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ABSTRACT.

Bryant [Br] proved the existence of torsion free connections with exotic holonomy,
i.e. with holonomy that does not occur on the c1assical list of Berger [Ber]. These
connections occur on moduli spaces Y of rational contact curves in a contact threefold
W. Therefol'e , they are naturally contained in the moduli space Z of all rational
curves in W.

We construct n connection on Z whose restriction to Y is torsion free. However,
the connection on Z has torsion unless both Y anel Z are Rat.

We also show the existence of n new exotic holonomy which is a certain sixclimen
sional representation of 51(2 , C) x 5/(2, C). We show that every regular H 3 -connection
(cf. [Br)) is the restriction of a unique connection with this holonomy.

§O Introduction.
Since its introduction by Elie Cartan, the holonomy of a connection has played an

important role in differential geolnetry. NIost of the classical results are concerned
with the holonolny of Levi Civita connections of Riemannian metrics. In 1955,
Berger [Ber] classified the possible irreducible Riemannian holonomies and much
work has been clone since to study these holonomies and their applications. See
[Bes] and [Sa] for a historical survey and also [J] for more recent results.

At the same time, Berger also partially classified the possible non-Riemannian
holonomies of torsion free connections. However, his classification omits a finite
number of possibilities, which are referred to as exotic holonomies. As of yet, the
complete list of exotic holonomies is still not known.

The incolupleteness of Berger's list anel therefore the existence of exotic holo
nomies was shown by Bryant [Er]. He investigated the irreducible representations
of 5l(2, IF), IF = IR. 01' C. For each d 2: 1, we can regard 5l(2, lF) as a subgroup
Hd ~ Gl(d + 1,1F) via the (unique) (cl + l)-dimensional irreducible representation
of 51(2, IF) which will be described below. Moreover, if we let Gd ~ G1(d + 1, IF) be
the centralizer of Hd, then Gd may be regarded as a representation of Gl(2,1F). For
d 2: 3, these representations da not occur on Berger's list of possible holonoInies
and are therefore canclidates for exotic holonomies.

1 Supported in part by NSF grant DMS 9301060
1991 Mathematics Subject Cla$~ification. Primary 53B05; Secondary 32G 10 1 32L25 1 53C10.
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In his paper, Bryant showed that in the case d = 3 torsion ffee connections with
holonomies H3 and G3 do exist both if IF = IR and IF = C. We.shall refer to them
as H3 - connections (G3 - connections respectively). From now on, we shall assume
that IF = C unless stated otherwise.

G3-structures occur naturally in the following way: let W be a complex contact
threefold and suppose there is a rational contact curve C in W such that the
restriction of the contact line bundle L[c has degree -3. Then the mochtE space Y
of all close-by contact curves carries a torsion free G3 -connection.

Conversely, every hololnorphic torsion free G3-colmection is locally equivalent to
a connection on such a moduli space Y [Br].

Before we proceed, let us briefly describe the irreducible representations of
81(2, C), G~2, C) and Gl(2, C) X 81(2, C).

For 11. E N, let Vn ~ C[x, y] be the (n + l)-dimensional subspace of honl0ge
neons polynonlials of degree 11. There is an 81(2, C)-action on Vn induced by the
transposed action of Sl(2, C) on C2 , i.e. if p E Vn and A E Sl(2, C) then

(A . p)(x, y) := p(1L, v) with (u, v) = (x, y)A.

Of course, this formula also describes an action of Gl(2, C) on Vn .

The irreducible representations of G1(2, C) X Sl(2, C) can be described as follows:
for n, m E N, we let Vn,rn := Vn 0 Vm. Then the action of Gl(2, C) x 81(2, C) on
Vn,m is defined by

(A, B) . (p 0 q) := (A . p) 18> (B . q)

with the actions of Gl(2, C) and 81(2, C) on Vn and Vm from above. We define the
subgroup Gn,m ~ Gl(Vn,m) to be the image of this representation. Also, we let
Hn,m ~ Gn,m be the image of 81(2, C) x 81(2, C) ~ Gl(2, C) x 81(2, C). In other
words, Hn,m = Gn,m n Sl(Vn,m)'

It is weIl known [H] that these are complete lists of the irreducible representations
of Sl(2, C), Gl(2, C) and Gl(2, C) x Sl(2, C) respectively.

Given a rational contact curve C in W as above, it turns out that its normal
bunelle lVe -r C is equivalent to 0(2) ffi 0(2). By Kodaira's Deformation Theo
rem [I(], the moduli space Z of all curves near C is a smooth analytic manifold.
obviously, Y ~ Z.

The tangent space Te Z cun be identifieel with HO (0(2) EB 0(2)) ~ VI ,2 in a
natural way. Therefore, Z carries a canonical GI,2-structure.

The main objective of this papel' is to investigate the correlation between the
G3 -structure on Y anel the GI,z-structure on Z. It had been conjectured in [Br]
that the latter structure is torsion free. However, we show that almost the exact
opposite is true. Nanlely, we shall prove

Theorem 0.1. Let W be a com]Jlex contact threefold, let C be a rational contact
curve in W such that the re~~triction 0/ the contact 1ine bundle Lle has degree -3,
and let Z (Y res]Jectively) be the 1TLoduli .~]KlCe of rational curves (rational contact
curves respectively) in W dose to C. Then the canonical GI ,2 -str1Lcture on Z is
torsion free if lLnd ouly if the G3 -cunnection on Y is flat.

This means that we cannot in general expect the GI,z-structure on Z to be
torsion free. Howevel', we can lllake SOllle statement about its torsion.
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Theorem 0.2. Let W be a c0711plex threelvld, let C be a rational curve 111 W
whose normal b7Lndle is eq1Li1Jalent to 0(2) EB 0(2) and let Z be the 1noduli space
01 curues in W dose to C, equi]J]Jed with the canonical G I ,2 -str1Lcture. Then there
is a subb1Lndle T ~ A. '2T* Z 0 TZ 01 rank J01Lr and a uniq1Le G I ,2 -connection on Z
whose torsion is a section 01 T.

The point of Theorem 0.2. is that the rank of A.2T· Z 0 TZ equals 90, so T has
a lal'ge codimension. In other words, Theorem 0.2. states that the Gl,2-structure
on Z has "very little torsion~.

Theorelll 0.1. raises the ques tions if there are any non-flat torsion free Cl,2

structures at all.

TheorelTI 0.3.

(1) The holon01TLY 01 a torsion Iree GI,2-connection is contained in H I ,2. Thus,
evenJ torsion [ree GI,2-str1Lcture ad1nits a (one-parameter lamily of) H I ,2

red1Lctio 11S.

(2) A regulor torsion [ree H 1,2 -str1Lcture with full holono1ny is deter1nined by
three para1neters. Thus, H1. 2 -connections do exists, und H 1 ,2 is therefore
another exotic lwlono1ny 1'e]Jresentation.

Comparing this result with TheorelU 0.1. it follows that the torsion free G I ,2

connections do not al'ise a.s 11loduli spaces of rational curves in a contact threefold.
However, we have the following chal'acterization of H 3 -connections.

Theorem 0.4. Given a tor~.,ion free GI ,2 -connection on a six[old Z and an imbed
ding Y r.....+ Z o[ a fourfold Y such that the connection on Z restricts to a C3 

connection on Y, then the holonv1ny v[ this restrietion is contained in H 3 .

Conversely, if Y is a [07Lrfold with (J. reg7t.Iar torsion free H 3 -connection, then
there is a unique torsion free GI ,2 -collnection on some sixfold Z and an i1nbedding
Y r.....+ Z such that the connection on Z restricts to the connection on y.

Regularity of an H:rconnection is a generic condition. For the exact definition,
see [Er].

As an interesting conseqllence, we conclude that for a given regular H3 -connec
tion on Y, there is nlore than one CI,2-connection extending the H 3 -connection,
hut exactly one of these extensions is torsion free.

The calculations in this paper Iuake extensive use of the representation theory
of Sl(2, C) and Sl(2, C) x 8l(2 , C), part.icularly an explicit version of the Clebsch
Gordan fonnula. For details , we refer the reader to [H] und [Er].

The Clebsch- Gordan formula descl'ibes the irreducible decoInposition of a tensor
product of irredncible 8l(2, C)-moclules:

min(m,n)

V m 0 VII = ffi Vm +n - 2p

1,=0

A convenient tool to conlpnte the decomposition of polynoluials into their irre-
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ducible components are the bilinear pairings

for li E Vn , v E Vm .

It can be ShOWll that these pairings are 5l(2, C)-equivariant and therefore are the
projections onto the summallds of the Clebsch-Gordan formula.

The Clebsch-Gordan formula for the irreducible representations of 5l(2, C) x
5l(2, C) reads:

min( i 1 ,)1) min(i4')~)

Vi 1 ,i2 0 V)l,h = EB EB Vi 1+h-2Pl, i 2 +i2-2p2
1'1 =0 ]12=0

On these spaces, we clefine the pairings

defined by

with the pairing ( , )PIc from above.
Again, it can be shown that these pairings are 5l(2, C) x 5l(2, C)-equivariant and

therefore are the projections onto the summands of the Clebsch-Gordan formula.

In §1, we define the notion of a G-structure and intrinsic torsion which will be
important in §3. To demonstrate the usefulness of this concept we inelude several
examples.

In §2, we cite Kodaira's Deformation Theorem [K] which states that, under
certain circumstances, the 1110duli space Z of cOlnpact submanifolds of a given
space W is itself a manifold. vVe construct a natural C-structure on this 1110duli
space where C is the automorphisIll group of the normal bundle of an eleUlent of
2 in W, provicled SOUle stability condition (condition (A)) is satisfied.

If Z is the moduli space of rationlll C7l,rtJes with positive semistable normal bun
dIe, then condition (A) is satisfied anel hellce we get a G-structure on Z. In par
ticular, if dim(W) = 3 we obtain GI,k-structures for same positive integer k.

We then construct a certain elass of connections on this Cl,k-structure, called
special connections. These have the property that the submanifolds 21' ~ Z with
p E W, consisting of a11 C E Z which pass through p, are totally geodesie. This
yields some information about the torsion of special connections.

In §3, we consicler a cuntact threefuld W, aud a rational contact curve C. We let
Y be the moduli space of rational contact curves elose to C and Z be the 1110duli
space of all curves elose to C. We then construct a Gk+l-structure on Y frOln the
CI,k-structure on Z, and show that every connection on Z restricts naturally to a
connection on Y ~ Z.
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If k = 2, i.e. if the normal bunclle of each C E Z is equivalent to 0(2) EB 0(2),
then - using special connections - we show that the intrinsic torsion of Z is a section
of a certain rank foul' bundle. This establishes Theorem 0.2. Also, the restriction of
this connection to Y is torsion free, hence we get a new proof that the G3 -structure
on Y is torsion free.

In §4, we set up the structure equations for a torsion free GI,2-connection. It
turns out that the first Bianchi identity forces the holonomy of such a connection to
lie in H 1 ,z ~ GI,z, hence we consider t he st ructure equations for torsion free H 1,z
connections instead. These equations and their derivatives are similar - albeit more
complex - to the structure equations for H 3 -connections studied in [Br]. In fact,
methods similar to the ones used in [Br] allow us to solve the structure equations
explicitly. Their olocluli space is then computed and we prove Theorem 0.3.

Finally, in §5 we put together the results from §§3 and 4. First of all, we show
that if Z is the moduli space of rational curves in a threefold Wand if the as
soeiated G1 ,z-strueture on Z is torsion free, then Z must he locally symmetrie.
Second, we determine those torsion free GI,z-struetures on Z which restriet to a
G3 -strueture on sOUle Y ~ Z. Sinee none of these structures are locally symmetrie,
Theorem 0.1. follows. VVe also demonstrate Theorem 0.4. using the classifieation
of H 3 -connections fl'om [Er].

V';e eonclude by cliscussing some questions whieh our investigation raises. Namely,
we show that every G1 ,z-structul'e whose torsion is a section of the bundle T ~

AzT* Z ~ TZ from Theorem 0.2. is loeally equivalent to the moduli spaee of ratio
nal eurves in a fivefold P whieh integrate a rank two Pfaffian system on P.

For example, if Z is the mochlli space of rational eurves in a threefold W, we
can achieve this by letting P := rTW with the canonical differential system [EDSJ,
and identifying each curve C ~ W with its canonicallift [: ~ P.

Of course, there are nlany rank two Pfaffian systems which are not locally equiv
alent to this contact structU1'e Oll rTW [C]. An interesting question is:

Which rank two Pfaffian sYBterns on a fivefold P yield torsion free C1 ,z -connec
tions '1

Since the moduli space of torsion free G1 ,z-connections is only three dimensional
by Theorem 0.3., those systems 11lnst be very special. The answer to this question
will also shed some light onto the significance of H 3 -connections. We shall pursue
this analysis in a sequel of the present paper.

§1 G-structures and intrinsic torsion.
Let Mn be a (real 01' complex) lnanifold of dilnension n. Let 7T : ~ ~ M be

the cofm me bundle of M, i. e. each n E ~ is a lineal' isomorphisln u : T rr( u) M ---=-+ V ,
where V is a fixed n-dinlensional (real 01' cOlnplex) vector space. Then ~ is naturally
a principal right GI(V)-bundle over .1.vl, where the right action R y : ~ ~ ~ is defined
by R y ( u) = 9 -1 0 1L. The tautulogical 1-forrn B on ~ with values in V is defined
by letting B(~) = 1L(7T*(~)) for ~ E Tu~' For 8, we have the GI(V)-equivariance
R;(B) = g-18.

Let G ~ Gl(V) be a closed Lie subgroup and let 9 ~ gl(V) be the Lie algebra
of C. A G-structure on jVf is, by definition, a G-subbundle F ~~. For any G
structure, we will denote the restrict.ions of Tr and 8 to F by the same let.ters. Given
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A E g we define the vector field A. on F by

el
(A.)u = elt (R'exp(tA)(U)) It=o.

The vector fielc.ls A. are callecl the fundamental vertieal tleetor fields on F. It is
evident that rr.(A.) = 0 and thus B(A.) = 0 for all A E gj in fact, {A.IA E g} =
ker(n.). Moreover, for A,B E 9 it is well-known that [A.,B.l = [A,B] •.

Let x E !v! and u E rr-1(x). The Lie algebra gx := u-1gu ~ g{(TxiVI) is
independent of the choice of 'Il, anel the union gF := Ux 9x is a vector subbundle of
T· AtI (2) TA1.

Now we shall consider the first S]Jeneer rnap Sp : V* (2) g{(V) -+ A2V· es; V which is
defined by skew-sYlnuletrization of the first two factors of V· (2)g[(V) ~ V· (2) V· (9 V.
Since 9 ~ g[(V) we Inay consider the restl'iction of Sp to V· (9 g, and we define g(1)

and HO,2(g) by requiring that the following sequence be exact:

(1-1) 0~ p(1) ~ V· (9 g sp) i\ 2V· (2) V ~ HO,2(g) ~ o.
(1) °2In t.he same way, we can clefine vector bundles gF and HF' aver jvI via the

exact sequence

(1-2) 0~ 9~) ~ T· NI 0 9F sp) A2 T* M (2) TM E..t H~,2 ~ O.

From now on, we will denote points in M by x and points in F by lL. Moreover,
~,e denote tangent vectors on Fand we let ~ = n.(~u), er = n.(~~) etc.

-u -u
A eonneetion on F is a g-valuecl I-fonn w on F satisfying the conditions

w(A.) = A for all A E g, ancl
R;(w) = g-lwg for 0.11 9 E G.

Given a connection w, its torsion e is the V-valued 2-fonn given by

(1-4) 8 = df} +w 1\ f}.

From (1-3) and (1-4) it follows that there is a section Tor of A2T· M 0 T .'Alf
satisfying

(1-5) 8(~u, ~~) = lt (Tor(~ ,e)) for all ~u, ~~ E TuF and all u E F.
-u -u

The connection w is callecl torsion free if e = O.
Now let w' be another connection on F, and let 8' and Tor' represent its torsion.

From (1-3) it follows that there is a seetion a of the bandIe T·lvf 0 gF such that

(1-6) (wf_w)(~u)=ua(~ )u- 1
.

-u

Fronl (1-4) - (1-6) we obtain for the torsion

(8' - 8)(~1t, ~:,) = u (a(~u)' ~~ - a(~~) . ~u) ,
aud hence,

(Tor' - TO")(~, f)= a(~) . f - a(f) . ~
= S]J(O')({,~') for all {,f E TxNJ.

Thus~ we couclade that

(1-7) Tor' = Tor + Sp(0').

This implies that the section T := pr(Tor) of the bundle H~,2 is independent of
the choice of wand therefore unIy del'ends on the G-struet'ltre F.
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Definition 1.1. Let 7f : F -+ lvI be a G-structllre.

(1) The vector bundle H~,2 is called the intrinsic torsion lnl,ndle uf F.

(2) The section T of H~,2 defined above is called the intrinsic tursion of F.
(3) F is callecl tU7'siun free if its intrinsic torsion T = O.

The following Proposition is then inlluediate from (1-7).

Proposition 1.2. Let 7f : F --+ lvI be (L G-structure und let T be its intrinsic

torsion.

(1) 1f (J is uny sectiun of A '1T* lvI (9 T IvI such that pr( (J) = T then there is (L

connectiun un F whose torsiun section Tor equals a.
(2) There is a tursion free connectiun on F if and only if F is torsion free.

(3) 11 F is torsion free then there is lL one-to-one correspondence between torsion

Iree connections on Fund 8ections of g~). In ]Jartic7J,lar, if g(1) = 0 then

the torsion free connection un F is unique.

Vle will give SOlue examples for this concept.

Exalnples 1.3.

(1) Let G = O(p, q) S; Gl(V) with V = IR n and n = p+ q. A G-structure on lvf n

is equivalent to a pseudo-RienuUlnian metric on lVI of signature (p, q). One
can show that Sp : V* 0 o(p, q) -+ A2V· 0 V is an isomor]Jhis1n. Thus, g(l) =
o anel HO,'2(g) = O. Then Proposition 1.2. implies that there is a uuiq'ILe

torsion 17'ee connection on such a G-strueture. Of course, this reproves
preeisely the existence anel uniqueness of the Levi-Civita connection of a
(pseudo- )RjeIl1aunian 111etric. [KN]

(2) 5uppose n = 21n anellet G = GlCm, C) S; Gl(n, IR). A G-structure on lvIn
is equivalent to an ahnost cOlnplex strueture on M. Then HO,2(g[Cm, C)) =
{cf; E A2 (cn )* 0lR cn I cf;(ix, y) = -·icjJ( x, y)}. Moreover, the intrinsic torsion
is given by the Nijenhuis tensor. It is wen known that the vanishing of
this tensor, i.e. the torsion freeness of the G-structure, is equivalent to the
integrability of the alnlost complex structure. [I(N]

(3) 5uppose n = 2m and let G = S]{m) ~ Gl(n, IR). A G-structure on lvITt is
equivalent to a non-degenerate 2-forrn w on M, i.e. wHl "# O. One can show
that H O,:2 (!iP(nL )) = A3lR 11 anel that t he int rinsic torsion is represented by
the 3-form dw. Thus, the G-structure is torsion free if anf only if w is a
symplectic fonn.

FrOlll these exa111ples it should beCOll1e evident that for ulany naturally arising
G-structures the vanishing of the intrinsic torsion implies, in some sense, the "luost
natural integrability condition" of tohe underlying geometrie strueture.

§2 G-structures on 1110duli spaces of cOn1pact sublnanifolds.
Let W be a complex luanifold of (coll1plex) dio1ension cl + -,'.

Definition 2.1. By an analytic la7TLily 01 C01lLpact sub1nanifolds 01 dirnension d 01

W we shall 111ean a pair (N, Z) of a. cOluplex luanifold Z and a cOll1plex analytic
subulanifold JV of W x Z of codiluension'f' with the property that für eaeh t E Z, the
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intersection )V n (W X t) is a conlpact conllected sublnanifold of W X t of dimension
d.

VVe call Z the 7fl,oonli SJ>lLce of the falnily ()V, Z). The canonical projections of
)V onto Wand Z will be denoted by pr} and pr2 respectively.

For each point t E Z, we set

Gt X t = )V n (W x t).

vVe luay identify C t x t with Gt and consider Nasa /amily cvn<-'iisti719 v/ compact
sub1nani/olds Ct} t E Z! Vf W.

From now on, we shall use t.he llotational convention H i (E) := H i (C, O(E)) für
a vector bundle E -t C.

Let Nt --+ C t he the llonual bUlldle of Ct in W. There is a natural imhedding
1]t : TtZ y HO(lVd (I(] alld we shall use ''lt to regard TtZ as a subspace of HO(Nt ).

Definition 2.2. An analyt.ic fanüly (N, Z) is called comJ>lete at t E Z if Tft is an
isomorphism. (N, Z) is called cV1n]Jlete if it is complete at t for all t E Z.

\\Te now state ane of the 11lOSt. fanions classical Theorems of the subject:

Kodaira's Deforluation Theorem [1\]. Let C ~ W be a c01n]Jact submani/old
0/ W 0/ di1T~ension d. Let lV -+ C be the normal bundle 0/ C in W. If Hl (N) =0
then there exists a cV1n]Jlete analytic /amily (N, Z) such that C = Gta /or S01ne
to E Z.

Let E -+ G be a holümorphic vector hundle and denote the group of eqlliva
lences of E with itself by Aut(E). Sillce each <P E Aut(E) illduces an isomorphism
J: O(E) -+ CJ( E), we obtaill a natural represelltation a * : A'llt( E) ---+ GI( H* (E)).

Definition 2.3. An analyt.ic fmllily (N, Z) is said to satisfy cvndition (A) if

(i) for any t}, t'l E Z the nonual hundles lVti ---+ C t;, 'i = 1,2, are equivalent,
and

(ii) the represelltation 0'0 : Aut(lVt} --+ GI(HO(Nd) is faithful and has closed
image for all t E Z.

Consicler now a cOlllplete analytic fanüly ()V, Z) satisfying conclition (A). Let
E -+ C be a vetol' hundle which is eql1ivalent to the normal bundles lVt -+ C t for
all t E Z, and let G ;= Aut(E). Let V := HO(E), and let

iT:~--+Z

be the V-cofranle hUlldle of Z. Now consider the principal bundle 1r : F -+ Z with

(2-1)
F:= 1':1

) lVi )

1 tE Z,
I a hundle equivalence. .

---+ Cf
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\·Ve can define a hundle iluhedding ( : F <....+ ~ (and thereby justify the double
use of the symbol 1r) as follows: given 'l E F, there is an induced isomorphism
i : V -4 HO(lVd. Then/lt 0 i : V -4 TtZ is also a linear isomorphism, thus (T]t 0 n- l

is a point in J. Fronl condition (A) it follows that the definition ((1) := (1]t 0 i)-t is
indeed one-to-one, and ßloreover, the iIllage (( F) is a G-structure on Z. Identifying
F wi th ((F), we regard F as a G-structure on Z, where the principal G-action on
F is given by Rg(l) := lOg.

If we set f!..:= (*(8), where 8 is the t.autological form on ~, then

(2-2)

By a slight abuse of language, we shall call fl the tautological form on F.

Tlm,s, for a c01fl-]Jlete analytic family (N, Z) satisfying condition (A), we have
C071str7l.cted an induced G-structu1'e un the rnoduli space Z.

For the remainder of this sectiol1, (N, Z) will stand for a conlplete analytic family
of mtional curves satisfying condition (A), i.e. we assume that d = 1 and C t ~ IP I

for all t E Z.
It is well-known that every k-diInensional vector bundle E -4 IP t satisfies O(E) ~

O(md EB ... EB O(-mk) for SOlue integel's ·mi, i = 1, ... ,k. Moreover, it is not hard
to show that E satisfies condi t ion (ii) i11 Defini tioIl 2.3. if and only if mi 2: 0 for all
i and ffit + ... + mk > O. In this case, the autoITIorphisßl group decomposes as

G :::: G X 51(2, C) with G~ GI(nt, C) x ... X G1(nt, C),

where the ni's are the multiplicities of the 'mi's. [GHJ
An interesting question is to determine the intrinsie torsion of such a G-structure

01' at least to understand its vani.~hillg. To da this, we will construet connections
on F and make SOUle stat.eßlents about their torsion.

Let
p: 51(2,C) x IP I -4 !pt

denote the action of 51(2, C) on IP I by Nlöbius transformations. Let us fix onee and
for all the reference point

:r0 := [0 : 1] E IP 1.

Consider (N, Z) as before. Let

P := {l : IP t --+ CI It E Z, 1 a biholomorphism}

be the l'ararneter sIuJ,ce uf Z. Then the obvious projection

7T'P,Z : P -4 Z

is a principal 51(2, C)-bundle, where t.he principal action 1S clefined by RgÜ) =
10 p{g). There is another projection

1rF,P : F -+ P
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which Inaps a bUll(lle isomorphisll1 l : E -t lV t to the underlying biholomorphisn1
1 : pI -t Ct. 7rF,P yields anothel' pl'incipal bundle with stl'ucture group G =
G/51(2, C). Finally, t.here is CL project.ion

7rP,N: P -t N

which projects !. : pI -t C t to Ü(xo), t) E N. This projection yields a principal
bundle whose structure group is t.he stabilizer GXQ ~ G.

Sun1marizing, we have the following commutative diagram:

Now let HS fix to E Z and let C := Cto ' If we denote the tangept and the normal
bundle of C by Te and Ne respectively then we have the exact sequence

(2-3) o-t TC -7 TW!c -7 Ne -7 0,

where TW denotes the hololnorphic tangent bundle of W.
It is wen known that this sequence splits. Also, fron1 (2-3) we get the exact

sequence

(2-4) °-t H Ofn(l\'c, TC) -t H am.(TWlc, TC) -+ H om(TC, TC) --7 0,

which in turn incltlces the exact sequence

Let

where idrc is regarded as an elenlent of HO(Hom(rc,rc)). Even though 1r* need
not be surjective in general, Sc is non-elnpty; namely, Sc consists of all split
ting Inaps of the exact seqnence (2-3). Therefore, Sc is an affine subspace of
HO(Hom(TWlc,rc)) whose dilllellsion eqllrus that of HO(Hom(lVc , TC)).

Condition (A) illlplies that. t.he exact sequences (2-3) - (2-5) are independent of
the choice of to E Z, hence so is the diInellsion of Sc. In fact, the union

5:= USCr

tEZ

forms an affine bundle over Z, called the 8]Jlit.h7l,ndle 0/ Z.
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Lemma 2.4. Given a iocal sectio71 U : U --+ S, t ~ Ut 0/ the SIJlit~bu71dle S, let
Pu := 7fP,~(U). There is CI 'lLniq7te holornorphic connection a on 1fp,z : Pu --+ U
such that

(2-6)

/or all ~ E TlP, where t = trp,zC~J and ~ = (p'rl 0 trP,JtI).(C).

Proof. First of aIl, note that eqnation (2-6) is weIl defined: a(e) E 5[(2, C), anel
therefore both sides are contained in TxaP}.

Let fl.(C) be the right hand side of (2-6). Then Q. is a holomorphic I-form on Pu
with values in Txar l

. Moreover, it is easy to see that p.(A, Dxa ) = Q.(A.) for all
A E 5[(2, C), where A. denotes the fundaluental vector field corresponding to A.

vVe define a basis {Al, A'l, A 3 } of 5[(2, C) by the equation

Clearly, p.(Ai, Oxa) = 0 for i = 1,2. We define the complex-valued I-form 0-3 by
the eqllation 0-3(C) P.(A3'O:l~(J = f[(C), and let al := .cA2 (a3) and 0-2 := !.cA2 (aI),
where .c denotes the Lie derivative.

It is left to the reader to verify that the 5[(2, C)-valued I-form

defines a connection with the desired property anel that this choice is unique. D

Geonletrically, the interpretation of the conneetion ä is the following. Suppose
we have a loeal section U : U --+ Sand a curve , : I --+ U ~ Z for same open set
I ~ C, 0 E I. Then a horizontal lift "1 : I -+ P of , can be regarded as a map
f : I X pI -+ W such that r(t, _) parametrizes ,(t).

Given a paraluetrization 'i. : r l -+ ,(0), we then define r uniquely by requirillg
that

(1) f(O, x) = L(x) for all :c E pI, and
(2) Ut( gtf(t, x)) = 0 for all tEl and all x E r l

.

It is then easy to verify that t.he r thus determined is the horizontal lift of ,
w. r. t. the connection a.

Definition 2.5. A holo111orphic connection w on tr : F -+ Z is called special if
there exists a hololllorphic sectioll a of the split-bundle S --+ Z, and a g-valuecl
I-form won F such that

with a as in Lel1uua 2.4. Here, we use the decomposition g ~ 9 ffi 5((2, C).
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Proposition 2.6. Let (N, Z) and 7r : F -t Z be as belore. Euer!! to E Z has a
neighborhood U ~ Z s1Lch that the restricted b1Lndle 1f : Fu -t U with Fu := 1r-

I (U)
adrnits a s]Jecial connection.

Proof. The proof is ahnost obvious: chaose U sufficiently small such that 1f : Fu -t

U achnits a hololnorphic connection w = w + 4> where wand cf; are holomorphic
I-forms with values in g anti 5[(2, C) respectively. After shrinking U we mayaiso
asslUlle that the spli t- bundle S adnli ts a holoIl1orphic section a over U. Then the
fornl W := w + a is a special connection. 0

An important characterization of special connections comes froll1 the following

Proposition 2.7. For euenJ p E W 1 let Zp := {t E Z Ip E C t }. If Zp "# 0 then Zp
is a srnooth s1Lbrnaniloid 01 Z with codiIl1(Zp) = dim(W) - 1. The tangent spGce

01 Z" Gt i E Zp is HO(Ct, CJ(Nd - p) ~ HO(Nd ~ TtZ. Moreover, Zp is totally
geodesie w. r. t. uny special connection w.

Proof. The proof of the first two parts is left to the reader.
To show that Z1' is totally geodesic, let io E Zp and pick a biholomorphism

!o : !pI -t Gtn such that !o (:co) = p. Then!o E 1rP~ (io). We also pick a bundle,

isonl0rphism 10 : E -t N to such that 'lO E 1rFI
p (!o). Here, E --lo pI is a vector bundle,

which is iSOI110rphic to O(Nd --lo C t für all i E Z.
Let w = w+a be a special connectioll on F where a is a section of the split-bundle

S. Let 1 ~ C be an open neighborhood of 0, and consider a geodesic 1 : 1 -+ Z
with ,(0) = io and 1'(0) E TtoZp . Let I : 1 -+ P and ~ : 1 --lo F be the horizontal
lifts of f to P and F respectively with }(O) = !.o and 7(0) = zo.

Define f : 1 x !pI --lo W by r(z, x) := i(z)(x). Since ~ is horizontal and thus, in

particular, a(i' (z)) = 0 for all z, it follows that

(2-7) a..,.(:) (J~r(=lXO)) = 0 for all z EI.

On the other hand, since f is a geodesie, we conclude froln (2-2) that
((~(Z))(/'(Z)) E HO(E) is independent of z and thus vanishes at IO for all z.
It follows that

(2-8) iJ f( - '1' )iJ= ~, ,,0 is f.CLuge71t tu C-r(:) for all z EI.

But (2-7) and (2-8) together ill1ply that

:= f( z, :ro) = 0 for all z EI,

and thus f( z, xo) = jJ for all =EI. Bat this llleans ,( z) E 2" for all z and this
completes the proof. 0

This Proposition yields iInluediately

Corollary 2.8. If w is a s]lecial couuf:ctioll un Z and Tor: 1\2 HO (lVt) --lo HO(lVd
is its torsion then
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/or all p E Ct • 0

Since torsion is a local concept, Proposition 2.6. together with Corollary 2.8 will
allow us to make some assumptions about the intrinsie torsion of F. This will be
applied in the following sections.

\,Ve shall also need one further property of special connections. Its proof is
iInu1eeliate froll1 (2-2) anel (2-6).

Proposition 2.9. Let V := H°(IpI, O(k)EBCJ(k)-xo) be the s]1ace 0/ global sections

01 O( k) EB O(k) which vanish at Xo and let g' := g ffi ~xo ~ 9 where ~xo ~ 5 [(2, C) i~~

the infinitesi1nal stabilizer 0/ Xo 'ILnder p. Consider the ]Jrojection P'!'l 0rrF,N : F -t

W. 11 w is a special conneetion on F then

kel'(p'I"I 0 'lrF,N)* = {~ E TF I (8 + w)(~) E V EB g'}. 0

§3 Moduli spaces of rational contact curves.
In this entire section, we shall assluue that dim( W) = 3 and that W earries a

holomorphic contact structnre, i.e. a hololnorphic line bundle L ~ T*W with the
property that for every non-vanishing local seetion K. in L, the local 3-form K. /\ dK.
does not vanish anywhere.

By a standard notational ambiguity we will denote by O(n) both the (unique)
line bundle of degree n over !pI anel the sheaf of germs of holomorphie sections of
this line bundie.

Let us first of all eite the following

Proposition 3.1. [Br] Let W denote a com]Jlex contact S-Iold with contact line
bundle L ~ T*W. Let C ~ W be an i1nbedded rational contact curve, and SU]J]JOse
that Llc ~ O( -k - 1) /or sorne integer k ;::: O. Then

(1) lVC 2:: O(k) EB CJ(k), where lVC denotes the normal b'ltndle 0/ C in W,
(2) the moduli s]Joce Z vi i1nbedded rationlLl curves is s1nooth and 0/ com]Jlex

di7nension 2k +2 near C, and
(3) the subspace Y ~ Z 01 rational contact curves in W is a s1nooth analytic

sub1nani/old 0/ Z 0/ dimension k + 2.

For the remainder of this seetion we shnU assunle that k > O. It follows that Z
is a cornplete a1lalytic lamily v/ rationul curves satisfying condition (A).

Let E := O(k) EB O(k). Thell

G := Aut(E) = Gl(2 ,C) X SI(2, C),

where the first factor GI(2, C) consists of those automorphisms whieh fix the base
space pI, and the secollel factor Sl(2 ,C) consists of automorphisms whieh are in
duced by Möbius transformations of PI. As an Aut(E)-module, TcZ == HO( O(k) EB
O(k)) == V1,k.

Let L.1.. ~ TW be the 2-plane hundle anihilated by the seetions of L. Für IDeal
sections ~ 1 ( anel K. of L.1.. anel L respectively, the pairing (~ 1\ e, f-\:) !--?' clK.(C() is
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easily seen to be tensorial and nOll-degenerate, hence induces a bundle isolllorphisnl

A2(Ll.) ~ L *. Also, we huve the canonieal short exaet sequence

(3-1) °--1- Ll.. --1- TW ---+ L * --+ 0,

where TW is the holomorphic tangent bundle of W.
Now let C E Y ~ Z. Since C is a contact curve, we have an inclusion °---1- r ---1

LK,., where r is the tangent bunclle of C, and from there it follows that

Thus, since r 9::' 0(2), we lunst have L!cfr :::: O(k - 1). Frolll (3-1) we also have
the short exaet sequenee

(3-2) o -+ L~';r --1- Ne --+ Lie --+ 0,

where Ne denotes the normal bundle of C in W.
Since H 1 (Llefr) 9::' H 1 (O(k - 1)) = 0, (3-2) indnces the short exact sequence

°--+ HO(LIc,f r )~ HO(Ne) ~ HO(Lie) --+ 0.

Lemlna 3.2. Let C E Y and ~ E TcY ~ TcZ ~ HO(Nc). 11 pr(~) E HO(Lic)
vanishes at p E C vi order a.t lea.st two} then ~ - regarded as a section 01 lVC 

vanishes at p,

Proof. Given ~ E TcY as above, we pick a holomorphic curve, : I ---1- Y with ,(0) =
C and 1'/(0) = ~ where I ~ C is an open neighborhood of 0. Let r : I x pI ---1- W
be a holomorphic map such that r(t, _) is a parametrization of 1'(t) for aU t. Vve
may assume r(O,xo) = p with Xo := [0: 1] E r l .

First, suppose that r is a loeal bihololnorphism from a neighborhood of (0, xc)
to u ~ W. Then the holomorphic vector fields

,. ar( )X := Eil t,x
ar

and Y:= 8x (t, x)

are weU defined on U.
Let '" be a loeal cont.act form on U. Then we have

But all three tenns on the right hand siele vanish: the first one vanishes because
Y is tangent to the contact curves 1'(t), thus ",(Y) == O. The second one vanishes
because - by hypothesis - the function t\,(){) : (u nC) ---1- C vanishes of order two at
p. Finally, [X, y~] = 0 from the clefini tion of X and Y, thus the third term vanishes
as weIl.

The vanishing of pr(~) at p iInplies that ..IY11 E L;, hence Xp, Yp span Li;. But
this together with dK,()(I" Yp ) = 0 ilnplies that (n: 1\ dn:)p = 0 which is impossible.

Therefore, r is not a 'local bihololllorphism at (0, xo), i.e. ~r; (0, xo) must be
tangent to C. But this implies exactly that ~ vanishes at p. 0
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Corollary 3.3. Fur ellery C E Y, the 1'est1'iction pr : TcY -+ HO (Lic) 1$ an

isornoT']Jhisrn.

Proof. From Proposition 3.1. we know that dim(TcY) = J.~ + 2 = dim(HO(Ljc))'
and froln Lemnlu 3.2. it füllows that ker(pr) n TcY = O. 0

Recal! that the sequence (3-2) is equivalent to

o-+ LJ(k - 1) -+ O(k) EB LJ(k) -+ O(k + 1) -+ O.

It is easy to show that - up to equivalence - the maps in this exact sequence are
uniquely determinecL ivfore specifically, one can show that for every C E Y, there
are bundle isolllorphislns 4>c, eP'c and ePc such that the diagram

(3-3)

o

o

----+) O(k - 1) -~) LJ(k) ffi LJ(k)

~c1
jVc

-~) O(k + 1) --..,.) 0

--..,.) 0

commutes, and for the induced comlllutative diagram

0 Vk-l
1.

) V1,k

(3-4) (Ijl~) -1 I/Ic1
0 ) HO(Lte/ r ) ) HO(Nc )

Vk+l

(Ijl~r1
pr ) HO(Ljc)

--..,.) 0

---+) 0

we have l(Uk-d = :r, 0 (y . 'flk-d - Y 0 (x . 'flk-d, and pr(ul 0 Vk)
for all Ui, Vj E Vi. Here, we used the natural idelltifications HO (LJ(n))
HO (LJ(n) EB LJ(n)) ~ VI,n for any integer n 2: o.

Let HS define the vector subspaces V' and V" of V1,k by

where U x and 1.L y denote partial derivatives, and

V" := I(Vk -.) = {:r: 0 (y . u) - y 0 (:c . u) I u E Vk - 1 } .

= UI • Vk

""'J Vn and

Then VI,k = V' EB V" is easily verified.

Proposition 3.4. Let C E Y ~ Z be a 1utiunal contact curne und consider lntndle
isornoT]Jhisrns cPc, cP'c (Lud cP~, which ind'/l,ce the c017l.m1Ltative diagrarnH (3-3) and
(3-4). Then we have

(3-5)

Prao/. The Inap 77 : Vk+I -+ V1,J.: given by ''7(u) := k~l (x ~ 1.L x + y 0 u y) splits
the top exact sequence of (3-4). Thus, Corollary 3.3. implies that there is a mup
5 : VJ.:+I -+ Vk-I such that TcY = cPc' ({Cf} +1 0 5)(u) I u E VJ.:+I}).
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Since Vk+1 (9 V~'-l ~ V2 k EB VU--:l EB ... EB V:l it follows that there are polynomials
Vi E Vi, i = 2,4, .. . 2k such that

8(u) = (u, 'U2k)k+l + (u, 'U2k-2)k +,., + (u, V2)2'

Frolu Lemma 3.2. and an easy calculation we conclude that 0' lUllst satisfy the
following condition:

(3-6) if ,,.21-u fol' SOHle r E VI, U E Vk+l then rlo( u).

Using the 51(2, C)~quival'iance of (_, _) we compute that for any r E VI, I"lo(1' k+1
)

if and only if r'lv2k' Thus, (3-6) itnplies that every r E VI divides V2k, henee V2k = O.
Next, a similar ealculation shows that ,,.10(r k s) for all s E VI if and only if 'r 1V2 I.: - 2 •

Again, this together with (3-6) ilnplies V2k-2 = 0,
Continuing with siInilar arguluents, we see successively that V2k = V2k-2 = , .. =

V2 = 0, thus °= 0, and this shows the first equation in (3-5). The seeond equation
is immediate froIn the eOlunlutativit.y of (3-4), 0

Proposition 3.5. Let Fy := 1T-
1 (Y) with the ]Jrincipal G~b7J,ndle 1T : F ~ Z Iro7n

(2-1) und let 1t"y : ~y ~ y denute the total Vk+l-colrame b'lLndle 01 y. The set

F := { 'e : O(k) EB O(k) ~ Ne leE y, cPc: a b'lL~dle is01n0l1Jhis1n } C F
t:p w/uch Lqatssfies (3-5), - y

is a red7Lction vI Fy with stntct'/Lr'e gron],

eß := {(c· A, A) 1 c E C*, A E Sl(2, C)} ~ G.

M oreover, the 1na]J

is an im.beclding, and the irnage ((F) ~ ~y is a Gk+l-str1Lct7L1'e on y.
Proof. The proof is straightforwanl: first of all, by our previous diseussion we
know that jT-l (C) n F -# 0 for all C E y. Moreover, if 4>h, 4>b E Fe, then -t/J :=

(4)h)-1 o4>b E Aut(O(k) ffi O(k)) luust satisfy 1j;*(V') = v' and 1j;·(V") = V". This
is the case precisely if -tf; E C ß . Thus P is a eß-reduetion of Fy.

The verification of the stat.ed properties of ( is left to the reader. 0

Ey abuse of notation, we shall identify F with ((F) and thus regard P as a
Ck+I -structure on y, The tautologieal I-form of 7r : P --t Y is then given by

8=pro(Bl p )·

The decoillposition VI ,I. = V' ffi V" iIlc!tlees the decoIllposition

V;,k 0 Vt,k = (V'· 0 V') EB (V'· 0 V") EB (V"· (9 V') EB (V"· 0 V").

Projeetion onto the first direct SU1l11Uand cOluposed with eonjugatioll by p'rlv'
yields a homomorphisl11

p : gl(V I ,I.:) ~ g{(Vk+d·

It is not harel to verify that the 1-fonn

W := (p 0 w)lp

yields a eonnection on jT : P~ y.
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Definition 3.6.

(1) A G1,k-connection is a tripie (11'" : F -r Z,B,w) of a G1,k-reduetion F of Z
and the tautologieal and connection 1-forms 0 and w.

(2) Likewise, a Gk+1-connection is a tripie (11'" : F -r Y, B, w) of a Gk+1-reductiou
F of Y aud the tautological and connection 1-forms {; and W,

(3) Suppose (7r : F -r Z, B,w) and (7r : P -r Y, B,w) are a Gl,k-connection anel
a Gk+1-connection respectively and suppose there is an injeetive bundle
luap

p __J--1>! F

Y 1.) Z

such that {} = po" 0 Bit anel Cl = po wl t.
Then (7r : F --+ y, e, w) is called a restrietion of (7r : F --+ Z, e, w),

whereas (7r : F --+ Z, e, w) is called an extension of (7r : P --+ Y, e, w).

The following Proposition is straightforward and the proof is olnitted.

Proposition 3.7. 11 the G1,k-connection (7r : F --+ Z, O,w) is an extension 01 the

Gk+1 ·connection (rr : P --+ Y,8,w) Gnd il e and e denote the torsion 01 W Gnd W
respectiuely then

Definition 3.8. A conneetion on 7ry : P --+ Y is callecl special if it is the restrietion
of a special connection on 7r : F --+ Z.

Of course, frolll our discussion preceding Definition 3.6. we know that if Z is
the IlIOduli space of rational curves in W whose normal bundle is equivalent to
o(k ) E9 0 (k) anel if Y ~ Z is the subset of contaet eurves then every eonnection on
7r : F -r Z has a restrietion to the Gk+l-strueture 7r : P -+ y.

Let us now investigate the intrinsic torsiun of both the GI ,k-structure 7r : F -+ Z
and the Gk+rstructure 7ry : P --+ y. The Spencer sequence (1-1) reacls
(3-7)

O (1) V* Sp \2V* V H 02()--+91 ,k---71,kes?fh,k-=-+i l,k01,k--+ ' 9Lk ------+0
auel

O (1) V* Sp \2V* V H 02()--+ 91.:+1 --+ 1.:+1 es? flk+l -=-+ i 1.:+1 0 k+l --+ ' 9k+l --+ O.

Ifk (1) d (1)Lemllla 3.9. ~ 2: 2 then ~h,k = 0 an 9k+l = o.

Proof. Let <p E g~ ~l. vVe regarcl <.p as a linear map <.p : V 1,k --+ 91,k. Pick two

arbitrary bases ("'1,1'2) and (SI, 82) of VI' Then the set {Ti 0 8~- j s~ I i = 1,2, j =
0" .. k} forms a basis of VI,k, vVe have
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If we let 'P(t'j 0 87") := (Aj,B j ) fol' 'i = 1,2 be the deceHuposition in fh,k "J

g((2, C) EB 5((2, C), then this equation reads

Note that BI . s~ E span{SI S;-1 ,s~}. Taking the (T2 (9 SI S;-1 )-component of
(3-8) w.r.t. the above basis we conlude that s~ is an eigenvector of BI. Since this is
true for any S2 which is linearly independent of SI, it follows that BI is a lnultiple
of the identity. Oll the other hand, trace(B l ) = O. Thus, we have BI = O.

Likewise, Al = 0, hence 'Perl 0 st) = 0 for arbitrary rl, SI E VI' Since elelnents
of this form span all of V l ,b 'P = 0 follows.

The proaf of the second statement is of siInilar nature but silnpler. We omit the
details. 0

Ta calculate the irreducible C0111pOnents of (3-7), note that as aG-module, gl ,k S::'

Vo,o EB V2 ,o EB VO,2' In fact, the equivalence is deternlined by the equatian

(3-9)

for all Pi,j E Vi,i and qI,k E VI,k.

For the rest of this seetion we shall assume that k = 2. In this case, a calcu
lation shows that the decolllposition of the Spencer sequence (3-7) into irreducible
submodules is

More explicitly, if <p E V;,~ @ fh ,2, then there are elements 'ri,j, r:,j' <:j E Vi,j
such that für PI,2 E VI ,2,

(3-10)

CP(Pl,2) = ((rl ,2,Pl,2)I,2) + (Cl"3,Z,Pl,'l)I,2 + ("'~,2,PI,Z)0,Z)

+ ((T 1 ,4 , PI ,:2 ) 1 ,:2 + ('I' ~/, 2 1 PI,Z) 1 ,1 + (r I ,0 , PI ,Z ) 1 ,0) E Vo ,0 EB Vz,o EB Vo,2 .

Likewise, for allY T E A:2V;,2 0 VI,:.!, there are elements Si,j, L<,j, s::j E Vi,i such
that for all p, q E V l ,2,

(3-11 )

T(p, q) = \81,2, (p, q)l 0) + \81,4, (p, q) 10) + (SI ,6, (p, q) I 0)
'0,2 . '0,3 ' 0,4

+ /81,o, (p,q)o 1) + / s~ 2, (p,q)o 1) + / s~ 4' (p,q)o 1)
\ ' 1,0 \, , 1,1 \' '1,2

+ / S3,O,(p,q)0 1) + / S3,:2,(p,q)0 1) + / S3,4,(P,q)0 1)
\ ' 2,0 \ ' 2,1 \ ' 2,2

+ (S;',2, (p, '1) 1,2) 0,0 .
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Using the tuple (81,:l181,4,Sl,Gl .....;I,O,8~,:l,8;,4'S3,0,S3,:llS3,4,S;',2) as coordinates
for A2V:,2 ® VI,:l, allot.hel' calculat.ion shows that
(3-12)

S () (
l( , ") 1 1(,,, )

p r.p = - 6' "'1,2 - 3'1'1,2 + 4'1'I,:l , -2"1'1,4, 0, "'1,0, -'8 rl,Z + '1'I,Z - 4'1'1 ,Z ,

1 1 1( , " ))
--""14 0 --'1'32 0 --rlz-3rlZ-8rI22 " , 4 " , 3' , l'

where t.he r'i,j's are detel'mined by 'P as in (3-10).

Lemnla 3.10. Let Z be as be/ore , and S1L]J]Jose that Wl is a special connection on
Z. Then another connectiun Wz un Z is special i/ and only i/ there are /unctions

Ti,j, 1'~,j on F with val'/Les in Vi,j such that

(3-13)

Here, we 'lLse the identificll,tion (3-9) to reg(l,rd the Wi '8 W~ VO,O EB VZ,O EB VO,2-val'ILed

l-/orms on F.

Proof. First of a11, we deRne t he vee tor bundIes Vrj := F x G V j,j over Z. Reca11
from §1 that the difference betweell two connections on F -r Z is determined by a

seetion of the bundle T* Z 0 gF. Since by (3-9) we have gF ~ V60 EB V[o EB V62' we, , ,
can decolnpose

T* Z (9 gF = Br EB Br wit.h {
Br := T* Z ® (vto ffi V{o) ,

B' F._ T*Z IV>. V F
2 .- VY 0,2'

and

Note that B[ ::: V{z (9 vtz == V{o EB V{2 EB V{4'
Consider the vector bundle

6. := UHO(H o1n(Nc" TC,)) -1 Z.
tEZ

For a fixeel tE Z, Honl(Nc"TG',) == Hmn(O(2) EB 0(2),0(2))""" 0(0) EB 0(0),
hence HO(Hom(lVc " TCr )) ~ VI,o as a G-nlodule, and thus ~ ::: V{o'

Let us fix a special conneetion Wo = W + Go with some section ao of the split
hundle S --+ Z. Given a IDeal seetioll J of ~, we let w := w+a with CI := 0"0 +~,

and define 1/J(6) := w - wo. Fronl Lenuua 2.4. it is easy to verify that 'IjJ( 0) is a
local section of E[ ~ T* Z (9 gF, that the correspondenee J H 'ljJ(o) detennines a
hundle map lj; : 6. -1 Ef, anel that 'IjJ is independent of the choice of Wo. Also, it is
ohvious that 7./J is non-vanishillg, hence by Schul"s LemIua 1j1(6.) = via ~ Er.,

Let WI = Wl + 0-1 be the decOIuposition of the special connection Wl where al is a
section of the split bundle S" Then W"l is special if and only if W2 = W2 + (;2 for SOlue
section (J"2 of 5, if and only if Wz - WI = (W2 - wI) + lj;(J) where J := az - (Tl is a
section of ö" if and only if W2 -WI is a section of Brffi ljJ(6.) = BrEB V{o ~ T* Z Q9 gF.

Comparing (3-13) with (3-10), we see t.hat this is satisfied if and only if (3-13)
holds. 0
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Theorem 3.11. Let Z be the rnoduli s]Jace 0/ rational curves in a 3~/old W whose
normal bundle is equiva.lent to 0(2) EB 0(2), and let 1r : F ---+ Z be the associated
Gl ,2 -structure. Th en th ere is a '/Ln ique connection w on Fand a fu nction 53,0 :

F ---+ V3 ,0 such thai the torsion uf w is given by

Moreover, W is (1 s]Jccial connection.

This simple fonn of the torsion is quite remarkablej indeed , Lelnnla 3.9. iInplies
that for k = 2, .,.ank(H~,2) = 48. Thus, Theorem 3.11. says that r/Lost of the
intrinsic torsion of F vanishes.

Proof. First of all, note that it suffices to prove the Theorem locally, i.e. we need
to show that F can be covered by open sets Ui on which a connection Wi with the
stated properties exists. Then, by uniqueness, Wi and Wj lllust coincide on Uj n Uj,

thus Wi is the restriction to Ui of a connection W defined on alt of F. In the proof,
we will replace Ui by Z and thus we muy assume that alliocal properties of Z hold
globally.

By Proposition 2.6. we can find a s]Jccial connection Wo on F. Then there are
functions (51,2,51,4,'" ,5~/,2) on F with values in VI ,2, V1 ,4, ..• ,Vl ,2 respectively
such that the torsion 0 0 of Wo is given by 0 0 (e, e) = To(p, q) with p = B(e), q =
B(e'), and whel'e To(p, q) is determined by the Si,/S as in (3-11).

'Ve call To : F ---+ A2Vi,2 '9 VI ,2 the torsion ma]J 0/ wo. By abuse of notation, we
. 'Tl 11

wnte .10 = 81,2 + $1,4 + ... + ,s1,2'
Vve shall say that r E VI divides P E VI,k and write 1'lp if p = x '9 PI + U0 P2 anel

l' divieles both PI anel]J2' From Corollary 2.8. we obtain the following criterion:

(3-14) If for r E VI and p, CL E V l ,2 we have l'jp and rlq then also rITo(u)(p, q).

From (3-14), we can conclude that some of the $i,/S must vanish identically. For
example, let P := :r, 0 r'l. and q := y 0 ,,.2 for r E VI. Then (p, q)o I = (p, q) 1 2 = 0, ,

ancl (p, q)l,o = 10 '1'4 E VO,4' Since ,,.jp anel 'rlq, (3-14) implies that rITo(u)(p, '1).
An easy COlllputation shows that t.his is the case if and only if 1·151,6(U). But this
must be true for alt.,. E VI anel u E P, thus we conelude S1,6 = O.

By silllilar calculations we see that (3-14) is satisfied if and only if

(3-15 ) , II? 0
SI 4 = SI 4 = 51 6 = 53 4 = 51 2 - ....8} 2 = .

, 1 , l , ,

From here it follows that the intrinsic torsion of the GI ,2-structure is representeel
by 5:1,0' Also, frOlll (3-12) anel (3-15) it follows that To - 83,0 = Sp(tp) for SOllle
function 'P : F -+ V;,2 0 ~h ,2 whose '1'1,4 anel 1';',2 component vanish. Then Lemma
3.10. implies t.hat the connection w := Wo - 'P is still special, and if we let T be the
torsion Inap of Li,.,' then by (1-7) we have T = To - Sp(<p) = 80,3. Thus 1 the t.orsion
of the special connection wis of the desired forill.

The uniqueness follows hOln Proposition 1.2. together with Lenuna 3.9. 0
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:t>eH nit ion 3.12. The uniCIue special cannect ion [rom Theorelll 3.11. is called the
intrinsic connection 0/ Z.

Theorem 3.13. Let W be (I cuntlJ,ct :i./uld 'with contact line b'Undle L ---7 W, and

let Y be the m.od'lLli S]1Gce 0/ rational contact curves C such that Llc ~ O( -3).
Then there is a 'lLnique tOrllion /ree connection won the G3 -str1Lcture Jry : P -+ y.
Moreover, w is s]Jecial.

Proof. By Proposi tiün 3.1. Y ~ Z is a snbluanifüld with Z as in Theürenl 3.11.
Let Wo be the intI'insic connection on Z 1 and let 83 : F -+ V3 be such that 53 0 1 :
F ---7 V3 ,0 is the torsion function of Wo frOln Theorem 3.11.

Let 51,2:= x@(s3)x+y0(53)y E V1 ,2, and let <p: F -+ V;,2 0 rh,2 be determined
by (3-10) with 7'1,2 = 7'~,2 ;= 251,2, a11 other Ti,j'S = O. As before, r..p can be reganled
as a section of T* Z <9 gF, and by Lell11ua 3.10, the connection w := Wo +<p is again a
special connection on Z. We denot.e hy wthe restrietion of w to Y, and let G, 80 and
edenote the torsion farms of w, Wo and wrespectively. By (1-7), 8 = 80 + Sp( 'P).

Then by Proposition 3.7. anel S0111e calculatiün we have

\
5:1,0,(8,8)01) - :-2

1/
51 ,2,(8,8)01) )

'20 \ ' 11

+ ~ 151 '2, (B, 8) l'°) + ~ /51 2, (8, 8) l' 2 )
\, '0,2 \, '0,0

= O.

Thus, w is the desired torsion free special conneetion. The uniqueness fo11ows
from Proposition 1.2. toget.her with Lelnma 3.9. 0

§4 Torsion free G] ,2-structures.
In this entire seetion, we shall eonsider eomplex sixfolds Z which carry a torsion

/ree Gl,2-structure 1r : F -+ Z. In this ease, there is a unique torsion free eonneetion
w = Wa,o + W2,a + WO,4! on F where Wi,j takes values in Vi,j. Hel'e, we used the
identification gl,2 ~ Vo,o EB V2 ,o ffi VO,'2 from (3-9).

Für convenience, we sha11 define t.he pail'ings

(Vo,o ffi V2 ,0 EB VO,2) @ Vi,j
(.I.:)

((Po,o + P2,O + jJO,2, q))

v' .I,}

k (po,o, q)o °+ (P2 ,0, q) 1 a + (PO,21 q)o 1, , ,

Then the first struc17J.re equutioH of w reads

(4-1 ) rl8 + ((w, 8))(l) = 0

with the VI,2-valued tautologienl I-fann 8.
Moreover, the cnrvat'(J,re 2-/urrn n takes vailles in gl ,2 ~ Vo,o EB V2 ,o EB VO,2, and

is definecl a.s

(4-2)
!1=dw+w!\w

= dw - ~ ((W2,O,W2,O)1,O + (WO,2,WO,2)o,I)'
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Differentiating (4-1), we obtain the first Bianchi identity

(4-3) ((fl, B))(1) = O.

Let K(gl,Z) be given by the exact sequence

where SP2 is given by skew-symmetrization of AZV1 ,2 (9 Ql,2 ~ A2V1 ,2 (9 (V;,2 \8) V1 ,2)'
The first Bianchi identity (4-3) can be interpreted as stating that n is a seetion of
F Xc K(fh,2).

A calculation shows that, as a G-lllodule, K(Ql,2) ~ V2 ,0 EB VO,2. Nlore explicitly,
there is a function a = az,O + aO,2 : F -t V2 ,0 EB Vo,z such that

(4-4)
n = ( -4 \ ([2,0, (8,8) 1,2)0,0 + 3 \ ([0,2, (8,8)0,1)oJ

+ ((a2 0, (8,8)0 1) + (ao 2, (8,8)1 0) - 7 (ao 2, (B, B) 12) ).
, , 2,0 ' '0,2 ' , 0,0

This implies, in partieular, that dwo,o = O. Therefore, by the A mbrose-Singer
Holonomy Theore1n [KN], the holonomy of w is eontained in the subgroup

Taking the derivative of (4-4) and salving for da, we see that there is a funetion
b : F --r V1 ,2 such that

(4-5)
( -2)

da = ((w, a)) + 3 (b, B)0,2 + (b, B) 1,1 .

Dnee again, we take the derivative of (4-5) and salve for db. We see that there
is a funetion c : F --r VO,a such that

(4-6)

(-3) ( ) ( )db=((b,w)) +2 (a2,o,(Lo,z)oo,B + (a02,(l0,2)00,f)
, 1, I ' , 0,2

+ ( - ~ (a2,O, a2,o)2,O - 7 (aO.2, ao,2)0.2 + C, 8)
0,0

Taking exterior derivatives Olle luore time and solving for dc we calculate that

(4-7) dc = -4cwo,0.

The reader who is famiEar with [Br} will note the siulilarity of the structure
equations (4-1) - (4- 7) wi th the structure equations for H 3 -connections where H 3 =
G3 n SI(V3 ). This is by no nleans a coineidence. As we shall see in the following
section, there is a elose relationship between Hl,2-struetures and H 3-structures.

Let Fo ~ F be an integral hypersurface of Wo,O, i.e. a hypersurface such that
WO,OIFo =O. Then Fo is a torsion free Hl,2-reduetion of F. We shall denote
the restrictions of B, W2,O, WO,2, a and b to Fo by the same letters. Note that
Wo := WIFo = W2,O + WO,2 is V2 ,0 EB Vo,z-valued. Also, by (4-7), c is constant on Fo.
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Definition 4.1. Let 7r : F ~ Z be a torsion free GI,z-structure anc1 let Fo ~ F be
an integral hypersurface of Wo ,0' Then Fo is called an associatcd H I ,2 -s tru cture 0 J
F.

The choice of a,.<:;sociated HI,z-structures is, of course, not unique. However,
given two such structures Fo and F~ then F~ = Rtf' Fo for some t E C*. Hence,

to each torsion Jree GI ,2 -structu1'C there is a one ]Klrameter Jamily 0/ aSSOCi(lted

HI,z -structures.

our approach to solve the structure equations (4-1) - (4-7) will be motivated by
the steps pursued in [Br] to salve the structure equations of an H3 -connection,

Let
!( := a + b : Fo ~ V, where V = V2 °ED Vo 2 EB VI 2·, , ,

bO,2 := (b~ b)l,l
b2 ,0 := (b, b)o,'2
b2 ,4 := (b, b)o,o

Equations (4-5) - (4-6) can be sUlnmarized as

dI( = .1(8 + wo)

where J is a function on F with valnes in Hom(V, V). Now.] = ](*(J e ) where
Je: V -t H om(V, V) is a polynolnial n1apping which depends upon a parameter
c. If we write Je relative to the standard basis of V then it has a 12 x 12-matrix
representation whose entl'ies are polynol11ials in the components of a and b.

It turns out that this Inatrix Je is not invertible. In fact, generically the rank
of Je is calculated to be 10. This ilnplies that the image of K is contained in some
10-dimensional subvariety of V.

Let us this once comment 011 the mechanical calculations which are perfonned
to arrive at this conclusion. The atteo1pt of silnply taking the detenninant of Je on
MATHEMATICA failed lniserably at first: after n10re than 10 minutes of calculation,
memory overflows occurecl.

The next approach was to use the HI,z-equivariance of J c . Under the generic
assumption that both a2,0 and aO,2 are not squares of a lineal' polynomial, we may
assume that (l2,0 = txy 0 I illld 00,2 = t':cy 0 1 for some t, t' E C. Making this
replacement siInplifies Je to a lnatrix J~ of equal rank which is drastically simpler,
and calc1.1lating that det (J ~) = 0 on MATHEMATI CA is a matter of less than a lni n1.1 te.

Moreover, we can explicitly COlupute the kernel of J~, and thus by equivariance
the kernel of J c' The result can he c.lescribed as follows. Let

d1 0 1 := ((12,0, (12,0)2,0 el 0 1 := (((12,0, b)I,O ' b 1,,2

d2 (9 1 := (ao,z, no,'2)o zen I .= ((0 b) b)
, 2 'U. 0,2, ° I ', I 2

Pz,o := ((az,o, ao,z)o 0' ao,'2) ,
, 02

P2,4 .- ((a2,0, (LZ,o)o °,a2,0) ,
, 2 °

Po,2 .- IG ((a2,O, ao,'2)O °' az,o') + D / (ao,2, ao,2)0 °' (10 z), zo \ " 02
-12 C (lO,Z + 3bo,2 ' ,

Here, di and €i are C-val1.1ed functions on V, while bi,i and Pi,i are functions on
V with values in Vi,j. Then we have the
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Proposition 4.2. Let

and

Then d(I( 0 fiC
) = 0 for i = 1,2, and hence !( maps Fo into a level set vf (ff, f~).

Moreover, rank(J c) = 10 at x E V if and only if dff /\ df~lx i= O.

Proo/. The calculations involved to verify this Proposition were all performecl on
MATHEMATICA and will not be presented here in further detail. 0

We let
~c := {:r. E V I df~ /\ df~lx = O}.

Then by Proposition 4.2. we know that 'l'ank(I()u = 10 at u E Fo if and only if
]((u) 1:- Ec .

Let us define the fUllctions rt,j : V ~ Vi,j for k = 1,2 by the equation

and define the vector fields Zk, k = 1,2, on Po by

Then another MATHEMATICA calculation yields

Proposition 4.3. The l1ector jileds Zl and Z2 on Fo defined above are symrnetries,
i. e. their Lie derivatives satisfy

(4-8) ..cZh (wo) = Wo (lnd .cZh (B) = B for k = 1,2.

Moreover, [Zl' Z2] = O. 0

Corollary 4.4. Either 'rank(]() == 10 ur rank(]() < 10 un all of Fo.

Proo/. From (4-8), standard argtuuents show that a symluetry either vanishes ev
erywhere 01' nowhere on Fo. Thus, either Zl and Z'l are pointwise linearly indepen
dent evenJwhere 01' nowhere on Fo.

FroHl the definitions of the ZI.: '5 it follows that Zl and Z2 are linearly independent
if and only if dff anel df!j are lineari)' independent. The claim follows then from
Proposition 4.2. 0

Definition 4.5. A torsion free Hl,2-connection is called regular if rank(K) =10,
with the map ]( : Fa ~ V frolll above.

A torsion free Cl,2-connect.ion is called regular if one and hence all of its associ
atecl H I ,2-structures are l:egular.

Thus, for a regular Hl,2-connectionl the luap ]( is a submersion onto an open
subset of the regular part of a level set of (ff ' f~) in V.
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Defil)ition 4.6. Given constants c, Cl, C2 E C let

If for a regular torsion free H I ,2 - connection on 1r : Fo --+ Z the image of !( : Fo --+
V is cantained in Ce, Cl, c2 then we call the tripIe (c, Cl, C2) the structure eons tants 0/

the connection.

Let 1.1S now consider the question of existenee of torsion free H 1,2 -connections.

Theorem 4.7. Gitlen eonstants e, Cl, C2 E C let C := C( C, Cl, C2) ~ V. Then C
ean be covered by open sets U whieh haue the Jollowing property: there exists lL

holo1norphie ]Jrinei]Jal C2 -bundle ]( : Fo --+ U ouer U and holomorphie l-/orms B
and Wo on Fo with values in V I ,2 and V2 ,0 EB VO,2 respectively satisJying

(1) the V I ,2 EB V2 ,0 EB VO,2 -valued 1.Jor1n 8 + Wo is a co/rame on Fo,
(2) equations (4-1) - (4-7) are satisfied iJ we set wo,o = 0, und i/ !( = a + b is

the deeorn]Jusition 0/ !{ into its V2 ,o EB VO,2 and V I ,2 c01T/']JOnents res]Jeetitlely.

M oreover, the tri]Jle (Fo,8, wo) is 7tni(j'ILe in the 8 ense that i/ (F~, 8' , wh) is another
tripie sa tis/ying (1) and (2), th eu th ere is u bund1e isom017Jhism hetw een Fo and F~

which identifies the eoJramings.

Proof. Let a, b, Fr,j and J be the l'estrictions of the functions a, b, r7,j and J c re
spectively to C.

By definition of C we have TrLnk( J) =10. From here it follows that there exist
smooth I-forms (j and Wo on C with values in VI ,2 and V2,O EB VO,2 respectively such
that

(4-9)

Since da, db and J are hololllorphic, we may assume that li and Wo are of type
(1,0).

The kernel of J is spannecl at each point by the vectors T~ °+ r~ 2 + Ff 2 for, , ,
k = 1,2, so once one solution (fi,wo) to (4-9) has been found, any other can be

written in the fonn elf + l:k :P~,2akl Wo + l:k(rto + r~,2)O:k) for unique I-forms Qk,
k = 1,2.

Now we define the 2-forn1s

(4-10)

where n is given by replacing (Li,j and 8 by ai,j and B respectively in (4-4).
After some calculation, the exterior derivative of (4-9) can be written in the farn1

This implies that there are 2-forms tlJ land tlJ 2 such that

(4-11) and



(4-12)
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Substituting these relations intu (4-10) and differentiating, we COlnpute that

O '" -k f,T. I 0 '" (-k -k )d\T.= L..Jk 'f l ,2( 'J.' k, aut = L-k 'f 2 ,O + 'fa,2 'J.' k·

Since the functians r},2 + rto + r~,2 are linearly independent, we conclude that

d'lJ k = 0 for k = 1, 2.

Let U c C be an open set on which the 'lJ k 's are exact. Clearly, C can be covered
by such open sets. Let a k be 1-forms on U such that da. k = 'lJ k . If we replace the
pair (8, wo) by (8 - Lk r~,2ak, Wo - Lk (f~,o + r~,2) ak), then another calculation
shows that for this new pair

0= dB + ((wo,O))(l)

o= clwo - ~ ((W2,O,w2,oko + (WO,2,WO,2)o,1) - n.

Note that from (4-10) and (4-11) it follows that Wk has no (0,2)-part. Thus,
Ctk can be chosen to be of type (1,0). Eut then (4-12) implies that 8 and Wo are
holomorphic I-fonns.

Now we let Fo := U x C2 with coordinates (Ci, b, 51, 52) and define the 1-forms

(B,wo) := (Ti +L r~,2dsk, Wo +L (rto + r~,2) dSk) .
k k

Then it is not harcl to show that (8, wo) is a holomorphic cofralne on Fo satisfying
the postulates of the Theoren1.

The uniqueness of (8, wo) follows froln the standard facts about mappings pre
serving cofranlings [G]. 0

vVe are now ready to prov'e the existence result for Hl,2-connections.

Corollary 4.8. For any cunstants c, Cl, C2 E C and any point u E C( C, Cl, C2) I there
exists a regular torsion /ree connection on same H 1 ,2 -structure 7r : Fo -+ Z where
Z is som.e six/old 80 that the irnage 0/ the curvature ma]J I< : Fa -+ CC,Cl,C2 cuntains
u.

Proo/. Let U ~ Cc,q ,C2 be an open neighborhood of tl far which the conclusion of
Theorem 4.7. holds, i.e. there is a principal C'l-bundle I( : Fo -+ U and a coframe
(B, w) on Fa satisfying (4-1) - (4-7) with WO,O = O.

Pick a point v E Po with 1((v) = 1.L. Since by the structure equations we
have d8 =0 moel 8, it follows t.hat Fo is foliated by integral leafs on which e
vanishes. For sanle sufficiently saudI neighborhood V of v, there exists a subnlersion
rr : V -+ Z onto sonle sixfold Z such t.hat kel'( rr*) = Bi..

Moreover, standard argtuuents show that there is an inclusion 'l : V y Fo ~ ~

of V into an H1,'2-stl'ucture Fo on Z such that z*(8) = B where (1 denotes the
tautological fonn on Fo.

Also, there is an uniqlle Hl,2-connection Wo on Fo with z*(wo) = wo. From the
structure equations it is then evident that the curvature map I< : Fa -+ V satisfies
u E K(Fo) S; CC,Cl ,C2' 0

As a consequence of the proof of Theorenl 4.7. we have
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Corollary 4.9. All regular torsioll free H 1
1
2 - and G1,2 - conn ec tions are holomor

phic. 0

§5 Summary.
In §3 we have shown that the luoduli space Z of rational curves C in a cOll1plex

threefold W whose norn1al bundle JVc -t C is equivalent to 0(2) ffi 0(2) forms a
six dimensional manifold which carries a natural GI,2 -structure 7r : F --t Z. By

Theoren1 3.11. most of the intrinsic torsion of this structure vanishes. A natural
question is whether every hololuorphic Gl,2-structure whose torsion is of the form
of Theorem 3.11. arises from such a moduli space.

The answer is negative in general. The reason is that Proposition 2.9. gives
SOlue first order restrietion which is not automatically satisfied if the torsion is of
the form of Theorem 3.11., not even when the torsion vanishes.

Before stating this result, let us write out the decompositions

B - BI 2 X 0x2 + BI,o X 0xy + Bl,_2x0y2,

+ B-1 ,2 y 0x2 + 8-1,0 y 0xy + B_ I ,-2Y (9 y2

and
w = WO,D 101

+ W0 2 10 x 2 + w02 10xy + W0 2 10 y20,2 0,0 0,-2

+ w 20 x 2 01 + w 20 xy ® 1 + w20 y2 ® l.2,0 0,0 -2,0

Proposition 5.1. Suppose Z is the mod'll.li space of rational curves in the threefold
W whose normal b'll.ndle is equivalent to 0(2) ffi 0(2), and suppose furtherm,ore
that the associated Gl,2-structure 7r : F -t Z is torsion free. Then the torsion free
connection on F is locally sym1netric.

Proof. By Theorem 3.11. the torsion free connection on 7r : F -+ Z luust be special.
Thus, by Proposition 2.9.,

Gf course, this means that I IUust satisfy the Frobenius condition dI =0 moel I.
However, from the structure equations (4-1) - (4-4) we compute that dwg~_2 ==
9 (UO, 2, x 2 ) 2 BI ,D 1\ B- 1,0 mod I. Fron1 here it follows that the Frobenius condi tion
is satisfied if and only if (10,2 == 0 on F. By (4-5) and (4-6), this implies that b =0

3
and (a2,0, a2,o)2 °= 4'C.

However, b r~presents the covariant derivative of the curvature tensor. It follows
that F is locally syn1metric. 0

Let us now consider the question which regular torsion free GI,2-connections

(rr : F --+ Z, B, w) adlnit a restriction (7r : F -t Y, {}, w) in the sense of Definition 3.6.
Since the holonomy of a torsion free G1,2 -conneetion is eont ained in HI ,2 it follows
that the holonolny of the restriction to Y is eontained in H 3 .

Proposition 5.2. Let (B,w) be a regular torsion free Hl,2-connectioll on 7r : Fo --+
Z 'With stMLcture cunstants (c, Cl, C2 ) • Then Fo admits arestriction to an H 3 

connection 1r : Fo -t Y if and unly if Cl = O.



EXOTIC HOLONOMY ON MODULI SPACES OF RATIONAL CURVES 28

In this case, the restriction Po is 'Ulliquely determined, and the connection on
1r : Po ~ y is regular in the sense 01 [Br].

Conversely, given a regular H3 -connection on rr : Po ~ y, t1~ere is a untque
regular torsion Iree H 1,2 - connec tion which extends th e connection on Po"
Proof. Let 1r : Fa ~ Z be the torsion free regular Hl,2-connection. If a restrietion
on Po ~ Y exists then T Po must be annihilated by the ideal

Thus, J mnst satisfy the Frobenius condition d:J == 0 mod J. A calculation
using the structure equations (4-1) - (4-4) yields that this is the case if and only if

(5-1) 2a2,O = 3aO,2'

Taking the exterior derivative 2du2,O - 3dao,2 Inod:J, we conclude that b DIUSt
be of the form

(5-2) b = :c 0 b~ + y ® b~

for some V3 -valued functioll b3 where the subscripts stand for partial derivatives.
Let us define Po ~ Fa by (5-1) aad (5-2). Then it is evident that any reduction

of Fa must be contained in Po.
From the structUl'e equations (4-5) - (4-7) we calculate that the differentials of

the components of (5-1) and (5-2) are linearly independent. Also, substi tuti ng (5-1)
and (5-2) into 11from Proposition 4.2. we calculate 11= o.

Therefore, Po = 0 if Cl =f. O. Conversely, if Cl = 0 one can verify that Po is
non-empty and hence an eight dimensional analytic submanifold of Fa. Moreover,
dim(TFo n ker1r.) == 4, and so Y:= 1r(Po) is an analytic submainfold of Z. Now it
is easy to verify that (1r : Po -7 Y, B,w) with iJ and w as in Definition 3.6. is the
desired restrietion. Of course, (5-1) and (5-2) determine Po uniquely.

Note that this restrietion is a torsion free H 3 -connection. The final statelnent
follows from the classification of regular H3 -connections in [Br]. They are uniquely
determined by two constant paralneters, and it left to the reader to verify that
these correspond to the constants c and C2. 0

Remark.

(1) It seems likely that the last statement in Proposition 5.2. holds true even
if the H3 -connection on Y is not regular, i.e. in this case there should still
be an extension to a unique torsion free HI,2-connection. There does not
seem to be any substantial obstacle to proving this other than the immense
calculations required to cletennille the non-regular H 1 ,2 -connections.

(2) Since every torsion free hololuorphic G3 - connection is equivalent to the
luoeluli space of contact curves in a contact threefold W [Br], it follows
from the results in §3 that every hol01norphic torsion free G 3 -connection
can be extended to a GI,2·connection whose torsion is given as in the ]Jrool
01 Theorem 3.13.
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A eharacterization of H 3 -eonnections is therefore that they are preeisely
those G3 -conneetions whieh can be extended to a torsion free Gl,2-connec
tion, (cf. Theorem 0.4.)

(3) A somewhat surprising aspect comes from a eomparison of Proposition 5.1.
anel Proposition 5.2. Namely, if Y admits a regular torsion free H3 -connee
tion then on the one hand, by (2), the connection on Y ean be extended to
a connection on the moduli space Z of rational curves in W.

On the other hand, if we let Z' be the torsion free extension from Propo
sition 5.2. then it follows froln Proposition 5.1. that Z' is different !'rom
Z unless both Z and Y are flat: indeed, the only loeally symmetrie H 3 

connection is the flat one. (cf. ~heorem 0.1.)
In other words, the extension Z of Y which seems most natural in the

geometrie sense is different from the extension Z' of Y whieh is most natural
from the torsion point of view.

Definition 5.3. Let P be a complex five dimensional manifold. A linear rank 2
Pfaffian system on P 01', for short, a Pfaffian structure on P is a differential ideal I
on P with the property that, locally, there is a holomorphic cofraIne Kl, K2, G, ßll ß2

on P such that

and
dK.; = n 1\ ßj lnod I, i = 1,2.

A curve C ~ 'P is called an integral c'Urve if the tangent vectors of C are anihilated
by I.

A Pfaffian structure on P may also be regarded as a rank 2 subbundle L ~ T*P
where L is locally spanned by Kl and K2.

For exanlple, if W is any three dimensional manifold then P := rTW carries
a canonical Pfaffian structure [EDS]. Namely, for local coordinates (x, y, z) and
(x, y, z, u, v) on Wand P respectively such that the bundle map 7r : P ---1- W is
given by (x,y,z,u,v) t-+ (x,y,z), this system is given asI:= {dy-udx,dz-vdx}.

Thus, for a curve of the fonn (x, y(x), z(x)) in W there is a unique integral lift
to P, namely (x,y(x),z(x),y'(x),z'(x)).

A key observation is now given by the following

TheorelD 5.4. Let 7r : F ---1- Z be a Iwl07norl'hic Gl,2-connection whose torsion is
of the form of Theore7n 3.11. The71, locally, Z is (contained in) the moduli s]Jace
of all integral curves C 01 a Plaffia71 str1Lcture I on some fivefold P. -

Proof. The proof requires to COlllpute the structure equations for connections whose
torsion is of the required form. Since these equations are quite complex and since
we shall not need them any further, they will be omitted.

It follows from these equations that the differential ideal

J := {Bl,o, 8_ 1,°' B1,-2, 8-l,-2,Wg~_2}

does satisfy the Frobenius condition d:! == 0 lnocl J. Thus, at least locally, there
is a map p : F -t P onto some five dilnensional eomplex lnanifold P such that
ker(p*) = J.1..
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For each point t E Z, we let Cr := p(1r- I (t)). It is then easy to see that Cr is
a rational curve in P, and hence we may regard Z a.s the moduli space of certain
rational curves in P.

Let 4J := {BI, - 2 1 8-1, _ ~ } . Then a calculat ion shows that for each vector fielel
X E :J 1. on F, LX (4J) ~ 4J mod:r. Therefore, there is a differential systeln I
on P such that ]>*(7) = 70.

Taking the exterior derivatives of BI ,-2 and 8_ 1,-2 it follows that I is indeed a
Pfaffian structure on P. ~loreover, since 1r-

1 (t) is integral to Io for all t E Z it
follows that Cr is an integral curve for all t E Z. D

Theorem 5.4. suggests that it should be more natural to regard G3 -structures:
H 3-structures and Gl,2-structures as nl0duli spaces of integral curves of a fivefolcl
with Pfaffian structure rather than as curves in a threefold. Indeed, the relnarks
preceding Theorenl 5.4. indicate how the moduli space of curves in a threefold W
may be regarded lnerely aB a special case of this.

It should also be instruetive to see how the loeal invariants of a Pfaffian structure
on P [C] relate to the associatecl G1,z-structure. This will be pursued in a sequel
of the present paper.
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