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Śniadeckich 8, 00-956 Warszawa, Poland

P.Pragacz@impan.gov.pl

(29.03.2006; revised 29.06.2006)

To the memory of Professor Stanis law Balcerzyk (1932-2005)

Abstract

We give the Thom polynomials for the singularities I2,2 (in Mather’s
notation) associated with maps (C•, 0) → (C•+k , 0) with parameter
k ≥ 0. Our computations combine the characterization of Thom poly-
nomials via the “method of restriction equations” of Rimanyi et al.
with the techniques of (super) Schur functions.

1 Introduction

The global behavior of singularities is governed by their Thom polynomials
(cf. [31], [12], [1], [11], [28]). Knowing the Thom polynomial of a singularity
η, denoted T η, one can compute the cohomology class represented by the
η-points of a map. We do not attempt here to survey all activities related
to computations of Thom polynomials which are difficult tasks in general.

In the present paper, following a series of papers by Rimanyi et al. [29],
[28], [7], [2], we study the Thom polynomials for the singularities I2,2 of the
maps (C•, 0) → (C•+k, 0) with parameter k ≥ 0.

The way of obtaining the thought Thom polynomial is through the so-
lution of a system of linear equations, which is fine when we want to find
one concrete Thom polynomial, say, for a fixed k. However, if we want to
find the Thom polynomials for a series of singularities, associated with maps
(C•, 0) → (C•+k, 0) with k as a parameter, we have to solve simultaneously
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a countable family of systems of linear equations. As stated by Rimanyi in
[28], p. 512 :

“However, another challenge is to find Thom polynomials containing k
as a parameter.”

We do it here for the restriction equations for the singularities I2,2 and
any k. In fact, the obtained functional equations in symmetric functions are
of independent interest. The main novelty of the present paper over the pre-
vious articles on Thom polynomials, is an extensive use of Schur functions.
Namely, instead of using Chern monomial expansions (as the authors of all
previous papers constantly do), we use Schur function expansions. This puts
a more transparent structure on computations of Thom polynomials. We
hope that the expression for T I2,2 given in Theorem 19), provides a strong
support of this claim. In particular, we get in this way some recursive for-
mulas (cf., e.g., Lemma 12) that are not so easy to find using other bases,
for instance, the Chern monomial basis. In fact, different recursions play a
prominent role in the present paper – apart from Lemma 12 see Eq. (57).

Another feature of using the Schur function expansions for Thom poly-
nomials is that in all known to us cases, all the coefficients are nonnegative.
In fact, we state the following:

Conjecture: The coefficients of the Schur function expansion of a Thom
polynomial are nonnegative.1

To be more precise, we use here (the specializations of) supersymmetric
Schur functions, also called super-S-functions or Schur functions in differ-
ence of alphabets together with their three basic properties: vanishing, can-
cellation and factorization, (cf. [3], [16], [22], [26], [17], [9], and [14]). These
functions contain resultants among themselves. Their geometric significance
was illuminated in the 80’s in the author’s study of polynomials supported
on degeneracy loci (cf. [21]).

In the main body of the present paper, we give the Thom polynomi-
als for the singularities I2,2 (in Mather’s notation) associated with maps
(C•, 0) → (C•+k, 0) with parameter k ≥ 0. We do it via establishing the
Schur function expansions for these Thom polynomials. We prove first in
Lemma 11 that partitions indexing the Schur polynomials involved have not
more than 3 parts. Then, in Lemma 12, we establish a recursive relation
for Thom polynomials associated with successive values of the parameter k.
This reduces the calculation to compute the (sub)sum indexed by partitions
with precisely 2 parts. This is essentially done in Proposition 14 (see also
Propositions 16, 17, 18).

1Note added in May 2006: this conjecture has been recently proved by A. Weber and
the author in [27].
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Our main result (Theorem 19 combined with Propositions 17, 18) gives
an explicit presentation of the Thom polynomial for the singularities I2,2

with parameter k ≥ 0 as a Z-combination of Schur functions. We give
closed algebraic expressions for the coefficients of these expansions. “A bit”
surprisingly, these coefficients are the same as the coefficients of the Schur
function expansions of the Segre classes of the second symmetric power of a
rank 2 vector bundle, computed in [30], [21], [13], and [23].

Our main result offers a generalization (to any k ≥ 0) of the formulas
obtained previously by Porteous [19] and Rimanyi [28] for k = 0 and k = 1,
respectively.

In our calculations we use extensively the functorial λ-ring approach to
symmetric functions developed mainly in Lascoux’s book [14].

Main results of the present paper were announced in [24].

In the forthcoming article [25], the Schur function expansions of Thom
polynomials for the singularities Ai are given. First, we give the Thom
polynomials for the singularities Ai (any i) associated with maps (C•, 0) →
(C•+k, 0), with parameter k ≥ 0. This is done under the additional assump-
tion that Σj = ∅ for all j ≥ 2. Second, we give the Thom polynomials –
via their Schur function expansions – for the singularities A3 (with param-
eter k ≥ 0), this time with no additional assumptions on the degeneracy
of the Σj’s. Inspired by the present article, [24] and [25], Ozer Ozturk [18]
computed the Thom polynomials for A4 and k = 2, 3.

2 Recollections on Thom polynomials

Our main reference for this section is [28]. We start with recalling what we
shall mean by a “singularity”. Let k ≥ 0 be a fixed integer. By singularity
we shall mean an equivalence class of stable germs (C•, 0) → (C•+k, 0),
where • ∈ N, under the equivalence generated by right-left equivalence (i.e.
analytic reparametrizations of the source and target) and suspension (by
suspension of a germ κ we mean its trivial unfolding: (x, v) 7→ (κ(x), v)).

We recall2 that the Thom polynomial T η of a singularity η is a polynomial
in the formal variables c1, c2, . . . that after the substitution

ci = ci(f
∗TY − TX) = [c(f ∗TY )/c(TX)]i , (1)

for a general map f : X → Y between complex analytic manifolds, evaluates
the Poincaré dual of [V η(f)], where V η(f) is the cycle carried by the closure
of the set

{x ∈ X : the singularity of f at x is η} . (2)

2This statement is usually called the Thom-Damon theorem [31], [4].
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By codimension of a singularity η, codim(η), we shall mean codimX(V η(f))
for such an f . The concept of the polynomial T η comes from Thom’s fun-
damental paper [31]. For a detailed discussion of the existence of Thom
polynomials, see, e.g., [1]. Thom polynomials associated with group actions
were studied in [11].

According to Mather’s classification, singularities are in one-to-one cor-
respondence with finite dimensional C-algebras. We shall use the following
notation:

– Ai (of Thom-Boardman type Σ1i) will stand for the stable germs with
local algebra C[[x]]/(xi+1), i ≥ 0;

– Ia,b (of Thom-Boardman type Σ2) for stable germs with local algebra
C[[x, y]]/(xy, xa + yb), b ≥ a ≥ 2;

– IIIa,b (of Thom-Boardman type Σ2) for stable germs with local algebra
C[[x, y]]/(xy, xa, yb), b ≥ a ≥ 2 (here k ≥ 1).

Our computations of Thom polynomials for some of the above singu-
larities, shall use the method which stems from a sequence of papers by
Rimanyi et al. [29], [28], [7], [2]. We sketch briefly this method, refering the
interested reader for more details to these papers, the main references being
the last three mentioned items.

Let k ≥ 0 be a fixed integer, and let η : (C•, 0) → (C•+k, 0) be a stable
singularity with a prototype κ : (Cn, 0) → (Cn+k, 0). The maximal compact
subgroup of the right-left symmetry group

Aut κ = {(ϕ,ψ) ∈ Diff(Cn, 0) × Diff(Cn+k, 0) : ψ ◦ κ ◦ ϕ−1 = κ} (3)

of κ will be denoted by Gη . Even if Autκ is much too large to be a finite
dimensional Lie group, the concept of its maximal compact subgroup (up to
conjugacy) can be defined in a sensible way (cf. [10] and [32]). In fact, Gη

can be chosen so that images of its projections to the factors Diff(Cn, 0) and
Diff(Cn+k, 0) are linear. Its representations via the projections on the source
Cn and the target Cn+k will be denoted by λ1(η) and λ2(η). The vector
bundles associated with the universal principal Gη-bundle EGη → BGη

using the representations λ1(η) and λ2(η) will be called E ′
η and Eη. The

total Chern class of the singularity η is defined in H •(BGη;Z) by

c(η) :=
c(Eη)

c(E′
η)
. (4)

The Euler class of η is defined in H2 codim(η)(BGη;Z) by

e(η) := e(E ′
η) . (5)

In the following theorem we collect the information from [28], Theorem
2.4 and [7], Theorem 3.5, needed for the calculations in the present paper.
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Theorem 1 Suppose, for a singularity η, that the Euler classes of all sin-
gularities of smaller codimension than codim(η), are not zero-divisors 3.
Then we have
(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;
(ii) T η(c(η)) = e(η).
This system of equations (taken for all such ξ’s) determines the Thom poly-
nomial T η in a unique way.

To use this method of determining the Thom polynomials for singulari-
ties, one needs their classification, see, e.g., [5].

In fact, the above is the “usual case” with singularities in the region
where moduli (continuous families) of singularities do not occur. This will
be the case of the singularities studied in the present paper. Indeed, the
codimension of all these singularities does not exceed 6k + 8, the lowest
codimension when moduli of singularities start.

In Section 4, we shall use these equations to compute Thom polynomi-
als. Sometimes it will be convenient not to work with the whole maximal
compact subgroup Gη but with its suitable subgroup; this subgroup should
be, however, as “close” to Gη as possible (cf. [28], p. 502). We shall denote
this subgroup by the same symbol Gη.

Being challenged by [28], p. 512 and especially [2], we shall find Thom
polynomials containing k as a parameter – this seems to be a (much) more
difficult task than computing Thom polynomials for separate values of k,
because one must solve simultaneously a countable family of systems of linear
equations.

To effectively use Theorem 1 we need to study the maximal compact
subgroups of singularities. We recall the following recipe from [28] pp. 505–
507. Let η be a singularity whose prototype is κ : (Cn, 0) → (Cn+k, 0). The
germ κ is the miniversal unfolding of another germ β : (Cm, 0) → (Cm+k, 0)
with dβ = 0. The group Gη is a subgroup of the maximal compact subgroup
of the algebraic automorphism group of the local algebra Qη of η times the
unitary group U(k−d), where d is the difference between the minimal number
of relations and the number of generators of Qη. With β well chosen, Gη

acts as right-left symmetry group on β with representations µ1 and µ2. The
representations λ1 and λ2 are

λ1 = µ1 ⊕ µV and λ2 = µ2 ⊕ µV , (6)

where µV is the representation of Gη on the unfolding space V = Cn−m

given, for α ∈ V and (ϕ,ψ) ∈ Gη, by

(ϕ,ψ) α = ψ ◦ α ◦ ϕ−1 . (7)

3This is the so-called “Euler condition” (loc.cit.). The Euler condition holds true for
the singularities I2,2, for any k ≥ 0.
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For example, for the singularity of type Ai: (C•, 0) → (C•+k, 0), we have
GAi

= U(1) × U(k) with

µ1 = ρ1, µ2 = ρi+1
1 ⊕ ρk, µV = ⊕i

j=2 ρ
j
1 ⊕⊕i

j=1(ρk ⊗ ρ−1
1 ) , (8)

where ρj denotes the standard representation of the unitary group U(j).
Hence we obtain assertion (i) of the following

Proposition 2 (i) Let η = Ai; for any k, writing x and y1,. . . , yk for the
Chern roots of the universal bundles on BU(1) and BU(k),

c(Ai) =
1 + (i+ 1)x

1 + x

k
∏

j=1

(1 + yj) , (9)

(ii) Let η = I2,2. Denote by H the extension of U(1)×U(1) by Z/2Z (“the
group generated by multiplication on the coordinates and their exchange”).
For k ≥ 0, Gη = H × U(k). Hence, for the purpose of our computations
we can use Gη = U(1) ×U(1) ×U(k). Writing x1, x2 and y1, . . . , yk for the
Chern roots of the universal bundles on two copies of BU(1) and on BU(k),
we have

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k
∏

j=1

(1 + yj) , (10)

e(I2,2) = x1x2(x1 − 2x2)(x2 − 2x1)

k
∏

j=1

(x1 − yj)(x2 − yj)(x1 +x2− yj) . (11)

(iii) Let η = III2,2; for k ≥ 1, Gη = U(2) × U(k−1), and writing x1, x2

and y1, . . . , yk−1 for the Chern roots of the universal bundles on BU(2) and
BU(k−1),

c(III2,2) =
(1+2x1)(1+2x2)(1+x1+x2)

(1+x1)(1+x2)

k−1
∏

j=1

(1 + yj) , (12)

These assertions are obtained, in a standard way, following the instructions
of [28], Sect. 4. See also [2].

Let η be a singularity. As it was illuminated in the author’s paper [21],
in the case of the singularities η = Σi, it is natural and useful to consider a
certain (homogeneous) ideal in the polynomial ring R = Z[c1, c2, . . .] whose
component of minimal degree is generated by T η. Namely, we denote by
Pη the ideal in R of polynomials supported on V η(f), where f : X → Y
is a general map between complex analytic manifolds. (The notion of a
“polynomial supported on a subscheme” can be found in [9], Appendix A.)
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Keeping track of [21], we shall call Pη the P–ideal of the singularity η. For
example, the P–ideal of the singularity

Σi : (Cm, 0) → (Cn, 0)

is
PΣi

= Pm−i ,

where on the RHS we have the ideal studied extensively in [21] (cf. also [20],
[22]). We shall use this ideal in the proof of Theorem 10.

In the present paper, it will be more handy to use, instead of k, a
“shifted” parameter

r := k + 1 . (13)

Sometimes, we shall write η(r) for the singularity η : (C•, 0) → (C•+r−1, 0),
and denote the Thom polynomial by T η

r – to emphasize the dependence of
both items on r.

Rather than the Chern classes

ci(f
∗TY − TX) = [f ∗c(TY )/c(TX)]i ,

we shall use Segre classes Si of the virtual bundle TX∗ − f∗(TY ∗), i.e.
complete symmetric functions Si(A−B) for the alphabets of the Chern roots
A,B of TX∗ and TY ∗. The reader will find in the next section a summary
of algebraic properties of the functions Si(A−B), or, more generally, Schur
functions S(i1,i2,...)(A−B), indexed by partitions, widely used in the present
paper.

3 Recollections on Schur functions

In this section we collect needed notions related to symmetric functions.
We adopt the functorial point of view of [14] for what concerns symmetric
functions. Namely, given a commutative ring, we treat symmetric func-
tions as operators acting on the ring. (Here, these commutative rings are
mostly Z-algebras generated by the Chern roots of the vector bundles from
Proposition 2.)

Definition 3 By an alphabet A, we understand a (finite) multi-set of ele-
ments in a commutative ring.

For m ∈ N, by “an alphabet Am” we shall mean an alphabet A =
(a1, . . . , am) (of cardinality m); ditto for Bn = (b1, . . . , bn) and X2 =
(x1, x2).
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Definition 4 Given two alphabets A, B, the complete functions Si(A−B)
are defined by the generating series (with z an extra variable):

∑

Si(A−B)zi =
∏

b∈B

(1−bz)/
∏

a∈A

(1−az) . (14)

So Si(A−B) interpolates between Si(A) – the complete homogeneous sym-
metric function of degree i in A and Si(−B) – the ith elementary function
in B times (−1)i.

The notation A − B is compatible with the multiplication of series:
∑

Si(A − B)zi ·
∑

Sj(A
′ − B

′)zj =
∑

Si

(

(A + A
′) − (B + B

′)
)

zi , (15)

the sum A + A
′ denoting the union of two alphabets A and A

′.

Convention 5 We shall often identify an alphabet A = {a1, . . . , am} with
the sum a1 + · · · + am and perform usual algebraic operations on such el-
ements. For example, Ab will denote the alphabet (a1b, . . . , amb). We will
give priority to the algebraic notation over the set-theoretic one. In fact, in
the following, we shall use mostly alphabets of variables.

We have (A+C)−(B+C) = A−B, and this corresponds to simplification
of the common factor for the rational series:

∑

Si((A + C) − (B + C))zi =
∑

Si(A − B)zi . (16)

Definition 6 Given a partition I = (0 ≤ i1 ≤ i2 ≤ . . . ≤ is) ∈ Zs, and
alphabets A and B, the Schur function SI(A−B) is

SI(A−B) :=
∣

∣

∣
Sip+p−q(A−B)

∣

∣

∣

1≤p,q≤s
. (17)

These functions are often called supersymmetric Schur functions or Schur
functions in difference of alphabets. Their properties were studied, among
others, in [3], [16], [22], [26], [17], [9], and [14]; in the present paper, we shall
use the notation and conventions from this last item).

For example,

S33344(A−B) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S3 S4 S5 S7 S8

S2 S3 S4 S6 S7

S1 S2 S3 S5 S6

1 S1 S2 S4 S5

0 1 S1 S3 S4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where Si means Si(A−B).
By Eq. (16), we get the following cancellation property:

SI((A + C) − (B + C)) = SI(A − B) . (18)
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In the following, we shall identify partitions with their Young diagrams,
as is customary (cf. [14]).

We record the following property (loc.cit.), justifying the notational re-
mark from the end of Section 2; for a partition I,

SI(A−B) = (−1)|I|SJ(B−A) = SJ(B∗−A
∗) , (19)

where J is the conjugate partition of I (i.e. the consecutive rows of J are
equal to the corresponding columns of I), and A

∗ denotes the alphabet
{−a1,−a2, . . .}.

Fix two positive integers m and n. We shall say that a partition I =
(0 < i1 ≤ i2 ≤ · · · ≤ is) is contained in the (m,n)-hook if either k ≤ m, or
k > m and ik−m ≤ n. Pictorially, this means that the Young diagram of I
is contained in the “tickened” hook:

-�

6

?

n

m

We record the following vanishing property. Given alphabets A and B of
cardinalities m and n, if a partition I is not contained in the (m,n)-hook,
then (loc.cit.):

SI(A − B) = 0 (20)

For example,

S3569(A2 − B4) = S3569(a1+a2−b1−b2−b3−b4) = 0

because 3569 is not contained in the (2, 4)-hook.

In fact, we have the following result (loc.cit.).

Theorem 7 If Am and Bn are alphabets of variables, then the functions
SI(Am −Bn), for I runing over partitions contained in the (m,n)-hook, are
Z-linearly independent.

(They form a Z-basis of the Abelian group of the so-called “supersymmetric
functions” (loc.cit.).)

In the present paper, by a symmetric function, we shall mean a Z-linear
combination of the operators SI(•). In other words, speaking a bit infor-
mally, we treat Schur functions in a “functorial way” (cf. [14] for develop-
ments of the theory of symmetric functions in this spirit).
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Definition 8 Given two alphabets A,B, we define their resultant:

R(A,B) :=
∏

a∈A, b∈B

(a−b) . (21)

This terminology is justified by the fact that R(A,B) is the classical resultant
of the polynomials R(x,A) and R(x,B).

We have (loc.cit.)

R(Am,Bn) = S(nm)(A−B) =
∑

I

SI(A)S(nm)/I(−B) , (22)

where the sum is over all partitions I ⊂ (nm).
When a partition is contained in the (m,n)-hook and at the same time it

contains the rectangle (nm), then we have the following factorization prop-
erty (loc.cit.): for partitions I = (i1, . . . , im) and J = (j1, . . . , js),

S(j1,...,js,i1+n,...,im+n)(Am − Bn) = SI(A) R(A,B) SJ(−B) . (23)

The following convention stems from Lascoux’s paper [15].

Convention 9 We may need to specialize a letter to 2, but this must not
be confused with taking two copies of 1. To allow one, nevertheless, special-
izing a letter to an (integer, or even complex) number r inside a symmetric
function, without introducing intermediate variables, we write r for this
specialization. Boxes have to be treated as single variables. For example,
Si(2) =

(i+1
2

)

but Si( 2 ) = 2i. A similar remark applies to Z-linear com-
binations of variables. We have S2(X2) = x2

1+x1x2+x2
2 but S2( x1+x2 ) =

x2
1+2x1x2+x2

2, S11(X2) = x1x2 but S11( x1+x2 ) = 0, S2(3x) = 6x2 but

S2( 3x ) = 9x2 etc.

This convention will be used in the next section.

We end the present section with the following result which is a conse-
quence of the author’s study [21], [20], [22] of the P-ideals of the singularities
Σi.

Theorem 10 Suppose that a singularity η is of Thom-Boardman type Σi.
Then all summands in the Schur function expansion of T η

r are indexed by
partitions containing the rectangle partition (r+i−1, . . . , r+i−1) (i times).

Proof. Since η is of Thom-Boardman type Σi, the Thom polynomial T η
r

belongs to the P–ideal of the singularity Σi with parameter r. We also
know by the Thom-Damon theorem (cf. [4]) that T η

r is a Z-combination of
Schur functions in TX∗−f∗(TY ∗). The assertion now follows by combining
Theorem 3.4 from [21] with Lemma 2.5 from [20] (see also Claim in the proof
of Theorem 5.3(i) in [22]). 2
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4 Thom polynomial for I2,2(r)

The codimension of I2,2(r), r ≥ 1, is 3r + 1. The Thom polynomial for
I2,2(1) is S22 (cf. [19]).

From now on, we shall assume that r ≥ 2. The Thom polynomial for
I2,2(2) is (cf. [28]):

S133 + 3S34 .

By virtue of Proposition 2, the equations from Theorem 1 characterizing the
Thom polynomial for I2,2(r) are:

P (−Br−1) = P (x− 2x − Br−1) = P (x− 3x − Br−1) = 0 , (24)

and

P (X2− 2x1 − 2x2 −Br−1) = x1x2(x1−2x2)(x2−2x1) R(X2+ x1+x2 ,Br−1) .
(25)

Here, without loss of generality, we assume that x, x1, x2, and Br−1 are
variables. Moreover, P (•) denotes a symmetric function. For the remainder
of this paper, we set

D := 2x1 + 2x2 + x1 + x2 . (26)

Then, additionally, for variables x1, x2 and an alphabet Br−2, we have the
vanishing imposed by III2,2:

P (X2 − D − Br−2) = 0 . (27)

Indeed, the singularities 6= I2,2 with codimension ≤ codim(I2,2) are: A0, A1,
A2, III2,2.

For r ≥ 1, we set

Tr(•) := T
I2,2

r (•) . (28)

Lemma 11 (i) A partition appearing nontrivially in the Schur function ex-
pansion of Tr contains the rectangular partition (r + 1, r + 1).

(ii) A partition appearing nontrivially in the Schur function expansion of Tr

has at most three parts.

Proof. (i) Since the singularity I2,2 is of Thom-Boardman type Σ2, this is a
particular case of Theorem 10.

(ii) We can assume that r ≥ 3. In addition to information contained in (i),
we shall use Eq. (27):

Tr(X2 − D − Br−2) = 0 .

By virtue of (i), we can use factorization property (23) to all summands of

Tr(X2 − D − Br−2) =
∑

I

αISI(X2 − D − Br−2) (29)
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(we assume that αI 6= 0). We divide each summand of this last polynomial
by the resultant

R(X2,D + Br−2) .

Suppose that the resulting factor of SI is:

Sp,q(X2) SJ(−D − Br−2) , (30)

cf. (23). Since |I| = 3r + 1, we have

|J | ≤ r − 1 . (31)

Now, let us assume that I has more than 3 parts, that is J has more than
2 parts. This assumption (together with the inequality (31)) implies that

SJ(−Br−2) 6= 0

(Br−2 is an alphabet of variables). Expanding (30), we get among summands
the following one of largest possible degree |J | in Br−2:

Sp,q(X2) SJ(−Br−2) 6= 0 . (32)

Take in the sum
∑

I

αISp,q(X2) SJ(−D − Br−2)

the (sub)sum of all the nonzero summands of the form (30) with the largest
possible weight of J . Since Schur polynomials are independent this (sub)sum
is nonzero and moreover it is Z-linearly independent of other summands
both in the sum indexed by partitions with ≥ 3 parts, and as well as in that
indexed by partitions with 2 parts (this last sum does not depend on Br−2).
Hence, there is no Z-linear combination of SI ’s which involve nontrivially I
with more than three parts and possibly also those with 3 and 2 parts, that
satisfies Eq. (27). Assertion (ii) has been proved. 2

(For example, S1144 cannot appear in the Schur function expansion of T3

because S1144(X2 − D − B1) after division by the resultant contains the
summand S11(−B1) = S2(B1), which does not occur in similar expressions
for S55, S46, S244, S145.)

The following lemma gives a recursive description of Tr. Denote by
Φ the linear endomorphism on the Z-module spanned by Schur functions
indexed by partitions of length ≤ 3, that sends a Schur function Si1,i2,i3 to
Si1+1,i2+1,i3+1. Let Tr denote the sum of those terms in the Schur function
expansion of Tr which are indexed by partitions of length ≤ 2. Note that
T 1 = S22.

Lemma 12 With this notation, for r ≥ 2, we have the following recursive
equation:

Tr = T r + Φ(Tr−1) . (33)

12



Proof. Write

Tr =
∑

I

αISI =
∑

J

αJSJ +
∑

K

αKSK , (34)

where J have 2 parts and K = (k1, k2, k3) have 3 parts (we assume that
αI 6= 0). We set

Q =
∑

K

αKSk1−1,k2−1,k3−1 , (35)

and our goal is to show that Q = Tr−1. Since a partition I appearing
nontrivially in the Schur function expansion of Tr must contain the partition
(r+1, r+1), then any partition K above contains the partition (r, r). Since
this last partition is not contained in the (1, r − 1)-hook, Eqs. (24) with
r replaced by r − 1 are automatically fulfilled by virtue of the vanishing
property (20). Note that Eq. (27) is a particular case of Eq. (25). Indeed,
specializing br−1 to x1+x2 in Eq. (25), we get Eq. (27). Therefore it suffices
to show that

Q(X2 − E − Br−2) = x1x2(x1−2x2)(x2−2x1) R(X2+ x1+x2 ,Br−2) . (36)

where E = 2x1 + 2x2 . We apply to each summand

αKSk1−1,k2−1,k3−1(X2 − E − Br−2)

of Q(X2 − E − Br−2) the factorization property (23), and divide it by the
resultant

R(X2,E + Br−2) .

Suppose that the resulting factor is:

αKSa,b(X2) Sc(−E − Br−2) , (37)

where (k1 − 1, k2 − 1, k3 − 1) = (c, r + a, r + b).
Performing the same division of

x1x2(x1−2x2)(x2−2x1) R(X2+ x1+x2 ,Br−2)

we get R( x1+x2 ,Br−2). Thus the wanted equation Q = Tr−1 is equivalent
to

∑

a+b+c=r−2

αKSa,b(X2) Sc(−E − Br−2) = R( x1+x2 ,Br−2) . (38)

To prove Eq. (38) we use Eqs. (25) and (34) for Tr:

∑

I

αISI(X2−E−Br−1) = x1x2(x1−2x2)(x2−2x1) R(X2+ x1+x2 ,Br−1) .

13



Using again the factorization property (this time w.r.t. the larger rectangle
(r + 1)2) and dividing both sides of the last equation by the resultant

R(X2,E + Br−1) .

we get the identity

∑

p+q+j=r−1

αISp,q(X2) Sj(−E − Br−1) = R( x1+x2 ,Br−1). (39)

Since

Sj(−E − Br−1) = Sj(−E − Br−2) − br−1Sj−1(−E − Br−2)

and
R( x1+x2 ,Br−1) = (x1 + x2 − br−1)R( x1+x2 ,Br−2) ,

taking the coefficients of (−br−1) in both sides of Eq. (39), we get the wanted
Eq. (38). The lemma has been proved. 2

(For example, writing T3 = αS46 + βS55 + γS244 + δS145, we get that

γS1(−E −B1) + δS1(X2) = R( x1+x2 ,B1)

by taking the coeficients of (−b2) in both sides of

αS2(X2)+βS11(X2)+γS2(−E−B2)+δS1(−E−B2)S1(X2) = R( x1+x2 ,B2) .)

Iterating Eq. (33) gives

Corollary 13 With the above notation, we have

Tr = T r + Φ(T r−1) + Φ2(T r−2) + · · · + Φr−1(T 1) . (40)

Of course, T r is uniquely determined by its value on X2. The following
result gives this value.

Proposition 14 For any r ≥ 1, we have

T r(X2) = (x1x2)
r+1 Sr−1(D) . (41)

Proof. We use induction on r. For r = 1, 2, the assertion holds true.
Suppose that the assertion is true for T i where i < r. We consider the
Schur function expansion of Tr:

Tr =
∑

I

αISI . (42)

14



Fix a partition I = (j, r + 1 + p, r + 1 + q) appearing nontrivially in (42).
Note that j varies from 0 to r − 1 because |I| = 3r + 1. We obtain by the
factorization property (23):

SI(X2 − D − Br−2) = R · Sj(−D − Br−2) · Sp,q(X2) .

where R = R(X2,D + Br−2). Hence, using Eq. (40), we see that

Tr(X2 − D − Br−2) = R ·
(

r−1
∑

j=0

Sj(−D − Br−2)
T r−j(X2)

(x1x2)r−j+1

)

. (43)

By the induction assumption, for positive j ≤ r − 1,

T r−j(X2) = (x1x2)
r−j+1 Sr−1−j(D) .

Substituting this to (43), and using the vanishing (27), we obtain

r−1
∑

j=1

Sj(−D − Br−2)Sr−1−j(D) +
T r(X2)

(x1x2)r+1
= 0 . (44)

But we also have, by a formula for addition of alphabets,

r−1
∑

j=1

Sj(−D − Br−2)Sr−1−j(D) + Sr−1(D) = Sr−1(−Br−2) = 0 . (45)

Combining Eqs. (44) and (45) gives

T r(X2) = (x1x2)
r+1 Sr−1(D) ,

that is, the assertion of the induction. The proof of the proposition is now
complete. 2

Corollary 15 If Si1,i2 appears nontrivially in the Schur function expansion
of T r, then i1 = r + 1 + p and i2 = 2r − p, where 0 ≤ 2p ≤ r − 1.

The Schur function expansion of Si(D) was described in [21], [13], and
[23, App. A3] in the context of the Segre classes of the second symmetric
power of a rank 2 vector bundle. Indeed, D is the alphabet of the Chern
roots of the second symmetric power of a rank 2 bundle with the Chern
roots x1, x2.

Denote by 〈p, q〉 the coefficient of Sp,q := Sp,q(X2) in Sp+q(D), where
0 ≤ p ≤ q. A proof of the next proposition, due to Lascoux with the help of
divided differences, can be found in [23], p. 163–166. We give here another
proof without divided differences.
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Proposition 16 For p > 0, we have

〈p, q〉 = 〈p− 1, q〉 + 〈p, q − 1〉 . (46)

Proof. We have

Si(D) =

i
∑

h=0

Sh( 2x1 + 2x2 )Si−h( x1+x2 ) =

i
∑

h=0

2hSh · (x1+x2)
i−h , (47)

and (cf., e.g., [17] I.4, Ex.3)

(x1 + x2)
j =

∑

a,b≥0

(

a+ b

a

)

b− a+ 1

b+ 1
Sa,b , (48)

where a+b = j and a ≤ b. Combining Eqs. (47), (48), with the Pieri formula
(cf., e.g., [14], [17]), we get for 0 ≤ p ≤ q,

〈p, q〉 =

p+q
∑

h=0

2h
∑

h1,h2≥0

(

p+q−h

p−h1

)

(q−h2)−(p−h1)+1

q−h2+1
, (49)

where h1 + h2 = h and h1 ≤ p ≤ q−h2.
We also compute the Schur function expansion of S1,i−1(D). Denote by

[p, q] the coefficient of Sp,q in S1,p+q−1(D), 0 ≤ p ≤ q. We have the following
expansion for S1,i−1(D):

i
∑

h=1

S(1,i−1)/(i−h)( 2x1 + 2x2 )Sh( x1+x2 )

=

i
∑

h=1

2hSh · (x1+x2)
i−h +

i
∑

h=1

2hS1,h−1 · (x1+x2)
i−h .

We get from both sums in the last line that for p > 0 the coefficient [p, q] is
equal twice the RHS of Eq. (49), that is,

[p, q] = 2〈p, q〉 . (50)

We have by the Pieri formula

Si−1(D) · S1(D) = Si−1(D) · 3S1 = Si(D) + S1,i−1(D) . (51)

This equation implies that Sp,q appears in Si(D)+S1,i−1(D) with multiplicity
3(〈p−1, q〉 + 〈p − 1, q〉) (we use the Pieri formula once again). The desired
Eq. (46) now follows by virtue of Eq. (50). 2

We now pass to some “closed” algebraic expressions for the 〈p, q〉’s 4.
We have

〈0, q〉 = Sq( 1 + 2 ) = 1 + 2 + · · · + 2q = 2q+1 − 1 . (52)

The following result was obtained in [30], [21], and [13].

4Note that Eq. (49) is not quite algebraic.
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Proposition 17 For 0 ≤ p ≤ q, we have

〈p, q〉 =

(

p+ q + 1

p+ 1

)

+

(

p+ q + 1

p+ 2

)

+ · · · +

(

p+ q + 1

q + 1

)

. (53)

We propose now an alternative expression involving powers of 2, which is
a natural generalization of the equation 〈0, q〉 = 2q+1−1, and which stems
directly from Eq. (46). Namely, with the convention that

(a
0

)

= 1 for any
a ∈ Z, we have

Proposition 18 For 0 ≤ p ≤ q,

〈p, q〉 = 2p+q+1 −

p
∑

s=0

[

(

p+q−2s−1

p−s

)

−

(

2p−2s−1

p−s+1

)

]

22s . (54)

Proof. The proof uses double induction on p and q. We use Eq. (46) several
times:

〈p, q〉 = 〈p−1, q〉 + 〈p, q−1〉

= 〈p−1, q〉 + 〈p−1, q−1〉 + 〈p, q−2〉

= . . .

= 〈p−1, q〉 + · · · + 〈p−1, 1〉 + 〈p, 0〉 .

We know the values of all summands in the last row by the induction as-
sumption (the last summand being equal to 2p+1−1). Using several times
Eq. (52) as well as a well-known equality:

1 +

(

a+1

a

)

+

(

a+2

a

)

+ · · · +

(

2a−2

a

)

=

(

2a−1

a+1

)

we get the desired induction assertion (54) for 〈p, q〉. 2

Using Proposition 14, we shall now give the Schur function expansion of
T r. Denote by drj the coefficient of Sr+j,2r+1−j in T r for r ≥ 1 and j ≥ 1.
By virtue of Corollary 15, drj 6= 0 entails j ≤ [(r + 1)/2] (for example, the
only Schur functions that can appear with nonzero coefficients in T 5 are
S6,10, S79, and S88), so that we have

T r =

[(r+1)/2]
∑

j=1

drj Sr+j,2r+1−j . (55)

We have the following link between the drj ’s and 〈p, q〉’s: suppose that
drj 6= 0, then we have

drj = 〈j−1, r−j〉 . (56)

We may display the drj ’s with the help of the following “Pascal triangle”-
type matrix.
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d11 0 0 0 0 . . .
d21 0 0 0 0 . . .
d31 d32 0 0 0 . . .
d41 d42 0 0 0 . . .
d51 d52 d53 0 0 . . .
d61 d62 d63 0 0 . . .
d71 d72 d73 d74 0 . . .
...

...
...

...
...

=

1 0 0 0 0 . . .
3 0 0 0 0 . . .
7 3 0 0 0 . . .
15 10 0 0 0 . . .
31 25 10 0 0 . . .
63 56 35 0 0 . . .
127 119 91 35 0 . . .
...

...
...

...
...

By Proposition 16, if drj > 0, then we have

drj = dr−1,j−1 + dr−1,j . (57)

We have the following values of T 1, T 2, . . . , T 6:

S22

3S34

7S46 + 3S55

15S58 + 10S67

31S6,10 + 25S79 + 10S88

63S7,11 + 56S8,10 + 35S99 .

Summing up all our considerations, we get the main result of the present
paper. It gives the desired Thom polynomial in a parametric form (the
parameter being r).

Theorem 19 For r ≥ 1, the Thom polynomial for I2,2(r) is equal to

r−1
∑

i=0

∑

{j≥1: i+2j≤r+1}

dr−i,j Si,r+j,2r−i−j+1 , (58)

where, invoking Eq. (56), the coefficients dr−i,j are given by Eqs. (52) and
(53) (or (54)).

We have the following values of T1, T2 = Φ(T1)+T 2, . . . , T6 = Φ(T5)+T 6:

S22

S133+3S34

S244+3S145+7S46+3S55

S355+3S256+7S157+3S166+15S58+10S67

S466+3S367+7S268+3S277+15S169+10S178+31S6,10+25S79+10S88

S577+3S489+7S379+3S388+15S2,7,10+10S289+31S1,7,11+25S1,8,10+10S189+

63S7,11+56S8,10+35S99 .
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Note Schur function expansions of some (other) Thom polynomials were
studied in [6] as I has been informed by Feher. After completion of the first
version of this paper, I received the preprint [8] on some Chern monomial
expansions of Thom polynomials and among them such an expression for the
Thom series of I2,2 with the following comment (see p.5): “Strictly speaking
we have not proved the Thom series of I2,2, just obtained overwhelming
computer evidence for it.” We stress that our expression is of different form
(a Z-linear combination of Schur functions), and for the moment we do not
know how to pass from it to the one in [8].
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