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§O Introduction

An Alexandrov space is a metric space with length structure and with a notion of
curvature. In the present paper we study Alexandrov spaces whose curvatures are bounded
below. Such aspace occurs for instance as the Hausdorff limit of a sequence of Rlemannian
manifolds with curvature bounded below. Understanding such a limit space is significant
in the study of structure of Rlemannian manifolds themselves also, and it is a common
sense nowadays that there is interplay between Rlemannian geometry and the geometry of
Alexandrov spaces through Hausdorff convergence.

Recently Burago, Gromov and Perelman [BGP] have made important progress in the
geometry of Alexandrov spaces whose curvatures are bounded below. Especially they
proved that the Hausdorff dimension of such aspace X is an integer if it is finite and that
X contains an open dense set which is a Lipschitz manifold. Arecent result due to Otsu
and Shioya [OS] has extended the later result by showing that such a regular set actually
has fuIl measure. Since the notion of Alexandrov space is a generalization of Riemannian
manifold, it seems natural to consider the problem: What extent can one extend results
in Riemannian geometry to Alexandrov spaces ?

The notion of Hausdorff distance introduced by Gromov [GLP] has brought a number of
fruitful results in Riemannian geometry. For iostance, the convergence theorems and their
extension, the fibration theorems, or other related methods have played important roles in
the study of global structure of Riemannian manifolds. The main motivation of this paper
is to extend the fibration theorem ([Y]) to Alexandrov spaces. In Riemannian case we
assumed that the limit space is a Riemannian manifold. Here we employ an Alexandrov
space aB the limit whose singularities are quite good in the following sense.

Let X be an n-dimensional complete Alexandrov space with curvature bounded below.
In [BGP], it was proved that the space of directions Ep at any point p E X is an (n - 1)­
dimensional Alexandrov space with curvature 2:: 1, and that if Ep is Hausdorff elose to the
Wlit (n - l)-sphere sn-I, then a neighborhood of p is bi-Lipschitz homeomorphic to an
open set in Rn . This fact is also characterized by the existence of (n, 6)-strainer. (For
details see Section 1). For 6 > 0, we now define the 6-Jtrain radi'UJ at p E X as the
supremum of r > 0 such that there exists an (n, ö)-strainer at p with length r, and the
o-strain radius of X by

6-str. rad(X) = inf ö-strain radius at p.
pEX

Typeset by A;\-fS-TEX

1



For instanee, X has a. positive o-strain radius if X is eompact and if Ep is Hausdorff
elose to sn-l for eaeh p E X.

For every two points x, Y in X, a minimal geodesie joining x to y is denoted by xy, and
the distanee between them by IxYl. The angle between minimal geodesies xy and xz is
denoted by Lyxz. Under this notaton, we say that a surjeetive map / : M --+ X between
Alexandrov spaces is an f-almo"t Lip"chitz "ubmer"ion if

(0.1.1)
(0.1.2)

it is an f-Hausdorff approximation.
For every p, q E M if 6 is the infunum of Lqpx when x runs over /-l(f(p)), then

1

1/(p)/(q)1 . 81 <Ipql - SlO f.

Our main result in this paper is as follows :

Theorem 0.2. For a given positive integer n and J-Lo > 0, tbere exist positive numbers
o = On and f = €n(PO) satisfying the following: Let X be an n-dimensional complete
Alexandrov space with curvature;:: -1 and witb o-str.rad(X) > j.lo. Then ifthe Hausdorff
distance between X and a complete Alexandrov space M with curvature;:: -1 is less than
f, then tbere exists a r(6, f )-almost Lipschitz submersion / : M --+ X.

Here r(6, u) denotes a positive' constant depending on n, j.lo and 0, f and satisfying
lim6,l!_O r(8, €) = o.

Because of lack of differentiability in X, it is unclear at present if the map / is actually
a loeally trivial fiber bundle. The author conjeetures that this is true.

Remark 0.3. Under the same assumption as in Theorem 0.2, for any x E X let ß x denote
the diameter of /-l(x). Then there exists a eompact nonnegatively eurved Alexandrov
space N such that the Hausdorff distance between N and /-1 (x) having the metrie mul­
tiplied by 1/6. x is less than r(0, f) for every x EX. (See the proof of Theorem 5.1 in
§5)

In Theorem 0.2, if dim M = dimX it turns out that

Corollary 0.4. Under tbe same assumptions as in Tbeorem 0.2, if dimM = n, tben the
map f is r(0, er )-almost isometrie in tbe sense that

I
lf(x)/(Y)1 - 11 < r(6, u)

IxYI

for every x, Y E M.

As in Riemannian case Theorem 0.2 has a number of applications. The results in Rie­
mannian geometry which essentially follows !rom the splitting theorem ([T],[CG],[GP1],[YJ)
and the fibration theorem are still valid for Alexandrov spaees. For instanee, we have the
following genaralization of the main result in Fukaya and Yamaguchi [FY1].
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Theorem 0.5. Tbere exists a positive number f n such tbat jf X is a loca11y simply
connected, n-dimensional compact Alexandrov space witb curvature 2:: -1 and diam(X) <
f n , tben its fundamental group contams a nilpotent subgroup of finite index.

We need the assumption on locally simply connectedness in Theorem 0.5 only to ensure
the existence of a wliversal cover of X. Here we should mention the announcement in
[BGP] by Perelman stating that any Alexandrov space with cuvature bounded below is
locally contractible, which would remove the additional assumption.

The basic idea of the proof of Theorem 0.2 and tbe organization of the present paper is aB

follows: In section 1, after recalling some basic results in [BGP], we study a neighborhood
of a point with small size of singularity. Such a neighborhood has nice properties similar to
those of a small neighborhood in a Riemannian manifold. The proof of Theorem 0.2 starts
from Section 2. We construct an embedding Ix : X --+ L2(X) and a map IM : M -+ L2(X)
by using distance functions, where L 2(X) is the Hilbert space consisting of all L2-functions
on X. Similar constructions were made in [GLP],[K],[Ful,2] and [Y] in tbe case when both
X and M are smooth Riemannian manifolds. However in our case, there appear some
difficulties in proving the existence of a tubular neighborhood of Ix(X) in L2(X) because
Ix(X) is just a Lipschitz manifold. Gf course a tubular neighborhood of Ix(X) does
not exist in the exact sense because of singularities of X. To overcome this difficulty
we generalize tbe notion of tubular neighborhood. First we show that the image of the
directional derivative dlx of Ix at each point p E X cau 'be approximated by an n­
dimensional subspace IIp in L2(X) because of small size of singularities of X. Thus a
small neighborhood of Ix(p) in Ix(X) is approximated by the n-plane /x(p) + I1 p • This
fact is used in Section 3, a main part of the paper, to construct a smooth map v of a
neighborhood of Ix(X) into the Grassmann manifold consisting of all subspaces in L 2 (X)
of codimension n such that v is almost perpendicular to /x(X). The point is to evaluate
the norm of the gradient of v in tenns of apriori constants, which makes it possible to
prove that v actually provides a tubular neighborhood oi Ix(X) in the generalized sense,
and to estimate the radius oi the tubular neighborhood in terms of given constants. This
idea is also effective in studying the projection 1t' : IM(M) --+ Ix(X) along v. It turns
out that 1t' is locally Lipschitz continuous with Lipschitz constant elose to one and that
it is almost isometrie in the directions almost parallel to Ix(X). In Section 4, we show
that the composed map I = Ix! 0 1t' 0 IM : M --+ X is an almost Lipschitz submersion
88 required. The proof of Theorem 0.5 is given in section 5. Its machinary is the same
88 that in [FYl] except for the induction procedure, which is carried out after deriving
the property of the "fibre" oi f aB described in Remark 0.3 In Appendix, we discuss the
relative volume comparison for Alexandrov spaces that is of Bishop and Gromov type.

The author would like to thank K. Fukaya and G. Perelman for helpful discussions.
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§1 Properties of a neighborhood of a strained point.

First of all, we recall some basic facts on Alexandrov spaces. We refer the reader to
[BGP] for details.

Let X be a locally compact complete Alexandrov space with curvature 2:: k. For x, y, z E
X, let 6.(x, y, z) denote a geodesie triangle with sides xy, yz and zx. We also denote by
Li(x, y, z) a geodesie triangle in the simply connected surface M(k) with constant curvature
k, with the same side lengths a.s .6.(x , y, z). The angle between xy and xz is denoted
by Lyxz, and the corresponding angle of Li(x, y, z) by Lyxz. Two minimal geodesics
emanating from a point are by definition equivalent if one is a subare of the other. For
p EX, let E~ denote the set of all equivalence cla.sseB of minimal geodesics starting from p.
The space of directions Ep at p is the completion of E~ with respect to the angle distance.
We denote by x' the set consisting of all directions represented by minimal geodesics joining
p to x. H ~ E x', we use the familiar notation exp t~ to denote the minimal geodesic px
parametlized by arclength. From now on all geodesics are assumed to have unit speed
unless otherwise stated.

The following theorem, which corresponds to the Toponogov comparison theorem in
Riemannian geometry, is of basic importance in the geometry of Alexandrov space.

Theorem 1.1 ([BGP,4.2]). H X bas curvature ~ k,tben
(1.1.1) For any x, y, z E X, there is a triangle Li(x, y, z) in M(k) such that eacb angle of
Ll(x, y, z) is not less tban tbe corresponding one oE .6.(x, y, z).

In the case wben k > 0 and the perimeter of .6.(x, y, z) is less than 21r/ Vk, such B

triangle is uniquely detennined up to isometry.
(1.1.2) Suppose tbat Ixyl = Ixyl, Ixzl = lxii for x, y, z EX, x, fj, i E M( k), and that
Lyxz = LYxz. Then lyzi ~ liizl.

In [BGP]' (1.1.1) is proved in the case when the perimeter is less than 21r/Vk. Then
the rest follows along the same line as the Toponogov comparison theorem (cf. [CE]).

Next we briefly discuss measure of metri~ balls. It is quite natural to expect that the
curvature assumption should influence on it. From now on we assume that X has finite
Hausdorff dimension, denoted by n. For r > 0, bt(r) denotes the volume of ametrie r-ball
in the n-dimensional simply connected space Mn(k) with constant curvature k. We fix
pE M and p E Mn(k), and put Bp(r) = Bp(r, X) = {x E Xllpxl < r}.

Lemma 1.2. There exists an expanding map p: Bp(r) -+ Bp(r).

Proof. We show by induction on n. Since Ep has curvature ~ 1 and diameter ~ 1r, we have
an expanding map I : Ep -+ sn-l = Ep. For every x E Bp(r), put p(x) = expp IpxII(e),
where ~ is any element in x'. Theorem 1.1.2 then shows that p is expanding.

Let Vn denote the Hausdorff n-measure. Lemma 1.2 immediately implies

(1.3)

4



In the appendix, we shall diseuss the equality ca.se in (1.3) and relative volume comparison.
A system of pairs of points (ai, bd~l is called an (m,o)-strainer at p if it satisfies the

following eonditions:

Laipbi > 1r - 0, ILaipbi - 7T/21 < 0,

ILbipbj - 1r/21 < 0, ILaipbj - 7T/21 < ° (i f j).

The number minl<i<m {laipi, Ibipl} ia ealled the length of (ai, bd. It should be remarked
that one ean makethe length of (ai , bi ) as small as one likes by retaking strainer on minimal
geodesics from p to ai, bi .

From now on, we assume that X has eurvature ~ -1 for simplicity. For n and Jlo > 0 we
use the symbol r(o, .. . ,e) to denote a positive function depending only on n, Jlo, 0, .. . ,e
satisfying lim61" .. ,E_O r(0, . .. ,e) = O.

A surjeetive map f : X -+ Y is ealled an e-almost isometry if Ilf(x)f(y)I/lxyl - 11 < e
for all x, y EX.

Theorem 1.4 ([BGP,10.4]). Tbere exists on > 0 satisEying the following. Let (ai, bi)r=l
be an (n, o)-strainer at p witb lengtb ~ Jlo, 0 ::; On' Tben tbe map f : X -+ Rn defined by
f(x) = (lalxl, ... , lanxl) provides a r(o, u)-almost isometry of ametrie ball Bp(u) onto an
open subset oE Rn, where u < Jlo.

A system (Ai, Bi)~l of pairs of subsets in an Alexandrov space ~ with eurvature ~ 1
is called a global (m, o)-strainer if it satisfies

l€i7]i 1 > 7T - 0, llei€j 1 - 7T/21 < 0,

11 ei7]j 1 - 7r /21 < 0, II T1i7]j I - 1r /21 < 0 (i i= j).

for every ei E Ai and TJi E Bi. It should be remarked that if (ai, bd~1 is an (m, o)-strainer
at p E X, then (a~, bD~1 is a global (m, o)-strainer of ~p. The result for global strainers,
eorresponding to Theorem 1.4, is the following. (Compare [OSY]).

Theorem 1.5 ([BGP,10.5]). Tbere exists a positive number On satisfying the following.
Let E be an Alexandrov space with curvature ~ 1 and witb Hausdorff dimension n - 1,
and suppose tbat E has a global (n, o)-strainer (Ai, Bi)r=1 for.5 ::; on' Tben

(1.5.1) I~~1 cos2 IAi€l- 11< r(8).
(1.5.2) Tbe map eP of~ to the unit (n -l)-sphere sn-l C Rn defined by

is a r(o)-almost isometry.

As a result of Theorem1.5, it turns out that the space of directions Ep at an (n,o)­
strained point p in X is r(o)-almost isometrie to 5 n - 1 •
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Let f : X --+ R be a Lipschitz funetion. The direetional derivative of f in a direetion
€ E ~~ is defined as

df(€) = !im f(exp t€) - f(p)
t10 t '

if it exists. Then df extends to a Lipschitz funetion on Ep .

Proposition 1.6 ([BGP,12.4]). H f is the distanee function from a point p E X,

for every x E X and eE E%.

We now represent BOrne basic properties of (n, 6)-strained points of X.

Lemma 1.7. Let X,p and 6,u be as in Theorem 1.4. Then for every q,r,s E Bp(O') with

1/100 ::; Iqrl/lqsl ::; 1, we have ILrqs - Lrqs I < T( 6,0').

Proof. This is an immediate consequnce of Theorem 1.4.

Lemma 1.8. Let X,p and 6,0' be as in Theorem 1.4. Then for every q E B p(O'/2) and
eE Eq , there exist points r, s E Bp(O') such that

(1.8.1) Iqrl, Iqsl ~ 0'/4,
(1.8.2) ler'l < T(6, 0'),
(1.8.3) Lrqs > 7f - T(6, 0').

Proof. For eE Eq and a fixed () > 0 let us consider the set A = {x = exp trylle7J I ::; 8,0' /4 $
t ::; O'/2}. For q E Mn{-I), let I : Eq --+ Bq and p : B q {O'/2) --+ Blj(O'/2) be expanding
maps as in Lemma 1.2. Now suppose that A is empty. Then p(Bq(O'/2)) C Bfj (O'/2) - A,
where A= {x = exp t7J III(e)7J1 ::; 8,0'/4::; t::; O'/2}. It follows from (1.3) that

Vn (Bq(O'/2)) < b~-l(1r) - b~-l{()) b~1{O'/4)b~-l(()).

b':..1(O'/2) - b~-l(7f) + b~l(O'/2)b~-1(7f)'

On the other hand sinee B q(O'/2) is T(6, O')-almost isometrie to B(O'/2),

Vn (Bq(O'/2)) 1- (6 )
b':..l (0' /2) > 7, 0' .

Therefore () < T(6, 0'). Thus we can find r satisfying (1.8.1) and (1.8.2). For (1.8.3) it
suffiees to take s such that If(q)f(s)l = 0'/2 and Lf(r)f(q)f(s) = 7f.

Lemma 1.9. Let X,p, and 6,0' be as in Theorem 1.4. Then for every q witb 0'/10 $
Ipql $ 0' and for every x with Ipxl -< 0', we have

ILxpq - Lxpql < T(O, 0', Ipxl/O').

Proof. By Lemma 1.8, we can take r such that Iprl ~ 0'/4 and Lqpr > 7f - 7(0,0'). Then
the lemma follows from for instance, [BGP,Lemma 5.6].

6



We have just verified that the constant J-lo or u plays a role similar to the injectivity
radius at p.

§2 Embedding X inta L2(X)

From now on we a.ssume that X is an n-dimensional complete Alexandrov space with
curvature ~ -1 satisfying

(2.1) 6-str.rad(X) > J-lo

for a fixed J-lo > 0 and a smaIl 6' > O. By definition, for every p E X there exists an
(n,6)-strainer (ai, bd at p with length > IJo. Let u be a positive number with u <: IJo.
Then by Lemmas 1.7 and 1.8, we mayassume that for every p E X

(2.2.1) there exists an (n, ö)-strainer at every point in Bp(u),
(2.2.2) for every q E Bp(u) and for every ~ E Eq , there exist points r, s such that lqrl ~ u,
Iqsl ~ U and l~r'l < r(ö, u), Lrqs > 1r - r(S, u),
(2.2.3) ILrqs - Lrqsl < reS, u), for any q, r, s E Bp (10u) with 1/100 ~ Iqrl/lqsl ~ l.

Let L2(X) denote the Hilbert spaee eonsisting oI all L2 funetions on X with respeet to
the Hausdorff n-melU3ure. In this secton we study the map Ix : X ~ L 2(X) defined by

Ix(p)(x) = h(lpxl),
where h : R -+ {O,1] is a smooth non-inereasing funetion such that

(2.3.1) h = 1 on (-00, 0], h = 0 on [u, 00).

(2.3.2) h' = l/u on {2u /10, 8u/10].
(2.3.3) _u2 < h' < 0 on (0, u /10].
(2.3.4) Ih"l < 100/u2

•

Remark that Ix is a Lipschitz map.
From now on, we use Cl, C2,'" to express positive eonstants depending only on the

dimension n. First we remark that by Theorem 1.4 there exist eonstants Cl and C2 such
that for every p EX,

( )
Vn(Bp(u))

2.4 Cl < bö(u) < C2'

We next eonsider the directional derivatives oI Ix. For eE Ep , we put

(2.5) dlx(e)(x) = -h'(lpxl) eos l~x'l, (x EX).

Since x -t l~x'l is upper semieontinuous, dfx(~) is an element of L2 (X), and by Lebesgue's
eonvergence theorem and Proposition 1.6,

dfx(~) = lim fx(exp t€) - fx(p) in L2 (X).
t!O t

From now on we use the norm of L 2(X) with normalization:

Ifl2
= b~;) LIf(xWdp(x),

where b(u) = bö(u) and dJ-l denotes the Hausdorff n-measure.
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Lemma 2.6. There exist positive numbers C3 and C4 such that

tor every p E X and eE Ep .

Proof. By (2.2.2) take q such that Ipql ~ u /2 and leq'1< r(6, u). Then it follows from
(2.2.3) that for every x E B q(u/100), Lxpq < 1/20 and hence l~x'l < 1/10. Then the
lemma follws from (2.3),(2.4) and (2.5).

Lemma 2.7. Tbere exist positive numbers C5 and C6 sueh tbat for every p, q E X wi th
Ipql ~ u,

C <
I/x(p) - fx(q)1 <

5 Ipql CG'

In particular Ix is injective.

Proof. By Lemma 2.6, we can take C6 = C4. Let i = lpql. By (2.2.2) we can take a
(1,T(6,u))-strainer (p,r) at q with Iqrl = u/2. Let c : [O,ll -. X be a minimal geodesie
joining q to p. Then by (2.2.3), Lrc(t)x < 1/10 for every x in B r ( er /100). It follows that

[l d
h(lpxl) - h(lqxl) = Ja dt h(jc(t)xl) dt

=l t

h'(lc(t)xl) cos Lrc(t)x dt

i
> - cos(1/10),

er

which implies

Let K p = K(Ep ) be the tangent cone at p. From definition, Ep can be considered as a
subset of K p • The map d/x : Ep -. L2(X) naturally extends to dfx : K p -. L2(X). Next
we show that dfx(Kp ) can be approximated by an n·dimensional subspace of L 2 (X).

For a global (n, 8)-strainer (ei, '7i) of Ep , let IIp be the subspace of L2(X) generated by

d/x(ed·

Lemma 2.8. For any eE Ep ,

n

Id/x(e) - L Ci d!x(e)1 < T(6),
i=l

wbere Ci = COS lei€l. In particular, d/X(el),"" d/x(€n) are linearly independent.

Proof. Let tP : Ep -. sn-) be the r(8) almost isometry defined by tP(e) = (cos leiel) / I(cos 1eie I) I·
(See Theorem 1.5). Using (1.5.1) one can verify

n

1cos le'7! - L Ci COS lei'7ll < r(6),
i=1
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for every TJ E Ep • It follows that

n

Id!x(~) - L Ci d!X(~i)12
i=l

Next suppose that L: O:i d!X(~i) = 0 for a nontrivial O:i. H we assume that L: Q~ = 1, then
there exists a eE Ep such that <p(~) = (0:1, ... , 0:n)' It turns out that

Id!x(e)1 = Id!x(e) - L O:i d!x(edl < reS),

which contradicts Lemma 2.6 if S is sufficiently smalI.

Thus d!x(Kp ) can be approximated by the n·dimensional subspace IIp • In view of
Lemma 2.8, one may say that dfX is almost linear.

§3 Construction of a tubular neighborhood.

In this section, we construct a tubular neighborhood of fx(X) in L 2(X). In the case
when X is a smooth Riemannian manifold with bounded curvature, Katsuda [K] studied
a tubular neighborhood of a smooth embedding of X into a Euclidean space by using an
estimate on the second fundamental form. However in our case, fx(X) is a Lipschitz
manifold. Hence even the existence of a tubular neighborhood in a generalized sense is
apriori nontrivial.

We begin with

Lemma 3.1. For any p, q EX,

where d~2 denotes the Hausdorff distance in L 2(X).

Proof. By (2.2.2), for every € E E q there exists r satisfyjng Iqrl ~ u and ler'l < r(S, u).
We put e1 = r' E Ep • By using (2.2.3) we then have Ilex'I-le1x'1I < reS, u, Ipql/u) for all
x with u/10 ~ Ipxl ~ u. It follows that Id!x(€) - d!X(€l)! < r(S,u, Ipql/u).

We put Np = !x(p) + II;, where ..L denotes the orthogonal complement in L2(X).

9



Lemma 3.2. For any p, q E X and ein q' c Ep ,

(3.2.1) Ifx(q)I~(x(P) - df x W! < r(6,0", Ipql/o}

In particular, fx(Bp(Ul)) n Np = {f(p)} if Ul/U is suiJiciently sma11.

Proof. By Lemma 1.9, jLxpq - Lxpql < T(6,,,., Ipql/u) for all x with u /10 ~ Ipxl ~ u. We
put t = Ipql. Since Ilxql-lxpl + t cos Lxpql < tT(t/U), it follows that

(3.3) Ilxql - Ixpl + t cos lex' 11 < t T(6, u, t/(7),

which yields (3.2.1). Since (3.2.1) shows that the vector Ix(q) - Ix(p) is transversal to
Np, we obtain !X(Bp(Ul)) n Np = {f(p)} for sufficiently small Ul/U,

For q E B p ( Ul) and 0'1 < 0', we put
-.. l.
N q = fx(q) + IIp .

Then Lemmas 2.8, 3.1 and 3.2 imply the following.

Lemma 3.4. Ix(Bp{O'l)) n Nq = {/x(q)} for an q E Bp {O'l)'

Let Gn be the infinite-dimensional Grassmann manifold consisting of all n-dimensional
subspaces in L2(X). Let {Pi} be a maximal set in X such that !PiPil 2:: 0'1/10, (i i: i), and
Ti : Bi ..... Gn be the constant map, Ti{X) = TIpi' where Bi = Blx(pi)(c6C11/10,L2(X)).
Notice that {Bi} covers Ix(X) and that the multiplicity of the covering has a uniform
bound depending only on n. (See Lemma 1.2, or Proposition A.4).

Dur next step is to take an average of Ti in Gn to obtain a global map T : U Bi ..... Gn . We
need the notion of angle on Gn . The space Gn has a natural structure of Banach manifold.
The local chart at an element To E Gn is given as follows: Let No be the orthogonal
complement of To, and L(Ta, No) the Banach space consisting of an homomorphisms of Ta
into No, where the norm of L(Ta, No) is the usua! one defined by

li/li = sup If(x)[, (I E L(To,No)).
O#xETo lxi

We put V = {T E GnlTnNa = {Oll. Then P(T) = Ta for every T E V, where
P : L2(X) -4 Ta is the orthogonal projeetion. Hence T is the graph of a homomorphism
'PTo(T) E L{Ta, No). Thus we have a bijeetive map 'PTo : V -4 L(To, No), which imposes a
Banach manifold structure on Gn .

Under the notation above, the angle L(Ta,Tl) between Ta and Tl (E Gn ) is given by

{
Are tanll'PTo(T)1I if Tl nTt = {O}

L(~ T)-
0, I - 7r/2 if Tl n Tal. f:. {O}.

It is easy to check that the angle gives a distance on Gn and that the topology of Gn

coincides with that induced from angle.
From now on we use the simpler notation T to denote a positive function of type

T(6,0',0'1/0').
An estimate for the second fundamental form in case of X being a smooth Riemannian

manifold can be replaced by the following more elementary lemma. We put U = U Bi.
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Lemma 3.5. There exists 8 smooth map T : U -+ Gn BUch that

(3.5.1) L(T(x), Ti(X)) < T jf x E Bi,
(3.5.2) L(T(x),T(y)) < Glx - yl, where G = T/UI.

Proof. Let {Pi} be a partition of unity associated with {Bi} such that 1V7pd ~ 100/C60"1.
First put T = Tl on BI and extend it on BI U B 2 as follows. Let {VI,"" V n } and
{Wl' ... ,Wn } be orthononnal bases of Tl and T2 respectively such that lVi - Wi I< T. Put
Ui(X) = PI(X)Vi+(l-Pl(X))Wi, andlet T(x) bethen-planegenerated by UI(X), ... ,Un(X),
(x E BI U B2). Then {U}(x), ... ,un(x)} is a T-almost orthononnal basis of T(x) in the
sense that

I< Ui(X), Uj(x) > -Dijl < T.

Notice that L(T(x), Ti) < T if x E Bi (i=1,2), and lV7uil < T/er}.
Suppose that T(x) and a T-almost orthonormal basis {VI (x), ... l V n (x)} of T(x) are

defined for x E Uj = U{=l Bi in such a way that

(3.6.1) L(T(x), Ti) < T if x E Bi, (1 ~ i ~ j),
(3.6.2) lV7vil < T /al'

We extend them on Uj+l as follows : Let {Wb"" W n } be an orthonormal basis of Tj + l

such that IVi(x)wil < T on Uj n B j+l . Now we put

Ui(X} = (t P,,(X}) Vi(X} + ( 1 - t P,,(X}) Wi,

and let T(x) be the subspace genereted by Ui(X). Then it is easy to check that T(x) and
Ui(X) satisfy the properties of (3.6). Thus by induction, we have a smooth map T : U -+ Gn

and a T-almost orthonormal frame Ui(X) for T(x) satisfying (3.6). It follows from (3.6.2)

L(T(x), T(y)) ~ constn m~ IUi(X) - ui(y)1
l~.~n

::; constn m~ lV7uillx - yl
1:5.:5n

::; (T/erl)lx - y].

Let G~ be the Grassmann manifold consdisting of al1 subspaces of codimension n in
L 2(X), and v : U -+ G: the dual of T, v(x) = T(x).L. The angle L(v(x), v(y)) is also
defined in a way similar to L(T(x), T(y)). Remark that the equa.lity L(v(x), v(y)) ­
L(T(x), T(y)) holds. We put

Nx=x+v(x).

By using (3.5.1), we have the following lemma in a way similar to Lemma 3.2.

Lemma 3.7. For every pE X and q E Bp(erl)'

Ix(Bp(erl)) n N1x(q) = {/x(q)}.

For c > 0, we put

N(c) = {(x,v)lx E Ix(X),v E v(x), lvi< cl.

11



Lemma 3.8. There exists a positive nwnber I\, = constnO'l such that N(K) provides a
tubular neighborhood of fx(X). Namely

(3.8.1) Xl + VI f; X2 +V2 for every (Xl,Vl) f; (X2,V2) E N(I\,).
(3.8.2) The set U( 1\,) = {x +vl(x, v) E N(I\,)} is open in L 2(X).

Proof. Suppose that Xl + VI = X2 + V2 for Xi = fX(Pi) and Vi E v(xd. H !PlP21 > 0'1

and lVii :$ cr,0'1/2, a contraWction would immedately anse from Lemma 2.7. We consider
the case IPlP21 :$ 0'1' Put K = N Z1 n N z " and let y E K and z E Nz , be such that
IXlyl = IxlKI,lxlyl = Iyzi and that LXlYZ = L(Xl-y,Nz ,):$ L(Nzu N z2 ). Then Lemma
3.1 implies that LXlYZ < T. It follows from the choice of z that IL(XI - Z, N z ,) - 1r/21 <
T. On the other hand the fact L(X2 - Xl, T(Xl)) < r (Lemma 3.2) also implies that
IL(X2 - X], N z ,) -1r/21 < r. It fol1ows that IX2Z1 < rlxlx21. Putting i = lyxll = Iyzi and
using Lemma 3.5, we then have

lXI zl :$ iLxl yz

:c:; iL(T(Xl)' T(x2))

::;iCIXlX21, C=r/Ul'

Thus we obtain e2: (1 - T )/C 2: O'l/r as required.
The proof of (3.8.2) follows from (3.8.1): For any y E U(K) with Y E Nzo ' Xa E fx(X)

and for any z E L2(X) elose to y, let Ta be the n-plane through z and prallel to T(xa),
and Ya the intersection point of Ta and N zo ' If X E fx(X) is near Xo, then Nz meets Ta
at a unique point, say o(x). Using (3.8.1), we can observe that 0 is a homeomorphism
of a neighborhood of Xa in fx(X) onto a neighborhood of Ya in Ta. Hence z E U(K) as
required.

Remark 3.9. The proof of Lemma 3.8 suggests the possibility that one can take the constant
I\, in the lemma such as K = 0'1 /r. In fact we CRD get the sharper estimate by a bit more
refined argument. However we omit the proof because we do not need the estimate in this
paper.

Next let U8 study the properties of the projection 1r : N'(K) -J. fx(X) along v. Hy
definition, 1r(x) = Y if X E Nu and y E fx(X).

Lemma 3.10. The map 1r : N(K.) -J. fx(X) is locally Lipscmtz continuous. More pre­
cisely, if x, yEN'( K) are elose each other and t = IX1r( X)I, then

(3.10.1)
(3.10.2)

11r( X )1r(Y)1/ Ixyl < 1 + r + rt / Ub

if IL(y - X, N rr(%») - 1r/21 < r, tben

I(y - x) - (1r(Y) - 1r(x))1 < (r +rt/O'l)!xyl·

Proof. First we prove (3.10.2). Let N be the affine space of codimension n parallel to N 1r(z)

and through y. Let Yl and Y2 be the intersectioDS of N 1f(y) and N with T1r(z) respectively.
Let z be the point in K = NnN1f(J/) such that \Y2Z! = IY2Kj,and Y3 E Nfr(u) the point such
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that IV2Z! = IY3Z1 and LY2ZY3 = L(Y2 - z, N 1r(JI») ::; L(N, N 1r(JI»)' An argument similar to
that in Lemma 3.8 yields that

(3.11.1) IY1Y31 < T!Y1Y21,
(3.11.2) IV2VJI/lzY21 ~ L(lI(1r(x)),v(1r(Y))) ~ (T/O"l)I1r(x)1r{y)l.

It follows that IY1 Y21 < (T /0"1 )tl1r(X )1r{Y)1. Furthermore the 88sumption implies I{1r(x) ­
Y2) - (x - y)1 < Tlxvl. Therefore we get

1(1r(x) - Y1) - (x - v)1 :5 \(1r(x) - VI) - (1r(x) - Y2)1 + j(1r(x) - Y2) - (x - v)1
:5 IVIY21 +TlxYI
< (T/O"l)tl1r(x)1r(y)1 +TlxYI.

On the other hand, since LYl1r(x )1r(Y) < T,

Combining the two inequalities, we obtain that

1(1r(x) - 1r(Y) - (x - y)1 < (T + C't)I1r(x)1r(Y)1 + Tlxyl,

from which (3.10.2) follows.
For (3.10.1), take Yo E N 7f(y) such that IxYol = IxN1I'(JI) I. Then (3.10.2) implies

11r(x )1r(Y) I < \1r(X )1r(Y) I
lxyl - Ixyol

:$l+T+Tt/O"l'

§4 I is an almost Lipschitz submersion

In this section, we shall prove Theorem 0.2.
Let M be an Alexandrov space with curvature ~ -1. We suppose dH(M,X) < f and

f <::: 0"1. Let cp : X ~ M and t/J : M ~ X be f-Hausdorff approximations such that
ItjJ<p( x ), x I < f, 1cpt/J( x ), x I < f, W here we mayassurne that <p is measurable. Then the map
IM : M ~ L2(X) defined by

IM(p)(X) = h(Ip<p(x)l), (x E X)

should have the properties similar to those of Ix. We begin with

Lemma 4.1. IM(M) C N(C7 f ).

Proof. This follows immediately from

(4.2)

By Lemmas 3.8 and 4.1, the map I = lXI 01r 0 IM : M ~ X is weIl defined.
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Lemma 4.3. d(f(p), ,p(p)) < CSf.

Proof. It follows from (4.2) that Ifx(f(p)) - fx(,p(p))1 < 3C7f. Since we may assume that
If(p)1jJ(p) I < u, we have If(p),p(p)1 < 3C7f/C5 by Lemma 2.7.

It follows from Lemmas 3.10 and 4.3 that f is a Lipschitz map.
Similarly to (2.5), dfM(e) E L2 (X), ~ E ~p, is given by

(4.4) dfM(e)(X) = -h'(lw(x)l)cos le'f'(x)'I·

Lemma 4.5. For every p, q E M take € in q' C Ep . Then

I
fM (q) - fM (p) ( )I ( / I 1/)Iqpl -dfM ~ <r Ö,U,f u, pq u.

Proof. For every x with u/10 ~ Ipxl ~ u, take y E X such that L,p(x),p(p)y > 7r - r(ö, u).
Since Lxp<p(y) > 7r - r(ö,u) - r(e/u), it follows from an argument similar to Lemma
3.2 that Ilqxl - Ipxl + lqpl cos l~x'll < Iqplr(ö, u, f/U, Ipql/u), which implies the required
inequality.

We now fix p E M, and put 15 = f(p) and

which can be regaxded as the set of "horizontal directions" at p.

Lemma 4.6. For every [ E Efi, there exists q E M with [pql 2: U such that

{ar every ein q' c Ep and suHiciently small t > O.
Conversely (ar every eE Hp there exists eE Epsatis{ying the above inequality.

In other words, the curve f(exp te) is almost tangent to exp t€,
For the proof of Lemma 4.6, we need

Comparison Lemma 4.7. Let x, y, z be points in M, and x, jj, z points in X such tbat
u/10 :::; Ixyl,lyzl :::; u. Suppose that l,p(x)xl < r(e), It/J(y)jjl < r(f) and It/J(z)zl < r(f).
Then for every minimal geodesics xy, yz, and xy, jjz, we have

ILxyz - Lx17il < r(ö, u, f/U).

Proof. By (2.2.2), we take a point tü E X such that

(4.8) Lzytü > 7r - r(ö, u)
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and Igw I~ u. Put w = cp(w). Then Theorem 1.1 and (2.2.3) imply that

(4.9.1)

(4.9.2)

Since (4.8) implies

Lxyz > Lxjji - T(6, u) - r(e/u),

Lxyw > Lxyw - r(6,u) - r(e/u),

ILzyw - 7r1 < r(6,u) +r(e/u),

(4.9.1) and (4.9.2) yield the required inequality.

Proo/ 0/ Lemma 4.6. Take ij E X such that IMI ~ u and l€q'l < r(6, u). Put q = cp(ij).
For any ~ in q' C Ep let c(t) = expte, c(t) = expt€. By using (2.3),(2.5),(4.4) and Lemma
4.7 we get IdfM(e) - dfx(e)1 < r(6,u,e/u). Lemmas 3.2 and 4.5 then imply

for sufficiently small t > O. In particular fM (c(t) - fM (p) is almost perpendicular to
Nfr(!M(P»' It follows from (3.10.2) that

I
fM (c(t) - fM (p) 7r 0 fM (c(t) - 7r 0 fM (p) I< ( c / / )
-....;........;.....;....;.....t---....;..~ - t T o,u, 0"1 O",e 0"1 ,

and hence 17r 0 fM(C(t)) - fx(c(t) < tr(6, 0", 0"1 /u, f/O"t). Lemma 2.7 then implies the
required inequality.

Similarly we have the second half of the lemma.

From now on we use the simpler notation r E to denote a positive function of type
r(6, 0",0"1/0", e/O"]).

The following fact follows from Lemma 4.6.

(4.10)

for all eE Hp and small t > O.

Lemma 4.11. For every p,q E M, we have

I
lf(P)f(q)1 nl <Ipql - cos u TE,

wbere 8 = leHpl, e= q' E Ep.

For the proof of Lemma 4.11 we need two sublemmas.
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Sublemma 4.12. dH(Hp , sn-I) < Tl'

Proof. For each eE Hp let ebe an element of Ep as in the second half of Lemma 4.6, and let
X : Hp -+ Ep be the map defined by X(~) = [. By Lemma 4.7, IIx(€I)x(e2)1-leIe211 < Tl,

and Lemma 4.6 shows that X(Hp ) is Tcdense in Eq • Thus Xis a TcHausdorff approximation
aB required.

Sublemma 4.13. For e E E~, let 9 = leHpl and el E Hp be such that 19 - 1€€111 < Tl'

Then

for every sufIiciently small t > O.

Proof. Since Ep has curvature ;::: 1, we have an expanding map p : Ep -+ sm-I,(rn =
dimM). First we show that IIp(VI)P(V2)1-lvIV211 < Tl for every Vt,V2 E Hp. Let vi E Hp
be such that lVI vi I > 1f - Tl' Since p is expanding, we obtain that

This argument also implies that p(Hp ) is Hausdorff Tcclose to a totally geodesie (n - 1)­
sphere sn-I in sm-I. Let ( : Hp -+ sn-I C sm-I be a TcHausdorff approximation
such that d(((v),p(v)) < TE for all v E Hp. For a given € E Ep , an argument similar to
(4.13) implies·that Ilevl- Ip(e)(v)ll < T for all v E Hp. Remark that for any y with
(7/10 ::; Ipyl ::; (7, an elementary geometry yields

cos Ip(e)((y')l = cos Ip(e)771 cos 177((Y')I,

where 77 is an element of sn-I such that !p(e)771 = Ip(€)sn- I l. It follows that for sufficiently
small t > 0

1/M(expte) - / M (exp t cos eI)12/t2

=~ f (h(1 expte, cp(X) I) - h(lw(x)1)
~(7)Jx t

_ h(exp t cos 86 ,rp~x)l) - h( Ip<p(x )I) ) 2 dll(x )

(72 f
::; b((7) JX (h' (Ip.p(x)1))2 (cos lecp(X)' I- cos 8 cos leI cp(x)' 1)2 dJ.l(X) + Tl

~ ;:)L(h')2(cos lerp(x)'l- cos Ip(e)«rp(x)')1

+cos Ip(e)t7! cos 1t]((ep(x)')I- cos lee]l cos leI cp(x)' 1)2 dJ.l(x) + TE

Therefore by Lemmas 3.10 and 2.7 we conclude the proof of the sublemma.

16



Proo/ 0/ Lemma 4.11. Since f is a. T(f)-Hausdorff approximation (Lemma. 4.3), we may
assume that Ipql < u 2 < u. Let c : [O,.e] -+ M be a minimal geodesie joining p to q where
l = Ipql. By using (2.2.2), one can show that

(4.15) ILqc(t)x - Lqpxl < T(,

for every t < l and for every x E M with u /10 ~ Ipx I ~ u, Let ebe any element in q' C
Ec(t), and 1Jo E Hp such that leoHpl = leo1Jol. Take y BUch that 1Jo = y', u/l0 ~ lpyl ~ a
and 1Jt in y' C Ec(t). Put 8t = Lqc(t)y. It follows from Subemma 4.13 and (4.15) that

(4.16)

Put c(t) = /0 c(t), and take any ryt in = [,p(y)' C E~t). Then by Lemma 4.6

(4.17) [/(exp s cas 80 1J,), exp s cas 80 i7t I < T S.

By (2.2.3), we see that far every z E X with a /10 ~ lpzi ~ u,

(4.18) IL1/'(y )c(t)z - L,p(y)pzi < Tl'

Naw let (aj, bd be an (n, 6)-strainer at p such that Ij>ad = a and ), : B p(( 2 ) -+ Rn be the
bi-Lipschitz map, ),(x) = (Ialxl, ... ,lan xl). Put u(t) = ),oc(t). Cambining (4.16),(4.17)
and (4.18), we get

lu(s) - u(t)1 < T,

far almost all s, t E [0, l]. Thus we arrive at

Ilu(s)1 - cos 80 I< T.

Ilu(s) - (),(/(y)) - ),(/(x)))l

~ [IU(S) - u(t)1 dt ~ T,e.

This campletes the proof.

We conclude the praaf af Theorem 0.2 by showing

Lemma 4.19. / is surjective.

Proo/. Since f is proper, f(M) is closed in X. Suppose that there exists a point x E
X - f(M), and take p E f(M) such that Ixpl = Ixf(M)1 and put p = f(p). By Lemma
4.6, far any [ in x' C Ep we would find e E Hp satisfying 1/(exp te), exp t[1 < T(t for
sufficiently small t > o. Thus it turns out that I/(exp te), xl < Ipxl, a contradietion.

Pro%/ Corollary 0.4. If dim M = n, then 26-strain radius of M is greater than J.lo/2 for
sufficiently sma.ll f > O. Lemma 1.8 then implies that Hp is T( 6, u )-dense in Ep for any
pE M. It follows from Lemma 4.11 that 1!(x)/(Y)I/lxYI- cosT(6,a)1 < Tl. Thus fis a
TcalmOSt isometry as required.
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Remark 4.20. Suppose that hoth M and X have natural differentiab1e structures of dass
Cl such that the distance functions are Cl-dass. In this CaBe, we can take a 10cal1y trivial
fibre bundle of dass Cl in addition as the map I. It suffices on1y to rep1ace the maps Ix
and IM by Cl-maps defined by

For instance, if every point in X is an (n,O)-strained point, then X has a natural C l_
structure ([OS]). Remark that the fihre of f is an "almost nonnegatively curved manifo1d"
in the sense of [V].

By the previous remark, one can modify the main result in [0] as follows. We denote
by ed(M) the excess defined there.

Corollary 4.21. For given rn and D, d > 0, (D ;::: d) tbere exists a positive number
f = fm(D, d) such that if a compact Riemannian m-manifold M with sectional cun'ature
;::: -1 satisfies

diameter(M) ~ D, radius(M);::: d, ed(M) < f,

then there exists an Alexandrov space X with curvature ;::: -1 baving Cl-diEferentiable
structure and a libration f : M -t X whose fiber is an "almost nonnegatively curved manifold'.

In [0], Otsu constructed a smooth Riemannian manifold X' with a simi1ar property as
in Corollary 4.21. Unfortunate1y, the lower sectional curvature bound of X' goes to -00

when M changes such as ed(M) -t O.

Prool 01 Corollary 4.21. Suppose the corollary does not hold. Then we would have a
sequence of compact rn-dimensional Riemannian manifolds Mi with sectional curvature
;::: -1 such that diam(Mi) ~ D, rad(Mi) ;::: d, ed(Mi) --+ 0 and that each Mi does not
satisfies the conclusion. Passing to a subsequence, we may assume that Mi converges to an
Alexandrov space X. Since ed(X) = 0, we see that the injectivity radius of X is not Iess
than d. Hence by [PI], X admits a natural C1-differentiable structure. Thus by Remark
4.20 we have a Cl-fibration of Mi over X for large i, a contradiction.

Remark 4.22. In the construction of the map /, we used the embedding of X into L 2(X).
One can also emp10y an embedding of X into a Euclidean space by using the distance
function from each point of a net in X. However if one tries to extend our argument to a
more general A1exandrov space Y, which may contain more senous sigular points, L 2(y)
is large enough to embed Y. This is the main reason why we employ L 2(X) to embed X.

The remark above leads us to the following
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Problem 4.23. Find geometrie eonditions on an Alexandrov spaee X (other tban smaIl size
of singularitiea) tbat ensures the existenee of a. tubular neighborhood, in tbe generalized
sense, of the emhedding Ix :X --t L2 (X).

An answer to the problem would provide, for instanee, a geometrie proof of Grove,
Petersen and Wu's finiteness theorem [GPW]

§5 Proof of Theorem 0.5

The proof of Theorem 0.5 is based on the following

Theorem 5.1. For given positive integers m, n (m ~ n) and jlo > 0, there exist positive
numbers C, f, U and w depending only on apriori constants and satisfying the following:
Let M and X be Alexandrov spaces with curvature ~ -1 and witb dimension m and n
respectjvely. Suppose tbat M js locally simply connected and that C-str. rad(X) > P.O'
Then jf the Hausdorff distance between M and X is less tban f, then for any p E M the
image r ofthe inclusion homomorphism 7r1(Bp(u, M)) --t 7r1(Bp(1, M)) contains a solvable
subgroup H satisfying

(5.1.1) [r: H] < w,
(5.1.2) The length of polycic1icity of H js not greater than m - n.

For the defininition of the length of polycyclicity of a. solvable group, see [FY1].
The essential idea of the proof of Theorem 5.1 is the same as that in [FYl,7.1]. However

in our case we do not know yet if the map in Theorem 0.2 is a fibre bundle. This is the
point for which we should be careful.

Proof. The proof is done by the downward induction on n and by contradiction. By
Corollary 0.4, the theorem holds for n = m. Suppose that it holds for dirn X ~ n +1, hut
not for n. Then we would have sequences Mi, Xi of Alexandrov spaces satisfying :

(5.2.1) dirn Mi = m, dimXi = n.
(5.2.2) Ci-str. ra.d(Xd > Jlo, where limi_co Ci = O.
(5.2.3) dH(Mi, Xi) < fi, where lirni_co fi = O.
(5.3) For same Pi E Mi and for sequences Ui --t O,Wi --t 00, the image of the incIusion
homomorphism 1r1(Bpi(Ui,Mi)) --t 7r1(Bpi(1,Md) does not contain a solvable subgroup
satisfying (5.1) for W = Wi.

Let fi : Mi --t Xi be the r(8i, fi )-almost Lipschitz submersion constructed in Theorem
0.2, and ,6,i the diameter of f i-

1(xd, Xi = li (pd· For Uo <: Jlo, we put Bi = Bxi(uo, X),
-1 - -Bi = f i (Bi). Remark that Bpi (uo/2, Md C Bi c Bpi(2uO' Md. Let 1ri : Bi --t Bi be the

universal cover, and r i the deck transformation group. Let di and di be the distances of
Mi and Xi respectively. From now on we consider the scaled distances di/,6,i and di/,6,i
implicitly. Passing to a subsequence, we may Msume that (Bi,pi) (resp. (Bi, Xi)) converges
to a. pointed space (Y, yo) (resp. to (Rn, 0)) with respect to the pointed Hausdorff distance.
We may also assurne that the Lipschitz map li : Bi --t Bi eonverges to a Lipschitz map
I : Y --t Rn with Lipschitz eonstant 1. Since one can lift n-independent lines in Rn
to those in Y, the splitting theorem ([GP],(Y]) implies that Y ia isometrie to a product
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Rn X N, where N is compact with diameter 1. Furtheremore since the property of li in
Lemma 4.11 is invariant under scaling of metrics, one can check that 1 : Rn X N -+ Rn is
actually the projection.

In particular, it turns out that the fiber li-1(Xi) with the distance d.1ßi converges to
the nonnegatively curved Alexandrov space N. This implies the properties of fiber stated
in Remark 0.3.

For P. E 1r;l(pi), by using [FY1,3.6] we mayassume that (Bi, fi,pd converges to
(Z, G,poo) with respect to the pointed equivariant Hausdorff distanse, where Gis a closed
sugbroup of the group of isometries of Z. As before one can prove that Z is isometrie to
Rn+l x Z', where Z' is compact, and that 11". converges to the projection 11"00 : Rn+l x Z'-+
Rn X N by tbe action of G. Remark that G acts on R l X Z'. Let C be the diameter of
N = (Rl x Z')/G.

For a tripIe (X, f, xo), we use the notation in [FY1,§3] such as

r(R) = {, E f II,xoxol < R}.

Then we have easily.

Lemma 5.4. Gisgenerated by G(2C).

To apply [FY, 3.10], we need to ristriet ourselves to a compact set of Rn. Let Vi =
B;z:;(lOC + I,Ji /ß.), U. = 1-1(Ui ). Remark that Ui has a uniform bound D on its
diameter.

Since li is not known to be a fibre bundle, we need the following lemma.

Lemma 5.5. There exists a positive integer I such that ri is generated by fi(SC +1) for
each i > I. In particular, tbe indusioD homomorphism 11"1 (Ud -+ fi is surjective.

Proof. First we prove that 11";1 (Ud is connected.. Suppose that it has two connected
components l'i and Wi . Since the diameter of Ui is uniformely bounded, we can take Yi E Vi
and Zi E Wi such that IYi Zi I= Il'iWi Iand that [PiYi Iis unifonnly bounded. Let Ci = exp t(i
be a minimal geodesie joining Yi to Zi, and Ei the length of_Ci. Si~ce the action of G on
Rn-factor is trivial, Ei fiust go to infinity as i -+ 00. For x E Bi let Hz; C I::z; be the set that
project down to H 1rj (z;). (See §4). From the convergence (B.,p.) -+ (Rn+l X Z') and from

the choice of Yi and Zi, it follows that t{iH~j1-+ 0 as i -+ 00. Now let Ci = 11". OCi = exp t€i.
Take Wi such that 11I"i(Ydwi I ;::: (70/6.. and l~iW~1 < r(oi, f.), and put 7Ji(t) = exp tw~. A
generalized version of Theorem 1.1 (see [CE]) implies that 111"i(Zi )7Ji (li) [ < li r (Si, fi)' Take,1, ,2 E ri such that 1,IFi, Yil < 2D, 1'2Pi, Zil < 2D. It turns out

0= 11I"i(,lpi),1I"i(,2pdl

;::: 11I"i(Y.)1I"i(zi)I-11I"('lP.)1I"i(vi)I-11I"i('2P.)1I"i(zdl
>e·-l·r(8· f·)-4D>0_. . .,. ,

for each sufficiently large i, a contradiction.
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Now for any i E fi, let C1(t) be a eurve in 7r;1(U;) joining Pi to iPi with length say,
R. For each j, 1 ::; j ::; R and for suffieiently large i, one eau take i j E r i such that
!c1{i)ijPil < 4C. Thus i is written as the produet :

each of whose factor has length less than BC + 1. This completes the proof of the lemma.

Let Ui be the universal cover of Ui, and Ai the deck transformation group. As before
we may asswne that (Üi, Ai,P;) eonverges to a tripIe (Rk x W,H,O), where both W and
(Rk x W)/H are compact. The main theorem in [FY2] implies that H/Ho is diserete,
where Ho is the identity component of H.

We next show that H/Ho is almost abelian. Since H preserves the splitting Rio x W,
we have a homomorphism p : H ~ Isom(R!:). Let K and L denote the kernel and the
image of p respectively. The eompactness of K implies the elosedness of L. It follows !rom
[FY, 4.1] that L/Lo is almost abelian. Sinee KHo/Ho is finite, the exact sequence

KHo H L
1 ---+ -- --+ - ---+ - --+ 1

Ho Ho Lo

implies that H / Ho is almost abelian as required. (See [FY1, 4.4]).
Now by [FY1, 3.10], we ean take the "collapsing part" A~ of Ai in the following sense:

(5.6.1) (Üi, A~,ß;) converges to (Rk x W, Ho, 0) with respect to the pointed equivariant
Hausdorff distance.
(5.6.2) Ai/ A~ is isomorphie to H / Ho for large i.
(5.6.3) For any f > 0 there exists lE such that Ai is generated by Ai(f) for every i > lE'

The final step is to show that A~ is almost solvable. We go back to the Hausdorff
convergence of Ui to Bn(c') x N, where G' = lOG + 1 and Bn(c') = Bo(G',Rn). By
[BGP], we ean take a good point Xo in Bn(G') xN. This means that «Bn(G') x N, d/f), xo)
eonverges to (Rn+", 0) as f -+ 0, where dis the original distance of Bn(G') x N and 8 is the
Hausdorff dimension of N (8 ~ 1). Let f m,n+,,{l) aud lTm,n+,,(l) be the eonstants f, lT given
by the induetive assumption for ffi, n +s and Jlo = 1. Now fix a small f and take a large i
so that the pointed Hausdorff distanee between «Ui, di/ßif), q;) and (Rn +", 0) is less than
f m ,n+.(l), where qi is a point in Ui Hausdorff elose to xo. Now by induetion we eau eonelude

that the image i\ under the inelusion homomorphism of 1I"1(Bqj(lTm,n+,,(1),di/ßif)) to
11"1 (Bq,{l, di / ßi f )) contains a solvable subgroup Hi such that

(5.7.1)
(5.7.2)

[i\ : Hi] has a uniform bound independent of i.
The length of polycielicity of Hi is not greater than m - n - s.

By [FY1,7.11], (5.6.3) cau be strengthend as :

(5.6.3)' For any f > 0, there exists a positive integer lE such that Ai is generated by the

set {i E A~ Ilixxl < f} for every x E Üi •
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It follows that Ai is included in the image of 1rl (Bqj(um,n+ .. ,di/ßie)) -+ Ai. Therefore
also Ai contains a solvable subgroup satisfying (5.7). Thus it folows from (5.6.2) that Ai
is almost solvable. Therefore Lemma 5.4 yields the almost solvability of rio This is a
contradiction to (5.3). The proof of Theorem 5.1 is now complete.

By using Theorem 5.1, we can prove the following theorem, a generqlized Maruglis'
lemma along the same line with [FY1, 10.1, A2]. The details are omitted.

Theorem 5.8. For given m, there exists a positive number Um satisfying the Iollowing:
Let M be a loeally simply connected, m-dimensional Alexandrov spaee with eurvature
~ -1. Then Ior any p E M the image ol the inc1usion homomorphism 1rl {Bp{(Tm, M)) -+

1rl (Bp{l, M)) eontains a nilipotent subgroup ol finite index.

Gur Theorem 0.5 is a special ease of Theorem 5.8.

Appendix Relative volume comparison

Let X be an n-dimensional Alexandrov space with eurvature ~ k. We fix P E M and
pE Mn{k), and put Dp(r) = {x E X Ilpxl ~ r}. First we study the equality ease in (1.3).

Proposition A.l. Suppose Vn{Bp{r)) = bk{r). Then Bp{r) with the length strueture
indueed !rom the inc1usion Bp{r) c X is isometrie to Bp{r) with the induced length
structure.

Furthermore one ol the Iollowing occurs:

(A.2.1) Dp{r) with the indueed length strueture is isometrie to Dji(r) with the indueed
lengh strueture.
(A.2.2) X = Dp{r) and there exists an isometrie Z2-aetion on tbe boundary ol Dp(r)
such tbat X is isometrie to the quotient spaee Bp{r) UZ2 8Dp{r).

In the ease k > 0, 1r/2Vk< r < 1r/-Ik, (A.2.2) does not oceur.

Proof. By Lemma 1.2, the map p : Bp(r) -+ Bp{r) there does not decrease measure, and
heuee preserves measure in the equality case. To show that Bp{r) is isometrie to Bji{r),
it suffiees to show that P is a loeal isometry. For auy x E Bp {r) take an e > 0 such that
B x { e) C Bp{r), and suppose that Ip{Yl )p{Y2)1 > IYl Y21 for some Y., Y2 E Br {e/2). Put
2s = IYIY21,2t = !p{Yt)p(Y2)\' Bi = Bp(Yd(t) and Bi = Byj{t). Let z be the midpoint of a

minimal geodesie YtY2, and B = Bz(t - s). Then from Vn{{Bt U B2 )C) ~ Vn{(B1 U B2 )C)
and Vn{B;) ~ Vn(B;) we would have

(A.3)

Vn{Bp{r)) < Vn(Bt ) + Vn(B2 ) +Vn«Bt U B2 )C) - Vn{B)

~ Vn{B1 ) +Vn{B2 ) +Vn«Bt U B2 )C) - Vn(B)

= bj;(r) - Vn(B),

which is a eontradietion.
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The proof of (A.2.2) is essentially due to [GP2]. Suppose that p is not continuous on
the boundary 8Dp(r) .. Let JJ : Dp(r) -. Dp(r) be the continuous map such that JJ = p-l
on Bp(r). We show that UJJ-1(x) ~ 2 for all x E 8Dp(r). Suppose that there are three
points x}, x2, X3 in JJ-1 (x). Now we have three minimal geodesics ii : [0, l] -. X joining P
to x, where l = Ipxl. For a sufficiently small f > 0, put Vi = ii(l- f). Then it follows from
an argument similar to (A.3) measuring volume 10ss that for every 1 ~ i =I j ~ 3, the ball
B t/i ( f) does not intersects with B 1/j ( f). Thus it turns out that the segments Yi x and xy j

form a minimal geodesic. This contradicts the non-branehing property of geodesic.
Now we have an invo1utive homeomorphism <I- on 8Dp(r) such that JJ(<I-(x)) = JJ(x).

Sinee a eurve in 8Dp(r) ean be approximated by eurves in Bp(r), we ean see that <I­
preserves 1ength of eurve and henee is an isometry. Thus Dp ( r) is isometrie to the quotient
Bp(r) UZ2 8Vp(r). If cl) is nontrivial, then agin the non-branching property of geodesie
implies X = Dp(r). However, in case of k > 0 and 7r/2v'k < r < rr/Vk, the nontrivial
quatient Bp(r) UZ2 8Dp(r) does not have eurvature ~ k. Hence p must be continuous
in this case. It follows that p = JJ-1 is an isometry with respect to the induced lengh
structure because it preserves length of curve.

Next .we prove a relative version of (1.3), which corresponds to the Bishop and Gromov
vo1ume comparison theorem ([GLP]) in Riemannian geometry.

Proposition A.4. For r < R, we have

Proof. Put Sp(t) = {x E X Ilpxl = t}. By arecent result in [OS], the set of all (n, ö)­
strained points in X has fuH measure for any Ö > O. Henee in view of Theorem 1.4, we
can app1y the coarea fonnula ([Fe]) to obtain

(A.5)

Now we show that

(A.6)

Let us suppose the case k < O. The other cases can be treated similary. For x E Sp(R)
(resp. x E Sp(R)), let p(x) (resp. p(x)) denote the intersection of a minimal geodesie px
with Sp(r) (resp. px with Sp(r)). We know that for any € > 0 there exists Ö > 0 such that
if lxiii< Ö, then

I
Ip(x)p(y)1 sinh HR I-.-..;,-------- - < flxiii sinh Hr '

which implies

(A.7) Vn-1(Sp(R)) = (SinhHR)"-l .
Vn - 1(Sp(r)) sinh Hr
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(A.8)

Theorem 1.1 yields that Ip(x)p(y)1 ~ Ip(x)p(y)1 for every· X,Y E Sp(R) and x,Y E Sp(R)
with IxYI = IxYI. Hence if IxYI < 6, then

Ip(x)p(y)1 sinhAR
-~-> -e.

IxYI sinhHr

Now (A.6) immediately follows from (A.7) and (A.8).
We put A(t) = Vn-1(Sp(t)), A(t) = Vn-1(Sp(t)) and

Since

'(t) = Ä(t) J; A(t) - A(t) J; Ä(t)
f u; A(t))2

= (A(t) 1t

A(t) -lt

A(t)) A(t) 2'

A(t) 0 0 (J; A(t))

it follows !rom (A.6) that

This completes the proof.

By using Proposition A.4, one can obtain the volume sphere theorem extending one in
[OSYl·

Proposition A.9. Tbere exists a positive number e = en such tbat iE an n-dimensional
Alexandrov space X wi tb curvature ~ 1 satisfies Vn(X) > bi (7r) - e, tben X is r (e)-almost
isometrie to sn .

Proof. Let P : X --+ sn be an expanding map as in Lemma 1.2. For some Yb Y2 E X
suppose that 2s = IYIY21 < Ip(Yl)P(Y2)1 = 2t. Then by the argument in (A.3),

(A.I0) Vn(X) < b~(7r) - Vn(B.r(t - s)),

where z is the midpoint of a minimal geodesie Yl Y2' On the other hand, from Proposition
A.4 and the assumption on Vn(X), we have Vn(B.r(t-s)) > (1-e/bi(7r))bi(t-s). Together
with (A.IO) this implies It - sI< r(e). Thus dH(X,sn) < r(e) because p(X) is r(e)-dense
in sn. Therefore by Theorem 1.5 we obtain a r(e)-almost isometry between X and sn.
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