoints. Let Q be a relatively compact strictly pseudoconvex domain in a Stein surface X? and
let f: E — Q be a continuous mapping for which the restriction to each closed disc in E is an
analytic disc with boundary in 02 and each of the arcs is a Legendrian arc in OS).

Then the mapping can be approzimated by a true analytic disc F : A — Q with boundary in
0Q. Here A is a simply connected planar domain with E C A and A is contained in a small
neighbourhood of E. Moreover, if z is the tip of an arc in E (not contained in the boundary of
any of the closed discs in E) then A can be chosen so that z € OA and F(z) = f(z).

The Lemma seems to be folklore but we have no direct reference. After the proof of the
Corollaries we will sketch the proof.

The lemma allows to find a homotopy of F; to a mapping F5 : S — {2, such that for a simply
connected domain Ay C A the restriction F5|Ag is an analytic disc with boundary in 9Q and the
set F'(S'\ Ag) is contained in Q. \ Q . Composing F, with the retraction J finishes the proof. O

It remains to sketch the proof of Lemma 23. Notice that the Lemma was used in the example
in section 1 and also implies the following fact. The boundary of the disc of Corollary 5 which
represents an element of the fundamental group of 92 can be chosen to pass through a given base
point p € 09.

Sketch of the proof of Lemma 23. Notice that after approximating we may assume that for each
analytic disc f(d;) contained in f(E) the mapping f extends to an analytic immersion of a larger
disc 6’ D § to a neighbourhood of © in X2 (keeping the condition f(8§) C 9Q). Consider a small
connected neighbourhood V of f(E\ Int E). (The set f(E\ Int E) is the union of the boundaries
of the analytic discs contained in f(E) and the Legendrian arcs. Notice that f(E\ Int E) C 9Q.)
With each of the analytic discs f; : §; — X? we associate (as in section 3) a Riemann domain
R; over X2 (biholomorphic to 8] x ;D for some &; > 0) to which the disc lifts as an embedded
disc. Consider the disjoint union of the Riemann domains R; and glue each R; in a natural way
to V along a neighbourhood of the respective circle f(99;). Shrinking the Riemann domains and
the domain V suitably we obtain a (strictly) pseudoconvex Riemann domain R over X2 which is
diffeomorphic to a ball (see [21] where the method of gluing tubular neighbourhoods of arcs to
strictly pseudoconvex domains to obtain strictly pseudoconvex domains appeared first).

Denote by M the lift of VN OQ to R. M is a relatively closed hypersurface in R which
is strictly pseudoconvex from one side. The lifts to R of the analytic discs contained in f(FE)
extend to embedded relatively closed analytic discs in R, denoted by F;(ID). Denote the lifts of
the arcs in f(E) by v;. The 7; are Legendrian arcs in M. To each ~; we associate a chain of
small analytic discs gy : D — R, k = 1,..., N, so that g;(dD) C M, g;(—1) is an endpoint of
Yis 9(1) = gr41(—=1), k =1,..,N — 1, and gy(1) is the other endpoint of ;. The discs may be
taken to be intersections with the pseudoconvex side of M of complex lines in suitable coordinates.
By further shrinking the Riemann domain we assume that these discs extend to relatively closed
embedded analytic discs in R which meet transversally and do not meet the F;(D) except at
g1(—1) and possibly gn(1). We may assume that the latter intersections are also transversal. We
obtained a finite collection of relatively closed discs in R. Since R is diffeomorphic to a ball, each
disc is the zero set {F; = 0} of an analytic function F; on R. For a generic choice of a small
number 7 the set Xndéf{H F; =n}NQis an analytic disc (see, e.g. [16], Lemma 3.7). If 7; is an
arc with the second endpoint not contained in the boundary of any of the analytic discs F;(0D)
we may adjust the choice of the last small disc gy and the number 7 so that the boundary of the
disc X, passes through the endpoint of ;.

The lemma is proved. O
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