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Introduction. Suppose W is a compact manifold with rl(W) =x and G is a finite
group, and we wish to construct a free G—action on W with certain desired properties. In
the relative version, we may be given, in addition, a submanifold V CW which has a
G-action @:G x V— V and we require that the G—action ¥: G x W — W restricts
to ¢ on V,ie $|GxV=¢p. This is the extension problem, considered in [AV], for
example. (See [Wr] for a survey and further examples and applications.) In [AV] and
[Wr], the extra condition is that G should act trivially on homology, and
n(W/G)=xxG.

One systematic approach to construct such group actions is the following. Using some
homotopy theoretic tools, one constructs a space X (with zrl(X) =T, where T fits into
an exact sequence 1 —+ ¥ —— ' —— G —— 1) such that the regular covering space of X
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with 11(5{) = 7, is homotopy equivalent to the given W . Thus G acts freely on a space
X homotopy equivalent to W and the problem reduces to the following:

(a) Find a finitely dominated space Y which is homotopy equivalent to X .
(b) Find a finite complex K homotopy equivalent to Y and such that the induced

covering K, with rl(K) = r, is »simple homotopy equivalent to W .

Once K is found, the problem is reduced to surgery theory; that is, to find an appro-
priate normal invarant and to show that the surgery obstruction vanishes for a suitable
choice of the normal invariant. Of course, it could happen that at some stage there is an
obstruction and one does not succeed to carry out this procedure. The question arises then,
as to how to measure sach obstructions, and how to express them in terms of the topological
or other invariants of W .

In this paper, we consider problems (a) and (b) above in a fairly gemeral setting.
Namely, in Section 1, we discuss the problem of finite domination of nonsimply—connected
free G—spaces for any finite group G, and we show that the question reduces to the case of
G = 1/pZ , where p is a prime. This reduction is a significant step in computations, and we
illustrate this by an application.

Next, we address the problem (b) above in Section 2, and formulate the appropriate -
obstruction group Wh}' (xr — ') from an algebraic point of view, following our earlier
treatment in [AV] for the case ['= rx G and Wh] (rC rx G). Asin [AV], this abe-
lian group is defined as the Grothendieck group of a certain category of projective modules.
Wh}‘ is closely related to the functor Wh, and KO via a five—term exact sequence in-
volving transfer homomorphisms. It is fair to say that Wh}‘ pla.yﬁ the same role in the non-

simply—connected cases that RO does in the simply—connected ones (at least in construction
and classification problems of group actions).

This generalization of Wh?aaafnnctorofextenxionsl V=t [ = G e 1



(rather than pairs of groups x C r x G ) suggests a further generalization. Namley, to de-

fine Wh? on the space level, as it has been the current trend ever since Hatcher’s "White-
head spaces" [H]. The recent developments in geometric topology, in particular surgery
theory, have put more emphasis on spaces rather than their corresponding algebraic objects,
and this has proved quite fruitful. Moreover, the topological construction has a wider domain
of definition than the algebraic one, and naturally it is expected to have more topological
applications. Thus we have included a discussion of this point of view in Section 3, based on
Hatcher’s and Waldhausen’s theories [H] [W] with suitable modifications. While the semi-
simplicial language is more natural in this context, we have chosen to informally discuss the
matters in the topological category leaving the details and applications for a future oppor-
tunity.

a topologxca.l space is ca.lled ﬁmﬂﬂq@gﬁﬂ if there exists a ﬁmte CW complex K anda
map f: K— X which has a right homotopy inverse r: X — K. A CW complex X is
said to be of finite type if every finite dimensional skeleton of X is a finite complex, i.e. X
has finitely many cells in each dimension. It is easy to see that a finitely dominated complex
is homotopy equivalent to a finite dimensional CW complex with finitely generated total -
-homology. An algebraic criterion for finite dimensionality of complexes can be formula.ted
with the help of the following result of [Wall II]:

1.0. Theorem ([Wall I1] p, 137, Theorem 6). A projective positive chain complex C, is
chain hmotopy equivalent t0 an n—dimensional complex if and only if Hi(C,.) =0fori>n
and Im (d: C b1 Cn) is a projective module.

With the help of ([Wall IT] Theorem 2) as well as related results of [Wall I], one can
translate the above mentioned finite dimensionality criterion of [Wall IT] into the following:
A CW complex X with bounded Hy(X;Zx((X)) is homotopy equivalent to a finite
dimensional complex if and only if for C. = Cs (X;Irl(X)) (=_ cellular chain complex of the
universal covering space X of X ) and some sufficiently large n, Ker(d : Cpe1— Cp)

i8 a projective Erl(X)—module. Clearly if the latter condition holds for some large n , then
it holds forall m 2> n .



The passage from finite dimensionality to finite domination for spaces is technical in
general. However, for applications to manifolds etc., the resuits of [Bieri—-Eckmann] and
especially, Browder’s theorem ( [Browder] Corollary 2) are quite useful. Namely, if X is 2
Poincaré space with finitely presented fundamental group, then X is finitely dominated. In
our drcumstances, we apply Browder's theorem in conjunction with Wall’s finite
dimensionality criterion as follows. Refering to the notation and the set—up of the
introduction, suppose we have constructed an infinite dimensinal (as it happens in most
homotopy theoretic constructions) space X with :rl(X) =T, such that the finite group G

operates freely on the regular covering space X with 11(3'.) = r. First, we give a finite
dimensionality criterion for X to be G-homotopy equivalent to a finite dimensional iree
G—complex ¥ (in terms of restrictions to suitable subgroups of G ). Next, we pose the
hypothesis that X is a Poincaré complex, so that ¥ becomes a Poincaré complex as well.

Now ¥/G =Y is seen to satisfy Poincaré duality, since dim ¥ < o . This shows that X
satisfies Poincaré duality, hence, by Browder’s theorem X is finitely dominated and step
(a) of the Introduction is carried through. (See [A3] also.)

For simplicity of exposition, and without loss of generality as far as applications to
compact manifolds are concerned, we assume that x is a finitely presented discrete group,
and we work in the category. of CW complexes of finite type and cellular maps. Let G bea
finite group, and let T = I'(G) be a discrete group satisfying the exact sequence 7(G) :

nG): l—r—T—G—1

Let X =X(G) be a connected space with #,(X) =T . Denote by X the universal
covering space of X . For each subgroup H C G, we consider the corresponding exact
sequence n(H) : '

oH): l=—7z—[(H)—H—1

We set X(H) = X/T(H) which is a covering space of X and =,(X(H))=TI(H).
Thus X(1) is a free G—space which is of interest to us, and X = X(G) = X(1)/G ; X(1) is
homotopy equivalent to the giver manifold W in consideration. Our first result in this
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direction is of local-to—global nature. Namely, we show that the problem of finite dimen-
sionality of a free G—space (up to G—homotopy) can be decided by restricting to elementary
abelian subgroups of G .

1.1, Theorem. (a) Let X be a CW complex with :rl(X) =T as above. Then X is homo-
topy equivalent to a finite dimensional complex if and only if X(A) is homotopy equivalent
to a finite dimensional complex for all elementary abelian p—subgroups of G and all primes
P.

(b) Further, suppose that X(1) satisfies Poincaré duality. Then X is finitely domi-
nated if and only if X(A) is finitely dominated for all elementary abelian p—subgroups of G
and all p.

Before giving the proof of 1.1, we state the following conjecture and a supporting
theorem.

1.2. Conjecture. Let G be a nontrivial group. (a) Let X be a CW complex with
rl(X) =T as above. Then X is homotopy equivalent to a finite dimensional complex if
and only if X(C) is homotopy equivalent to a finite dimensional complex for all cyclic
subgroups C C G of prime order.

(b) Suppose further that X(1) is a Poincaré complex. Then X is finitely dominated if
and only if X(C) is finitely dominated for all C C G of prime order.

We have proved this conjecture for the cases where I' " is a finite group, or more
generally where for some n- sufficiently large, Ker(d : C, — C__,) is a finitely presented
IT-module, where C, = C.(X) = cellular chains of the universal covering space (Assadi
[A3]). '

We need some auxiliary algebraic concepts first. Recall that an RI'-module M is
called (RT',Rx)—projective, if there exists an f € Homp (M,M) such that 2 gf(g—lx) =X

geG
for all x € M. This is a generalization of the concept of "weakly projective” (cf. [Cartan—

Eilenberg] ).

1.3, Lemma ([Rim] Proposition 2.2) An RI'-module M is (RT,Rx)—projective if and only
if the Tate cohomology f[(G;HomR 1l,(M,M)) is trivial.
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L4. Lemma. An RI'-module M is RI'-projective if and only if M is (RIL',Rx)—projective
and Rx—projective.

Proof of Theorem 1.1, Note that if X is finitely dominated, then so are all finite covering
spaces of X . Therefore, the non—trivial direction is to pass from elementary abelian
p—groups to the group G itself. Assume that for such a A C G, X(A) is homotopy equi-
valent to a finite dimensional complex. In particular, this holds for the covering space X(1)

with x,(X(1)) = r. Consider the cellular chains C, = Co(X) of the universal cover X,
which is a free finitely generated ['(G)—complex, and let d:Cy —— Cy be its boundary
homomorphism. Choose m large enough so that (C,,ds) is exact in all dimensions n 2 m .
By Wall’s Theorem above M = Ker(d]:l 1Cp— Cn—l) is Ir-projective, and by our stan-
ding hypotheses, it is finitely generated. Further, for every p-elementary abelian group
ACG,Kerd is IT'(A)~projective, since X(A) is homotopy equivalent to a finite dimen-

sional complex. By Lemmas 1.3 and 1.4, H(A;Homy_(M,M)) = 0 . By Chouinard’s Theorem
(cf. [Jackowski] Theorem 3.1 for a topological proof, or [Chouinard]), the G—module
Homy (M,M) is cohomologically trivial in the sense of Tate-Nakayama (see {Rim]). Since
this module is also Z—free, it is ZG—projective. By Lemma 1.4, M is (IT,Z7)-projective.
~ Hence M is ZIT—projective. The proof of (b) follows from Browder’s theorem ([Browder]
Corollary 2), once we observe that if a finite group G acts freely on a finite dimensional
Poincaré duality complex, then the orbit space also satisfies Poincaré duality. (See e.g.
Gottlieb, Proc. AMS 78 (1979) 148—150 or Quinn. Bull AMS 78 (1972) 262-267.)

To indicate how- the above theorem may apply to prove the above conjecture 1.2, we
consider the special case where W i3 a closed Poincaré complex of dimension four with a
finite fundamental group.

L5, Theorem. Let X(1) be a (possibly) infinite dimensional free G—space, where G is any
finite group. Let rl(X(l)) = 7 be a finite group, and assume that non—equivariantly X(1)

is homotopy equivalent to a finite 4—dimensional Poincaré complex. Assume that X is the

universal covering space on which T' acts freely, and as before, 1 —= r—— T <24 G — 1
is exact. Then the following are necessary and sufficient for X to be finitely dominated. For
each CCT, [C| =prime and CNx=1:




Iy . The spectral sequence of the Borel construction EC @ X — BC does not
collapse. .
() dimg H(C;E(X)) 22 when |C| =p.
P
Qutline of the proof: Suppose X is finitely dominated. Then one verifies directly that some

differentials in the spectral sequence of the indicated fibration must be non—trivial in order
that the total cohomology H*(X) be finitely generated. Thus (I) follows. As for (II), again a

direct computation with chain complexes shows that H2(X) ¥ I®@I®P where I is the
augmentation ideal of ZC and P is ZC—projective. To prove that these conditions are
sufficient, we apply Theorem 1.1 above to reduce the problem to the case of 3 p—elementary
abelian group. The strategy is to reduce the problem to the case G = Z_ . First, we note
that we need to prove a finite dimensionality statement in view of the proof of Theorem 1.1.
Secondly, observe that the reduction from G to Ep is a special case of Conjecture 1.2
above, which we formulate as follows.

1.6. Lemma. In the situation of 1.5, X(1) is G-homotopy equivalent to a finite dimensional

free G—complex, if and only if for each prime order subgroup CCT, X/C is homotapy
equivalent to a finite dimensional complex.

We postpone the outline of proof of this Lemma, and proceed to prove 1.5. First, notice
that for any C C », {C| = prime, conditions (I) and (II) of the theorem are satisfied, since
X(1) is homotopy equivalent (non—equivariantly) to a finite dimensional complex. There-
fore, by Lemma 1.8, we are reduced to the case G = le and rl(x(l)) = 1, and we need to
show that (I) and (II) imply the desired finite dimensionality result. Here, we use the notion
of "free equivalence" of [Al]. Namely, finite dimensionality (up to equivariant homotopy)
is preserved under "free equivalence" of G-spaces and G—complexes (cf. [A4] also).

This translates into:

L7 Lemma. Let = (X(1))=0, in the above notation. Let X’ be a free G—complex
obtained from X(1) by adding free orbits of G—cells of dimension 3 and 4 so that
7(X’) =0 for i {3.Then X'/G is homotopy equivalent to a finite dimensional complex
if and only if X is homotopy equivalent to a finite~dimensional complex. (In view of 1.6
above, we may take G = lp here and in 1.8 below for simplicity, although this restriction



is not necessary.)

This is a special case of a more general result in [A2], and we leave out the proof.
Next, we reduce the problem to cohomology computations, taking advantage of the fact that

H*(Hp) is periodic in positive dimensions.

1.8. Lemma. Let X’ be as above. Then X’ /G is homotopy equivalent to a finite dimen-
sional complex if and only if HG(X’)=0 for i25, and this happens if and only if
HG(X(1)) =0 for i25.

The proof of this lemma is computational, using the spectral sequence

H{(BG,H{(X")) % ge (BLTYX")).
We further compute that in the spectral sequence of EG G X(1) — BG, if the

differentials d)2 do not identically vanish, then EJ® =0 for all j23. Further, if
dy(¢)=0 in EI*30 then (€ Image (dy: Eg™>* — E3%). This implies, of course,
that El'2 =0 for i22 and r2 4. The proof of the latter statement is based on the
periodicity of H (G) and the mnluphczuve properties of the spectral sequence. Another
computational point is that if d, is not identically zero om EJ 2. then

B3(G,EX(X(1))) = 0 for i>0. Pusting all these together, it follows that E.- =0 when
i+j > 4, and the theorem follows from 1.8. , u

It remains to indicate the proof of Lemma 1.6.

Qutline of the proof of Lemmga 1.6. Consider the free T~space X , and assume that X/C is
homotopy equivalent to a finite dimensional complex. Let M = Ker(d11 :Cp,— Cn—-l) ,

where C, = C4(X) as before, for some sufficiently large n . Using Theorem 1.0 above
([Wall II]), the hypotheses imply that M is ZC—projective for all prime order cyclic sub-
groups C CT' . We want to show that M is Il—projective, and this will prove 1.6 (using
Theorem 1.0 again). ZI'—projectivity of M follows, in principle, from the projectivity

criterion of [Al] (see also [A3]). We make a few comments in this direction. Let k = [F
and A CT be a p—elementary abelian subgroup. We need the following:



19, Lemma. The kA—free complex C.(X)®k is chain homotopy equivalent to a finite
dimensional free kA—complex if and only if H (A;k) acts nilpotently on H ,(X;k) .

This result is contained in [A2] (see Assadi [A3] for a smﬁmary and further results).
The idea is as follows. In [A2], we associate certain homogeneous affine varieiies
V,(Cu(X)®k) and V{(Cu(X)®k) which are algebro—geometric invariants of
Ce(X)®k. The varety V,(Cu(X)®k) is constructed from the support of the
H'(Aik)-module H ,(X;k). When H (Ak) acts nilpotently on H, (¥:k) , it follows that
V5 (Cu(X) ®k) = 0 . Furthermore, C4(X) @ k is shown to be chain homotopy equivalent to

a free finite dimensional kA—chain complex if and only if V;(Ca(X)®k) = 0. On the other
hand, according to ( [A2] Theorem 1.4) for connected kA—complexes with finitely generated

cohomology, V 4 (Cs) % VR(C..) . These statements together imply Lemma 1.9.

]
As we have seen in Theorem 1.1, we need to consider only prime order subgroups of

p—elementa.ry abelian groups A CT', and show that M is kA—projective, or equivalently,

H (A k) acts nilpotently on H A(x k) , using 1.9. The proof of the prOJECtIVlty criterion of
[A1] can be modified in this set—up to show that:

1.10. Lemma: H*(A;k) acts nilpotently on HR(X;k) if and only if for each cyclic subgroup
CCA, H*(C;k) acts nilpotently on HE(X;k) :

This statement, of course, implies Lemma 1.6, using 1.9 a,gam for each C . The proof of

Lemma 1.10 is based: (a) The fact that H(¥;k) is equipped with an "Steenrod algebra"
operation, and (b) the notion of support varieties. The details are similar to the proof of
([A1] Theorem 2.1).

1.11 Corollary. In the sitnation of Theorem 1.5. if the necessary conditions are satisfied,

then there exists a well—defined obstruction &(X) € Ky(ZT) such that §(X)=0 if and
only if X is G-homotopy equivalent to a finite Poincaré complex with a free G—action.

This corollary follows from the general theory of [Wall I] once we have shown that X
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is finitely dominated via Theorem 1.5. Here, one should remark that &(X) can be deter-
mined in terms of the G-module 32(5{) directly. For example, when G = le/ one
computes that Hz(X) ~NI®I®P, where IC ZG is the augmentation ideal and P is a

projective module. Then &X) is the class [P] € RK(ZG) if X is simply—connected. If
#(X) =0, then one has a finite Poincaré complex, and one can apply M. Freedman’s topo-
logical surgery in dimension four to discuss the surgery obstruction. It is possible to deter-

mine the precise obstructions in this case by studying the intersectin form of X . This ana-
lysis is carried out for a special class of finite groups in a somewhat different context by I
Hambleton and M. Kreck. Theorem 1.5 holds in higher dimensions as well, although the
statement should be suitably modified. These matters will be considered in a future paper.

Finally, we make some remarks about the validity of Conjecture 1.2 under the
additional hypothesis that for some sufficiently large n , Ker(d : C; — Cn—l) is a finitely
presented ZT'-module (using the previous notation etc.). As we have seen in the proof of
Theorem 1.1, the basic step for finite dimensionality up to I'—equivariant homotopy (of free
I'—chain complexes) is the projectivity of the '~module M =Ker(d:C —C _,) for
some sufficiently large n . We will mention the relevant algebraic fact below (Lemma, 1.12)
which together with the projectivity criterion of [A4] Theorem 2.1 prove Conjecture 1.2 (a)
in this case (cf. the proof of 1.1 (a) above). The proof of 1.2 (b) proceeds as in Theorem 1.1
(b), replacing elementary abelian subgroups by prime order subgroups in that argument. The
following lemma is quite useful in other circumstances as well (see [A3]).

112, Lemma. In the above situation, suppose that M is a finitely presented RI'-module
which is Ra—projective. Then Hom_Rr(M,M) is RG-projective if and only if
Homp(R® M, R® M) is RG—projective. (In particular, either condition implies that M
is RI'-projective.)

Sketch of proof. Suppose HomR(B. @ 1rM, R OIM) is RG—projective. It follows that
R® rM is also RG-projective. On the other hand the only non-vanishing term in

TorE"(N,M) is Torg"(N,M) ¥N® M for any Ra—module N, since M is Rz—projec-
tive. These two facts, together with an argument using a Grothendieck—type spectral
sequence: 'rorl}G(Toxf}'(M,-),-) 3 Tor}t L J0,-) imply that M is RT-flat. Since M is
also finitely presented, it follows that M is RI'-projective (see e.g. Bourbaki’s Commu-
tative Algebra, Ch.I, p.64, Ex. 15). Thus, M is (RI',Rx)—projective which implies that
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Homp 1l,(M,M) is RG—projective. Conversely, if Homp ’,(M,M) is RG—projective, then M
is RI'-projective (being (RT,Rx)-—projective and Rx—projective). It follows -easily that
R® s RG—projective. Consequently HomR(R ® LR ® ﬂ,M) is also RG-projective.

~

O] . _ I ] [EA A . Let
(n):1— x——-oI‘ — G — 1 be an extension of groups and let u be a section (not a
homomorphism necessarily). Here G is a finite group of order g and = and T are dis-
crete groups. Let A be the category whose objects consists of pairs (M,B), where M isa
finitely generated ZI'-projective module which is free over Zx and B is a finite Zx—basis
for M. Let (M;B,)~(M,B,) if there exists a IT—isomorphism f: M; — M2 such
that f is r—mnple with respect to B, and B, . The set of equivalence dasses A=A/~
has a monoid structure under direct sum of modules and disjoint union of bases, and (0,9)
is the neutral element. Let R be the submonoid generated by (ZT,u(G)). Then

Wh](r —T) is defined to be the quotient monoid A’/R . Asin [AV] (Proposition 1.1)
it follows that Wh1(r —T) is an abelian group. The forgetful functor (M,B) — M
induces a homomorphism J: Wh'f(r—-ol‘)——«vﬁo(ﬂ‘). On the cther hand, given
t € Why(x) , we define at) to be the equivalence class of (M,B) where M = (Z)¥ and
B is obtained from twisting the standrad basis w(G)¥ by ¢ , ie,
id: (Ma(G)*) — (M,B)  has s—torsion t. It follows that the sequence
Wh, () =%+ Wh] (r — T) 224 K (TT) is exact. In [AV], this sequence is extended to 2

five term exact sequence involving the transfers in Wh, and K, where T=7xG (cf
[AV] Proposition 1.2).

2.1 Proposition. The following sequence is exact.
why (1) 2w (7) £ waT(r — 1) 2 L Ry(2r) o Ry (27)

Several other properties of Wh‘f extended from the product case I' = # x G to the
present case. Let P, denote the category of bounded finitely gemerated projective

IT—-complexes. Let 31} be the category of II'-complexes which have the chain homotopy
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type of a complex in P, . Denote by A, the category of pairs (C,,Bs) where C, is a
complex in P, and (Ci,Bi)EA for all i. For (Cs,Bs) € As, we define

X(C*’B*)=2n(-l)n[cn'Bn] EWh’f(:r——oI‘). ¥ C, is acyclic, then its torsion
7{(Ca,Bx) € Wh(7) is defined.

2.2 Proposition. (a) For (Cy,Bx) € Ax, ¥(Cu,Ba) = A 7(Cs,Bs)) if Cy is acyclic.

(b) Let (C4,Bx) and (C’4Bx) beobjectsin A, andlet {:Cy,—C’, bea
IT—chain homotopy equivalence. Then x(C’4,B’+) = x(Cx,Bs) + X m(f)), where =(f) is
the ~~Whitehead torsion of f.

2.3 Proposition and Definition. Let f be a Zxr—chain homotopy equivalence from a finitely

Ir—based Z'—complex D, to a chain complex C, € B& . Let g be a IT'—chain homotopy
equivalence from C, to a chain complex C’, with a Zr—basis B’, such that

(C’«,B”4) € Ax . Then the element x(C’4,B’4) —A (g 1)) € Whrf(r—-v [) does not
depend on the choice of (C’4,B’4) and g . This element is denoted by x(f) .

A topological application of this dmﬁmt is based on the following:

2.4 Proposition. Let D4 € Dy, Cq € P_J}, and {:Dy— C, be a Zr-homotopy equi-

valence. Then x(f) =0 in Wh'f(r ~—T) if and only if there exists a finitely Zn—based
projective ZI'—chain complex C’, and a ZI'—chain homotopy equivalence g: C, — C’,
such that g-f is r—simple.

2.5 Theorem. Let X be a connected CW complex (of finite type) with rl(X) =T, and let
Y be a connected finite CW subcomplex of X with 7(Y) = 7(X).Let X and Y be

the covering space of X and Y with #,(X) = r= r,(Y),ie,X=X/G and Y=Y/G.

—1
Let X be a connected finite CW complex with the commutative diagram:
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. X
» X

such that a: )—( —— X induces a homotopy equivalence from }_{. to X . And suppose that
the inclusion of the n—skeleton (X(n),Y) to (X,Y) is a finite domination for some

sufficiently large n . Then x{ae: C,.(i,Y;ZIr) — Co(X,Y;IT)) =0 in Wh'f(r—-» r) if
and only if there exists a finite complex ZJY and a homotopy equivalence g: X — Z

(rel. Y) such that g-a: X —X—7Z induces a simple homotopy equivalence

X — 2, where Z is the covering space of Z with 7,(Z) =7, i, Z=2/G. Here a,
denotes the composition of the I x—chain homotopy equivalence:

Cu(X,Y;Tx) — C4(X,Y:Zr) and IT—chain isomrophism: Ca(X,Y;Zx) — Ca(X,Y;IT) .

Let D, be the category whose objects are finitely Zx—based ZI'-chain complexes D,
such that D, @IZ lq is Z I'—chain homotopic to the trivial complex 0. We wish to use the
well—defined element y( —) above to define an invariant of Dy € D, . Let R, be a pro-
jective ZG—tesolution of Z as a ZG—module such that RD = IG . Then it turns out that
the standard Z7—chain map f; : Dy — Dy ®; R, is a Zx—chain homotopy equivalence, (fs
is given by f(x)=x®1€D;®R, for x€D,, where 1'is the unit of ZG =Ry ).

Furthermore, Dy ®; Ry is an object in P , and there is an object (C’4,B’4) € Ay aad a
IT—chain homotopy equivalence g: D @y R, —+ C’, . Hence we define +{D,) to be
x(f) = x([C’'xB «]) A r(gf)) . ¥ T=xxG and G acts trivially on Dy, then
7(Ds) depends only on the Reidemeister torsion of Dy in Wh,(xZ q) , but this may not
hold in general.

aECLION THRER THE TOPOLOGICAL WHITEHEAD TRA “B. As pointed out in
the Introduction, it is possible to formulate the algebraic construction of Section 2 in terms
of spaces, in accordance with the current emphasis on "spaces” rather than "groups”. Thus,
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we replace the Whitehead groups by Whitehead spaces following Hatcher’s higher simple
homotopy theory [H]. However, there are some technical points which must be dealt with.
For example "the naturally suggested transfer functor”" in Hatcher’s theory is not a homo-
topy functor. In [W] Waldhausen introduces a "homotopification” procedure for functors,
and this resolves the above—mentioned difficulty. One advantage of this approach is that the
5-term exact sequence of the type introduced in Proposition 2.1 turns out as the lower
portion of the homotopy exact sequence of "the transfer fibration" between Whitehead
spaces. Another point which should be remarked is that the following approach applies to
more general extengions 1 —r— [ — G +1; e.g., G could be the fundamental
group of an aspherical manifold. While it would be more natural and appropriate to present
this material in the semisimplicial language, we continue the discussion in the topological
context.

To every extension (7):1— 7 ——I — G —— 1, where G is a finite group,
one associates the fibration G —— Bx — BI' . This is a special case of a compact ANR
fibration:

Definition: Let ¥ be a subcategory of the category of topological spaces. A triple
n=(E -5 B) is called a compact ANR fibration in # with the following properties:

(i) = isa proper map;
(ii) =: E—— B is a Hurewicz fibration;
(iii) all the fibres of r are compact ANR.

In a combinatorial category, e.g. that of simplicial complexes, we assame that the fibres are
finite simplicial complexes.

Examples.

(1) Let K be a finite simplicial complex. The product fibration BxK — B i3 a
compact ANR fibration.

(2) Any fibre bundle with compact fibres is a compact ANR fibration. For instance,
covering spaces with finite groups of deck transformations are compact ANR fibrations.

(3) Let r be a "geometric group”, i.e. the fundamental group of a closed aspherical
manifold (e.g. closed hyperbolic manifolds), and let 1 — x =T —— ¢/ — 1 be
an extension of groups. Then the fibration Bx — BI' — Bz’ has compact fibres.
In many cases (e.g. if I' = r x x’ ) the obstructions for converting this fibration to a



19

compact ANR fibration vanish. We will see below in such cases, one can define the
transfer and consequently the group Why(r —T).If #’ is an infinite group, then
the procedure of Section 2 does not apply here.

For each topological space X, Hatcher has defined a category WhPL(X) such that

ro(BWhEL(X)) & Why (r,(X)) , where BWh' “(X) is the classifying space of Wh! “(X).
We refer the reader to [H] and [W] (in particular § 5) for details and justifications of what
follows. We are interested in a modified version of Hatcher’s construction. Let Jast be the
category of topological spaces and ¥a/ the category of categories. Define a functor

% %P . Jap — €af as follows. The objects of # *P(X) congist of diagrams
i
—}

* ;

tion, and (Y,X) is a relatively finite CW complex. Further, we assume that all maps are
cell-like, i.e., the inverse images of points are contractiblee. A morphism f between

T T
1 ' 2
X 'Y, and X ' Y, consists of a strictly commutative diagram of cell-like

Y, where X,Y € Ja4, and i is an inclusion while r is a deformation retrac-

—— 1
11 12
maps:

- X .
7T &
y ‘ 2
f
Y, Y,
X
We call o¥ %P(X) the special Hatcher—Whitehead category of X and B o *P(X) the
special Hatcher—Whitehead space of X . In the combinatorial version of this category, if the
reader prefers, we have simplicial complexes and simplicial maps such that the inverse image
of every simplex is contractible.
_ T . e . 8
Let 7 =(E-Z-B) be a compact ANR fibration. Given Y _ B in ¥ %P(B)

representing an object x , we define Pretr(x) by the pull-back r = (E’ =*+Y). Then
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one has the natural inclusion i’ : E—~— E’ and the retraction r’ : A’ —— E covering
r: Y —= B . Moreover, r’ is cell-like since r is cell-like and F is a compact ANR. In
addition, (E/,E) is a relatively finite CW complex. Similar comments apply to the combi-
natorial case. Thus, we have a candidate for the ftransfer, namely

i i
(Y B) —

r———
T I

Pretr : 2% SP(B) — ¥ SP(E) .
The technical problems which arise here are:

(a) the classifying space B 5% “P(X) is not the Whitehead space of X ;
(b) the fanctor X »— B o¥ P(X) is not a homotopy functor.

which defines a - functor

According to Waldhausen [W] (pp. 55—58) these difficulties are overcome by using his
"homotopification of functors”. First, let us remark that if & is a simplicial object in the
category of topological spaces, so that for each n 20 X, is a topological space and the

d. 3.
faces and degeneracies X ., -—‘-—»xn and X — a1’ 0 <i<n are homotopy

equivalences, then the geometric realization | 3 | is homotopy equivalent to each X,
We will use this remark in the following construction.

Let A® be the standard semisimplicial object for which (4%), is the standard
simplex A" and the boundaries and degeneracies are the usnal maps 4, : A — A" and
s, : "1 — A™ . To each topological space X , we associate the simplicial object A®(X)

such that A®(X) =A" xX and the boundaries and degeneracies are &, x idy and
5, % idy , 0<in.Nowif F is a functor on the category of topological spaces, we define
the simplicial object FA®(X) to have (FAP(X)) = F(A® x X) and F(9, x idy) and
F(s; x idy) for its boundaries and degeneracies. We denote by hF(X) the geometric reali-
zation of this simplicial object. The functor X — hF(X) is a homotopy functor, and if F
itself is a homotopy functor, then hF(X) and F(X) are homotopy equivalent [W]. Let us
call hF the homotopification of F .

3.1 _Proposition. The homotopification of ¢:X»——B ¥ 5P(X) s the functor
X +~—s WhEL(X) (as defined by Hatcher) up to homotopy.
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Proof. Let & H be Hatcher's Whitehead category. Then the forgetful functor which for-
gets the retraction r:Y — X in o "P(X) yields a functor ¢: ¥ P(X) — ¥ T(X).
This defines Br: B o P(X) — WhPL(X) and one has the commutative diagram: ‘

B ¥ SP(x) @ S whPl(x)

|

hB # SP(X) AByp » b whPL(x)

in which a and S are induced by "inclusions", and the bottom row is obtained from the
top row by the homotopification procedure above. The map A is a homotopy equivalence,

because WhEL isa homotopy functor and in WhPLA“’(X) all the boundaries and degene-
racies are homotopy equivalences. Thus the above remark applies to the geometric reali-

zation hWhELAD(X) .
3.2 Corollary. The map ¢ : B o¥ SP(X) — WhEL(X) factors through hB & SP(X) .

Now we apply the above discussion to the functor Pretr: /% P(B) — % SP(E)
defined above. Apply the homotopification to this functor, to get "hPretr”, which we call

"the transfer" and denote it by "Tr" or "Tr(n)" if reference to 7 = (E ~X— B) is needed.
By Proposition 3.1, we have defined Tr: Wh! U(B) — WhP “(E) . Delooping Tr , we get

Tr : Wh(B) — Wh(E) , where Wh is the delooping of Wh'L . Let Tr(n) be the fibre of
this natural transformation ([Q] section one), so that we have the fibration
Tr(n) — Wh(B) — Wh(E) . :

A particularly interesting situation arises from the following. Let
():1—=7—=T —+G—1 be an extension, where G is a finite group. Then we
have the compact ANR~fibration (7) given by the finite covering G — Bx — BI'.
Such extensions (e) form the objects of a category & whose morphisms are homo-
morphisms of such exact sequences. Thus, one has two naturally defined functors, namely,

(e) -—-»Wh'f(r—oI‘) and () = 7 (Tz(n)), defined on the category extensions
& . Judging from the long exact sequence of the fibration Tr(n) — Wh(B) — Wh(E)
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in homotopy, and comparing it with the 5—term exact sequence of 2.2, it is natural to con-
jecture the following:

3.3 Conjecture. There is a natural isomorphism between the functors rO(Tr(n)) and
WhI(r—T).

This will imply, of course that there is a long exact sequence of higher Whitehead
groups extending the five—term sequence of Proposition 1.2. So far this conjecture has been
verified only in special cases, and we plan to take up this subject in another paper.
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Introduction. Suppose W is a compact manifold with =, (W)= 7 and G is a finite
group, and we wish to construct a free G—action on W with certain desir?d properties. In
the relative version, we may be given, in additior, a submanifold V CW which has a
G-action ¢:G x V——V and we require that the G—action %: G x W — W restricts
to ¢ on V, ie ¢$|GxV = . This is the extension problem, considered in [AV], for
example. (See [Wr] for a survey and further examples and applications.) In [AV] and
[Wr], the extra condition is that G  should act trivially on homology, and
T (W/G)=7xG.

One systematic approach to construct such group actions is the following. Using some
homotopy theoretic tools, one constructs a space X (with »,(X)=T, where T' fits into
an exact sequence 1 — ¥ — ' — G — 1 ) such that the regular covering space of X
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suggestions and corrections.

(2) Parts of this research was carried out during a visit to the Max—Planck~Institut fiir
Mathematik (Bonn). The financial support of MPI and the hospitality of the Institute
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with rl(X) = r, is homotopy equivalent to the given W . Thus G acts freely on a space
X homotopy equivalent to W and the problem reduces to the following:

(a) Find a finitely dominated space Y which is homotopy equivalent to X .
(b) Find a finite complex K homotopy equivalent to Y and such that the induced

covering R, with rl(ﬁ) = r, is x~simple homotopy equivalent to W .

Once K is found, the problem is reduced to surgery theory; that is, to find an appro-
priate normal invaniant and to show that the surgery obstruction vanishes for a suitable
choice of the normal invariant. Of course, it could happen that at some stage there is an
obstruction and one does not succeed to carry out this procedure. The question arises then,
as to how to measure such obstructions, and how to express them in terms of the topological
or other invariants of W .

In this paper, we consider problems (a) and (b) above in a fairly general setting.r
Namely, in Section 1, we discuss the problem of finite domination of nonsimply—connected
free G—spaces for any finite group G, and we show that the question reduces to the case of
G = I/pZ , where p is a prime. This reduction is a significant step in computations, and we
illustrate this by an application.

Next, we address the problem (b) above in Section 2, and formulate the appropriate
obstruction group Wh}‘ (r—TI') from an algebraic point of view, following our earlier

treatment in [AV] for thecase I' = » x G and WhT (rCxxG). Asin [AV], this abe-

lian group is defined as the Grothendieck group of a certain category of projective modules.
Wh'f is closely related to the functor Why and RO via a five~term exact sequence in-
volving transier homomorphisms. It is fair to say that Wh'f plays the same role in the non-

simply—connected cases that RO does in the simply—connected ones (at least in construction
and classification problems of group actions).

This generalization of Wh’f as a functor of extensions 1 — r— I — G-—1



(rather than pairs of groups » C x# x G ) suggests a further generalization. Namley, to de-

fine Wh'f on the space level, as it has been the current trend ever since Hatcher’s "White-
head spaces” [H]. The recent developments in geometric topology, in particular surgery
theory, have put more emphasis on spaces rather than their corresponding algebraic objects,
and this has proved quite fruitful. Moreover, the topological construction has a wider domain
of definition than the algebraic one, and naturally it is expected to have more topological
applications. Thus we have included a discussion of this point of view in Section 3, based on
Hatcher’s and Waldhausen’s theories [H] [W] with suitable modifications. While the semi-
simplicial language is more natural in this context, we have chosen to informally discuss the
matters in the topological category leaving the details and applications for a future oppor-
tunity.

SECTION ONE. FINITE DIMENSIONALITY AND FINITE DOMINATION. Recall that
a topological space is called finitely dominated if there exists a finite CW complex K and a
map f: K —— X which has a right homotopy inverse r: X — K. A CW complex X is
said to be of finite type if every finite dimensional skeleton of X is a finite complex, i.e. X
has finitely many cells in each dimensioa. It is easy to see that a finitely dominated complex
is homotopy equivalent to a finite dimensional CW complex with finitely generated total
-homology. An algebraic criterion for finite dimensionality of complexes can be formulated
with the help of the following result of [Wall IT]:

1.0. Theorem ([Wall TT]_p. 137, Theorem §). A projective positive chain complex C, is
chain hmotopy equivalent to an n—dimensional complex if and only if Hi(C*) =0 fori>n

and Im (d: Chp1 — C,) is a projective module.

With the help of ([Wall IT] Theorem 2) as well as related results of [Wall I], one can
translate the above mentioned finite dimensionality criterion of [Wall IT] into the following:
A CW complex X with bounded H*(X;larl(X)) is homotopy equivalent to a finite
dimensional complex if and only if for Cy = Cy (X;Zx, (X)) (= cellular chain complex of the

universal covering space X of X ) and some sufficiently large n, Ker(d: C +1—Cy)
is a projective Hrl(X)-module. Clearly if the latter condition holds for some large n , then
it holds forall m 2> n.



The passage from finite dimensionality to finite domination for spaces is technical in
general. However, for applications to manifolds etc., the results of [Bieri-Eckmann] and
especially, Browder’s theorem ([Browder] Corollary 2) are quite useful. Namely, if X is a
Poincaré space with finitely presented fundamental group, then X is finitely dominated. In
our circumstances, we apply Browder’s theorem in conjunction with Wall's finite
dimensionality criterion as follows. Refering to the notation and the set—up of the
introduction, suppose we have constructed an infinite dimensinal (a8 it happens in most
homotopy theoretic constructions) space X with rl(X) =T, such that the finite group G

operates freely on the regular covering space X with 11(5{) = r. First, we give a finite
dimensionality criterion for X ‘to be G-homotopy equivalent to a finite dimensional free
G—complex ¥ (in terms of restrictions to suitable subgroups of G ). Next, we pose the
hypothesis that X is a Poincaré complex, so that ¥ becomes a Poincaré complex as well.

Now ¥/G =Y is seen to satisfy Poincaré duality, since dim ¥ < o . This shows that X
satisfies Poincaré duality, hence, by Browder’s theorem X is finitely dominated and step
(a) of the Introduction is carried through. (See [A3] also.)

For simplicity of exposition, and without loss of generality as far as applications to
compact manifolds are concerned, we assume that x is a finitely presented discrete group,
and we work in the category of CW complexes of finite type and cellular maps. Let G bea
finite group, and let T =T'(G) be a discrete group satisfying the exact sequence n(G) :

nG): l—r—T'—G—1

Let X =X(G) be a connected space with #,(X) =T . Denote by X the universal
covering space of X . For each subgroup H C G, we consider the corresponding exact

sequence 7(H):

n(H): l— r—I'(H)— H—1

We set X(H) = X/T(H) which is a covering space of X and 7 (X(H)) =T(H) .
Thus X(1) is a free G-space which is of interest to us, and X = X(G) = X(1)/G ; X(1) is
homotopy equivalent to the given manifold W in consideration. Our first result in this
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direction is of local-to—global nature. Namely, we show that the problem of finite dimen-
sionality of a free G—space (up to G—homotopy) can be decided by restricting to elementary
abelian subgroups of G .

L1. Theorem. (a) Let X be a CW complex with x,(X) =T as above. Then X is homo-
topy equivalent to a finite dimensional complex if and only if X(A) is homotopy equivalent
to a finite dimensional complex for all elementary abelian p—subgroups of G and all primes
P.

(b) Further, suppose that X(1) satisfies Poincaré duality. Then X is finitely domi-
nated if and only if X(A) is finitely dominated for all elementary abelian p—subgroups of G
andall p.

Before giving the proof of 1.1, we state the following conjecture and a supporting
theorem.

1.2. Conjecture. Let G be a nontrivial group. (a) Le¢ X be a CW complex with
xl(x) =T as above. Then X is homotopy equivalent to a finite dimensional complex if
and only if X(C) is homotopy equivalent to a finite dimensional complex for all cyclic
subgroups C C G of prime order.

(b) Suppose further that X(1) is a Poincaré complex. Then .X is finitely dominated if
and only if X(C) is finitely dominated forall C C G of prime order.

We have proved this conjecture for the cases where I' is a finite group, or more
generally where for some n sufficiently large, Ker(d : C. — C__,) is a finitely presented

IT-module, where C, = C4(X) = cellular chains of the universal covering space (Assadi
[A3]). ’

We need some auxiliary algebraic concepts first. Recall that an RI'-module M is
called (RT,R7)-projective, if there exists an { € Homp (M,M) such that ) gi(g™ x) = x

geG
for all x € M. This is a generalization of the concept of "weakly projective" (cf. [Cartan—

Eilenberg]).

1.3. Lemma ([Rim] Proposition 2.2) An RI'-module M is (RT,Rx)-projective if and only
if the Tate cohomology f[(G;HomR L(M,M)) is trivial.



L4 Lemma. An R[-module M is R['—projective if and only if M is (RT',R#)—projective
and Rx—projective.

Proof of Thegrem 1.1. Note that if X is finitely dominated, then so are all finite covering
spaces of X . Therefore, the non—trivial direction is to pass from elementary abelian
p—groups to the group G itself. Assume that for such a A C G, X(A) is homotopy equi-
valent to a finite dimensional complex. In particular, this holds for the covering space X(1)

with x,(X(1)) = r. Consider the cellular chains Cy = Co(X) of the universal cover X,
which is a free finitely generated I'(G)—omplex, and let d:Cy —— Cy be its boundary
homomorphism. Choose m large enough so that (Cy,ds) is exact in all dimensions n 2 m .
By Wall’s Theorem above M =Ker(d : C, — C__,) is Ix—projective, and by our stan-
ding hypotheses, it is finitely generated. Further, for every p—elementary abelian group
ACG, Ker d, is IT'(A)-projective, since X(A) is homotopy equivalent to a finite dimen-

sional complex. By Lemmas 1.3 and 1.4, H(A;Homy_(M,M)) = 0 . By Chouinard’s Theorem
(cf. [Jackowski] Theorem 3.1 for a topological proof, or [Chouinard]), the G-module
Homy (M,M) is cohomologically trivial in the sense of Tate—Nakayama (see [Rim]). Since
this module is also I-free, it is ZG-projective. By Lemma 1.4, M is (ZT,Zx)-projective.
Hence M is Zl'-projective. The proof of (b) follows from Browder’s theorem ([Browder]
Corollary 2), once we observe that if a finite group G acts freely on a finite dimensional
Poincaré duality complex, then the orbit space also satisfies Poincaré duality. (See e.g.
Gottlieb, Proc. AMS 76 (1979) 148—150 or Quinn. Bull AMS 78 (1972) 262—267.)

To indicate how the above theorem may apply to prove the above conjecture 1.2, we
consider the special case where W is a closed Poincaré complex of dimension four with a
finite fundamental group.

L.5. Theorem. Let X(1) be a (possibly) infinite dimensional free G—space, where G is any
finite group. Let x,(X(1)) = r be a finite group, and assume that non—equivariantly X(1)

is homotopy equivalent to a finite 4—dimensional Poincaré complex. Assume that X is the

universal covering space on which I' acts freely, and as before, ] — *— 7T 4, G—1

is exact. Then the following are necessary and sufficient for X to be finitely dominated. For
each CCT, |C| =prime and CNrxr=1:



(1) The spectral sequence of the Borel construction En x X — BC does not
collapse. A
() dimg BY(C;HY(X)) 22 when |C| =p.
p
Qutline of the proof: Suppose X is finitely dominated. Then one verifies directly that some

differentials in the spectral sequence of the indicated fibration must be non—trivial in order
x
that the total cohomology H (X) be finitely generated. Thus (I) follows. As for (II), again a

direct computation with chain complexes shows that H2(5t) NIBI®P where I is the
augmentation ideal of ZC and P is ZC-—projective. To prove that these conditions are
sufficient, we apply Theorem 1.1 above to reduce the problem to the case of a p—elementary
abelian group. The strategy is to reduce the problem to the case G = Ep . First, we note
that we need to prove a finite dimensionality statement in view of the proof of Theorem 1.1.
Secondly, observe that the reduction from G to Hp is a special case of Conjecture 1.2
above, which we formulate as follows.

1.6. Lemma. In the situation of 1.5, X(1) is G-homotopy equivalent to a finite dimensional

free G—complex, if and only if for each prime order subgroup CCT, 5{/ C is homotopy
equivalent to a finite dimensional complex.

We postpone the outline of proof of this Lemma, and proceed to prove 1.5. First, notice
that for any C C r, |C| = prime, conditions (I) and (II) of the theorem are satisfied, since
X(1) is homotopy equivalent (non—equivariantly) to a finite dimensional complex. There-
fore, by Lemma 1.6, we are reduced to the case G = Hp and ,(X(1)) =1, and we need to
show that (I) and (II) imply the desired finite dimensionality result. Here, we use the notion
of "free equivalence" of {Al]. Namely, finite dimensionality (up to equivariant homotopy)
is preserved under "free equivalence" of G-spaces and G—complexes (cf. [A4] also).

This translates into:

L7 Lemma. Let x,(X(1))=0, in the above notation. Let X’ be a free G-complex
obtained from X(1) by adding free orbits of G—cells of dimension- 3 and 4 so that
7(X’)=0 for i£3.Then X’/G is homotopy equivalent to a finite dimensional complex
if and only if X is homotopy equivalent to a finite—dimensional complex. (In view of 1.6
above, we may take G = le here and in 1.8 below for simplicity, although this restriction



is not necessary.)

This is a special case of a more general result in [A2], and we leave out the proof.
Next, we reduce the problem to cohomology computations, taking advantage of the fact that

*
H (le) is periodic in positive dimensions.

18, Lemma. Let X’ be as above. Then X’/G is homotopy equivalent to a finite dimen-
sional complex if and only if H(i;(x’ =0 for i25, and this happens if and only if
BL(X(1) =0 for i25.

The proof of this lemma is computational, using the spectral sequence

BY(BG,E/(X")) 3 ge (B5TI(X")).
We further compute that in the spectral sequence of Eq *g X(1) — BG, if the

differentials dg’z do not identically vanish, then Eg 0 =0 for all j2> 3. Further, if
. i i-3,4

d3(¢)=0 in Ext30 then (€ Image (dy:E4™

that E;’z =0 for i22 and r2 4. The proof of the latter statement is based on the

—_ E;'z) . This implies, of course,

*
periodicity of H (G) and the multiplicative properties of the spectral sequence. Another
computational point is that if d3 is not identically zero on Eg’z, then

B?(G,E3(X(1))) = 0 for i> 0. Putting all these together, it follows that E!"=0 when
i+j > 4, and the theorem follows from 1.8. -

It remains to indicate the proof of Lemma 1.6.

Qutline of the proof of Lemma 1.6. Consider the free I'—space X, and assume that X/C is
homotopy equivalent to a finite dimensional complex. Let M = Ker(d11 :Cp— Cn—l) ,

where Cy4 = C4(X) as before, for some sufficiently large n. Using Theorem 1.0 above
([Wall II]), the hypotheses imply that M is ZC—projective for all prime order cyclic sub-
groups C CI'. We want to show that M is ZT'—projective, and this will prove 1.6 (using
Theorem 1.0 again). ZT-projectivity of M follows, in principle, from the projectivity

criterion of [Al] (see also [A3]). We make a few comments in this direction. Let k = Ep ,
and A CT be a p—elementary abelian subgroup. We need the following:



1.9. Lemma. The kA—free complex C.(X) @k is chain homotopy equivalent to a finite
* *

dimensional free kA—complex if and only if H (A;k) acts nilpotently on H A(K;k) .

This result is contained in [A2] (see Assadi [A3] for a summary and further results).
The idea is as follows. In [A2], we associate certain homogeneous affine varieties
\' A(C*(X) ®k) and Vi(C*(ﬁ) ®k) which are algebro-geometric invariants of
CoX)®k. The variety V,(Co(X)®Kk) is constructed from the support of the

x *

H*(A;k)—module H;(x;k) . When H (A;k) acts nilpotently on H A(x;k) , it follows that
Vv A(C*(X) ®k) = 0. Furthermore, C4(X) ® k is shown to be chain homotopy equivalent to

a free finite dimensional kA—chain complex if and only if V;(Cx(X) ® k) = 0. On the other
hand, according to ([A2] Theorem 1.4) for connected kA—complexes with finitely generated

cohomology, V A(C*) vV R(C*) . These statements together imply Lemma 1.9.

-
As we have seen in Theorem 1.1, we need to consider only prime order subgroups of

p—elementa.ry abelian groups A CT', and show that M is kA—projective, or equivalently,

H (A k) acts nilpotently on H A(X k), using 1.9. The proof of the pro,pctmty criterion of
[A1] can be modified in this set—~up to show that:

1.10. Lemma: H*(A;k) acts nilpotently on H;(x;k) if and only if for each cyclic subgroup
CCA,H'(Cik) acts nilpotently on Ho(Xik) .

This statement, of course, implies Lemma 1.6, using 1.9 again for each C . The proof of

Lemma 1.10 is based: (a) The fact that H(X;k) is equipped with an "Steenrod algebra”
operation, and (b) the notion of support varieties. The details are similar to the proof of
([A1] Theorem 2.1). ’

1.11 Corollary. In the situation of Theorem 1.5. if the necessary conditions are satisfied,

then there exists a well-defined obstruction @(X) € KO(HI‘) such that &(X) =0 if and
only if X is G-homotopy equivalent to a finite Poincaré complex with a free G—action.

This corollary follows from the general theory of [Wall I] once we have shown that X
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is finitely dominated via Theorem 1.5. Here, one should remark that &X) can be deter-

mined in terms of the G—module Hz(m directly. For example, when G = ?lp: one

computes that HX(X)~I@I®P, where IC ZG is the augmentation ideal and P is a

projective module. Then 6&(X) is the class [P] € K (ZG) if X is simply—onnected. If
&(X) = 0, then one has a finite Poincaré complex, and one can apply M. Freedman’s topo-
logical surgery in dimension four to discuss the surgery obstruction. It is possible to deter-

mine the precise obstructions in this case by studying the intersectin form of X . This ana-
lysis is carried out for a special class of finite groups in a somewhat different context by I.
Hambleton and M. Kreck. Theorem 1.5 holds in higher dimensions as well, although the
statement should be suitably modified. These matters will be considered in a future paper.

Finally, we make some remarks about the validity of Conjecture 1.2 under the
additional hypothesis that for some sufficiently large n, Ker(d: C; — C 11__1) is a finitely
presented ZT'—module (using the previous notation etc.). As we have seen in the proof of
Theorem 1.1, the basic step for finite dimensionality up to I'—equivariant homotopy (of free
I'—chain complexes) is the projectivity of the I'-module M = Ker(d : Cc, — Cn—l) for
some sufficiently large n . We will mention the relevant algebraic fact below (Lemma 1.12)
which together with the projectivity criterion of [A4] Theorem 2.1 prove Conjecture 1.2 (a)
in this case (cf. the proof of 1.1 (a) above). The proof of 1.2 (b) proceeds as in Theorem 1.1
(b), replacing elementary abelian subgroups by prime order subgroups in that argument. The
following lemma is quite useful in other circumstances as well (see [A3]).

1.)2. Lemma. In the above situation, suppose that M is a finitely presented RI'-module
which is Rx—projective. Then Homp 1|_(M,M) is RG-projective if and only if
HomR(R OFM, R GIM) is RG—projective. (In particular, either condition implies that M
is RT'-projective.)

Sketch of proof. Suppose HomR(R @ 'M, R @ rM) is RG—projective. It follows that
R® TM is also RG-projective. On the other hand the only non—vanishing term in
TorE"(N,M) is Torgr(N,M) vN® M for any Rr—module N, since M is Rx—projec-

tive. These two facts, together with an argument using a Grothendieck—type spectral
sequence: Tor}i.tG(Torlj{’r(M,-),-)# Tor?‘ij(M,—) imply that M is RT-flat. Since M i
also finitely presented, it follows that M is RI'-projective (see e.g. Bourbaki’s Commu-
tative Algebra, Ch.I, p.64, Ex. 15). Thus, M i8 (RT,Rx)—projective which implies that
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Homp T(M,M) i8 RG-projective. Conversely, if Homp I(M,M) is RG—projective, then M
is RI'—projective (being (RT,Rx)—projective and Rxr—projective). It follows -easily that
R® M is RG—projective. Consequently HomR(R OTM, R GrM) is also RG—projective.

-

ECTION TWO. H ALGEBRAI WHITEHEAD FER. Let
(7):1— x—T — G —1 be an extension of groups and let u be a section (not a
homomorphism necessarily). Here G is a finite group of order g and = and I' are dis-
crete groups. Let A be the category whose objects consists of pairs (M,B), where M isa
finitely generated ZI'—projective module which is free over Z» and B is a finite Zr—basis
for M. Let (M Bl) (M2,B2) if there exists a IT—isomorphism f:M; — M, such
that f is x—snmple with respect to B and B . The set of equivalence cla.sses A=A/~
has a monoid structure under direct sum of modules and disjoint union of bases, and (0,¢)
is the neutral element. Let R be the submonoid generated by (ZT',u(G)). Then

Wh'f(nr—-v I') is defined to be the quotient monoid A’/R . Asin [AV] (Proposition 1.1)
it follows that Wh'f(r—-» T) is an abelian group. The forgetful functor (M,B) — M

induces a homomorphism ﬁ:Wh'f(x——rI‘)———’RO(HI‘). On the other hand, given
t€ Whl(ar) , we define a(t) to be the equivalence class of (M,B) where M = (ﬂl‘)k' and
B  is obtained from twisting the standrad basis u(G)k by t , ie,
id : (M, u(G)k) — (M,B) has r—torsion t. It f{follows that the sequence

Wh, (7) 2, WhT(zr — I‘) RO(ZII‘) is exact. In [AV], this sequence is extended to a

five term exact sequence involving the transfers in Wh, and K where T'=xx G (cf
[AV] Proposition 1.2).

2.1 Proposition. The following sequence is exact.
wh, (1) I wh (x) £ wn T (r — T) -2 R (7T) B0 R (25)

Several other properties of Wh.}‘ extended from the product case I' = # x G to the
present case. Let P, denote the category of bounded finitely generated projective

IT—complexes. Let 21} be the category of ITI'-complexes which have the chain homotopy
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type of a complex in P, . Denote by A, the category of pairs (C,,By) where C, is a
complex in P, and (Ci'Bi)EA for all i. For (Cs,Bs) € Ay, we define

x(Cs,By) =z (—l)n[Cn,Bn] Eth(x—-&I‘). If C, is acyclic, then its torsion
n
7(Cs,Bs) € Wh,(7) is defined.

2.2 Proposition. (a) For (Cy,Bi) € As, X(Cs,Bs) = B(7(Cs,Bs)) if Cy is acyclic.

(b) Let (Cs,By) and (C’4,Bi) beobjctsin A, andlet f:C,—C’, bea
IT—chain homotopy equivalence. Then x(C’4,B’4) = x(Cs,Bs) + Ar(f)) , where =(f) is
the =~Whitehead torsion of {.

2.3 Proposition and Definition. Let f be a Zx—chain homotopy equivalence from a finitely

Ir—based ITI'-complex D4 to a chain complex C, € Bl,.f . Let g be a IT'—chain homotopy
equivalence from C, to a chain complex C’, with a Zxr—basis B’, such that

(C’4,B’+) € Ay . Then the element x(C’4,B’4) - X7(g ) € Wh'f(r——»l‘) does not
depend on the choice of (C’4,B’4) and g . This element is denoted by x(f) .

A topological application of this element is based on the following:

2.4 Proposition. Let Dy € Dy, C, € Bll, and f:Dy—C, be a Zx—homotopy equi-

valence. Then x(f)=0 in Wh'f(r——i I') if and only if there exists a finitely Z#x—based
projective IT'—chain complex C’, and a Zl'—chain homotopy equivalence g: C, — C’,
such that g-f is r—simple.

2.5 Theorem. Let X be a connected CW complex (of finite type) with rI(X) =T, and let
Y be a connected finite CW subcomplex of X with 7(Y)=,(X).Let X and Y be
the covering space of X and Y with 11(;{-) =r= rl(Y) ,i.e, X=X/G and Y= §/G .

Let X be a connected finite CW complex with the commutative diagram:
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—_—
N K
Q

o
h
v

such that a: X —s X induces a homotopy equivalence from X to X . And suppose that
the inclusion of the n—skeleton (X(n),Y)' to (X,Y) is a finite domination for some

sufficiently large n . Then yx(ay: C*(;{,Y;Hr) — Co(X,Y;ZT)) =0 in Whrf(r——r r) if
and only if there exists a finite complex Z )Y and a homotopy equivalence g: X — Z

(rel. Y) such that g-a:X— X—7Z induces a simple homotopy equivalence

X —17 , where Z is the covering space of Z with »,(Z)=r,ie,Z2=2/G. Here ax
denotes the composition of the I x—chain homotopy equivalence:

C*(E,Y;Hz‘) —— Cx(X,Y;Zx) and IT—chain isomrophism: Cy(X,Y;Zx) — Cu(X,Y;ZT) .

Let Dy be the category whose objects are finitely Za—based ZI'-chain complexes Dj
such that Dy GH Zlq is EqI‘—chain homotopic to the trivial complex 0. We wish to use the
well—defined element x( —) above to define an invariant of Dy € Dy . Let Ry be a pro-
jective ZG—resolution of Z as a ZG—module such that R0 = IG . Then it turns out that
the standard Zx—chain map f 5 Dy— D, QH R, is a Zx—chain homotopy equivalence, (fs
is given by f(x)=x®1€D;®R, for x€D,, where 1 is the unit of ZG = Rj).

Furthermore, Dy @ Ry is an object in PJ , and there is an object (C’4,B4) € A+ and a
IT—chain homotopy equivalence g:Dy®; Ry — C’, . Hence we define 7(Dx) to be
x(fy) = x( [C’*,B’*])—ﬁ(r(g-fs)) I T=xxG and G acts trivially on Dy, then
7(D«) depends only on the Reidemeister torsion of Dy in Wh,(mZ q) , but this may not
hold in general.

SECTION THREE. THE TOPOLOGICAL WHITEHEAD TRANSFER. As pointed out in

the Introduction, it is possible to formulate the algebraic construction of Section 2 in terms
of spaces, in accordance with the current emphasis on "spaces” rather than "groups". Thus,



et

we replace the Whitehead groups by Whitehead spaces following Hatcher’s higher simple
homotopy theory [H]. However, there are some technical points which must be dealt with.
For example "the naturally suggested transfer functor" in Hatcher’s theory is not a homo-
topy functor. In [W] Waldhausen introduces a "homotopification" procedure for functors,
and this resolves the above—mentioned difficulty. One advantage of this approach is that the
5~term exact sequence of the type introduced in Proposition 2.1 turns out as the lower
portion of the homotopy exact sequence of "the transfer fibration" between Whitehead
spaces. Another point which should be remarked is that the following approach applies to
more general extensions 1— r—I'—3 G ——1; e.g., G could be the fundamental
group of an aspherical manifold. While it would be more natural and appropriate to present
this material in the semisimplicial language, we continue the discussion in the topological
context.

To every extension (7):1—— *r— T — G — 1, where G is a finite group,
one associates the fibration G — Bx —— BI'. This is a special case of a compact ANR
fibration:

Definition: Let ¢ be a subcategory of the category of topological spaces. A triple
n = (E -Z5 B) is called a compact ANR fibration in ¢ with the following properties:

(i) = is a proper map;
(ii) »: E— B is a Hurewicz fibration;
(iii) all the fibres of = are compact ANR.

In a combinatorial category, e.g. that of simplicial complexes, we assume that the fibres are
finite simplicial complexes.

Examples.
(1) Let K be a finite simplicial complex. The product fibration BxK-—B is a

compact ANR fibration.
(2) Any fibre bundle with compact fibres is a compact ANR fibration. For instance,
covering spaces with finite groups of deck transformations are compact ANR fibrations.
(3) Let = be a "geometric group”, i.e. the fundamental group of a closed aspherical
manifold (e.g. closed hyperbolic manifolds), andlet 1 — x — T — 7/ — 1 be
an extension of groups. Then the fibration Bx — BI' — Bz’ has compact fibres.
In many cases (e.g. if I' = x x x’ ) the obstructions for converting this fibration to a
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compact ANR fibration vanish. We will see below in such cases, one can define the
transfer and consequently the group Who(:r——» T).If =’ is an infinite group, then
the procedure of Section 2 does not apply here.

For each topological space X, Hatcher has defined a category WhPL(X) such that

rO(BWhPL(X)) ¥ Wh,(x,(X)), where BWhPL(X) is the classifying space of WhPL(X) .
We refer the reader to [H] and [W] (in particular § 5) for details and justifications of what
follows. We are interested in a modified version of Hatcher’s construction. Let Jast be the
category of topological spaces and %z/ the category of categories. Define a functor

7 5P . Jap — €af as follows. The objects of % %P(X)  conmsist of diagrams

1
X 'Y, where X,Y € Jast, and i is an inclusion while r is a deformation retrac-
I

tion, and (Y,X) is a relatively finite CW complex. Further, we assume that all maps are
cell-like, i.e., the inverse images of points are contractible. A morphism { between

r T
1 2
X Y, and X Y, consists of a strictly commutative diagram of cell-like
1 it
1 2
maps:
. X .
7
V | 2
{
Y Yy
X

We call % SP(X) the special Hatcher—Whitehead category of X and B & P(X) the
special Hatcher—Whitehead space of X . In the combinatorial version of this category, if the
reader prefers, we have simplicial complexes and simplicial maps such that the inverse image
of every simplex is contractible.
i
_ T S —_— Sp
Let n=(E~-—— B) be a compact ANR fibration. Given Y _ B in & "¥(B)
x

representing an object x , we define Pretr(x) by the pull-back r 5= (E’ -5 Y). Then
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one has the natural inclusion i’ : E—— E’ and the retraction r’ :A’ — E covering
r: Y — B. Moreover, r’ is cell-like since r is cell-like and F is a compact ANR. In
addition, (E’,E) is a relatively finite CW complex. Similar comments apply to the combi-

natorial case. Thus, we have a candidate for the transfer, namely
. - 7

1 1
(Y 'B) =— (E 'E) which defines a functor
I =T

Pretr : % P(B) — ¥ °P(E) .
The technical problems which arise here are:

(a) the classifying space B ¥ *P(X) is not the Whitehead space of X ;
(b) the functor X~ B ¥ 8P(X) is not a homotopy functor.

According to Waldhausen [W] (pp. 55~58) these difficulties are overcome by using his
"homotopification of functors". First, let us remark that if & is a simplicial object in the
category of topological spaces, so that for each n 2 0 X, is a topological space and the

d. 8
faces and degeneracies Xn+1 —1 X, and X -1 a1’ 0 i< n are homotopy

equivalences, then the geometric realization | % | is homotopy equivalent to each X, -
We will use this remark in the following construction.

Let A® be the standard semisimplicial object for which (Am)n is the standard

simplex A" and the boundaries and degeneracies are the usual maps 8i A% — a1 apg
8 APl AR o each topological space X, we associate the simplicial object A%(X)
such that A®(X) =A"xX and the boundaries and degeneracies are &, x idy and
g xidy, 0 €i<n.Nowif F isa functor on the category of topological spaces, we define

the simplicial object FA®(X) to have (FA®(X)) =F(A" xX) and F(4, xidy) and
F(s; x idy) for its boundaries and degeneracies. We denote by hF(X) the geometric reali-
zation of this simplicial object. The functor X —— hF(X) is a homotopy functor, and if F
itself is a homotopy functor, then hF(X) and F(X) are homotopy equivalent [W]. Let us
call hF the homotopification of F .

3.1 Proposition. The homotopification of ¢:Xe=——B ¥ sp(x) is the functor
Xr— WhPL(X) (as defined by Hatcher) up to homotopy.
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Proof. Let ¥ H be Hatcher’s Whitehead category. Then the forgetful functor which for-
gets the retraction r: Y — X in &% P(X) yields a functor ¢: % P(X) — ¥ l:‘[(){) .
This defines Br: B % P(X) — WhPL(X) and one has the commutative diagram: '

B % *P(X) A » WhEPL(x)

|

hB & P(X) hBy 4 hwhPL(x)

in which a and B are induced by "inclusions", and the bottom row is obtained from the
top row by the homotopification procedure above. The map 3 is a homotopy equivalence,

because WhEL is a homotopy functor and in WhPLAm(X) all the boundaries and degene-
racies are homotopy equivalences. Thus the above remark applies to the geometric reali-

zation hWhY “a®(X) .
3.2 Corollary. The map ¢: B & SP(X) — WhE¥(X) factors through hB o% SP(X).

Now we apply the above discussion to the functor Pretr: ¥ °P(B) — 0% *P(E)
defined above. Apply the homotopification to this functor, to get "hPretr", which we call

"the transfer" and denote it by "Tr" or "Tr(n)" if reference to 7 = (E —— B) is needed.

By Proposition 3.1, we have defined Tr : WhE (B) — WhE'L(E) . Delooping Tr , we get

Tr : Wh(B) — Wh(E) , where Wh is the delooping of WhEL | Let Tr(n) be the fibre of
this natural transformation ([Q] section one), so that we have the fibration
Tr(n) — Wh(B) — Wh(E) .

A particularly interesting situation arises from the following. Let
():1— x—T — G — 1 be an extension, where G is a finite group. Then we
have the compact ANR~fibration (7) given by the finite covering G — Bx — BI".
Such extensions (e) form the objects of a category & whose morphisms are homo-
morphisms of such exact sequences. Thus, one has two naturally defined functors, namely,

(e) --——bWh’f(zr-——bI‘) and (e) = x(Tz(7)), defined on the category extensions
& . Judging from the long exact sequence of the fibration Tr(n) — Wh(B) — Wh(E)
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in homotopy, and comparing it with the 5—term exact sequence of 2.2, it is natural to con-
jecture the following:

3.3 Conjecture. There is a natural isomorphism between the functors xO(Tr(n)) and
Whi(xr—T).

This will imply, of course that there is a long exact sequence of higher Whitehead
groups extending the five—term sequence of Proposition 1.2. So far this conjecture has been
verified only in special cases, and we plan to take up this subject in another paper.
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