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o. Introduction

The purpose of this note is to bring together several approaches whieh lead

to information on p-power cyclic Galois extensions of commutative rings A,

and hence on p-power cyclic unramified extensions of p-adic fields K (here

one uses the well-known principIe: L /!( is Galois and unramified Hf 0 L /0K

is Galois). One idea is to construct a "generic" Cpo-extension, as set forth

by Saltman (Sa], the major difference being that Saltman uses a base field

but our interest is in mixed characteristic cases. We cannot construct ex­

tensions which are generic for the whole category of commutative rings A,

so we restriet A to range over the category of p-adically complete and sepa­

rated rings (caU such rings p-complete for short). For a discussion how the
Cpo-extensions of A relate to those of its p-adic completion, see §2 in [Gr2].
Another method is Ullom's approach [Ul] (Ullom credits Iwasawa for the

idea): Describe unramified Cpo-extensions of !(n = Qn((po) by exhibiting
them in the form E = !(n (ß p - 0) with suitable condi tions on ß. It tums out

that one may take ß of the form y~, where ~ E Z(Aut(I(n/Qp)] is a sort of

Stickelberger element. This leads us to the third approach: There is a tech­

nique of Galois descent \vhich allows one to descend certain Cpo-extensions

from K ((po) to !( (!( a sui table ring and p # 2). The element ~ plays an

important role in that theory, which was first expounded by Miki (Mi]; see

also [Grl] and (eh]. Note here that for !( = Qp a11 unramified extensions of

[{((po) descend to extensions of 1(. Last, there is Hasse's elegant description

of unramified Cpo-extensions of p-adic fields which contain (po (see (HaD,
which uses what I call Artin-Hasse exponentials. In the given form, this the­

ory is unsuitable for ca1culations. In (Gr2] we have given a modified version

which seems to be more explicit.

The results in this note draw on all this, to some part only implicitly.

Let us describe the main result. Let R = Z(t]l\p be the p-adic completion

of Z(t], t a variable, p a prime. One may think of R as the subring of Zp [[t]]
which consists of aU L: ai t i where the ai are a null sequence in Zp. Let

1 ~ n E N. Then there exists a Cpo-Galois extension R(n) / R such that:

a) R(n) / R is "generic" for p-complete rings: For any Cpo-Galois extension

B / A of p-complete rings, there is a ring homomorphism 1> : R -+ A realizing
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B / A, i.e. such that B C:.! A @c/> R(n), up to twist with a smaller p-extension

(we will shortly explain what this phrase means).

b) One has a quite explicit description of R(n). Here we will only give the
description of R~n) = R(n) [(pn], and defer the description of R(n) proper to
§4. To wit, R~n) is the integral c10sure of R[(pn][Bn(t)p-n], and

Bn(t) = exp(pnt] t + (pnt] + pn-1 1f)t P + (pn7J + pn-l'7P + pn-2t]p 2)tP2 + ...),

where t] is a parameter of the DVR Zp[(pn], defined by the formula

II (1 - 17m )p(m)/m = (pn.
(p,m)=1

The main point in the description of R(n) is that one has an explicit solution
of the equation Bn(t) = Yn(t)e in Rn.

Remarks. 1) The existence of R(n) IR as in a) , even without the enCUffi­
bering phrase "up to twist ..", is a rather easy consequence of the following:
whenever A is p-adically complete, reduction mod p defines an equivalence
of categories between the Cpn-extensions of A and those of Ä = A/pA. This,
and how to prove the existence result from it, will be explained in §l. In the
rest of the paper, it is the actual descriptioll of R(n) that matters.

2) The definition of Bn(t) is complicated and seems to properly involve
infinite expressions. Observe, however, that for actual calculations onIy a
good p-adic approximation to t] and Bn(t) is needed, since all elements of
R[(pn] sufficiently elose to 1 are pn-th powers.

3) The term" generic" is only used infornla11y in §§1-4: whenever we attach
this label to some Galois extension we say explicitly what we mean by it in
the gjven case. However, in §5 we offer a suggestion how one might formalize
the notion "generic for a certain category of rings" for Cpn-extensions.

At the end of this introduction we explain the imprecise phrase "up to
twist .." in a) above, and how to do away with it.

Given any Cpn-l-extension DIA, one associates to it a Cpn-extension
called Ind~_1(D)/A. The definition is precisely the definition of induction
in representation theorYj we always fix a generator an of Cpn and think of
Cpn-l as a subgroup of Cpn by O"n-] = a~. Moreover, the set Gal(A, Cpn)

2



of all (isomorphism classes of) Cpn-extensions is an abelian group (the so­
called Harrison group), and we now declare the phrase "up to twist with a
smaller p-extension" to mean: "up to multiplication with a factor of the form
Ind~_l(D)", D as above. One can get rid of these factors by an inductive
procedure, we sketch the argument. Let S = n-fold tensor product of R with
itself. Let S(i) (i = 0, ... ,n - 1) be the Cpn-i-extension obtained by base­
extending the "generic" extension R(i) along the i + l-st injection R --.. S.
Let s(n) be the Harrison product

in Gal(S, Cpn). One can then easily show (amended version of a) above) that
every Cpn-extension B/A of p-complete rings can be obtained from s(n) /8
by base change 4> : S --.. A. We won't use this in the sequel.

At this point, I would like to thank S. Uliom for a stimulating letter. This
is also a good opportunity to express my gratitude to the MPI in Bonn for
its hospitality.

Conventions and Notations:

All rings are commutative. Cpn stands for the cyclic group of order pn,
we fix a generator er = ern . For any finite abelian group G and any ring A,
Gal(A, G) is the group of isomorphism c1asses of G-Galois extensions of A
(we will not distinguish isomorphism classes and their representatives). Good
references on Galois theory of rings are [eHR], [DeI], and also Section 0 of
[Sa] for a review of facts.

Our main notational problem is that there are too many rings involved.
We adopt therefore two standing rules: If? is a ring, then ?n denotes that
ring with (po adjoined. If? is a ring, then anything denoted ?(n) will be a Cpn
extension of? (of course, this is not adefinition, just a mnemotechnic aid).
The rings we use for generic constructions in char. zero have letters R, 5, T,
V (possibly adorned); rings of char. p are A, E, F, maybe adorned. There
is a list of rings at the end of the paper. If A is a ring, we let A = A/pA.
Lastly, recall A is p-complete iff A ,...., lim Alpn A.-
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1. Reduction mod p

Proposition 1.1. If A is p-complete, tllen the map rA : Gal(A, Cpn) --..
Gal(Ä, Cpn) which sends B to f3 = B /pB, is an isomolphism. For BI, B 2 E

Gal(A, Cpn), the canonical map Hom(B1 , B 2 ) --.. Hom(Br, B 2 ) is also an

isomolphism. (The Hom's mean Cpn-invariant A-(resp. Ä-)algebra homo­

morpmsms.) The same holds if we reduce not mod p but mod any A E A a

power of which is associated to p (main eX,ample: ). = 1 - (pn).

PROOF: See 2.1 and 2.2 of [GH]. One can also deduce the proposition from

EGA IV, 18.1.2, using a passage to the limit. QED.

As mentioned earlier, we get from this an existence theorem for generie

extensions almost for free. We shall give this argument, even though we shall

later more or less duplieate the existence proof by our explicit construction.

One reason for doing so is that it gives us an opportunity to review Artin­

Schreier theory (cf. [Gr2],§3):

Let ~ be a ring of char. p. Then every Cpn-extension A/'E is obtained as

follows:

Explanation of symbols used: a(n) is a Witt vector of length n over ~; 8(n) is a

vector of n indeterminates 81 , ••• , 8n ; the symbols +,"':" denote addition resp.

subtraction in the ring of n-Wit t vectors over 'E[BI, ... ,Bn]; Fr is Frobenius,

acting on the components of Witt vectors; 1 is the unit element of the ring

of Witt vectors. All relations and equations are actually n-tuples of relations

or equations: this is a shorthand notation. In the case n = 1 where aue cau

forget about Witt vectors, all this is widely known.

From this description, it is rather c1ear that there exists a generic Cpn­
extension 'E(n) /'E for rings of char. p, and one cau take E = Fp[tI, ... ,tn ]

and y;(n) = A as above with a(n) = (tl, .. . , tn). One ean find a more general

result on p-groups in §4 of [Sa]. We cau now prove
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Theorem 1.2. Tbere is a Cpo -extension S,(n) / S' of p-complete rings such

tbat for any Cpn -extension B / A of p-complete rings tbere exists 4> : S' ~ A
witb A 0c1> S,(n) = B.

PROOF. Let S' be the p-completion of Z[t 1 , ••• , tn], and note that S' = ~.

By 1.1 there is a Cpo-extension S,(n) (say) of S' with s,(n) = ~(n). If B/A

is now given, find 'l/; : ~ ~ A with fJ = A 0c1> ~(n). There exists q; : S' ~ A

with ~ = 'l/;, because S' is free on the elements iI, ... , t n in the category of

p-complete rings. We have a commutative diagram (where the argument Cpo

is omitted from Gal, and where the horizontal maps are base change along

q; and 'l/; respectively):

Gal(S')

Gal(E)

Gal(A)

Gal(A)

with injective verlical arrows. Then A ®cI> S,(n) "V B, since this becomes true

after applying rA to both sides. QED.

This proof is very inconstructive, since one has no real handle on preim­

ages under the reduction map mod p. There is, however, a special case where

one knows more (and we will use this knowledge):

Definitions.

A ring E is perfect ifFr: x t--+ x P is bijective. (Surjectivity is not enough!)

A ring R is a Witt ring for tbe perfect ring E iE: p does not divide zero in

R, R is p-adically complete, and R/pR "V E.

Proposition 1.3. Jf E is perfect, tben a Witt ring for E exists; it may be

obtained as the ring of infinite Witt vectors, as in Witt's original construc­

tion, and it is unique up to unique isomorphism and functorial in E. One

denotes it by W(E). In particular, Fr: E ~ E lifts to Fr E Aut(W(E)).
There is a unique multiplicative section j : EX ~ R = lV(E), and one has
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j(0') = !im a~n where an is apreimage of a p -
n

E ~. Finally, every X E R has

a unique representation in the form

00

x=Lj(xv)pV, . xvEI;.
v=O

PROOF. All of this is well-known. For precise references and indications of
proofs, see [Gr2], p.278.

Lemma 1.4. Suppose pER is a nonzerodivisor, R is p-complete, and R is
perfect. Then the inverse to

is given by the WUt ring functor: A H- W(A).

PROOF. We may identify R with WeR). Since W(A) = A for all perfect A,
it suffices to show that for all A E Gal(R, Cpn), A is again perfect and its
Witt ring is in fact a Cpn-extension of lV(R). The first statement is an easy
lemma, see [Gr2], Lemma 5.2. As to the second: if R(n) E Gal(R, Cpn) is
any lifting of A, then R(n) is automatically p-coolplete and p does not divide
zero in it, hence R(n) is a Witt ring for A. (One might also work with Witt
vectors explicitly and show W(A)jW(E) Galois by brute force.) QED.

To obtain a generic Cpn-extension R(n) j R, the obvious idea is now to
take the generic extension E(n) jE in characteristic p and apply the Witt

ring functor to it. The main objection is, of course, that E = Fp[t1 , ••• ,tn ]

is not perfeet. A minor point is that we would like to deal with oue variable
t at a time. The generic base ring R which we are about to construct will
reduce to Fp[t] mod p (and not to E), but under way we will have to consider
also F, the perfect closure of Fp[t], and worse things.
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2. The formalism of Artin-Hasse powers

This section is expository and proofs can be found in [Gr2] or Hasse's
original paper [Ha].

For each p-complete ring A let m(A) = {a E A : 38 E N[a6 E pA]}.
Suppose A is perfeet, and A C Al is another p-.complete ring. (In important
applications, Al will not be perfeet. ) Then one has apower

aEA, bEm(A I ),

satisfying the following rules:

Proposition 2.1. [Hasse]

(0) Ha E Zp C A, then (1 - b)ß is the same as if evaluated via the binomial
series (which converges in Al)' In particular, for n E Z, (1 - b)n is what
it should be.

(1) (1 - b)a (1 - ab) mod b2 Al.

(2) (1 - b)a . (1 - b)C = (1 - b)a+c (a, c E A).

(3) (l_b)ar=(l_b)a)T (aEA,rEZ p ).

Remark to (3): (3) can be deduced from (2) by continuity arguments. The
other equation (1 - b)a r = « 1 - b) r)a fails badly. We shall see cases wi th

1 - b = (p" where (1 - b)apn is different from 1.

We now put the definition of (1 - b)a on record for future reference:

with
00

a = L j (al/ )pl/ ,al/ E A,
1/=0

P(l - X) = II (1 - X m )Jl(m)/m ,

(p,m)=l

and

'}(X) E Zp[(pn ][[X]] is defined by P(l - t](X)) = 1 - X.
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We prove also for later use

Lemma 2.2. Let A, At be p-complete, A = lV(Ä), Ä perfect, (pn E At.

Then

a) JE p2n I a E A, tben (;n = 1 lnod pn. (The exponent 2n is bigger than
actua11y necessary here.)

b) Suppose that we have At = A[(pn]. Let B E Gal(A, Cpn), hence B =
WeB) with B E Gal(Ä, Cpn). Put B n = B[(pn] and extend a E Cpn to
B n by putting a((pn) = (pn. Suppose fina11y we have BEB witb a(B) =
B+ 1 mod p2n. Then tbe element Z := (;n satisfies a(z) =(pnZ mod pn.

PROOF. a) We have (pn = 1 - A with A(p-l)pn-l associated to p in At.

Moreover, 7](A) is associated to A. One now uses the definition of (;n, the
fact that a ll = 0 for v < 2n, and some trivial estimate like pn ~ 2n to obtain

the result.

b) Using the functoriality of the Witt ring construction, one obtains the
Galois action formula

for a E B, b E m(Bn ). Here CT cau be any automorphism of BI leaving B
invariant. In our special case 1 - b = (pn we get

From this, and part a), and the rules 2.1 (1), (2), the concllision follows.

QED.

Lemma 2.2 b) gives an impression of the fundamental idea, which goes
back to Hasse and Witt: If B is an "Artin-Schreier element", then (:n is a
Kummer element.
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3. Construction of the generic extension R~n)/ Rn

Recall R = p-adic completion of Z[t]. We let Rn = R[(pn]. Here we
construct a "generic" Cpn-extension Rhn)/ Rn, which williater be deseended

to an extension R(n) / R with analogous properties. Since the base ring Rn
is in a sense still too small, there i8 another deseent implicit in the proof of

theorem 3.1, whieh we will now state after defining some notation.

Let T = W(F) with F = Fp[t P-
oo

].

Let V = W(F) with F = t-adie eompletion of F. Note that F and F are
perfect. As usuallet Tn and Vn arise from T and V by adjunetion of (pn.
We denote the image of tunder the multiplieative section j : F ---+ Tagain

by t. Let
• 3e = -t - tP - tP - tP - •••

Remark: This i8 indeed a well-defined element of V. This i5 not entirely

trivial, since e is not j of the analogously defined element of F. What

one needs i8 that V is t-adically eomplete, and this ean be shown either by
inspeetion of Witt polynomials or by noting that the t-adie eompletion of V'
is again a Witt ring for F and invoking uniqueness.

Obviously we have 8 Fr - 8 = t. (This formula motivated the definition
of 8.)

Theorem 3.1. Let Zn = Zn(t) E Vn be the Artin-Hasse power (~n.

a) Z~n E Rn (Rn embeds into Vn by t 1-+ t).

b) R~n) := integral c10sure of Rn[Zn] in Rn[Zn,~] is a Cpn-Galois extension

with cr(Zn) = (pn . Zn.

c) H we reduce modulo A = 1 - (pn, then lve obtain Rn/(A) = Fp[t] and

R~n) / ( ,,\) '" Fp [t] [()( n)] / ( ()( n) Fr ..:. f)< n) ..:. (t, 0, ... , 0)) ,

an Artin-Schreier extension as explained in §1.

PROOF. First we construct a Zp-extension

F = F(O) C F(l) C ... C F(N) C ... CF,
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and a corresponding lp-extension

T = T(O) C T(I) C ... C T(N) C ... c v,

and the usual variant of the latter with (pfl adjoined (denoted by a subscript

n), with the following property:

F(N) ~ F[B(N)]/(B(N)Fr ..:.. B(N) ..:.. (t, 0, ... ,0)),

and the (topologieal) generator er of lp = lim Cpfl acts by er(B(N») = B(N)+l-for all N E N. This goes by "approximating 8":

Let e = E~o j (a~-~ )pV with av E F. If we identify V with the ring
of infinite length Witt vectors over F, 8 becomes identified with the vector
(ao, aI, ... ). Let B(N) be the vector (ao, ... , aN-I). We get !rom the equation
eFr - e = t = j (t) = j (t) . pO that

() (N)Fr ..:.. LJ(N) = (t 0 0) W (F")u " ... , E N .

Hence F(N) := F[ao, ... ,aN-I] is CpH-Galois with er acting by the rule
er(()(N») = ()(N)+l, and the chain (F(N»)NEN forms alp-extension. Let
T(N) C V be the Witt ring of F(N) and T~N) := T(N) [(pfl ]. Then the T(N)

and T~N) form alp-extension of T and Tn respectively. Let T~oo) be the p­

adic closure of UNEN T~N). The automorphism er can be uniquely extended
to T~oo).

CLAIM: Zn E T~oo) and er(Zn) = (pflZn.

Proof of Claim: Let ( = (p". Let 8 N = E:=-OI j (a~-I' )pv. Then the Artin­

Hasse power (eH is in W(F(N»)[(] = T~N), and pN divides 8 - eN. From

Lemma 2.2 a) we infer that (0 E closure (nN T~N»). Similarly, er(8 N) =
8 N +1 modulo pN. Applying 2.2 a) again we get er(e) = e +1 and (by 2.1)

This proves the Claim.

Ey the claim, er fixes Z~fI. From this one gets that Z~n E T n . (There is a
slight technical problem here: if Z~n were in any of the T~N), one would be
done immediately, but we ooly know it is in the closure of their union. We
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leave this harmless technieal point to the reader.) By the same reasornng, Zn

itself lies in TAn), the n-th layer of the Zp-extension. Hence Zn is a I(ummer

element for the Cpn-extension TAn
) /Tn , in particular it is a unit. Ftom this

we get by I(ummer theory (noting that Tn is integrally closed): TAn) is the

integral closure of Tn[Zn] in its quotient field. This is what we want to prove,

exeept that the base ring is Tn, not Rn.

Definition: B n = Zh n
E Tn .

We now try to replace Tn by Rn. Note first that T!tN) reduees mod ,,\ to

F(N). Let Fp[t](N) be defined as the Artin-Schreier extension of Fp[t] given

by

Fp [t](N) = Fp[tl [()(N)] / (()(N)Fr ..:.. (J(N) ..:.. (t, 0, ... ,0)).

Let R~N) / Rn be a lifting of the CpOl-extension Fp[t](N) /Fp[t]. Then T n C9R Ol
R~N) induces the same thing mod ,,\ as does T~N), so these two extensions are

isomorphie themselves by Prop. 1.1. Moreover one finds by I(ummer theory

a unit Bn E Rn such that R~N) is the integral c10sure of Rn[B~-Ol]. (Use

Pie(Rn) = 0 and Rn integrally c1osed.) It follows that the quotient BnB;;l

is a pn-th power in Tn. We know Bn ERn, and we shall prove B n E Rn in

Theorem 3.3 (no cireularity involved). Hence the quotient just mentioned is

a unit of Rn. By a somewhat technieal but straightforward result (see [Gr2]

Thm. B), the quotient has to be a pn-th power in Rn already. (Idea of proof

of that result: The "only" elements of Rn which become ]rth powers in Tn

are powers of t, hut these are non-units.) Henee R~N) (as defined in the

statement of 3.1) and R~N) eoineide, and 3.1 is proved modulo 3.3. QED.

Proposition 3.2. a) With 1J E Zp[(pol] defined by setting X equal to ,,\ =
1 - (pOl in 1](X), we have

in V[i;-].

b) log Zn E Rn[~].
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PROOF. a) We eompute:

log Zn = loge(e)

= - f: log ('po (def. of G; 2.1 (2))
&1=0

= - I:logP(l- 'fltP") (use j(tP") = t P")

(where L(I - X) = X + X P /p + XP2/p2 + ... j the claimed equality results
from the definition of P and Möbius inversion, see 4.10 [Gr2])

QED.

b) T~e terms Tl P" / p&l converge to zero p-adically (and rapidly so, onee
v > n). Furtherrnare, from

2
'flP 1]P

0= loge! -,\) = logP(1 -1]) = -L(1 -1]) = 'fl + - + -2 + ...
p p

one sees that also the partial sums l::i<v Tl
P
: ,i.e. the coeffieients of tP" ln

- P
-log Zn, go to zero for v --+ 00. QED.

As a corollary we obtain

Theorem 3.3.

and this is in Rn.

PROOF. Since Zn =1 modulo 'fl, we have Bn == 1 modulo 1]p
n

• The latter
is associated with p(1 - (p). Henee B n eertainly is equal to exp of its log,

12



and the result follows from 3.2. (One should check that there are indeed uo
denominators left, i.e. the pn-i are always made integral by the 1Jpi.) QED.

We conclude this section by formulating and proving the genericity prop­
erty of the extension R~n)IRn:

Theorem 3.4. For each Cpn -extension BIA of p-complete rings containing

(pn, there exists 4> : Rn --J. A with

B ~ (A fSq, R~n») times B',

where B' is induced from a Cp n-l-extension.

PROOF. Recall A = 1 - (pn. We know that R~n) reduces modulo A to

R[B(n)]/(B(n)Fr ..:.. B(n) ..:.. (t, 0, ... ,0)).

By Artin-Schreier theory there exist ao, ... ,an -! E A with

where x(n) is a fresh vector of n indeterminates. Define 4> : Rn --J. A by
sending t to any preimage of ao. We now assert that B differs from A fSq, Rhn)

only by an induced extension B' as in the theorem. By Prop. 1.1 we may
check this after going modulo A. Then A tSq, R~n) becomes

(A/( A) )[..y(n)]/(x(n)Fr ..:.. x( n) ..:.. (ao, 0, ... ,0)),

and our assertion is reduced to (easy) facts from Artin-Schreier theory: addi­
tion of Witt vectors a(n) corresponds to the Harrison product of correspond­
ing Artin-Schreier extensions, and extending vectors of length n - 1 by a
zero on the left essentially corresponds to induction of Cpn-l-extensions to
Cpn -extensions.

For p-adic fields, we get the following:

Corollary 3.5. Suppose J( is a p-adic neId containing (pn, and suppose its

residue dass neId k has degree prime to p over Fp . Then "the" unramined
Cpn -extension LIJ( is obtained by adjoining a pn-th root of B n(l) to [{.

PROOF. The Artin-Schreier extension of k belonging to the Witt vector
(1,0, ... ,0) of length n is nondegenerate in the sense that it is not induced
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from a Cpn-t-extension (reason: its lowest layer k[Oll/(Or - Bl - 1) lS a
field). Moreover, J( has essentially (i.e. up to changing the Cpn-action) only
one unrammed Cpn-extension. Hence this one must be the extension D :=

oK ®rp R~n), wi th <p : Rn ~ 0 I<, t 1--+ 1. D is an integrally closed domain,
Galois over 0 K, hence we may write it D = 0 L with L / J( an unramified
Cpn-extension. From the definition of D, it is clear that L = j{(Bn(l)P-n).
QED.
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4. Cyclotomic descent

In this section we assume p =f:. 2. Let n E N, n ;::: 1.

Let ]( be any domain containing ~ such that (pn has the maximal possible
degree S := I.p(pn) = (p - 1)pn-1 over Quot(](), so ](n = K[(pn] is Galois

over K with group r, where r comes with a canonical isomorphism w : r -4­

(Zjpnz)x which satisfies (6 = CIJ(6) for all ( E J1. p n([(n), 8 E r. (The ahove

degree assumption is unnecessary hut it simplifies matters.) Let g E Z he
a primitive root mod p2. As is well-known, g is then also primitive mod pn

(we excluded p = 2). Let, Erbe w-1(fi), whence r = (,). We will use
two particular elements of zr, a sort of cyclotomically twisted conorm and
norm:

,-g,
and

8-1

~ := L "'(i g~-i

i=O

(recall S = I.p(pn) = Irl). ~ is similar to a Stickelherger element. In the
following, we use for ß E !(:; the notation J(n {ZPR = ß} for the Cpn-Galois

extension Kn[Z]j(ZPR - ß),a(ß) = (pRß.

The following theorem was first proved by Miki [Mi] (he assumed J( to
be a field, hut everything goes through in our situation. See also [Gr1] §2
and [eh]): Let ß E J(::.

Theoreln 4.1.

a) The extension J(n{zpn = ß} is abelian over J( iff ß'Y-g is a pn-th power

in K n .

b) The extension ](n {zpn = ß} can be written as J(n 0K L, L E Gal(!(, CpR)

iff there exists y E !(: with ß =ye modulo ](:;pn .

PROOF. See (Mi] Prop. 2 and 3 or (Sa] Thm.2.3.

Relllarks: 1) If Ln := !(n{ZPR = ß} is not a domain, it is not quite clear
what "abelian" means (since "the" Galois group of Ln over !( is not well­

defined), so we had better explain what we mean. We mean the following:
LnjI( is G-Galois, where G is abelian, and appears in a short exact sequence

1~ Cpn --+ G --+ r --+ 1,
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where we also demand that this sequence induce the given actions of Cpn on

L n/ K n, and of r on K n / !(.

2) Of course, the left hand side of b) in the theorem implies the left hand

side of a) (with G = Cp" x r, i.e. the sequence mentioned in 1) splits). The

same implication for the right hand sides cau be quickly seen as follows: We

have (, - g)~ = ,! - g! = 1 - g! = upn with u E Z. (Later we will even use

that u is not divisible by p, because 9 is also a primitive root modulo pn+l.)

Hence ß=ye implies ß,-g =yU
pn =1 (congruences modulo K;:pn).

3) In [Grl] §2 and also in [eh] it is shown that the group of extensions Ln

satisfying b) has index pn-l in the group of extensions satisfying the weaker

condition a). In fact, let U = [(:; I ](;:pn and note that ,- 9 as well as ~ pass

on to endomorphisms (, - g)u and eu of U. Then I{er((, - g)u)/Imceu) is

cyclic of order pn-l, generated by (p". In verifying this, note that ,- 9 kills

(pn and (;n = (;1"-1 is a p-th primitive root of unity.

4) If K = Qp and LI[( is "the" nondegenerate unramified Cpn-extension

of [(, then LI(n is "the" unramified Cpn-extension of ](n and it is of the form

K n {Zpn = ß} for some ß = ye, y E [(:: by b). Ullom [VI] has determined

possible choices for y: for n > 1, all y with

will give "the" nondegenerate unrarnified Cpn -extension of !(n'

Now we come back to generic extensions.

Theorem 4.2.

a) Tbe Cpn-extension R~n) / Rn ean be deseended to a CP" -Galois extension

R(n) IR which has the analogous generic property for Cpn -extensions BIA

as R~n) IRn has for extensions B IA with the extra condition (pn E A

(Thm. 3.4).

b) R(n) ean be construeted explicitly as follows: B n = Y~ with Yn = Yn(t) E

Rn explicitly given, and R(n) c R~n) is tlle nxed ring ofthe automorpmsm

7 denned by: -=( IRn =, (i.e. -=( I R = idR, t( (p") = (;n), and -=((B~-n) =
B 9·p-n . y-u

n n'
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PROOF. a) Again, existence is easy and is proved as before. Let R(n) / R be

the extension inducing the Artin-Schreier extension

on reduction modulo p. By Thm. 3.1 c) and Prop. 1.1 one obtains that

indeed Rn 0R R(n) ~ R~n). The generic property is shown as in 3.4. QED.

b) We know from a) and 4.1 b) that the equation B n = Y! is solvable at

least up to a pn-th power in Rn[l/p]. It is a good test for the whole theory

to ask for an explicit solution, and this turns out to work quite weIl: we

find such a solution for the equation (not only the congruence modulo pn-th

powers), and even in R:. Before entering the details, recall Cr - g)~ = upn

with u E Z, u ~ pZ (cf. Remark 2)). Recall also that

00

Zn = (8 = TI P(l - 1] tpl') E Zp[(][[t]]
lI=D

(hut not in Rn), and B n = Zh n
E R~.

Let Yn = Yn(t) := z~l'-g)/u. (The p-adic exponent l/u is 00 problem

since Zn 1 mod ..\.) The element Yn is apriori in Zp[(pn ][[t]], and it is

also in R~n) because that ring is I-stable. We want to show it is in Rn. For

this, it suffices by Galois theory to show that Yn is fixed under u. For the

following calculation, note that land u commute, I fixes e E Zp [[t]], and u

fixes (pn. We find

(Z~)U = (((:nrr)U
= (1(()6) U

=I(()u(e)

= 1(()8+1

= I(() '1(()0

= (I' . ZJ.
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On the other hand:

(z~)U = (((0)9) u

= ((ge) U by 2.1 (3)

= (u(g8)

= (90 +9

= (9. Z~.

By dividing and using (, = (9 we obtain that Yn = Z;r-u is fixed under a,
as we wanted.

The only question left is now to describe R(n) "physically" as a subset of
R~n) = integral closure of Rn[B~-n]. We begin with some general remarks
about so-called descent data: Suppose!< is as at the beginning of this § and
LIK is Cpn-Galois. Assume K n @J( L = !(n {zpn = ß}, ß E !(-: (!(n =
K[(pn] as always). Then L =Fix(1') where l' is a r-descent datum, i.e. an
automorphism of order Irl of L n /!( which restricts to 1 on !(n and commutes
with the Cpn-action. (We are implicitly using here that r is cyclic.) Of
necessity, we will then have

1'(Z) = zu. a, a E !(::.

If so defined, l' will give adescent datum if and only if zg· -1 . ae = 1, i.e.
ßU . ae = 1. (See [Grl] §2, [Sa] p.258.) If we have a representation ß = ye
to begin with, we can rewrite ßuae == 1 as (yU . a)e == 1. Hence the possible
values of a are just y-U . f, with fe == 1.

Lemlua 4.3. Tbe group {f E !e:: I fe == I} is finite, and its p-component
is precisely the group of pn-1_st roots of unity, hence cyc1ic of order pn-1

(remember that !(n is a domain containing 1/p).

PROOF. If fe = 1, then fpn u == fe'("Y-g) == 1, hence f is a pnu-th root of
unity. H fpn == 1 == fe then f cannot be a primitive pn-th root of unity (we
said before that (;n is not 1), but for any pn-1_st root f of unity, fe == 1.
QED.

We go back to the special situation R~n)IRn which we want to descend
explicitly. Let !( == R[l/p], !(n == Rn[llp]' L == R(n)[llp], to be in tune with
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the notation used in the preceding discussion. By general descent theory,
R(n)[llp] = Fix(7) for some r-descent datum i' on LI(n = R~n)[llp]. We
also have (because R(n) is integrally closed) that R(n) = Fix(i'IRhn)). By
construction of Yn , we have B n = Z~n = YJ. Hence we have by the general
discussion above and Lemma 4.3:

where € is some root of unity.

Theorem 4.4. f = 1.

PROOF. Note first we haven't made any statement as to the unicity of i'
and € so far. We observe trat € =1 modulo .x = 1 - (pn. Reason: Zn and
Yn are =1 modulo .x by constructioD, and .:y is =ideutity mod .x on R[(pn],
hence =identity on R~n) = Rn R(n) (note t fixes the elements of R(n)).
Hence f =1. By 4.3, f must be a p-power root of unity and even a pn-l_st
root of unity. If we let € range over all these, we get all possible descent
data. But there are pn-l nonisomorphie possibilities to descend LI(nlK n
to K. This is because the natural map Gal(I(, Cpn) ~ Gal(I(n, Cpn) has a
kernel of order pn-l; it is generated by Ind~_l of the p-primary part of the
r-extension I(nl I(, 01' in more number-theoretic terms, by the same lud of
the n - l-st layer of the cyclotomic Zp-extension of [(. Hence there exists
only one € which possibly can show up, and one suspects of course it has to
be the distinguished choice f = 1. To prove this, we go modulo t and note
that our uuiqueness argument for f is still valid. (R/(t) is just Zp. ) But
by construction of R(n) / R, this extension becomes trivial modulo t (look
modulo p: you get the Artin-Schreier extension with Witt vector (0, ... ,0)).
Note also B n =1 modulo t. It is then elementary to verify that f = 1 defines
adescent datuln descending the trivial extension R~n)I( t) = integral closure
of Zp[(pn]{zpn = I} to the trivial Cpn-extension of RI(t) = Zp, hence f = 1

is the only possibility modulo (t), and we are done. (Actually, if oue tries to
descend mod t with the wrong f, oue gets ramification.)
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5. Final remarks

We never defined what a generic extension (for a certain range of rings)

actually is (the genericity properties of our constructions were spelled out

each time) . The following definition is to be regarded as tentative.

Let C be any full subcategory of the category of commutative rings which

has pushouts (= tensor products). A Cpn-extension S/R (S, R E Q) is called

C-generic, if:

a) every Cpn-extension B/A, B,A E Q, can be deduced from SIR by a base
change if> : R ---+ A in C;

b) R = Ro[l/r] with Ro free in Q over sonle finite set and r E Ro.

Examples: We showed the existence of a generic Cpn-extension for Q = {p­

complete rings} (Thm. 3.4 plus the discussion in the introduction). Here

R = p-adic completion of Z{t] and r can be taken 1. Saltman {Sa] has shown
the existence of a generic Cpn -extension for all categories F - Alg, F any
field.

Saltman's proof (loc.cit. Thm. 5.3) shows: If there is a generic Cpn­

extension for Q, then for each semilocal A E C with A/rad(A) E Q, we have
the "lifting property":

Gal(A, Cpn) -+ Gal(A/rad(A), Cpn) is surjective.

For Q = {p-complete rings}, this lifting property is, again, a direct con­
sequence of the reduction mod p technique and Artin-Schreier theory. It
seems, however, to be possible to construct a generic Cpn-extension for the

category of commutative rings A with: Pic(A) = 0, p E A not a zero divisor,
and (pn E a. The condition on p is more convenient than necessary. The
condition on Pic(A) is necessary, since in its absence the lifting property may

fail. It is not yet clear whether one can get rid of (pn. Another approach to
get rid of the Pic condition is to only consider extensions with normal basis.
A lifting property for these has been obtained by I(ersten and Michalicek

[KM] for rings containing l/p but not (necessarily) (pn. The question might

be put as follows: What is the best (i.e. largest) category of rings for which

one finds generic cyclic Galois extensions (working either with normal bases
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or imposing Pie conditions to get around possible failures of the lifting prop­
erty)? Note in this context that for p-complete A, all Cpn-extension B/A
have normal bases.
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List of rings used:

A,B
R
Rn

R(n) IR
R~n)

mostly range over p-complete rings
= p-adic completion of Z[t]
= R[(pn]
= a Cpn-extension lifting a certain A.S. extension of Fp[t]
= R(n)[(pn] .

PrOfi now on, wo only list the "without subscript n" version of each ring.
Cf. Conventions and Notations.
S = R0n

s(n) = a Cpn-extension of 5 built from extensions of the tensor factors
5' = p-adic completion of Z[t1 , ... , tn]
S,(n) = a Cpn-extension of 5' lifting a certain A.S. extension

F = Fp[tp-ooJ

F =t-adic completion of Fp[tP -
oo

]

T = Witt ring of F = Fp[iP-C><>J
V = Witt ring of F
F(N) = a certain A.S. extension of F
Fp[t](N) = a certain A.S. extension of Fp[tJ
T(N) = Witt ring of the forn1er ring
T{OC» = p-adic completion of UT(N)

R-(N) ( )= Cpn-extension of R lifting F p[t] N .
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