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Abstract

It is proved that each irreducible linear system of differential equa-
tions can be analytically transforined to Birkhoff standard form

1 Introduction

Consider a linear system of differential equations

- = A(z)y, (1)

where A(x) is a matrix of size (p,p) of the form

Alx)=a" ) Anz™, Ag#0, >0, (2)

n=0

z is a complex variable, and the power series converges in some neighborhood
of oco.

Under a transformation
z = [(z)y (3)

system (1) is transformed to the system



where
dl’

dz
If I'(z) is holomorphically invertible in some neighborhood of oo, then such
a transformation is called analytic. If I'(x) is holomorphically invertible in
some punctured neighborhood of oo, and i1s meromorphic at oo, then such a
transformation is called meromorphic.

If the matrix B(z) in (4) is a polynomial.in z of the smallest possible
degree, then (4) is called ¢ Birkhoff standard. form for (1).

Birkhoff [Bi] claimed that each system (1) can be analytically transformed
to a Birkhoff standard form, but Gantmacher [Ga] presented a counterexam-
ple to this statement. It turned out that Birkhoff’s proof was valid only for
the case when a monodromy matrix of system (1) was diagonalizable.

Let us call system (1) reductble if there exists a holomorphically invertible
in some neighborhood of co matrix ['(z) such that under the transformation
(3) system (1) is transformed to system (4) with an lower diagonal block

matrix
B(z) = ( By 32 ) (6)

*

B(z) = z—T"" + z[ A(z)"". (5)

For p = 2 Jurkat, Lutz, Peyerimhoff [JLP], and for p = 3 Balser [Ba] proved
that each irreducible system (1) (generic system in terms of Balser’s paper
[Ba]) can be analytically transformed to a Birkhoff standard form. We prove
here that the analogous result is valid for arbitrary p.

Theorem 1 FEach irreducible system (1) can be analytically transformed to
a Birkhoff standard form.
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2 Technical lemmas

To prove Theorem 1 we need the following statements.



Lemma 1 . Suppose thal the matriz W(z) of size (p — {,1) ts holomor-
phic, and the matriz Y(x) of size (I,!) is holomorphically invertible in a
neighborhood O of the point 0. For any integer-valued diagonal matriz C =
diag(ci,...,cp), there ezists ¢ matriz-function T{z), meromorphic on the
whole Riemann sphere and holomorphically invertible off the point 0, such

that
e () ) = (i) ). G

where C' = diag(cy,. .., a, c;+1, sy C)y €y >minfe,...,a), j=I+1,...,p,
and the matriz W'(z) is holomorphic in O ([Bog2)).

Proof. By {; denote the rows of the matrix

Let t,, = z°"w,(z) be a row of this matrix such that m > [ ¢, <
min(e,...,¢), w,{0) # 0. Since the rows y,(0),...,y(0) of the matrix
Y (0) are linearly independent, we have w,,(0) = — )::;:1 d;y;(0). Hence ,
the row vector

1,171(:1:) =d " tH1(z) 4+ ...+ iz 4{z) + tal(z) = (8)

™ (dyy () + - - + diyi(z) + wi(z))

has the form ¢! (z) = e w] (z), where either wl (z) = 0 or w} (0) #

0, c. >cm. Ifwl(z)=0o0rwl(0)#0, ¢, > min(cr,...,¢) , then we
stop the procedure. If ¢}, < min(cy,...,q) and w} (0) # 0, then w} (0) =

m — m

~ 1 d} y;(0) and we again can consider the corresponding polynomial

tfn(m) = d}m“’l"'cl () + ...+ d,la:':'I"_c' t(z) + t:n(:z:)

and so on. )

In all cases after a finite number of steps, we get 12 (z) = z°» w] (z),
where ¢/, > min(¢y,...,¢) with holomorphic w),(z). We consider the poly-
nomials

s 1 _ .. _ -1_ .
QY = djz™ % + a7 4 4 di g o



in 1, By construction,
x

l
2 Q@) + tule) = o™ wy(2), m=1+1,..p.
1=1

One should substitute

a )

41 +1
l - - - J.

\ Q... Q0 .1
for the matrix I'(z) in (7). This concludes the proof of the lemma.

Remark 1 1t follows from the form (9) of T'(z) that for any holomorphic in
O matriz Z(x) of the size (p,m) the matriz

I'(z)z® Z(z)
is still holomorphic in O.
The following statement was proved in [Bol] for some special case.

Lemma 2 Let a matriz U(z) be holomorphically invertible in a neighborhood
O of the point 0 and let all the principal minors of U(0) be nonzero. Then
for any integer-valued diagonal matric C = diag(c,, . .., cp) with the condition
¢ 2 ... 2 ¢, there exist « holomorphically invertible off 0 matriz I'(z) (which
is a matriz of polynomials in ) and a holomorphically invertible in O matriz
V(z) , such that

['()zC U(z) = V(z)a®. (10)

Proof. Rewrite the matrix z€ U(z) as follows:

2C U(z) = 29" U(z)zr!, (11)



where I is the identity matrix and apply Lemma 1 to the matrix

- Y(z) \ _ [ U'(=) -
cmcmen ()=, b,
where in turn U'(z) is formed by the intersections of the rows and columns

of U(z) with numbers 1,...,1, and W)(z) is formed by the intersections of
the rows with numbers I+ 1,...,p and the columns with numbers 1,...,[ of

U.
By Lemma 1 there exists a matrix I';(z) of form (9) (with [ = p — 1),

such that Yy .
FI(I):EC-cpl ( U ) 1 ( U (:(E)) )’ (12)

where C; = diag(c) — ¢,y -, Cp_1 — c c > ¢p—1 — ¢p. Therefore,

$C’ ( Up:_l(.’f:') ) — mcl—(cp_l—cp)l ( Up,— (‘E) ) :E(Cp—l_cp)lﬂ—l’
wl () wp ()

where I, is the identity matrix of the size (p — 1,p — 1). It follows from
(11) and the latter formula that the following factorization holds:

Ur=2(z) Zl) =D (13)

A ..C — Cl—(c _1—cp)l
Li(z)a"Ulz) == P ( Wiy(z)

where W, is a matrix of the size (2,p — 2), holomorphic in O , D, =
diag(cp-1,...,Cp=1,Cp), and by Remark 1 Z; is holomorphic in O too. Let
apply Lemma 1 to the matrices

C =Cy — (cpo1 — )], (3;((?) ) = ( UI:/;:S;)) [=p—2.

By Lemma 1 there exists ['3(z) such that

Py ()01 —(epm1 =op)] ( ULZES;) ) g2 ( U‘;;ES) ) . (1)

where Cz = diag(e1 — ¢p-1, -+, Gpo2 = Cpo1,Cp_1, Cp )y Cpoy > Cp—2 = Cpo1, € >
Cp—2 — Cp—i. Therefore,

Ca Up_z(-'li) — Ca—(cp_2=cp_1)! Up—z(l') (cp—2—=cp—1}Ip—2
i ( Wiz) )= Wiz) ) ° 0

S



where I,_5 is the identity matrix of the size (p — 2,p — 2). From (14) and
(15) we get
Zg) .'L'DQ,

where W3 is a matrix of the size (3,p — 3), Wi, Z; are holomorphic in O,
D, = diag(cp-2, - .., cp—2, Cp—1,¢p). And so on.
As a result after p— 1 steps (the first two of which were described above)

Ur=3(z)

F2F1($)$CU($) — :CCQ—(C}?-?_CP—l)" ( W3($)

we obtain a matrix I'(z) = I',_; -...- I}, such that (10) holds with some
holomorphic in O matrix V(z).
Since

det V(0) = lim det T'(2) det U(0) = det U(0) # 0,

we obtain that V{(z) is holomorphically invertible at 0. (Here we used form
(9) of each T';(z), which implies det [';(z) = 1).

Lemma 3 Let a matriz U(z) be holomorphically invertible tn « neighbor-
hood Qof the point 0. Then for any integer-valued diagonal matriz C =
diag(cy, .- ., ¢,) there exist a holomorphically invertible off 0 matriz I'(z) and
a holomorphically invertible in O matriz V(z), such that

I'(x)z“U(z) = V(z)z?, (16)

where D = diag(dy, ..., dy) is obtained by some permutation of diagonal ele-
ments of the matriz C.

Proof. First let the diagoual elements of C' be nonincreasing. With help of
some constant nondegenerated matrix S we transpose the columns of the
matrix U(z) so that all principal minors of the new matrix U’ = US are not
equal to zero. Applying Lemma 2 to U’, we obtain

[(z)z%U'(z) = V'(x)=°,
therefore |
I'(z)2%U(z) = [(2)z%U'(z)S™" = V()25 =

= V'(2)§7 125957 = V(z)2P.



If the elements ¢y, . . ., ¢, are not ordered, then there exists a constant ma-

trix S, such that (§)7'CS’' = C’, where C' = diag(c},...,c;) and ¢},...,¢,
already form a nonincreasing sequence. For the matrix € (S")"'U(z) con-

sider the corresponding matrix I'(z) . In this case one can take the matrix
[ =T"(S")"" for the matrices C and U(z) in (16).

3 Analytic transformation of an irreducible
system

Now we have all we need to prove Theorem 1.
Proof of Theorem . Consider a fundamental matrix Y (z) of system (1)
of the form
Y(x) = M(z)z®, (17}

where M(z) is a single-valued matrix function with nonvanishing det M(z)
in some punctured neighborhood K of co, E = ;- log G has a Jordan normal
form, G is a monodromy matrix of (1) in the basis of the columns of Y(z).

Let F' be arbitrary integer-valued diagonal matrix F' = diag(fy,..., fp)
such that

hz--2/. (18)

Treat the matrix M(z)2~F as the transition function of some vector bundle
on the Riemann sphere P! with the coordinate neighborhoods K U {cc} and
P\ {oo0}. By Birkhoff-Grothendieck’s theorem [OSS] there exist a holomor-
phically invertible in some neighborhood of oo matrix T'(x) and holomorphi-
cally invertible in complex plane matrix U(z) such that

T(z)M(z)z™F = 2°U(z), (19)

where C = diag(cy,...,¢), ¢ € Z, ¢ 2 - > ¢,. (This follows also from
Sauvage’s lemma, cf. [Ha]).

Proposition 1 If system (1),(2) is irreducible, then for arbitrary integer-
valued diagonal matriz F with condition (18) the following inequalities hold
Jor the elements of the corresponding matriz C from (19):

G —¢u Sy, 1=1,...,p—1. (20)



Proof. Assume that for some k =1,...,p—1:
Cr — Cryq > T (21)
Consider the system with the fundamental matrix
Y'(z) = €U ()" zE. (22)

This systemn has only two singular points 0 and oo on the whole Riemann
sphere (since U(xz) is holomorphically invertible everywhere except oo) and
its coefficient matrix A’ = m%(Y')’l has a pole of order r at co. The last
statement follows from the fact that this system is obtained from the original
system (1) by a transformation T'(z) , which is analytic in some neighborhood
of oo.

On the other hand from (22) it follows that

A(z)=C +a° Wy +U(F + L)U™ | z™°, (23)

dz

where L = " Ex~F. Tt follows from (18) and the fact that £ has an upper-
triangular form, that L is holomorphic on the whole complex plane. There-
fore, the matrix in square brackets in (23) is holomorphic everywhere except
the point co. Denote this matrix by W{z). Then

Al(z) = C + z“W(z)z™C. (24)

Since an element «; of the matrix A" and an element w;; of the matrix W (z)
are connected as follows

/ . Cl'—'CJ' ., N -
a; = a% w1 # g,

we obtain from assumption (21) that fori =1,... )k, 7 = k+1,...,p the
following inequalities hold:
Ci—¢C; > T,

Therefore, for every pair of such z, j the element a}; has a zero of order m > r
at 0 while an order of its pole at oo is less or equal to r. This means that

a; =0, t=1,...,k g=k+1,...,p



and therefore, the original system (1) is reducible . But this contradicts the
assumption of the proposition. This contradiction means that equalities (20)
hold true.

Let us continue the proof of Theorem 1. Consider a matrix F' from (18)
such that

fi—fi+1>7‘(p_1)’ i:l,.‘.,p—l (25)
and consider the corresponding matrices T(z),C from (19). By Lemma 3,
applyed to the matrix z°U(z) from (22) there exists a holomorphically in-
vertible off co matrix I'(z) such that (16) holds true.
Under the analytic (in some neighborhood of o) transformation

2 = M(a)T(z)y (26)

our original system (1) is transformed to system (4) with the fundamental
matrix

Z(z) = [(z)T ()Y (z) = V(z)zP+F2®, (27)

where V(z) is a matrix holomorphically invertible on the whole Riemann
sphere except the point oo.

It follows from Lemma 3 and Proposition 1 that for elements d; of the
integer-valued diagonal matrix D the following inequalities hold:

di—djy1 <r(p—-1), g=1,...,p-1. (28)

Indeed,
|d; — dj41] £ maxd; —mind; =¢; — ¢, =
1 i

(a—a)+(—ca)+ - +(ga—g)<r(p—1)
since D is obtained by some permutation of diagonal elements of C.
Thus, from (28) and (25) we get that the diagonal elements of the matrix
D + F are iu nonincreasing order. Since the matrix F is upper-triangular,
we again obtain that the matrix

Ll - .’ED+FEIL'_D_F
is the entire matrix function . Therefore ,
-1 dv -1 ! -1
Blz)=e—2Z =$d—V +V(D+F+ LYYW
T

is entire matrix function too. This completes the proof of the theorem.
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