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80 Introduction

An Alexandrov space is a metric space with length structure and with a notion of
curvature. In the present paper we study Alexandrov spaces whose curvatures are bounded
below. Such a space occurs for instance as the Hausdorff limit of & sequence of Riemannian
manifolds with curvature bounded below. Understanding such a limit space is significant
in the study of structure of Riemannian manifolds themselves also, and it is a common
sense nowadays that there is interplay between Riemannian geometry and the geometry of
Alexandrov spaces through Hausdorff convergence.

Recently Burago, Gromov and Perelman [BGP| have made important progress in the
geometry of Alexandrov spaces whose curvatures are bounded below. Especially they
proved that the Hausdorff dimension of such a space X is an integer if it is finite and that
X contains an open dense set which is a Lipschitz manifold. A recent result due to Otsu
and Shioya [OS] has extended the later result by showing that such a regular set actually
has full measure. Since the notion of Alexandrov space is a generalization of Riemannian
manifold, it seems natural to consider the problem: What extent can one extend results
in Riemannian geometry to Alexandrov spaces ?

The notion of Hausdorff distance introduced by Gromov [GLP] has brought a number of
fruitful results in Riemannian geometry. For instance, the convergence theorems and their
extension, the fibration theorems, or other related methods have played important roles in
the study of global structure of Riemannian manifolds. The main motivation of this paper
is to extend the fibration theorem ([Y]) to Alexandrov spaces. In Riemannian case we
assumed that the limit space is a Riemannian manifold. Here we employ an Alexandrov
space as the limit whose singularities are quite good in the following sense.

Let X be an n-dimensional complete Alexandrov space with curvature bounded below.
In [BGP], it was proved that the space of directions £, at any point p € X is an (n — 1)-
dimensional Alexandrov space with curvature > 1, and that if X, is Hausdorff close to the
unit (n — 1)-sphere $™7!, then a neighborhood of p is bi-Lipschitz homeomorphic to an
open set in R" . This fact is also characterized by the existence of (n,§)-strainer. (For
details see Section 1). For § > 0, we now define the é-strain radius at p € X as the
supremum of r > 0 such that there exists an (n, §)-strainer at p with length r, and the
é-strain radius of X by

é-str. rad(X) = inf §-strain radius at p.
pEX
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For instance, X has a positive é-strain radius if X is compact and if E, is Hausdorff
close to ™! for each p € X.

For every two points z,y in X, a minimal geodesic joining z to y is denoted by xy, and
the distance between them by |zy|. The angle between minimal geodesics zy and zz is
denoted by Zyzz. Under this notaton, we say that a surjective map f : M — X between
Alexandrov spaces is an e-almost Lipschitz submersion if

(0.1.1) it is an e-Hausdorff approximation.
(0.1.2) For every p,q € M if 8 is the infimum of Zgpzr when z runs over f~1(f(p)), then

1f(p)f (2l

—sinf| < e.
g

Our main result in this paper is as follows :

Theorem 0.2. For a given positive integer n and o > 0, there exist positive numbers
6 = b, and € = €,(po) satisfying the following: Let X be an n-dimensional complete
Alexandrov space with curvature > —1 and with é-str.rad(X) > uo. Then if the Hausdorff
distance between X and a complete Alexandrov space M with curvature > —1 is less than
¢, then there exists a 7(6, €)-almost Lipschitz submersion f : M — X.

Here 7(6,0) denotes a positive constant depending on n,uo and 6,e¢ and satisfying
limg (o 7(6,€) = 0.

Because of lack of differentiability in X, it is unclear at present if the map f is actually
a locally trivial fiber bundle. The author conjectures that this is true.

Remark 0.3. Under the same assumption as in Theorem 0.2, for any ¢ € X let A, denote
the diameter of f~!(x). Then there exists a compact nonnegatively curved Alexandrov
space N such that the Hausdorff distance between N and f~!(z) having the metric mul-
tiplied by 1/A; is less than 7(6,¢€) for every z € X. (See the proof of Theorem 5.1 in

§5)

In Theorem 0.2, if dim M = dim X it turns out that

Corollary 0.4. Under the same assumptions as in Theorem 0.2, if dim M = n, then the
map f is 7(6,0)-almost isometric in the sense that

[f(=)f(¥)l
——l'a-:;I— - 1' < T(5, 0’)

for every z,y € M.

As in Riemannian case Theorem 0.2 has a number of applications. The results in Rie-
mannian geometry which essentially follows from the splitting theorem ([T],{CG],[GP1],[Y])
and the fibration theorem are still valid for Alexandrov spaces. For instance, we have the
following genaralization of the main result in Fukaya and Yamaguchi [FY1].



Theorem 0.5. There exists a positive number €, such that if X is a locally simply
connected, n-dimensional compact Alexandrov space with curvature > —1 and diam(X) <
€n, then its fundamental group contains a nilpotent subgroup of finite index.

We need the assumption on locally simply connectedness in Theorem 0.5 only to ensure
the existence of a universal cover of X. Here we should mention the announcement in
[BGP] by Perelman stating that any Alexandrov space with cuvature bounded below is
locally contractible, which would remove the additional assumption.

The basic idea of the proof of Theorem 0.2 and the organization of the present paper is as
follows: In section 1, after recalling some basic results in [BGP], we study a neighborhood
of a point with small size of singularity. Such a neighborhood has nice properties similar to
those of a small neighborhood in a Riemannian manifold. The proof of Theorem 0.2 starts
from Section 2. We construct an embedding fx : X — L?(X) and amap fpr : M — L3(X)
by using distance functions, where LZ(X) is the Hilbert space consisting of all L2-functions
on X. Similar constructions were made in [GLP],[K],[Ful,2] and [Y] in the case when both
X and M are smooth Riemannian manifolds. However in our case, there appear some
difficulties in proving the existence of a tubular neighborhood of fx(X) in L?(X) because
fx(X) is just a Lipschitz manifold. Of course a tubular neighborhood of fx(X) does
not exist in the exact sense because of singularities of X. To overcome this difficulty
we generalize the notion of tubular neighborhood. First we show that the image of the
directional derivative dfx of fx at each point p € X can be approximated by an n-
dimensional subspace II, in L?(X) because of small size of singularities of X. Thus a
small neighborhood of fx(p) in fx(X) is approximated by the n-plane fx(p) + II,. This
fact is used in Section 3, a main part of the paper, to construct a smooth map v of a
neighborhood of fx(X) into the Grassmann manifold consisting of all subspaces in L?(X)
of codimension n such that v is almost perpendicular to fx{X). The point is to evaluate
the norm of the gradient of v in terms of apriori constants, which makes it possible to
prove that v actually provides a tubular neighborhood of fx(X) in the generalized sense,
and to estimate the radius of the tubular neighborhood in terms of given constants. This
idea is also effective in studying the projection 7 : fy(M) — fx(X) along v. It turns
out that = is locally Lipschitz continuous with Lipschitz constant close to one and that
it is almost isometric in the directions almost parallel to fx(X). In Section 4, we show
that the composed map f = f _;1 omo fay : M — X is an almost Lipschitz submersion
as required. The proof of Theorem 0.5 is given in section 5. Its machinary is the same
as that in [FY1] except for the induction procedure, which is carried out after deriving
the property of the "fibre” of f as described in Remark 0.3 In Appendix, we discuss the
relative volume comparison for Alexandrov spaces that is of Bishop and Gromov type.

The author would like to thank K. Fukaya and G. Perelman for helpful discussions.



§1 Properties of a neighborhood of a strained point.

First of all, we recall some basic facts on Alexandrov spaces. We refer the reader to
[BGP] for details.

Let X be a locally compact complete Alexandrov space with curvature > k. For z,y,z €
X, let A(z,y,z) denote a geodesic triangle with sides zy, yz and zz. We also denote by
E(:c, y, z) a geodesic triangle in the simply connected surface M (k) with constant curvature
k, with the same side lengths as A(z,y,z). The angle between zy and zz is denoted
by Zyzz, and the corresponding angle of S(x,y,z) by Zyrz. Two minimal geodesics
emanating from a point are by definition equivalent if one is a subarc of the other. For
p € X, let $, denote the set of all equivalence classes of minimal geodesics starting from p.
The space of directions £, at p is the completion of I}, with respect to the angle distance.
We denote by z' the set consisting of all directions represented by minimal geodesics joining
ptoz. If £ €z', we use the familiar notation exp tf to denote the minimal geodesic pz
parametlized by arclength. From now on all geodesics are assumed to have unit speed
unless otherwise stated.

The following theorem, which corresponds to the Toponogov comparison theorem in
Riemannian geometry, is of basic importance in the geometry of Alexandrov space.

Theorem 1.1 ([BGP,4.2]). If X has curvature > k,then
(1.1.1) For any z,y,z € X, there is a triangle :&(z,y, 2) in M(k) such that each angle of
E(z, Y, z) is not less than the corresponding one of A(z,y, z).

In the case when k > 0 and the perimeter of A(z,y,z) is less than 2n/Vk, such a
triangle is uniquely determined up to isometry.
(1.1.2) Suppose that |zy| = |E§|, |zz| = |ZZ| for z,y,z € X, £,4,% € M(k), and that
Lyzz = Lyiz. Then lyz| < |§2|.

In [BGP], (1.1.1) is proved in the case when the perimeter is less than 27/vk. Then
the rest follows along the same line as the Toponogov comparison theorem (cf. [CE]).

Next we briefly discuss measure of metric balls. It is quite natural to expect that the
curvature assumption should influence on it. From now on we assume that X has finite
Hausdorff dimension, denoted by n. For r > 0, b3(r) denotes the volume of a metric r-ball
in the n-dimensional simply connected space M"(k) with constant curvature k. We fix

p € M and p € M"(k), and put Bp(r) = B,(r,X) = {z € X||pz| < r}.
Lemma 1.2. There exists an expanding map p : Bp(r) — Bj(r).

Proof. We show by induction on n. Since ¥, has curvature > 1 and diameter < 7, we have
an expanding map I : &, —+ S"~! = E;. For every = € B,(r), put p(z) = exp; [pz|1(£),
where ¢ is any element in z'. Theorem 1.1.2 then shows that p is expanding.

Let V,, denote the Hausdorff n-measure. Lemma 1.2 immediately implies

(1.3) Va(By(r)) < bi(r).
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In the appendix, we shall discuss the equality case in (1.3) and relative volume comparison.
A system of pairs of points (a;, b;)2, is called an (m, §)-strainer at p if it satisfies the
following conditions:

Zaiph; > — 6, |Zaiph; — 7/2| < 6,
|Zbipb; — /2| < 6, |Zaiph; —7/2| <6 (i # 7).

The number min; <i<m{|aip}, |bip|} is called the length of (ai,b;). It should be remarked
that one can make the length of (a;, b;) as small as one likes by retaking strainer on minimal
geodesics from p to a;, b;.

From now on, we assume that X has curvature > —1 for simplicity. For n and yo > 0 we
use the symbol 7(6, ..., €) to denote a positive function depending only on n, po, §,...,¢€
satisfying lims o 7(6,...,€) = 0.

A surjective map f : X — Y is called an e-almost isometry if ||f(z)f(y)|/lzy] — 1| < €
for all z,y € X.

Theorem 1.4 ((BGP,10.4]). There exists §, > 0 satisfying the following. Let (a;, b)),
be an (n, 6)-strainer at p with length > po, § < 8,. Then the map f : X — R™ defined by
f(z) = (la1z|,...,|anz|) provides a r(§, o)-almost isometry of a metric ball B,(0) onto an
open subset of R", where 0 < yq.

A system (A;, B;), of pairs of subsets in an Alexandrov space £ with curvature > 1
is called a global (m, §)-strainer if it satisfies

[Eimil > 7 =6, {l6:6;] —=/2| <6,
§ims) = 7/2l < &, |lninj| —=/2] < & (i # ).
for every €; € A; and n; € B;. It should be remarked that if (a;, b;)/2, is an (m, §)-strainer

at p € X, then (a}, ), is a global (m, §)-strainer of Z,. The result for global strainers,
corresponding to Theorem 1.4, is the following. (Compare [OSY]).

Theorem 1.5 ([BGP,10.5]). There exists a positive number 8,, satisfying the following.
Let ¥ be an Alexandrov space with curvature > 1 and with Hausdorff dimension n — 1,
and suppose that ¥ has a global (n, §)-strainer (A;, B;)*, for § < §,. Then

(1.5.1) |3, cos? |Aié| — 1] < (8).
(1.5.2) The map ¢ of & to the unit (n — 1)-sphere S*~! C R" defined by

(cos |Ai£])

0 = Teos AN

18 a 7(6)-almost isometry.

As a result of Theoreml.5, it turns out that the space of directions L, at an (n,§)-
strained point p in X is 7(§)-almost isometric to $™71.
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Let f : X — R be a Lipschitz function. The directional derivative of f in a direction
{ € X, is defined as

_ . flexptf) — f(p)
df(f) - 11111};1 t I

if it exists. Then df extends to a Lipschitz function on Xj.
Proposition 1.6 ((BGP,12.4]). If f is the distance function from a point p € X,

df(€) = — cos |{p|
foreveryz € X and £ € Z,.

We now represent some basic properties of (n, 6)-strained points of X.
Lemma 1.7. Let X,p and 6,0 be as in Theorem 1.4. Then for every q,r,3 € By(c) with
1/100 < |qr|/lgs| € 1, we have |£rqs — £rqs| < (8, 0).
Proof. This is an immediate consequnce of Theorem 1.4.

Lemma 1.8. Let X,p and 6,0 be as in Theorem 1.4. Then for every q € B,(0/2) and
£ € Xy, there exist points r,s € By(o) such that

(18.1) larl,las| > o/4,

(182) |&'] < 7(6,0)

(1.8.3) Zrgs >~ 7(6,0).

Proof. For{ € T, and a fixed > 0 let us consider the set A = {z = exptn||én| < 6,0/4 <
t <o/2}. For g € M"(-1),let I: X, — ;5 and p : By(0/2) — By(o/2) be expanding
maps as in Lemma 1.2. Now suppose that A is empty. Then p(B,(c/2)) C Bg(o/2) — A,
where A = {z = exp tn] [I(é)n] £ 0,0/4 <t < o/2}. It follows from (1.3) that

Va(By(0/2)) _ B171(m) — b7 71(8) | B24(a/4)61 " (6),

6D S T e )
On the other hand since By(o/2) is 7(6, o)-almost isometric to B(o/2),
Va(Bylo/2) o
N DA

Therefore § < 7(6,0). Thus we can find r satisfying (1.8.1) and (1.8.2). For (1.8.3) it
suffices to take s such that |f(q)f(s)| = ¢/2 and Zf(r)f(q)f(s) = 7.

Lemma 1.9. Let X,p, and é,0 be as in Theorem 1.4. Then for every q with ¢/10 <
lpg| < o and for every z with |pz| < o, we have

|Lzpg — Zzpq| < T(6,0,|pz|/0).

Proof. By Lemma 1.8, we can take r such that |pr| > ¢/4 and Zgpr > 7 — 1(6,0). Then
the lemma follows from for instance, [BGP,Lemma 5.6].

6



We have just verified that the constant yg or o plays a role similar to the injectivity
radius at p.

§2 Embedding X into L?(X)

From now on we assume that X is an n-dimensional complete Alexandrov space with
curvature > —1 satisfying

(2.1) §-str.rad(X) > po

for a fixed gy > 0 and a small § > 0. By definition, for every p € X there exists an
(n,6)-strainer (a;,b;) at p with length > po. Let o be a positive number with o € uo.
Then by Lemmas 1.7 and 1.8, we may assume that for every p € X

(2.2.1) there exists an (n, §)-strainer at every point in B,(o),

(2.2.2) for every ¢ € B,y(o) and for every £ € T, there exist points r, s such that lgr| > o,
lgs} 2 o and [ér'] < 7(6,0), Lrgs > m — 7(§, ),

(2.2.3) |Zrqs — Lrqs| < 7(6,0), for any ¢,r,s € B,(100) with 1/100 < |gr|/|gs| < 1.

Let L?(X) denote the Hilbert space consisting of all L? functions on X with respect to
the Hausdorff n-measure. In this secton we study the map fx : X — L?(X) defined by

fx(p)(z) = h(|pz|),

where h : R — [0, 1] is a smooth non-increasing function such that

(23.1) h=1 on (—00,0], h=0 on [g,00).
(23.2) kh'=1/0 on[20/10,80/10].

(2.33) —o?<h' <0 on(0,0/10).

(2.3.4) [|A"] < 100/02.

Remark that fx is a Lipschitz map.

From now on, we use c¢j,cs,... to express positive constants depending only on the
dimension n. First we remark that by Theorem 1.4 there exist constants ¢; and ¢z such
that for every p € X,

Va(By(2))

2.4 o < ——F—22

(24 'S (o)

We next consider the directional derivatives of fx. For £ € £,, we put
(2.5) dfx(€)(z) = —H(lpal) cos [¢2'], (= € X).

Since £ — |£z'| is upper semicontinuous, dfx () is an element of L2(X), and by Lebesgue’s
convergence theorem and Proposition 1.6,

dfx (€) = lim X (%P 10) = fx(P)

t]0 t

in L*(X).
From now on we use the norm of L2(X) with normalization:

02
1 = 55 /X (@) du(z),

where b(c) = bj(0) and du denotes the Hausdorff n-measure.



Lemma 2.8. There exist positive numbers ¢3 and ¢4 such that

c3 < |dfx(£)| < Cy
forevery p€ X and £ € Z,.

Proof. By (2.2.2) take g such that |pg| > 0/2 and |€¢'| < 7(6,0). Then it follows from
(2.2.3) that for every z € B,(0/100), Zzpg < 1/20 and hence [€z'| < 1/10. Then the
lemma follws from (2.3),(2.4) and (2.5).

Lemma 2.7. There exist positive numbers c5 and cg such that for every p,q € X with

Ipg| < o,
fx(p) = fx(q)i <e
Ipal >

C5<‘

In particular fx is injective.

Proof. By Lemma 2.6, we can take cg = c4. Let £ = |pg|. By (2.2.2) we can take a
(1,7(8,0))-strainer (p,r) at ¢ with |gr| = 0/2. Let ¢ : [0,4] — X be a minimal geodesic
joining ¢ to p. Then by (2.2.3), Zre(t)z < 1/10 for every z in B,(c/100). It follows that

14
lpal) — Wlgel) = [ 5 Mttt at
14
=/0 h'(le(t)z|) cos Lre(t)x dt

4
>~ cos(1/10),

which implies
|fx(p) — fx(g)]

|pql

Let K, = K(Z,) be the tangent cone at p. From definition, ¥, can be considered as a
subset of K,. The map dfx : £, — L*(X) naturally extends to dfx : K, — L?(X). Next

we show that dfx(K,) can be approximated by an n-dimensional subspace of L?(X).
For & global (n, 6)-strainer (;,7;) of ,, let II, be the subspace of L*(X) generated by

dfx (§i)-
Lemma 2.8. Forany £ € &,

> V¢, cos(1/10) > 0.

|dfx (€) — .E‘"' dfx(€)| < 7(6),

where ¢; = cos |€;€|. In particular, dfx(£1),...,dfx(€n) are linearly independent.

Proof. Let ¢ : £, — S™7! be the 7(6) almost isometry defined by ¢(¢) = (cos |£;€])/|(cos |&:i€])|-
(See Theorem 1.5). Using (1.5.1) one can verify

n

|cos [én] — > e cos [l < 7(6),

i=1



for every n € Xp. It follows that

n

ldfx (€)= ) cidfx (&)

2 n
_ 7 "UpzN)Y2(cos |£z'| — c; cos |€;2'|)? T
—b(a)/x(h(lpl))( o'l = 3 esconlee')' du(e)
< 7(8).

Next suppose that 3 a; dfx(¢;) = 0 for a nontrivial a;. If we assume that }_ a? =1, then
there exists a £ € L, such that ¢(§) = (@1,...,a,). It turns out that

ldfx(E)] = |dfx (€) = Y e dfx (&)l < 7(6),
which contradicts Lemma 2.6 if é is sufficiently small.

Thus dfx(K,) can be approximated by the n-dimensional subspace II,. In view of
Lemma 2.8, one may say that dfx is almost linear.

§3 Construction of a tubular neighborhood.

In this section, we construct a tubular neighborhood of fx(X) in L?(X). In the case
when X is a smooth Riemannian manifold with bounded curvature, Katsuda [K] studied
a tubular neighborhood of a smooth embedding of X into a Euclidean space by using an
estimate on the second fundamental form. However in our case, fx(X) is a Lipschitz
manifold. Hence even the existence of a tubular neighborhood in a generalized sense is
apriori nontrivial.

We begin with

Lemma 3.1. For any p,q € X,

d5 (dfx (S,), dfx(Z,)) < 7(6,0,|pgl/o),

where d%; denotes the Hausdorff distance in L*(X).
Proof. By (2.2.2), for every { € I, there exists r satisfying |gr| > ¢ and |&r'| < (6, 0).

We put £ =r' € E,. By using (2.2.3) we then have ||£z'| — |¢,2'|| < 7(6, 0, |pg| /o) for all
z with ¢/10 < |pz] < 0. It follows that |dfx(¢) — dfx(&1)] < 7(8, 0, |pgl/ o).

We put ﬁp = fx(p) + II;,L, where L denotes the orthogonal complement in L?(X).



Lemma 3.2. Forany p,q€ X and{ in¢' C &,

(3.2.1) Ix (Q)|q_p|f x(B) _ dfx(€)| < 7(8,9,|pq| /o).

In particular, fx(B,(o1)) N N, = {f(p)} if 01 /0 is sufficiently small.

Proof. By Lemma 1.9, |Zzpq — Zzpq| < 7(8, 0, |pg|/o) for all z with 6/10 < [pz| < 0. We
put t = |pq|. Since ||zq| — |zp| + t cos Lzpq| < tr(t/0), it follows that

(3.3) llzq| — |zp| + tcos [¢2'|| < t7(é,0,t/0),

which yields (3.2.1). Since (3.2.1) shows that the vector fx(g) — fx(p) is transversal to
N, we obtain fx(Bp(c1)) N N, = {f(p)} for sufficiently small o, /0.

For ¢ € Bp(o1) and 0, € o, we put
ﬁq = fX(Q) + H;-oL'
Then Lemmas 2.8, 3.1 and 3.2 imply the following.
Lemma 3.4. fx(By(01)) NN, = {fx(q)} for all ¢ € By(o,).

Let G, be the infinite-dimensional Grassmann manifold consisting of all n-dimensional
subspaces in L?(X). Let {p;} be a maximal set in X such that |p;p;| > ¢1/10, (i # j), and
T; : Bi — Gy be the constant map, Ti(z) = II,,, where B; = By, (p.,)(cs01/10, L*(X)).
Notice that {B;} covers fx(X) and that the multiplicity of the covering has a uniform
bound depending only on n. (See Lemma 1.2, or Proposition A.4).

Our next step is to take an average of T; in G, to obtain a global map T : UB; =+ G,. We
need the notion of angle on G,. The space G,, has a natural structure of Banach manifold.
The local chart at an element Ty € G, is given as follows: Let Ny be the orthogonal
complement of Ty, and L(Ty, No) the Banach space consisting of all homomorphisms of Tj
into Ny, where the norm of L(Ty, Ny) is the usual one defined by

= sup LEL (5 e 1(z, o)),
0#z€Ty Iml
We put V = {T € G,|T NNy = {0}}. Then p{T) = Tp for every T € V, where
p: L*(X) — Ty is the orthogonal projection. Hence T is the graph of a homomorphism
©1o(T) € L(To, No). Thus we have a bijective map ¢, : V — L(Tp, Ny ), which imposes a
Banach manifold structure on G,,.
Under the notation above, the angle Z(T;, T;) between Ty and T (€ G,,) is given by

Arctan|er,(T)|| if Ty N T3 = {0}
LTy, Th) = . 1
/2 if TynTg # {0}.
It is easy to check that the angle gives a distance on G, and that the topology of G,

coincides with that induced from angle.

From now on we use the simpler notation 7 to denote a positive function of type
7(8,0,01/0).

An estimate for the second fundamental form in case of X being a smooth Riemannian
manifold can be replaced by the following more elementary lemma. We put U = U B;.

10



Lemma 3.5. There exists a smooth map T : U — G, such that
(3.5.1) Z4(T(z),Ti(z)) <7 ifz € B,
(3.5.2) 4(T(2),T(y)) <Clz—y|, whereC=r1/0y.
Proof. Let {p;} be a partition of unity associated with {B;} such that |Vp;| < 100/cg0oy.
First put T = T) on B; and extend it on B; U B; as follows. Let {vy,...,v,} and
{wi,...,w,} be orthonormal bases of T and T; respectively such that |v; — w;| < 7. Put
ui(z) = p1(z)vi +(1 - p1(z))w;, and let T(z) be the n-plane generated by u,(z),...,un(z),
(z € By U Bz). Then {u;(z),...,un(z)} is a r-almost orthonormal basis of T(z) in the
sense that
| < ui(z),uj(z) > =bi;| < .

Notice that Z(T(z),T;) < 7 if z € B; (i=1,2), and |Vu,;| < 7/0;.

Suppose that T(z) and a 7-almost orthonormal basis {vi(z),...,vs(z)} of T(z) are
defined for z € U; = U]_, B; in such a way that
(3.6.1) Z(T(),T) <t ifzeB; (1<i<j),
(3.6.2) |Vy| <71/o;.
We extend them on Uj;, as follows : Let {w,...,w,} be an orthonormal basis of Tj4,
such that |{v;(z)w;| < 7 on U; N Bj4;. Now we put

ui(z) = (Z pa(:r)) vi(z) + (1 - Z Pa(ﬂ?)) w;,
a=1 a=1

and let T(z) be the subspace genereted by u;(z). Then it is easy to check that T(zr) and
u;(z) satisfy the properties of (3.6). Thus by induction, we have a smoothmap T : U — G,
and a r-almost orthonormal frame u;(z) for T(z) satisfying (3.6). It follows from (3.6.2)

LT(2), T(y)) < constn max jui(z) - ()]

< consty, max |Vuij|lz — y|
< (r/o1)lz —yl.

Let G} be the Grassmann manifold consdisting of all subspaces of codimension n in
L*(X), and v : U — G% the dual of T, v(z) = T(z)1. The angle Z(v(z),v(y)) is also
defined in a way similar to Z(7T(z),T(y))- Remark that the equality Z(v(z),v(y)) =
£(T(z),T(y)) holds. We put

N, =z +v(z).

By using (3.5.1), we have the following lenma in a way similar to Lemma 3.2.

Lemma 3.7. For every p € X and q € By(01),

fx(Bp(01)) N Ny (g = {fx(9)}-
For ¢ > 0, we put

N(c) = {(z,v)|z € fx(X),v € v(z),|v] < c}.
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Lemma 3.8. There exists a positive number k = const,o; such that N(«) provides a
tubular neighborhood of fx(X). Namely

(3.8.1) =z + vy # z2 + vq for every (z1,v1) # (z2,v2) € N (k).
(3.8.2) The set U(k) = {z + v|(z,v) € N(k)} is open in L}(X).

Proof. Suppose that z; + vy = 2y + v, for z; = fx(p;) and v; € v(z;). If |p1p2| > o
and |v;| € ¢50,/2, a contradiction would immedately arise from Lemma 2.7. We consider
the case |p1p2| £ 1. Put K = Ny, N N;,, and let y € K and 2z € N, be such that
|z1y] = |21 K],|z1y] = |yz| and that Zzyyz = £(zy —y, N;,) € £(Ngy, Nz, ). Then Lemma
3.1 implies that Zz,yz < 7. It follows from the choice of z that |£(z; — 2z, N;,) — 7/2| <
7. On the other hand the fact Z(z; — z,,T(z,)) < 7 (Lemma 3.2) also implies that
|£(z7 — 21, Nz,) — 7/2| < 7. It follows that |z2z| < T|z1z,|. Putting £ = |yz,| = |yz| and
using Lemma 3.5, we then have

|zy2| < €42 y2
<eLT(z1),T(z2))
S£C|1‘1$2|, C=T/0'1.

Thus we obtain £ > (1 — 7)/C 2 01/7 as required.

The proof of (3.8.2) follows from (3.8.1): For any y € U(x) with y € N, o € fx(X)
and for any z € L%(X) close to y, let T; be the n-plane through z and prallel to T(z,),
and yo the intersection point of Ty and N,,. If z € fx(X) is near o, then N, meets Tp
at a unique point, say a(z). Using (3.8.1), we can observe that « is a homeomorphism
of a neighborhood of zp in fx(X) onto a neighborhood of yg in Ty. Hence 2z € U(x) as
required.

Remark 3.9. The proof of Lemnma 3.8 suggests the possibility that one can take the constant
k in the lemma such as k = oy /7. In fact we can get the sharper estimate by a bit more
refined argument. However we omit the proof because we do not need the estimate in this

paper.
Next let us study the properties of the projection 7 : M(x) — fx(X) along v. By
definition, n(z) =y if z € Ny and y € fx(X).

Lemma 3.10. The map 7 : N(k) — fx(X) is locally Lipschitz continuous. More pre-
cisely, if z,y € N(k) are close each other and t = |zn(z)|, then

(3.10.1) |w(2)m(y){/|zyl < 1+ 7+ 7t/on,
(3.10.2) if |4(y — =, Nx(z)) — 7/2| < 7, then

Iy — 2) ~ (x(y) — n(z))| < (7 + 7t/a1)lzyl.
Proof. First we prove (3.10.2). Let N be the affine space of codimension n parallel to Ny ()
and through y. Let y; and y,; be the intersections of N,(,) and N with Ty, respectively.

Let z be the point in K = NN Ny, such that |y;z| = |y, K|,and y3 € Ny, the point such
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that |y2z| = |yaz| and Lyozys = £(y2 — 2, Ng(y)) < £(N,Ng(y)). An argument similar to
that in Lemma 3.8 yields that

(3.11.1) |y1y3| < lelygl,
(3.11.2)  |y2ysl/lzv2| < L(v((2)), v(7(y))) < (r/o1)|w(2)w(y)l-

It follows that |y y2| < (/01 )t|n(z)7(y)|. Furthermore the assumption implies |(7(z) —
y2) — (2 — y)| < 7|zy|. Therefore we get

[(m(z) — 1) — (= = ¥)| £ {(7(2) — 1) — (7(z) —y2)| + [(7(2z) — ¥2) — (2 — y)]
<yl + 7lzy|
< (r/o)t|m(z)m(y)| + Tlzyl.

On the other hand, since Ly n(z)n(y) < 7,
|(m(z) = 7(y)) — (n(z) — wa)| < 7lw(2)m(y)|.
Combining the two inequalities, we obtain that
|(m(z) = =(y)) — (= —y)| < (7 + C't)|m(z)n(y)| + 7l|zyl,

from which (3.10.2) follows.
For (3.10.1), take yo € Ny(y) such that |zys| = |z Nn(y)|- Then (3.10.2) implies

r(@)r ()l o Ir(=@)7()l
lzyl T lzwel
<1471+ rt/o;.

84 f is an almost Lipschitz submersion

In this section, we shall prove Theorem 0.2.

Let M be an Alexandrov space with curvature > —1. We suppose dy(M,X) < € and
€ L o0y. Let op: X =4 M and ¢ : M — X be e-Hausdorff approximations such that
|Ye(z),z| < € |p¥(z), z] < €, where we may assume that ¢ is measurable. Then the map
fm: M — L*(X) defined by

fu(p)(z) = h(lpe(z)]), (= € X)
should have the properties similar to those of fx. We begin with
Lemma 4.1. fy(M) C N(cre).

Proof. This follows immediately from

(4.2) |fm(p) — fx(¥(p))| < cre.

By Lemmas 3.8 and 4.1, the map f = fx' omo far : M — X is well defined.
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Lemma 4.3. d(f(p),¥(p)) < cse.

Proof. It follows from (4.2) that |fx(f(p)) — fx(¥(p))] < 3cre. Since we may assume that
| f(p)¥(p)| < o, we have |f(p)¥(p)| < 3cr¢/cs by Lemma 2.7.

It follows from Lemmas 3.10 and 4.3 that f is a Lipschitz map.
Similarly to (2.5), dfm(£) € L*(X), € € T,, is given by

(4.4) dfm(§)(z) = —h'(Ipe(z)]) cos [{p(z)'].

Lemma 4.5. For every p,q € M take £ in ¢' CX,. Then

fM(9)|q‘plf M) _ girg(6)| < (6,0, €/0, Ipal o).

Proof. For every z with 0/10 < |pz| < o, take y € X such that Z¥(z)¥(p)y > © — (6, 0).
Since Zzpp(y) > 7 — 7(6,0) — 1(€/), it follows from an argument similar to Lemma
3.2 that ||gz| — |pz| + lgp|cos |é2’'|| < |gp|7(6,0,€¢/7,|pg|/0), which implies the required
inequality.

We now fix p € M, and put p = f(p) and
Hy = {{|§ € 2’ CEp,|pz]| 2 0/10},

which can be regarded as the set of "horizontal directions” at p.

Lemma 4.8. For every £ € L5, there exists ¢ € M with |pg| > o such that

lf(exp t£)?exp tEl < tT(61 g,0} /0’, 6/0’1 )1

for every £ in ¢' C T, and sufficiently small t > 0.
Conversely for every { € H,, there exists { € T} satisfying the above inequality.

In other words, the curve f(exp t£) is almost tangent to exp t£.
For the proof of Lemma 4.6, we need

Comparison Lemma 4.7. Let z,y, z be points in M, and Z,4, z points in X such that
0/10 < |zyl, |lyz] < 0. Suppose that [(z)z]| < (), [$(y)F| < 7(e) and [¢(2)z| < 7(e).
Then for every minimal geodesics zy,yz, and Ty, §z, we have

|Lzyz — Lagz| < T(8,0,¢€]0).
Proof. By (2.2.2), we take a point @ € X such that
(4.8) Lz§w > 7 — 7(6,0)
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‘and |§@| > 0. Put w = (). Then Theorem 1.1 and (2.2.3) imply that

(4.9.1) Lxyz > LE§Z — 1(b,0) — T(€e/0),
(4.9.2) Lzyw > L3jw — 7(8,0) — (€] o),
Since (4.8) implies
|Zzyw — 7| < T(6,0) + T(€/0),
(4.9.1) and (4.9.2) yield the required inequality.
Proof of Lemma 4.6. Take § € X such that |5G| > o and |[£¢'| < 7(8,0). Put ¢ = ¢(§).

For any ¢ in ¢' C I, let ¢(t) = expt¢, &(t) = exp t{. By using (2.3),(2.5),(4¢.4) and Lemma
4.7 we get |dfm(€) — dfx(€)| < 7(6,0,¢/0). Lemmas 3.2 and 4.5 then imply

IfM(C(t)) - fu(p)  fx(&()) - fX(Q);
1 t

< 7(8,0,¢/0),

for sufficiently small ¢ > 0. In particular fas(c(t)) — fam(p) is almost perpendicular to
Nr(su(p)) It follows from (3.10.2) that

< 1(8,0,01/0,¢/01),

‘fM(C(f)) — fm(p) _ mo fu(e(t)) — 7o fm(p) ’
t t
and hence |r o far(c(t)) — fx(E(t)) < tr(8,0,01/0,¢/01). Lemma 2.7 then implies the

required inequality.
Similarly we have the second half of the lemma.

From now on we use the simpler notation 7, to denote a positive function of type
7(6,0,01/0,€¢/01).
The following fact follows from Lemma 4.6.

(4.10) ’If(exl::tﬁ)!pl - 1| < Tea
for all { € Hp and small ¢ > 0.
Lemma 4.11. For every p,q € M, we have
IO _ | <,
|pa|

where § = |[(Hp|, £ = ¢' € L,.

For the proof of Lemma 4.11 we need two sublemmas.
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Sublemma 4.12. dy(H,, 5" ') < 7.

Proof. Foreach ¢ € Hp let £ be an element of ¥5 as in the second half of Lemma 4.6, and let
x : Hp = I be the map defined by x(¢) = . By Lemma 4.7, ||x(&)x(é2)| = [&1&2]] < 7o,
and Lemma 4.6 shows that x(H,) is T.-dense in ¥;. Thus x is a 7.-Hausdorff approximation
as required.

Sublemma 4.13. For { € I}, let 8 = |{Hy| and £ € H,, be such that |6 — |¢6]] < 7.
Then

| f(exp ), f(exp t cos 66,)| < tr,
for every sufficiently small t > 0.

Proof. Since I, has curvature > 1, we have an expanding map p : £, — S™" ! (m =
dim M). First we show that ||p(v1)p(v2)| — [v1v2]| < T for every vy,v; € H,. Let v} € Hp
be such that |v;v]| > 7 — 7. Since p is expanding, we obtain that

(4.14) |lorve| = |p(vi)p(v)ll < 7ey  [lviva| = lp(v)o(v2)l] < 7e.

This argument also implies that p(H,) is Hausdorff 7.-close to a totally geodesic (n — 1)-
sphere S~ in §™~1. Let ( : H, = S"! C ™! be a r-Hausdorff approximation
such that d({(v), p(v)) < 7 for all v € H,. For a given { € I,, an argument similar to
(4.13) implies-that [|{v| — |p(€)¢(v)|] < T for all v € H,. Remark that for any y with
/10 < |py| € o, an elementary geometry yields

cos |p(€)¢(y' ) = cos|p(€)n| cos [n{(y")],

where 7 is an element of S™~! such that |p(£)n] = |p(£)S™~1|. It follows that for sufficiently
small ¢ > 0

| fa(expté) — fum(exptcos )]/t
=0_2/ (h(|expt€,99(='=)|)—h(lw(I)D
ba) Jx 3

_Hexpteontnplo)) - h(w(w)n) du(z)

< s [ (W (lop())?cos (e ~ cosos sl di(a) + 7

< % [ )7 cos (a1~ coslo(€)C(o(a)

+ cos |p(€)n] cos [n¢(¢(z)')| — cos |€€1 | cos [€o(z)'|)? dpu(z) + 7
< Te.

Therefore by Lemmas 3.10 and 2.7 we conclude the proof of the sublemma.
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Proof of Lemma 4.11. Since f is a 7(¢)-Hausdorff approximation (Lemma 4.3), we may
assume that |pg] < 0 € o. Let c: [0,€] = M be a minimal geodesic joining p to ¢ where
£ = |pq|. By using (2.2.2), one can show that

(4.15) |£qe(t)z — Lgpz| < 7o,

for every t < £ and for every z € M with ¢/10 < |pz| < o, Let £ be any element in ¢’ C
Eewy, and o € H, such that |§oHp| = |€ono|. Take y such that 5o = ¢', 0/10 < |py| < o
and ny in y' C Z(y). Put 8; = Zge(t)y. It follows from Subemma 4.13 and (4.15) that

(4.16) If oc(t+3), flexp scosbon:)| < Tes.
Put ¢(t) = f o ¢(t), and take any #; in = [)(y)' C Zgyy. Then by Lemma 4.6
(4.17) | f(exp s cosbyn), exp s cos boffe| < T3.

By (2.2.3), we see that for every z € X with ¢/10 < |pz| < o,

(4.18) |£9(y)e(t)z — Ly(y)p2| < .

Now let (ai,b;) be an (n,§)-strainer at p such that |pa;| = ¢ and A : Bg{c?) — R™ be the
bi-Lipschitz map, A(z) = (|ayz|,...,|asz|). Put u(t) = Ao &(t). Combining (4.16),(4.17)
and (4.18), we get

la(s) — u(2)| < T, [|t(8)] — cosbg| < T.

for almost all s,t € [0, £]. Thus we arrive at
|£i(s) — (A(f(y)) — A(f(2))I
t . .
< fo li(s) — 0(t)] dt < 7et.

This completes the proof.

We conclude the proof of Theorem 0.2 by showing
Lemma 4.19. f is surjective.

Proof. Since f is proper, f(M) is closed in X. Suppose that there exists a point ¢ €
X — f(M), and take p € f(M) such that |zp| = |zf(M)| and put 5 = f(p). By Lemma
4.6, for any £ in =’ C T; we would find ¢ € H, satisfying |f(exp t¢),expté| < 7t for
sufficiently small ¢ > 0. Thus it turns out that |f(exp ¢£), z| < |pz|, & contradiction.

Proof of Corollary 0.4. If dim M = n, then 2é-strain radius of M is greater than /2 for
sufficiently small € > 0. Lemma 1.8 then implies that H, is 7(6,0)-dense in I, for any
p € M. It follows from Lemma 4.11 that |f(z)f(y)|/|zy] — cos7(6,0)| < 7. Thus fis a
Te-almost isometry as required.
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Remark 4.20. Suppose that both M and X have natural differentiable structures of class
C? such that the distance functions are C'-class. In this case, we can take a locally trivial

fibre bundle of class C? in addition as the map f. It suffices only to replace the maps fx
and fjs by C'-maps defined by

1
Va(Bz(€)) Ja, (¢

L
fmu(p)(z)=h (m /;W)(e) |Py|d#(y)) :

For instance, if every point in X is an (n,0)-strained point, then X has a natural C'-
structure ({OS]). Remark that the fibre of f is an "almost nonnegatively curved manifold”
in the sense of [Y].

fx(p)(z) =R ( lpyl du(y)) ;

By the previous remark, one can modify the main result in [O] as follows. We denote
by e?(M) the excess defined there.

Corollary 4.21. For given m and D,d > 0, (D > d) there exists a positive number
€ = €, (D, d) such that if a compact Riemannian m-manifold M with sectional curvature
> —1 satisfies

diameter(M) < D, radius(M) > d, (M) <e,

then there exists an Alexandrov space X with curvature > —1 having C'-differentiable
structure and a fibration f : M — X whose fiber is an " almost nonnegatively curved manifold’.

In [O], Otsu constructed a smooth Riemannian manifold X’ with a similar property as
in Corollary 4.21. Unfortunately, the lower sectional curvature bound of X’ goes to —oo
when M changes such as e/(M) — 0.

Proof of Corollary 4.21. Suppose the corollary does not hold. Then we would have a
sequence of compact m-dimensional Riemannian manifolds M; with sectional curvature
> —1 such that diam(M;) < D, rad(M;) > d, e?(M;) — 0 and that each M; does not
satisfies the conclusion. Passing to a subsequence, we may assume that M; converges to an
Alexandrov space X. Since e?(X) = 0, we see that the injectivity radius of X is not less
than d. Hence by [Pl], X admits a natural C?-differentiable structure. Thus by Remark
4.20 we have a C'-fibration of M; over X for large i, a contradiction.

Remark 4.22. In the construction of the map f, we used the embedding of X into L%(X).
One can also employ an embedding of X into a Euclidean space by using the distance
function from each point of a net in X. However if one tries to extend our argument to a
more general Alexandrov space Y, which may contain more serious sigular points, L*(Y)
is large enough to embed Y. This is the main reason why we employ L?(X) to embed X.

The remark above leads us to the following
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Problem 4.23. Find geometric conditions on an Alexandrov space X (other than small size

of singularities) that ensures the existence of a tubular neighborhood, in the generalized
sense, of the embedding fx : X — L?(X).

An answer to the problem would provide, for instance, a geometric proof of Grove,
Petersen and Wu'’s finiteness theorem [GPW]

§5 Proof of Theorem 0.5

The proof of Theorem 0.5 is based on the following

Theorem 5.1. For given positive integers m,n (m > n) and pg > 0, there exist positive
numbers 6, ¢, 0 and w depending only on apriori constants and satisfying the following:
Let M and X be Alexandrov spaces with curvature > —1 and with dimension m and n
respectively. Suppose that M is locally simply connected and that §-str. rad(X) > pp.
Then if the Hausdorff distance between M and X is less than €, then for any p € M the
image T of the inclusion homomorphismm(Bp(o, M)) — m1(B,(1, M)) contains a solvable
subgroup H satisfying

(5.1.1) [: H]<w,
(5.1.2) The length of polyciclicity of H is not greater than m — n.

For the defininition of the length of polycyclicity of a solvable group, see [FY1].

The essential idea of the proof of Theorem 5.1 is the same as that in [F'Y1,7.1]. However
in our case we do not know yet if the map in Theorem 0.2 is a fibre bundle. This is the
point for which we should be careful.

Proof. The proof is done by the downward induction on n and by contradiction. By
Corollary 0.4, the theorem holds for n = m. Suppose that it holds for dim X > n + 1, but
not for n. Then we would have sequences M;, X; of Alexandrov spaces satisfying :

(5.2.1) dimM;=m, dimX;=n.

(5.2.2) é;-str. rad(X;) > po, where lim;_,o §; = 0.

(5.2.3) dy(M;, X;) < ¢;, where im;_, €; = 0.

(5.3) For some p; € M; and for sequences o; — 0,w; — 0o, the image of the inclusion
homomorphism 71 (Bp,(0i, M;)) — m1(Bp,(1,M;)) does not contain a solvable subgroup
satisfying (5.1) for w = w;.

Let f; : M; — X, be the 7(§;, ¢;)-almost Lipschitz submersion constructed in Theorem
0.2, and A; the diameter of f,-l(z,-), z; = fi(p;). For oy € po, we put B; = B; (00, X),
B; = f‘-_l(B,'). Remark that By, (00/2, M;) C B; C Bp,(200, M;). Let 7; : E,— — B; be the
universal cover, and I'; the deck transformation group. Let d; and d; be the distances of
M; and X; respectively. From now on we consider the scaled distances d;/A; and d;/A;
implicitly. Passing to a subsequence, we may assume that (B;, p;) (resp. (B;,z;)) converges
to a pointed space (Y, yo) (resp. to (R",0)) with respect to the pointed Hausdorff distance.
We may also assume that the Lipschitz map f; : B; — B; converges to a Lipschitz map
f 'Y — R" with Lipschitz constant 1. Since one can lift n-independent lines in R"
to those in Y, the splitting theorem ([GP],[Y]) implies that Y is isometric to a product
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R" x N, where N is compact with diameter 1. Furtheremore since the property of f; in
Lemma 4.11 is invariant under scaling of metrics, one can check that f : R®" x N — R" is
actually the projection.

In particular, it turns out that the fiber f7!(z;) with the distance d;/A; converges to
the nonnegatively curved Alexandrov space N. This implies the properties of fiber stated
in Remark 0.3. _

For p; € 7 (pi), by using [FY1,3.6) we may assume that (B;,T;,p;) converges to
(Z,G,Poo) with respect to the pointed equivariant Hausdorff distanse, where G is a closed
sugbroup of the group of isometries of Z. As before one can prove that Z is isometric to
R" x Z' where Z' is compact, and that 7; converges to the projection 7o : R*¢x Z' —
R"™ x N by the action of G. Remark that G acts on R¢ x Z'. Let C be the diameter of
N=(R!x 2")/G.

For a triple (X, T, z¢), we use the notation in {FY1,§3] such as

I'(R) = {y € T|lyzozo| < R}.

Then we have easily.

Lemma 5.4. G is generated by G(2C).

To apply [FY, 3.10], we need to ristrict ourselves to a compact set of R®. Let U; =
B..(10C + 1,d;/A;), U; = f~Y(U;). Remark that U; has a uniform bound D on its
diameter.

Since f; is not known to be a fibre bundle, we need the following lemma.

Lemma 5.5. There exists a positive integer I such that I'; is generated by I';(8C + 1) for
each i > I. In particular, the inclusion homomorphism 7y (U;) — T'; is surjective.

Proof. First we prove that =7 '(U;) is connected. - Suppose that it has two connected
components V; and W;. Since the diameter of U; is uniformely bounded, we can take y; € V;
and z; € W; such that |y;2;| = |V;W;| and that |p;y:| is uniformly bounded. Let & = exp té;
be a minimal geodesic joining y; to z;, and ¢; the length of &;. Since the action of G on
R"™-factor is trivial, ; must go to infinity as 1 — 0o. For z € B; let H, C ¥, be the set that
project down to Hy (). (See §4). From the convergence (Bi,p;) — (R*t x Z'} and from
the choice of y; and z;, it follows that [f,-I?M ~— 0ast — oo. Now let ¢; = m;0&; = exp t§;.
Take w; such that |m;(y;)w;| 2 0¢/A; and |{wl] < 7(6;,€;), and put 7;(t) = exp tw}. A
generalized version of Theorem 1.1 (see [CE]) implies that |m;(2;)n:(€;)| < €it(6i,€i). Take
71,72 € I'i such that |y1p;,vi| < 2D, |v2pi, zi| < 2D. It turns out

0 = [mi(115:i), mi(v2 i)
> |mi(yi)mi(zi)| = (i) mi(yi)l — |mi(yepi)mi(2i)
>¥8; - f,‘T(&,‘, e,') —4D > 0,

for each sufficiently large ¢, a contradiction.
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Now for any v € I, let ¢;() be a curve in 7 }(U;) joining p; to vp; with length say,
R. For each j, 1 £ j £ R and for sufficiently large i, one can take v4; € I'; such that
le1(7)y;Pi| < 4C. Thus 7 is written as the product :

¥ = )M gg—) - (e,
each of whose factor has length less than 8C + 1. This completes the proof of the lemma.

Let 5’,- be the universal cover of U;, and A; the deck transformation group. As before
we may assume that (17.',1\,-, pi) converges to a triple (R¥ x W, H,0), where both W and
(R* x W)/H are compact. The main theorem in [FY2] implies that H/H, is discrete,
where Hy is the identity component of H.

We next show that H/H, is almost abelian. Since H preserves the splitting R* x W,
we have a homomorphism p : H — Isom(R¥). Let K and L denote the kernel and the
image of p respectively. The compactness of K implies the closedness of L. It follows from
[FY, 4.1] that L/Lg is almost abelian. Since K Hy/H, is finite, the exact sequence

KH, H L
_—— — — —3 ]

Ho Ho Lg

1 —

implies that H/H, is almost abelian as required. (See [FY1, 4.4]).
Now by [FY1, 3.10], we can take the "collapsing part” A} of A; in the following sense:

(5.6.1) (f}.-, A%, 5;) converges to (R* x W, Hy, 0) with respect to the pointed equivariant
Hausdorff distance.

(5.6.2) A;/A!l is isomorphic to H/Hj for large .

(5.6.3) For any € > 0 there exists I, such that A} is generated by Aj(e) for every i > I..

The final step is to show that A} is almost solvable. We go back to the Hausdorff
convergence of U; to B*(C') x N, where C' = 10C + 1 and B"*(C') = By(C',R"). By
[BGP), we can take a good point zy in B*(C')x N. This means that ((B"(C')x N,d/e), zo)
converges to (R™** 0) as ¢ — 0, where d is the original distance of B*(C') x N and s is the
Hausdorff dimension of N (3 > 1). Let € nt4(1) and 0m n44(1) be the constants €, o given
by the inductive assumption for m,n + s and yg = 1. Now fix a small € and take a large ¢
so that the pointed Hausdorff distance between ((U;, d;/A;e€), ¢;) and (R™+*,0) is less than
€m,n+s(1), where g; is a point in U; Hausdorff close to £5. Now by induction we can conclude
that the image T; under the inclusion homomorphism of m1(By;(0m n+s(1),di/Aje)) to
m1(By,(1,di/Ai€)) contains a solvable subgroup H; such that

(5.7.1) [T; : H has a uniform bound independent of i.
(5.7.2) The length of polyciclicity of H; is not greater than m — n — s.

By [FY1,7.11), (5.6.3) can be strengthend as :
(5.6.3) For any € > 0, there exists a positive integer I, such that A} is generated by the
set {y € A}||yzz| < €} for every z € U;.
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It follows that A; is included in the image of m1(Bg;(0m n+s,di/Di€)) — Ai. Therefore
also A contains a solvable subgroup satisfying (5.7). Thus it folows from (5.6.2) that A;
is almost solvable. Therefore Lemma 5.4 yields the almost solvability of I';. This is a

contradiction to (5.3). The proof of Theorem 5.1 is now complete.

By using Theorem 5.1, we can prove the following theorem, a generglized Maruglis’
lemma along the same line with [FY1, 10.1, A2]. The details are omitted.

Theorem 5.8. For given m, there exists a positive number o, satisfying the following:
Let M be a locally simply connected, m-dimensional Alexandrov space with curvature
> —1. Then for any p € M the image of the inclusion homomorphism 7y (By(0m, M)) —
71(Bp(1, M)) contains a nilipotent subgroup of finite index.

Our Theorem 0.5 is a special case of Theorem 5.8.

Appendix Relative volume comparison

Let X be an n-dimensional Alexandrov space with curvature > k. We fix p € M and
D € M"(k), and put D,(r) = {z € X ||pz| < r}. First we study the equality case in (1.3).

Proposition A.1. Suppose V,,(Bp(r)) = bi(r). Then By(r) with the length structure
induced from the inclusion Bp(r) C X is isometric to By(r) with the induced length
structure.

Furthermore one of the following occurs:

(A.2.1) Dy(r) with the induced length structure is isometric to Ds(r) with the induced
lengh structure.

(A.2.2) X = D,(r) and there exists an isometric Zs-action on the boundary of Dp(r)
such that X is isometric to the quotient space B;(r) Uz, 0D3(r).

In the case k > 0, 7/2vk < r < 7/Vk, (A.2.2) does not occur.

Proof. By Lemma 1.2, the map p : Bp(r) — Bj(r) there does not decrease measure, and
hence preserves measure in the equality case. To show that Bp(r) is isometric to By(r),
it suffices to show that p is a local isometry. For any ¢ € Bp(r) take an ¢ > 0 such that
B.(c) C B,(r), and suppose that |p(y)p(yz)] > lyrval for some y1,; € By(e/2). Put
2s = |y1y20,2t = |p(y1)e(y2)l, B; = B,y (t) and B; = By,(t). Let z be the midpoint of a
minimal geodesic y;y2, and B = B,(t — s). Then from V,((B; U B;)°) < V.((B1 U B,)°)
and V,(B;) < Vn(ﬁ,-) we would have

Va(Bp(r)) < Va(Bi1) + Va(B2) + Va((B1 U B2)°) — Vu(B)
(A.3) < Vu(By) + Va(By) + Va((By U By)®) — Voa(B)
= b (r) — Va(B),

which is a contradiction.
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The proof of (A.2.2) is essentially due to [GP2]. Suppose that p is not continuous on
the boundary 8Dp(r). Let p : Ds(r) — D,(r) be the continuous map such that p = p~!
on Bs(r). We show that §u~!(z) < 2 for all z € 8Ds(r). Suppose that there are three
points z;,z9,Z3 in p~!(z). Now we have three minimal geodesics «; : [0,¢] — X joining p
to z, where £ = |pz|. For a sufficiently small € > 0, put y; = 4:(£ —¢€). Then it follows from
an argument similar to (A.3) measuring volume loss that for every 1 < ¢ # j < 3, the ball
By, (¢€) does not intersects with By (¢e). Thus it turns out that the segments y;z and zy;
form a minimal geodesic. This contradicts the non-branching property of geodesic.

Now we have an involutive homeomorphism ® on 8Dp(r) such that u(®(z)) = p(z).
Since a curve in 8D3(r) can be approximated by curves in Bj(r), we can see that &
preserves length of curve and hence is an isometry. Thus D,(r) is isometric to the quotient
Bj(r) Uz, 0D3(r). If @ is nontrivial, then agin the non-branching property of geodesic
implies X = D,(r). However, in case of k > 0 and 1r/2\/E <r< TF/\/E, the nontrivial
quatient Bj(r) Uz, 8D;s(r) does not have curvature > k. Hence p must be continuous
in this case. It follows that p = p~?! is an isometry with respect to the induced lengh
structure because it preserves length of curve.

Next we prove a relative version of (1.3), which corresponds to the Bishop and Gromov
volume comparison theorem ([GLP]) in Riemannian geometry.

Proposition A.4. Forr < R, we have

Va(By(R)) _ B}(R)
Vn(Bp(”')) - b:(")

Proof. Put Sp(t) = {z € X ||pz] = t}. By a recent result in [0S}, the set of all (n,)-
strained points in X has full measure for any é > 0. Hence in view of Theorem 1.4, we
can apply the coarea formula ([Fe]) to obtain

R
(A5) Va(By(R) = [ Vaca(Sp(t)t

Now we show that

Va_1(Sp(R)) _ Va-1(Ss(R))
Vac1(Sp(r)) = Vaoi(S(r)

Let us suppose the case k < 0. The other cases can be treated similary. For z € S,(R)
(resp. € S3(R)), let p(z) (resp. p(z)) denote the intersection of a minimal geodesic pz
with Sp(r) (resp. pZ with S5(r)). We know that for any € > 0 there exists § > 0 such that
if |Zy| < &, then

(A.6)

< €,

eyl _ s/ T
|zy| sinh V—kr

which implies

Va-1(S5(R)) _ (sinh@)““
Va-1(S5(r)) sinh /—kr '
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Theorem 1.1 yields that |p(z)p(y)| > |3(Z)5(§)| for every z,y € Sp(R) and Z,§ € S;(R)
with jzy| = |Zy|. Hence if |zy| < §, then

lp(z)p(y)] _ sinh v—EkR
|zy| sinh \/_r

Now (A.6) immediately follows from (A.7) and (A.8).
We put A(t) = Vo_1(Sp(2)), A(t) = V,,_1(Sp(t)) and

(A.8)

— €.

Va(By(®) _ Ji Ayt
= Va(By(t)) — [P A(t)dt

Since

A(t) [y A(t) — A(2) [y A(t)
(ﬁmm2

- (36 L wo- [ 40) s

f'(t) =

it follows from (A.6) that
(8 - )

By using Proposition A.4, one can obtain the volume sphere theorem extending one in

[0SY].

Proposition A.9. There exists a positive number € = €, such that if an n-dimensional
Alexandrov space X with curvature > 1 satisfies V(X)) > bF(7) —¢, then X is r(€)-almost
isometric to S".

This completes the proof.

Proof. Let p : X — 8" be an expanding map as in Lemma 1.2. For some y,,y; € X
suppose that 2s = |y 32| < |p(y1)p(y2)| = 2t. Then by the argument in (A.3),

(A.10) Va(X) < bT(7) — Va(B.(t — 38)),
where z is the midpoint of a minimal geodesic y;y2. On the other hand, from Proposition
A.4 and the assumption on V,,(X), we have V(B (t—s)) > (1—¢/b7(x))b} (t—s). Together

with (A.10) this implies |t — 8| < 7(€). Thus dy(X,S™) < 7(€) because p(X) is 7(€)-dense
in S™. Therefore by Theorem 1.5 we obtain a 7(¢€)-almost isometry between X and S".
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