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Abstract : We discuss several interesting properties of the Laurent series of ¥': C-D o C-M, the inverse of the
uniformizing map of the Mandelbrot set M= {ce C : ¢, c2+c. (02-0-0)2+c. e P> oo as n—oe}. Continuity of the Laurent
series on dD implies local connectivity of M,which is an open question. We show how the coefficients of the series can
be easily computed by following Hubbard and Douady's construction of the uniformizing map for M. As as result, we
show that the coefficients are rational with powers of 2 in their denominator and that many are zero. Furthermore, if
the series is continuous on dD, we show that it is not Holder continuous. We also include several empirical
observations made by Don Zagier on the growth of the power of 2 in the denominator.

Douady and Hubbard [DH], in demonstrating the connectedness of the Mandelbrot set,
construct a conformal isomorphism @ : C-M — C - D , where M is the Mandelbrot set, D is the
closed unit disk, and C is the complex plane. While visiting the Max Planck Institut fiir Mathematik in
Bonn, F. Hirzebruch asked us if anything was known about the coefficients of the Laurent series of
this map. Motivated by this question, we discuss several interesting properties of the Laurent series of
the inverse map &!=¥:C- D — C-M, including how its coefficients can be easily computed. It
should be noted that convergence of this Laurent series on dD implies the conjecture that M is locally
connected. With this in mind we discuss the rate of growth of the coefficients of the Laurent series. It
is interesting to note that while M is surely the most complicated set ever studied and the square S =
{z=x+iy : Ixi S 1, Iyl <1}, for example, is one of the simplest , the Laurent series for ¥ is far easier
to computé than the equivalent virtually intractable map for C-S.

_ In section 1 we describe Hubbard and Douady's proof that the Mandelbrot set is connected.
The computation in section 2 is a more detailed version of the analysis found in [J]. Jungreis observed

that many coefficients b; of the Laurent series of ‘¥ are zero, and he proved that byn =0 forn = 2, We
Qks1)2n = 0 when k <21-3 and that if P is any polynomial of degree d, then P(\¥(z)) has
no 1/,(2k+12" term when d+k < 20-2,

prove that b

We would like to thank Phil Rippon, Don Zagier, John Hubbard, and Heinz-Otto Peitgen
for many useful conversations and the Max Planck Institut fiir Mathematik in Bonn for its hospitality
and support.
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§1 - Preliminaries.

We begin with definitions and an outline of Hubbard and Douady's proof of the
connectedness of the Mandelbrot set. We then derive several simple estimates based on their proof.

For ce C, let Pi(z) = 22+c, P°(z) = P(Py(... Pc(z) ...)), n times, be the n-th iterate of
P (z), with P.°0(z) = z. Also define Ap(c) = P.°™(c) with Ag(c) = c. This implies

Api(©) =[A @)% +c. (1.1)

The Mandelbrot set is defined by M = {ce C : | Aj(c) | 5 o as n—ee} . It is not hard to show that M
is closed, has a trivial fundamental group and is contained in the closed disk of radius 2.

Theorem 1.0 (Douady and Hubbard) There exists a conformal isomorphism &:C-M — C - D,

Proof. If X and Y are Riemann surfaces and f:X—Y is an analytic proper map of degree 1, then f is
an isomorphism. We will construct a map & satisfying these conditions.

For a fixed ¢, we first find a map ¢.(z) which will conjugate P.(z) to z ~» z2 near infinity
in (_:, the Riemann sphere. That is,

9c(P(2)) = [c(2)]? (1.2)
for z near «=. We will then show that ¢.(z) can be extended to z = ¢, and define ®(c) = p.(c).
Equation (1.2) determines a formal Laurent series for ¢c(z) which is unique if we restrict

@(z) to be tangent to the identity at eo. Proving convergence of the formal Laurent series is
complicated, so we attempt to solve (1.2) via a scattering theory argument motivated by

0c(Z) = limy e [PoN(2)]2" . (1.3)

If such a limit were well defined, it would clearly satisfy (1.2). However, the !/5n-th root is not
unique, so we define @.(z) as follows,
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Write Top=2z and
1

¢ )Zn forn=1,2,3, ...

T,=|1+——m—m—ouou
( [P;(nml)(z)]z

Claim 1.1 There exists a neighborhood U of o such that for z in U the product []T; is well defined
and converges to a function which is tangent to the identity at oo,

It is clear that if |z! is sufficiently large, each term in the product is 1 + something small, so that the root
has a natural definition as the principal branch. It is easy to show that log Tyl converges to 0 rapidly

enough to insure convergence of the product, for instance log [Tyl= O(2™).

We now define

¢.(z) = HTi for zeU.
i=0

Claim 1.2 ¢.(z) depends analytically on c, satisfies Eqn. (1.2) and is tangent to the identity at oo,
IfS, = Hi=0...nTi , then
[Sal?" = [ToTy. Tul2" = 22" 4S8 (14624022
= 22" (2402 )2 (@440l 2, 023272

=72"( Pc°1(z)/zz )2“'1 ( Pc°2(Z)/(Pcol(z))2 )2“'2. .
which is a telescoping product reducing to

= Pcon(z)
Hence ¢.(z) = [IT; is a well defined version of Eqn. (1.3).

We now show that ¢(z) can be defined in a neighborhood of = which contains c. Let

log lo(z) | zelU
he(z) = { 1/,n log lo(Po(2)) when P.°(z)e U
0 when P °(z)e U for all n.

Claim 1.3 h.(z) is continuous.
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Claim 1.4 ¢ (z) can be extended analytically to a neighborhood of o containing ¢ if ce C-M .

Proof. Because @.(z) is tangent to the identity near oo, there exists a positive real number K such that
for every K”>K the set {z : he(z) > K} is a simply connected neighborhood of e which is contained
in U.

For ce C-M,P.°?(0) — e as n — oo, So there exists K” = h(P.°N(0)) > K for some
positive integer N. Let Ug= {z:h(z) >K’} and U; = {z: P(z)e Uy} = {z : he(P(2)) > K’}. [n
general, define -

Ui={z: Pc°i(z) eUpl=1(z: hc(Pc°i(z)) > K’}. Then Uy = {z : he(z) > he(0) = 1/,NK'}.
See figure 1.

Figure 1

Zero and o are the critical points of P¢(z), so if Og Ui, then P; : Uj,; — Ujis a covering
space ramified only at ee. Thus if U; is simply connected then U;,, will also be simply connected. Let
the map z — 22: X; - ¢(U;) be a double cover ramified at eo. If we define f(z) as a lift of the
following diagram with base point xe U, such that ¢.(x) = f(x), then ¢ (z) = f(z) for ze U; n"Uj4; . In
particular, f(z) is tangent to the identity at o and conjugates z — z2 with P.(z). Thus we define

(Pc(z) = f(Z) on Ul+1 .
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Now 0e U; foris N, and so @.(z) is well defined on Uy, and ce Uy;.

QED Claim 1.4

We now define the map ®:C-M — C - D by &(c) = ¢(c). ©(C-M) is contained in C - D,

thatis lgs(c)l > 1, because I(pc(c)ﬂ": lp.(P.°"(c))l which goes to infinity for ce C-M. Notice that near
oo, the map ®(c) can be written l'['ti fori=0,1,... wherety=c and

1

T, [1 + ;2)? for n=1,2,3, ...
[Aﬂ_l(C)]

where the 27-th root has a natural definition as the principal branch of the root. It is clear that the
product converges near infinity since the terms rapidly converge to 1.

Claim 1.5 ®:C-M — C- D is an analytic proper map.

Proof. The set L = {(c,z) : h(z) < h(0)] is closed. On C2L, (¢,z)> ¢.(2) is a determination of the
Toot (pC(PC°“(z))2_n. This determination is analytic for sufficiently large n, and hence d(c) is analytic.

To show that @ is proper we show that for any € there exists a neighborhood V¢ of M such

-N
that for any ce Vg-M, Id(c)l < 1+e. Choose N such that (312)2 < 1+¢, and let V, ={c : IP.°N-1(c)l
< 10} which contains M since IP.°N-1(c)! < 2 for ce M.
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Claim 1.6 If ce C-M with Ici <4 and Izl > 10 then lg (z)! < 3lzl .
This is a simple consequence of crude estimates based on the product expansion of ¢(z).
Now for every ce V-M there exists n 2 N such that IPC°“‘1(c)I <10 and [P,°"(c)l 2 10 . Therefore,

10 < PN < IPC™ ()2 +1cl <102+4,
And
1pe(P PN = lo()2" = ID(C)2 < 3 IP2R(C) < 3(102 + 4) = 312.
So Id{(c)l < 1+¢.
QED Claim 1.5

Finally, since ®(c) is a proper map, it has a degree. The Laurent series of ®(c) = [Ir;

begins with ¢ + ..., so the degree of ®(c) is 1. Thus &d(c) is one-to-one.
QED Theorem 1.0

Based on this definition of d(c) = [1t; we now derive several estimates on its Laurent
series. The map ®(c) is naturally a limit of functions &, (c) = 197;...T,.

Claim 1.7 1y =1+1/o0 @y 4.

Claim 1.8 The Laurent series expansions of ®(c) and @, (c) near o have identical terms ¢ + ag +
ayfc + ay/c? + ... + Ay k™, with k(n) = 20+1.3,

Proof. ®,(c) =1¢7;...T, and @, ,,(c) = 1¢T;... T4 have this many terms in common, as is

immediate from claim 1.7 . .
QED Claim 1.8

§2 - Computing the Coecfficients of @1,
In this section we show how the coefficients of the Laurent series of &1 can be easily

computed. Let &1= W:C-D — C-M. We can compute the first k(n) terms of W¥(c) by inverting
the first k(n) terms of &(c) or P (c). The latter lends itself to an easy algorithm :
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We can write

[Q)n(c)]’}," = [T9T) ... Ty) 2" = 2" (1+ 1/c)2“'1 (1+c/(02.+'_c)2)2n-2' .

= 2" ((P+e) 2 )2 ((cz+c)2+c)/( cZic)? 2.

— c2n ( Al(c)lc2 )2n-1 ( Az(C)/(Al(c))z )2“‘2”.
which is a telescoping product leaving only one term A, (c). Then
n n n-1 An-1
[P, ()2 = Ap(c)=c? +27c?  + ...

and ©(¥(z)) = z implies @, (‘V(z)) =z + 0(1/21+k(ﬂ)) asz — oo,
So '

(@, (PN = 2"+ O(1,2™D) = Ap(¥(@) = ()" + 2 w(z?" + ..

We want to compute ‘H(z) =z + by + by/z+ by/z + ...

Suppose we know the constants by, by, ..., bj.) then substituting

Y(z)~z+by + 1/ + ... +bjjZj

into the right side of (2.1) gives a term (21 b; + terms involving only by, by, ..., bj.1) 721 | Since

for j < k(n) the coefficient of 22" is zero on the right side of (2.1), we can solve for bj in terms of
by, by, ..y b;.; . Moreover, this shows that all the coefficients of the Laurent series of ¥(z) are

rational with powers of 2 in their denominators.

As an example, we compute the first two terms of the Laurent series expansion. Since k(1)
=213 =1, n = 1 is sufficient for this computation. Writing \¥(z) = z + by + b1/, and substituting

this into the right hand side of (2.1), we get

Py(¥) = W2+W¥ =22+ (2by+l)z + (2b) + (by)2 + bg) + ... = z2 + O(1/2).

Showing that by =-1/, and b; = /5.

2.1)



In this way one can compute as many coeflicients of ¥ as one wants, beginning

e = 1,11 15 0 47 1, %7 0
)=2- ot g, "1 T 1383 T T 10245 1625 T 3076827 T 19 :

We know that all of the coefficients have denominators which are powers of 2, and it is reasonable to look at
the powers of 2 occurring. Wrile d,,, = —v(am), where ap, is the coellicient of z=™ in ¥(z) and v(-) denotes
2-adic valuation. If a,, = 0, we set d,, = —00. The first values of d,,; are given by the following table:

n 11012345 6 780910 11 12 13 14 15 16 17 18 19 20 21
d10 13 2 7 w10 415 =18 5 22 o 25 9 31 < 34 11 38 6 4l

n| 22 23 24 25 26_27 28 29 30 31 32 33 34 35 36 37 38 3940 ...
dy) 11 46 -0 49 17 53 8 56 19 63 - 66 20 70 10 73 24 78 -oo

Based on more extensive data (up to about m = 1000), Don Zagier has made several empirical observations
about the numbers d,,. To state them, we write m = 2"mg with n > 0, mg odd. We use A(k) to denote v(k!);
which can be computed recursively by A(k) = [k/2] + A([k/2]). Then Zagier’s observations are as follows:

(i) am = 0 & mp < 2"+ — 5; the first two non-zero coefficients with a given n (> 0) differ by a factor of 4
{(except for n = 0). Thus

1 1
@2=-5 0=
= - _ 1 1
aq = a1z =0, 40 = =55, 61 = g5
- — _ _ 3 8
ag = Ggq = --- = ags = 0, 404 = —573 0120 = ~57E
_ = 334305 334305
ayg = a4z = - = aqga = 0, “464—-W| ﬂ4ns——-2T2"",
238436656373197 238436656373197
asz = Ggg = -+ = a1gss = 0, 1952 = — 062 y @2016 = — 26

(i) dm < A(2m + 2) for all m with equality exactly when m is odd. Equivalently, (2m + 2)'e¢,,, is always an
integer and is congruent to m modulo 2.

(iii} As well as the closed formula d,,, = A(2m + 2) for n = 0, one has (conjecturally) the following complete
formula for n = 1 and partial formula for n = 2:

n=1: dmzA([2771+2])+{0 if mg = —1 (mod 12),

3 1 otherwise,

n=2: du=A ([Q’L;Qf’-]) + ¢(mo)

(mgmod2{1 3 5 7 9 11 13 115 17 19 21 23 25 27]

emy)|5 6 s s 6 s si?2 2 5 5 6 5 4

More generally, for each n there is apparently a partial periodicity with period 2(2**? —1) in mgy (and hence
-2n+1(27+1 1} in m). In particular, if we write mp (uniquely) as 2(2"*! — 1)k 41 with & > 0 and { odd,
1 <1<272_3 then

[~1 ifl=2"*2_3, kodd,
dm = A" 20)+ ¢ if { =272 — 3, k even,
[+1 if2r¥l—3<igont?_5,

Thiese formulas cover more than half of the values of m for given n.

We will prove half of statement (i), viz., the statement agnpm, for mg < 2**! = 5, below. It would probably
also not be difficult to prove hall of statement (ii}, namely, the assertion that (2m + 2)la,, is always integral.
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§3 - Properties of the Laurent Series of V.

In this section we prove that many of the coefficients of the Laurent series of ¥ are zero,
which is a special case of the following more general theorem.

Theorem 3.0 If P(x) is a polynomial of degree d, then P(¥(z)) has no 1/z¢2*12" term when
d+js202, '

When P(x) = x, an immediate consequence is that the (2j+1)20-th coeficient of W(z) is zero when
0<j<20.3

The proof proceeds in several steps. The main idea is simple, and we demonstrate it first for
j =0 and P(x) = x. An observation which we will use repeatedly is that the derivative of a Laurent

series has no 1/z term. We will denote the coefficient of the 1/z term in a Laurent series %(z) by
Res(x(z)). Also we will denote 4/4,P(z) by [P(2)]' or P(z).

Claim 3.1 If P(x) and Q(x) are polynomials and x(z) =z + ag + a;/z +... , then Q(x(2))'[P(3(2))]
has no 1/z term. That is Res( Q(x(z) }[P(x(z))]' }=0.

The following simple proposition demonstrates the ideas we use in the proof of Theorem 3.1 .

Proposition 3.2 byn =0 .
Proof. By (2.1), A,(W(2))'¥'®@) =[ 22" + 0(1/z2™V) ' ¥'(z). And from claim 3.1 we have,
Res( A (¥(2))¥'(z) ) = 0 . But

Res([ 22" + 0(1/22"D) ]'W'(z)) =-20 byn
whennz22.
QED Proposition 3.2

Claim 3.3 A (‘\V(z)) satisfies
A (P(2) = 22" + BiF @)y o0 By(¥ @)y 30n 4 B¥@), @yt

where B (x)=-X/,,
Ba(x) =121 By - (By)2],
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B(x) = - BBy,
B4(x) =1/, [B; - (B)2]-By'Bj,
Bs(x) =-By'By - ByBy

and in general
Byi =12 [B;-(B)21-By'Byj; - ByBoja- ... -Bi1'Bjyg
Bjis1 = - By'Byi - Ba'Boiy - ... - ByBjy

Proof. Because Py(z)=P(-z), 9. is odd. Thus, for z large ¢, 1(z) = z + B1(€)/, + B2(C)/;3 +...  for
some analytic functions B;(c).

From P (9. 1(z))=9.1(z2) we obtain

z+B1O+B2Os3 + 2+ ¢ = 22+ B12 4+ BiO6 4 ..
Solving for B;(c) gives the polynomials defined above.
Also, z = ©(¥(2)) = ¢y,(‘Y(2)) implies ¥(z) = (pq,"(z). Substituting ¢ = W(z) into

P @) = o2 = 22" 4+ B1O),2" 4 By 30" 4

yields

P‘Pon(q’)‘i’-l(z)) (p‘l-’-l(zzn) = Zzn + Bl(\P)IZZn + BZCP)/Z3-2n ..

P‘Pon(\p(;,‘))
= Ap(Y(2)).
QED Claim 3.3

Proof of Theorem 3.0 If P(z) = azd + ..., write

P(W(z)) = azd + ... + C0722" & . + Cipz2i+ 12",
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We prove the theorem by induction on j.

"For j=0, (2.1) and claim 3.1 imply that

A¥@Y PP =122 + 00127 D) 1Py
has no 1/z term, But whend £ 20-2 ,
Res((z2" + O(1/Z2D)-[P(¥)]') = -20 ¢, .
Socy=0 whend < 202 .

Assuming that the hypothesis of the theorem holds for j < k-1, we observe that
Res( [Ag( W(z)]3*+! - [PC¥)]" ) = 0, because
[A(F(@))]5H = 22" 4 BiY@N20 o 4 B(¥(@)y (k132" | 2k
= [22" + Bi¥@)2" | By(¥(@)yp32° o 4 o(1 /Z((2k+l)'2"-k‘1))]2k+1

= 72027 4 726127 () 4 22302 Q) + ... + 227 QW) + 0O (22D

where Q;(*F) is a polynomial in ‘¥(z) of degree i arrising from the cross terms of the B;(*¥).

We now compute the 1/z term of the last expression multiplied by [P(*V)]'

Z(2k+l)2" [PCY)]' + z(2k-l)2" Q;(¥) [P(P)] + Z(Zk—3)2" Q,(F) [P(P)]'
o + 220 Q) [PCW)) + O(1/2% D) ey

which is
Res( 212" [P()]' ) + Res( 23 D2 Q(¥) [P(¥)]') + 1

Res(z23)2" Qy(¥) [P(¥)]') + ... +Res(z2 Qu(¥) [P(¥)]') + H (3.6)

Res( O(1/22™*Y) [p(#)' ). |
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"Now,
Res( 2D [P(W))' ) = -(2k+1)20 ¢, |
and
Res(z24D+D2° Q. wy [P(W)' )= 0 fori=1,...,k

because Q;(¥) [P(P)]' = [R(*Y)]' where R is some polynomial of degree i+d, and by induction,
R(Y¥) has no 1/22&D+1D2" ¢t Finally,

Res( O(1/22" %) [P(¥)]' ) =0
when d £ 2n.2-k,

Since (3.6) is zero, ¢, = 0 when d < 2n-2-k .

QED Proposition
QED Theorem 3.0

§4 - ¥ is not Holder continuous.

Figure 2 shows a plot of the natural logarithm of the absolute value of the first 8000
coefficients of the Laurent expansion of ‘Y(z). At first glance, the coefficients appear to be bounded not
only by 1/, but by 1/,14e . Such a bound would imply absolute convergence of the series and thus
that the Mandelbrot set is locally connected.
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Coefficient index n 4000 ' 8000
nlb.| t } t t } i } {
n

Figure 2. A log graph of the absolute value of the first 8000
coefficients of the Laurent series for ‘F(z).

We now show that if ¥(z) extends continuously to D then it is not H8lder continuous
there, In particular, this implies that simple bounds on the coefficients of the Laurent series of W¥(z),
such as Iby! < K/ 1+¢, (K a positive constant) will fail because they imply Ho6lder continuity.

Claim 4.0 The points ¢, = 1/4 e?™/m . 1 are contained in M and are the radial limits of the image by
Y¥(z) of the rays re'on ,1> 1, where 8, =2n(1/3 + 1/(4"_1)).

L

This is a consequence of several (not at all transparent) theorems which we will not prove here. The
interested reader is referred to the articles by Douady and Hubbard {D],[DH].

If W(z) extends continuously to D then if 6, = 2T':/3 , we have
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for some positive constant C. Specifically, the coefficients of the Laurent series W(z) = z + by + P1/,+
ba/z + ... cannot satisfy Ibyl < K/ 1+, since it is not hard to show that this condition on the

coefficients implies that | W(eie“) - l{’(e"‘a"") | <C|8p-9.1¢ for some € > 0 and some constant C.
Remark : We conjecture that ‘P(z) extends continuously to D and that
1PE) - W) < ~C /g0, -0, |

is the modulus of continuity of ¥(z), for some positive constant C'. If byl <K/ log?n then the
series would converge absolutely with this modulus of continuity, but computation of the coefficients
suggests that no such bound holds.

¢
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