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IntIoduction. Suppose W ia a compaa m a,nifold with, r 1(W) = r and G is a. finite

group, and we wish to construct a free G-action on W' with certain desired properties. In
the relative version, we may be given, in addition, a submaniIold V CW which has a

G-action cp: G )( V ---+ V and we require that the G-action ,: G )( W ---+ W rest:ricts

.ta cp on V, i.e. ,I G )( V = cp • This ia the extension problem, considered in [AVJ, for

example. (See [Wr] for a survey ud further examples and applications.) In [AV] and

[Wr] , the extra condition is that G should act triviallyon homology, and

1f1(W/ G) = r )( G .
One systematic approach to construct such group actiOn! is the following. U~g same

homotopy theoretic taoIs, one constructs aspace X (with r 1(X) =r ,where r fits into

an exact sequence 1-. r~ r ---+ G-. 1. ) such that the regular covering space of X
..
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suggestions and corrections.
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with r 1(5{) = r , is homotopy equivalent to the given W. Thus G acts freely on a. spa.ce

Jt. homotopy equivalent to W and the problem reduces to the following:

(a.) Find a. finitely dominated space Y which is homotopy equivalent to X.

(b) Find 30 finite complex K homotopy equivalent to Y a.nd such that the induced

covering rt, with 1"1(rt) = r, is r--simple homotopy equivalent to W .

Once K is wund, the problem. is reduced to surgery theoryj that is, to find an 3oppro­

priate normal invariant and to show thai the surgery obstruetion vanishes for a suitable

choice of the normal invariante Of course, it could happen that 30t some stage there is an

obstruction a.nd one does not succeed to carry out this procedure. The question anses then,

as to how to mea.sure such obstructions, and how to express them in terms of the topological

or other invariants cf W .

In this paper, we consider problems (a) and (b) above in a fairly general setting.

Namely, in Section 1, we discuss the problem of finite doinination of nonsimply-connected

free G-tJpaces for ~y finite group G J and we show that. the question reduces to the case'of

G = 7l/p71 ,where pisa prime. This reductiOD is a significant step in computations? and we
illus1ra.te this by an applica.tion.

Neu, we' addresa the problem (b) above in Section 2, and formulate the appropriate

obstruetion group Whi (r -+ r) from an algebraic point of view, following our earlier

treatment in [AV] for the case r = r)( G and Whi (r C r )( G) . AB in [AV] , this abe­

lian group is de6ned as the Grothendieck group of a certain category of projective modules.

Whi is closely related to the functor Wh! and f o via a five-term exaci sequence in­

volving transfer homomorphisma. It is fair to say that Whi pla~ the same role in the non­

simply-eonnected caaes ihai 1(0 does in the simply~n.nected ones (at least in construetion

and clasaification problems of group a.ciiona).

This generaJization of Whi as a Cunctor of extensions 1 --+ r ---+ r ---+ G --+ 1



(rather tha.n pairs of groups rC r )( G) suggests a. further generalizaüon. Namley, to de­

fine Whi on the space level, aa it has been the CUIIent trend ever since Hatcher's "White­

head spaces" [H]. The recent developments in geometrie topology, in particular surgery

theory, have put more emphasis on spaces rather than their conesponding algebraie objeets,

and ihis haB proved quite fruitfuL Moreover, the topological construction has a wider doma.in

of definition than ihe aJgebraic ane, ud naturally it is expected to have more topolagical

applications. Thus we have included a discussion of ibis point of view in Section 3, based on

Hatcher's and Waldhausen's theories [H] [W] with suitable modificaüons. While the semi­

simpliciallanguage is more natural in ibis context, we have chosen to informally discuss ihe

matten in the topological category leaving the details and applications for a future oppor­

tunity.

SECT1QN OMB. FINITEPIMENSIONALITY ANP FINI'IAPOMINATlQN. Recall that

a topological space ia called finitelY dominateg if there mau a finite CW complex K and a

map f: K --+ X which has a right homotopy inverse r: X ---+ K . A CW complex X is

said tobe of finite type' if every finite dimensional skeleton oi X is a. finite complex, i.e. X

has finitely many cel1s in each dimension. It is easy to see that a finitely dominated complex

is homotopy equivalent to a finite dimensional CW complex. with finitely generated total

·homology. An algebraic criterion for finite dimensionality of complexes can be formulated

with the help cf the following result of [Wall 11]:

1.0. Theorem ([Wall W pt 137. Theorem 6). A projecüve positive chain complex C. is

chain hmotopy equivaleni to an n-dimenaional complex if and only if Hi(C.) = 0 !cr i > n

and Im (d : Cn+1 --+ Cn) is a. projective module.

With the help oi ([Wall ll] Theorem 2) aa well as related. results of [Wall I], one can

translaie the above mentioned finite dimensionality criterion of [Wall II] into the following:

A CW complex X with bounded H.(XilIrl(X» is homotopy equivalent to a finite

dimensional complex if and only if for C. =C. (X;!r 1(X» (=. cellular chain complex of the

universal covering space X cf X) and same sufficiently large n I Ker(d : Cn+1 ---+ Cn)
iB a. projecüve 1l.r 1(X}-module. Clearly ü the laiter condition holds for some !arge n, then

it holds for all m ~ n .



The passage from. finite dimensionality to finite domination for spaces is technica.l in

general. However, for applications to manifolds ete., the results of [Bieri-Eekmann ] and

especially, Browder's theorem ([~rowder] Corollary 2) are quite usefuL Namely, if X is a

Poincare spare with finiiely presented fundamental group, then X is finitely dominated. In

our circum.stances, we apply Browder's theorem. in conjunetion with Wall's finite

dimensionality criteriOD aa follows. Refering to the notation and the set-up of the
iniroduction, suppose we have construded an infinite dimenmnal (aa it happens in most

homotopy theoreiic construetions) space X wiih 2'1(X) = r , such thai the finite group G

operaies freely on the regular covering space X. with 2'1(5t) = r. First, we give a. finite

dimensionality criterion ror ~ 10 be G-homotopy equivalent to a finite dimensional iree

G-complex ? (in terms of restrietions to suitable subgroups of G). Nen, we pose the

hypothesis that ~ is a Poincare complex:, so that ? becomes a Poincare complex a.s well.

Now ? /G = Y is seen to satisfy Poincare duality, since dim.? < aJ • This shows that X

satisfies Poinca.re duality, hence, by Browder's theorem. X ia finite1y dominated and step
(a) of the Introduetion is carried through. (See [A3] also.)

For simplicity of exposition, and without 1088 of generality aa rar aa applications to

compact manifolds are concerned, we a.ssume thM T is a finitely presented discrete group,
and we work in the category- cf CW complexes of finite type and cellular maps. Let G be a

finite group, and let r =r(G) be & diacrete group saüsfying the exa.ct sequence f7(G):

I --+. 2' --+.r ---+ G ---+ 1

Lei X =X(G) be a connected space with r1(X) =r . Denote by ~ the universal
covering space- of X. For each subgroup H~ G, we consider the corresponding exact

sequence 7](H):

1 ---+ r --+ r(H) --+ H ---+ 1

We set X(H) =~/r(H) which is & covering spa.ce of X and 1"1(X(H» =reH) .
Thus X(I) is & free G-6pace which is of mterest to UB, and X = X(G) = X(l)/G ; X(I) is

homoiOpy equivaleni to the given manifold W in consideration. Our firsi result in this



direc1ion is of local4o-global nature. Namely, we show that the problem of finite dimen­

sionality of a free G-6pace (up to G-homotopy) can be decided by resmcting to elementary

abelian subgroups of G .

1.1. Theorem. (a) Let X be a CW complex with r1(X) =r as above. Then X is homo­

topy equivalent to a finite dimensional complex if- ud only if X(A) is homotopy equivalent

to a finite dimensional complex for all elementary abelian p-subgroups of G and all primes

p.
(b) Further, suppose that X(I) satisfies Poinca.re duality. Then X is finitely domi­

nated. if and only ü X(A) is finitely domi.n&ted for all elementary abelian p-subgroups of G

and aJl p.

Before giving the proof of 1.1, we state the following conjecture and a supponing

theorem.

1.2. Conjecture. Let G be a nontrivial graupe (a) Let X be a CW complex with

r 1(X) =r as above. Theo. X is homotopy equivalent to a finite dimensional complex if

and only ü X(C) is homotopy equivalent to a finite dimensional ~mplex for al.l cyclic
subgroups C C G of prime order.

(b) Suppose further that X(l) is a Poincare complex. Then.X is finitely dominated if
and only if X(C) is finitely dominated for an c C G cf prime order.

We have proved this conjecture ior the casei where r· is a finite group, OI more

generally where for some n' sufliciently Iarge, Ker(d : Cn -+ Cn- 1) ia a finitely presented

1lI'-module, where C. =C.(X) = cellular chains of the universal covering space (Assadi

[A3] ).
We need some auxiliary algebraic concepta firste Recall that an RI'-module M is

called (RI',Rr)-projective, ü there exists an fE HomRr(M,M) such that 1: gf(g-lx) =x

gEG
for all x E M . This ia a generalizaüon of the concept of "wealdy projective" (cf. [Cartan-
Eilenberg] ).

1.3. TJemma ([Rim] Proposition 2.2) An Rr-module M is (RI',Rr)-projective if and only
...

Ü the Tate cohomology H(G;HomRrC-M,M)) 18 trivial.



1.4. Lemma., An Rr-module M is RI'-projective if and only if M is (Rr,Rr)-projective

and R~rojective.

..
Proof cf Theorem leI. Note that if X is finitely dominated, then SO are aIl finite covering

spaces of X. Therefare, the nan-trivial directiOD is to pass from elementary abelian

p-groups to the group G itse1f. Assume thai for such a A ~ G ,X(A) ia homotopy equi­

valent to a finite dimensional complex. In particular, ihis holds for ihe covering space X(l)

with r I(X( I» = r. Consider the ceUular CbaiU8 C. =C.(X) of the universal cover !,
which is a. free finitely generated r(G)-complex, and let d: C. --+ C. be its boundary

homomorphism. Choose m large enaugh so that (C.,d.) ia exact in all dimensions n ~ m .

By Wall's Theorem abave M:: Ker(dn : Cu -+ Cn_ 1) is 71. 'JL-i)rojeetive, and by our stan­

ding hypotheses, it is finitely generated. Further, for every p-elementary abe1ian group

A CG , Ker dn is 71l'(A)-projective, since X(A) is homotopy equivalent to a finite dimen-
...

sional complex. By Lemmas 1.3 and 1.4, H(AiHomllr!M,M» =0 . By Chouinard's Theorem
(cf. [Jackowski] Theorem 3.1 for a topological proof, or [Chouinard]), the G-module

Ho~71slM,~) is cohomologically trivial in th,e sense of Tate-Nakayama (see [Rim])e Since
i.his module is also 1l-free, it is llG-projective. By. Lemma 1,4, M is (7lI',llr)-projective.

Heuce M is llI'-projective." The proof of (b) follows from Browd.er's theorem ([Browder]

Corollary 2), once we observe iliat Ü a finite group G a.eu freely on CL finite dimensional

Poinca.re duality complex, then the orbit space also satisfies Poinca.re duality. (See e.ge
Gott1ieb, Proc. AMS 76 (1979) 148-150 or Quinn.. Bull AMS 78 (1912) 262-267.)

•
Ta indicate hOw- the above theorem may apply io PIOve the above conjecture 1.2, we

consider the special case where W ia a closed Poincare complex of dimension four with a

finite fundamental group.

1.5. Theorem. Let X(l) be a (poasibly) infinite dimensional free G-epace, where G is any

finite group. Let r 1(X(1» =r be a finite group, and aasume that non-equivariantly X(I)

is homotopyequivaleni to a finite 4-dimensional Poincare complex.. Assume that X is the

UDiversal covering space on whieb r acta free1y, ud aa before, 1~ r -+ r L G -0+ 1

ja exad. Then the !ollowing are necessary and sufficient for X to befinitely dominated. For

each c~r, ICI =prime and Cnr=l:



(I) The spectral sequence of the Bore! construction EC Xc X--+ Be does not

collapse..

(Il) diInw H1(C;g2(X» ~ 2 when ICI =p .
p

Qutline of the proqf: Suppose X is finitely dominated. Then one verifies direct1y thai seme

differentials in the speciral' sequence of the indicated fibration musi be non-trivial in order

•thai the total cohomology H (X) be finite1y generated. Thus (I) follows. As for (II), agai:o. a.

direct computation with chain complexes shows that H2(X,) ~ 1e 1 tB P where I is the

augmentation ideal of 7lC and P is lle-projective. To prove that these conditions are

suffident, we apply Theorem 1.1 above to reduce the problem to the case of a ~ementary

abelian group. The strategy ia to reduce ihe problem to the caae G =7lp . First, we note

that we need to prove a. finite dimensionality statement in view of the proof of Theorem 1.1.

SeconcUy, observe thai ihe reduetion from G to 71.p is a special case of Conjecture 1.2

above, which we formulaie aa fellows.

1.6. !&mma. In the situation cf 1.5, X(l) ia G-homotopyequivalent to a fini.te dimensional

free G-complex, ü and only if ror each prime order subgroup cer J XI C ia homotopy

equivalent 10 a finite cümensional complex..

We postpone the ouiline of proof of this Lemma, and proceed to prove 1.5. First, notice

thai !cr any cer, ICI == prime, conditions (I) and (I1) of the theorem are satisfied, since
X(1) ia homoiopy equivaleni (noJH!quivariantly) to a finite dimensional complex. There­

fore, by Lemma 1.6, we are reduced 10 the caae G =71.p and r 1(X(1» =1 , and we need to

show that (I) and (ll) imply the desired finite dimensionality result. Here, we use the notion

of "free equivalencen of [Al]. Namely, fiDite dimenaionality (up to equivariant homotopy)

is preserved under"free equivalence" of'G-spaces and G-compl= (cf. [A4] also).

This tranalates into:

1.1. Lemma. Let "l(X(l» =0 , in the above notation. Let X' be a free G-complex

obtained from X(l) by adding free orbits of G-eells of dimension 3 and 4 SO that

rj(X') == 0 for i S3 . Then X I /G ia homotopy equivalent 10 a finite dimensional complex
if and only ü X ia homotopyequivalent to a. finite-dimensional complex. (In view of 1.6

above, we may take G == IIp here and in 1.8 beloW' !cr simplicity, although this restriction



•

is not necessary.)

This is a special case of a more general result in [A2], and we leave out the proof.

Nm, we reduce the problem to cohomology computaüons, taking advantage of the fact thai

•H (llp) is periodie in positive djmensions.

1.8. Lemma.. Let X' be as above. Then X' /G is homotopy equivalent to a finite dimen­

sional complex if and only if Hb<x') =0 for i ~ 5 , and .tbis happens if and only if

Ub(X(l» = 0 for i ~ 5 .

The prcof of this lemma is computational, using the spectral sequence

Hi(BG,Hj(X'»:t " (Rb+~X/» . ,
We further compute that in ihe spectral sequence of EG)(G X(l) -.-. BG , if the

differentials ~,2 da not identically vanish, then E~'O .0 for all j ~ 3. Further, if

~«() = 0 in E~+3,0 J then ,e Image (~ : E~-3,4 -.+ Ei,2) . This implies, of course,

that Ei ,2 = 0 ror i >2 andr >4 . The proof of the latter statement is based on the
r - -. *

periodidty of 11 (G) and ~e multiplicative pro~es of the spectral sequence. Another

computa.tional point is that if ~ is not identically zero on E~ ,2 then

H2i(G,x2(X(1») =0 ror i > 0 . PutÜDg an these together, it follows iliat E~,j = 0 when

i+j > 4 , ud the theorem follows from 1.8.

It muains to indicate the prcof cf Lemma 1.6.

Oniline ofJhe proofof ljemma 1.6. Consider ihe free f-space 1t, and assume that t/C ia
homotopy equivalent to a finite dimensional complex. Let M = Ker(dn : Cn -.-. Cn- 1) ,

where c. = C.(X) as be!ore, ror same sufficiently large n. Using Theorem 1.0 above

([Wall II]), the hypotheses imply that M is llC-projective for lill prime order cycl.ic sub­
groupa cer. We want to show that M ia 7lI'-projective, and this will prove 1.6 (using

Theorem. 1.0 agam). 1lI'-projectivity of M follows, in principle, from the projectivity

Cliterion of [Al] (see also [A3]). We make a iew comments in this direction. Let k = IF J

P
and AC r be a p-e1ementary abeüan subgroup. We need the following:



1.9. Lemma, The kA-free complex C.(~). k is chain homotopy equivalent to a finite

• •dimensional free kA-eomplex if and only if H (A;k) a.cts nilpotently on HA(5t;k) .

This result is contained in [A2] (see Assadi [A3] for Cl summary and further results).

The idea ia a.s follows. In [A2] , we associate certain homogeneous affine varieties

VA(e*(~) • k) and Vi(e.(!) ~ k) which are algebro-geometric invariants of

e.(5t) ~ k. The variety VA(e.(5t) • k) is constructed from the support of the
* •• •

H (A;k)-module HA(X;k) . When H (Aik) acts nilpotently on HA(X;k) , it follows that

VA(C.(~) ~ k) =0 . Furtherm.oIe, C.(~) • k is shown to be chain homotopy equivalent to

a free finite dimensional kA-ehain complex if and only if Vi(C.(5{) GD k) =0 . On the ether

band, according to ([A2] Theorem 1.4) ror connected k.A~mplexes with finitely generated

cohomology, VA(e.) g: Vl(C.) . These statements together imply Le~ 1.9.

•
AB we have seen in Theorem 1.1, we need to consider only prime order subgroups cf

p-elementary abelian groups A er, and show thai M is kA-projective, er equivalentlY.J

• •H (A;k) acts nilpotently on HA(~;k) , using 1.9. The proof cf th~ projectivity criterion of

[Al] ca.n be modified in tbis set-up to show thai:

• •1.10. Lemma: H (Ajk) aets nilpotentlyon HA(X;k) if and only if for each cyclic subgroup

• •C CA J H (C;k) ads nilpotently on HC(X;k).

This statement, of course, implies Lemma 1.6, using 1.9 agam for each e. The pIcof cf

•Lemma 1.10 is baaed; (a) The fact thai He(X;k) is equipped with an "Steenrod algebra"

operation, and (b) the nation of support varieties. The details are similar to the proof of

([Al] Theorem 2.1).

1.11 Corollary. In the situation of Theorem 1.5. i{ the necessary conditions are satisfied,

then there e%ists a well-defined obstruction 9(X) ErtO(1lr) such that 9(X)::: 0 if and
only if X ia G-homotopy equivalent to a finite Poincare complex with a free G-action.

This corollary fellows from the general theory of [Wall I] once we have shown that X



'0(.

is finitely dominaied via Theorem 1.5. Here, ane should rem.ark thai 8(X) cu be deier­

mined in terms of the G-module H2(~) directly. For example, when G = 7l.p l one

computes that H2(X) ~ I Ei 18 P ,where I C 7I.G is the augmentation ideal and P is a

projective module. Then 8(X) is the class [P] E ftO(7I.G) ü f is simply~nnected. If
fJ(X) =0 , then one has a finite Poincare complex, and one can apply M. Freedman's topo­

logical surgery in dimension four to discuss the surgery obs~ruction. It is possible to deter-

mine the precise obstructions in this case by studying the intersectin form of J{. This ana­

lysis is carried out for a special class of finite groups in a somewhat different context by I.

Hambleton and M. Klack. Theorem 1.5 holds in higher dimensions as well, although the

staiement should be suiiably modified. These maiters will be considered in a. future paper.

Finally, we malte some remarks about the validity of Conjecture 1.2 under ,the

additional hypothesis that for same sufficiently large n, Ker(d : Cn --+ Cn-I) 1s a finitely

presented 7Ir-module (uaing the previous notation etc.). AB we have seen in the proof of

Theorem LI, the basic step for finite dimensionality up to r~uivariant homotopy (af free

r-chain complexes) ia the projectivity cf the f-module M =Ker(d : Cn --+ Cn-I) for

some suf6ciently!arge n. We will mention the relevant algebraic faci below (Lemma 1.12)

which togeiher with the projectivity criterion of, [A4] Theorem 2.1 prove Conjecture 1.2 (30)
in this case (cf. the proof of 1.1 (a) above). The proof af 1.2 (b) proceeds as in Theorem 1.1

(b), replacing elementary a.belian subgroups by prime order subgroups in that a.rgument~ The

following lemma ia quite useful in other circumstances aa well (see [Aa]).

1.12. Lemma. In the above situation, suppose thai M is a fiDitely presented Rr-module

which is RJ'-1)rojective. Thett HomR~M,M) ia RG-projective if and only Ü

HomR(R 8 ",M, R 8 rM) is RG-projectiVe. (In particular, either condition implies that M

is RI'-projective.)

Sketch cf proo!. Suppose HomR(R S rM, R GDrM) is RG-projective. It follows that

R 8 rM ia also RG-projective. On the other hand the only non-va.nishing term in

Tor~r(N,M) is Tor~r(N,M) ~ N 8 r M for any R%L-IIlodule N, since M is Rr-projec­

tive These two fads, together with an argument uaing a Grothendieck-type spectral

sequence: Tor~G(Tor~I'(M,-),-) ~ Tor~iM,-) imply th&t M is Rr-f1a.t. Since M is

also finite1y presented, it fellows that M is RI'-projective (see· e.g. Bourbaki's Commu­

tative Algebra, Ch.I, p.64, Ex.. 15). Thus, M ia (RI',Rr)-projective which implies that



ii

HomRr(M,M) ia RG-projective. Conversely, if HomR~M,M) is RG-projective, then M
ia Rl'-projective (being (RI',Rr)-projective and RI'-pIOjective). 1t follows -easily thai

R tI rM ia RG-projective. Consequently HomR(R ~ ...M, R tIrM) ia also RG-projective.

•

SECTION TWO. IRE ALGEBRAIC WHITEHEAD TRANSFER. Let

(11) : 1 --t r --+ r --+ G --+ 1 be an extension of groupa and let u be Cl section (not a.
homomorphiam necessarily). Here G ia a. finite group of order g ud r and r are dis­

crete groUp8. Let A be the category whose objecta conaisis o.f pain (M,B), where M is a.

finitfly generated 1lI'-projective module which ia free Qver Ir and B ia Cl finite llr-basis

for M. Let (M1,B1) N (M2,B2) if there exists a 7Ir-isomorphism f: MI --+ M2 such

that f ia r-simple with respect to BI and B2 · The set of equivalence c1asse:& A' =A./N
haa a monoid structure under clirect sum of modules and disjoint union of bues, and (0,,)
ia the neutral element. Lei Ba be ihe submonoid generated by (1lr,u(G)). Then

Whi( r~ r) is defined to be the quotient monoid A' IR . As in [AV] (Proposition 1.1)

it fellows thai Whi (r ---+ r) is an abelian group. The fergetful functor (M,B) --+ M

lnduces a homomorphism . ß: WhI(... -+ r) ---+ ~O(1lI'). On the ether hand, given

t E Wh1(r) , we define a(t) to be the equivalence class of (M,B) where M = (1lr)k· and

B is obtained from twisting the standrad basis u(G)k by t I Le.,

id : (M,u(G)k) --+ (M,B) haa Haman t. It fellows that the sequence

Wh1( r) -!.. WhI(r --+ r) Tr I itO(7lI') is exact. In [AV] , tbis sequence is extended to a.

five term exact sequence involving the transfers in. Wh1 and Ro where r = 'K )( G (cf.
[AV] Proposition 1.2).

2.1 Proposition. The following sequence ia end.

Wh1(f) Tr ~ Wh1(r) .JL Whi (r -+ r) -!.. fto(1lI') !!... ~o(ll r) .

Several other properties of Whi extended from the product case r = 1f )( G to the

present case. Let f. denote the category of bounded finitely generated projective

llT-complexes. Let rl be the category of 1lI'-eomplexes which have the chain homotopy
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./-

12..

type of a. compla in ~. Denote by A. the category of pairs (C.,B.) where C. is a,

camplex in f. and (Ci,Bi ) E A for al1 i. For (C.,B.) E A., we detine

t(C.,B.) = 1: (-l)n[Cn,Bn] EWhI(r---+ r). If C. is a.cyclic, then its torsion
n

r(C.,B.) E Wh1(r) ia defined.

2.2 Proposition. (a) For (C.,B.) EA. , X(C.,B.) = IX.. r(C.,B.» if C. ia acyclic.

(b) Let (C.,B.) and (CI .,B~) be objects in A. and let f: C. ---+ C'. be a

7lf-chain homotopy equivalence. Then X(C ' .,B ' .) =X(C.,B.) + ß{ r(f) ,where T(f) is

the r-Whitehead torsion of f .

2.3 Proposition and Definition. Let f be a 1Lr-chain homotopy equivalence from a finitely ,

1L~ased. 1lT~mplex D. to &. c.hain complex C. Ef~ . Let g be a,1lr-chain homotopy

equivalence from C. to a c.hain complex CI. with a llr-basis BI. such that

(C' .,B I
.) EA•. Then the element X(C ' .,B' .) - ß( r(g.f) EWhI(r --+ r) does not

depend on the choice of (C' .,B I.) and g. This element ia denoted by X(f).

A topological application of this element ia based on the following:

2.4 ProPOsition. Let D. E12., ·C. e~ ,and r: D. ---+ C. be a. 1Lr-homotopy equi­

valence. Then x(f)' = 0 in Whi'( r --t,r) if and only if there exists a. finitely lr-based

projecüve 1lT-chain complex C'. and a 1lr-chain homotopy equivalence g: C~ ---+ C' •
such that g. r ia ~p1e.

2.5 Theorem- Let X be a connected CW complex (of finite type) with r 1(X) =r I and lat

Y be a connected finite CW subcomplex cf X with r 1(Y) = r 1(X) . Let X and Y be

the covering space of X and Y with r 1(X) = 1(' = r 1(Y) I Le., X =X/G and Y =Y/G .

=
Let. X be a connected finite CW complex with the commutative diagram:
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-Yi' .x

1 la
y. .x

- -
such thai a: X.--. X induces CL homotopy equivalence !rom X to x. And suppose that

the inclusioD of the n-skeleton (x(n),Y) to (X,Y) ia CL finite domination for seme

sufficienily large n. Then x(a.: C.(X,Y;7Ir) .--. C.(X,Y;1lI')) =0 in Wh'i(r.--. r) if

and only iI there exists CL- finite complex Z J Y and CL homotopy equivalence g: X -+ Z

(rel. Y) such that g- a : X --+ X --+ Z induces a simple homotopy equivalence

x --+ Z f where Z' is the covering space of Z with 1"1(Z) =r, Le., Z =Z/G . Here a.
denotes the composition of the 71.r-chain homotopy equivalence:

=-
c.(X,Y;7Ir).--. C.(X,Y;llr) andllI'~iBomrophiBm: C.(X,Y;7Ir) --+ C.(X,Y;1lI') .

Let D. be the category whose objects are finitely 1l.r-based 1lI'-cllain complexes D.
such that D. ~1l1l.q is llqr-ehain homotopic to the trivial complex O. We wish to use the

well~edelement x( -) above to define an invariant of D. E12•. Let R. be a pro­

jective 7IG-resolution of 7l. as a 1LG-module such that Ra =7lG . Then it turns out that

the standard 11r-cl1ain map fs : D. --+ D. 81 R. ia a 11r-cl1ain homotopy equivalence, (fs
ia given by {sex) = x. 1 E Di • Ra for· x E Di , where l' iso the unit of 7IG =Ra ).
Furthermore, D. ~71. R. is an object in f.~, and there is an objed (C I .,B I .) E A. and a
7lr~ homotopy equivalence, g: D. 8.a. R. ---+ C' •. Rence we define 7(D.) to be

x(fs) = x( [C' .,B I .]) - ß( r(g - fs)) . H r =r )( G ud G acts triviallyon D., then

7(D.) depends only on the Reidemeister torsion of D. in Wh1(r;llq) f but this may not
hold in general.

SECTION THREE, TRE TOPOLOGICAL wälTEfiEAD TRANSFER. As pointed out. in
the Innoduction, i~ ia possible to formulate the algebraic construction of Section 2 in terms
of spaces, in accordance with the current em.phasis on "spaces ll rather than I groUpS". Thus,
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we replace the Whitehead groups by Whitehead spaces following -Hatcher's bigher simple

homoiopy theory [H]. However, ihere are some technical poinis which muat be dealt with.

For example "the naturally suggested tra.nsfer funcior" in Hatcher's theory is not a homo­

topy funetor. In [W] Waldhausen introduces a "hOmotopificaiionn procedure for functors,

a.nd ibis resolves the above....mentioned difficulty. One advantage of tbis approach is thai the

5-term exact sequence of the type introduced in Proposition 2.1 tums out aB the 10'wer
portion of ihe homotopy exact sequence of I1the transfer fibration" between Whitehead

spaces. Anoiher point which should be remarked is thai the following approach applies to

more general extensions 1 ---+ r ---+ r ---+ G ---+ 1 i e.g., G could be the fundamental

group of an aspherical manifold. While it would be more natural and appropriate to preseni
ibis material in the gemisimpliciallanguage, we continue the discussioD in the topological

coniext.

To every extension (TI): 1 -0+ r ---+ r ---+ G -+ 1 ,where G is a finite group,

ane associates the fibration G --+ Br -+ Br . This is a special case cf a compact ANR

fibration:

Definition: Lei ~ be & subC&tegory cf the category cf topological spaces. A tripie

11- = (E -!..; B) is caI1ed a. compa.ct ANR iibration in '6 with the following properties:

(i) r is a. proper map;

(ü) r: E --+ B is CL Hurewicz fibration;

(ili) all the fibres of r are ,comp&Ct ANR.

In a combinaiorial category, e.g. thai of simplicial complexes, we assume that the fibres a.re
finite simplicial complexes.

E:qmp1es.

(1) Let K be a. finite simplicial complex. The product fibration BxK ---+ B is a

compact ANR fibration.

(2) A1J.y fibre bund1e with compaci fibres is & compact ANR fibration. For instance,

covering spaces wiih finite groUp8 of deck transformations are compact ANR fibrations.

(3) Lei r be a "geometrie group''', Le. the fundamental group of CL closed aspherical

man ifo1d (e.g. closed" hyperbolic manifolds), and let 1 ---+ r ---+ r --+ r' --+ 1 be

an extension oe groups. Then the fibratiOD Br ---t Br ---+ Br' haB compact fibres.

In muy cases (e.g. if r = r )C r' ) the obstructioDS for converting this fibration to a
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compact ANR fibration vanishe We will see below in such caBeS, ODe can define the

transfer and consequently the group W'ha( r ---+ r) . If r ' is an infinite group; then

the procedure of Section 2 does not apply heree

For each topological space X, Hatcher has defined a category WhPL(X) such that

ro(BWhPL(X)) ~ Wh
1
(r

1
(X)) ,where BWhPL(X) is the classifying space of WhPL(X) .

We reier the reader to [H] and [WJ (in particular § 5) for details and justifications cf what

fellows. We are interested in a modified version cf Haicher ' s constructione Let 9'~ be the

category of tepological spaces and 'da! the category cf categories. Define a functor

aSP : 9"~ ---+ ~aI as followse The o'bjeda of JI sp(X) consiat cf dia.gra.m.s

i
x , I Y ,where X,Y E 9'<J.t', and i ia an indusion while r is a deformation retIac-

r
tien, and (Y,X) ia a. relatively finite CW complex. Further, we assume that aJl mapa a.re
cell-like, Le., the inverse images of points are contractible. A morphism f between

I 1 r2
X I I Y1 and X I Y2 con.sists of a strictly commutative diagram of cell-like

11 12
maps:

" X""

y~~
f

Yl-----------Y2

~.~
X

Let ,,= (E -!:... B) be a compact ANR fibraiion." Given Y I • B in Jr sP(B)
r•representing an objed x, we define Preir{x) by the pull-back r ,,= (E' -!:... Y) . Then

We call J{ sp(X) the special Hatcher-Whitehead category of X and B tH 8p(X) the

special Hatcher-Whitehead space of X. In the combinatorial version of this category, if the

reader prefers, we have simplicial complexes ud simplicial maps such that the inverse image

of every simplex is contra.ctible

i
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. functoradefineswhich

one has the naiural inclusioD i': E --+ E' and the retraciion r I : ~ I ---+ E covering

r : Y --+ B . Moreover, r' is cell-like since r is cell-like ud F ia a compact ANR.. In
addition, (E' ,E) is a relatively finite CW complex. Similar comments apply to the combi-

naiorial case. Thus, we have a candidate for the transfer, namely

i i '
(VI lB)~(EI I E)

foo-r-- r'

Pretr: '" sP(B) ---+ JI sP(E) .
The technical problems which arise here are:

(a) ihe classifying space B Jr sp(X) is not the Whiiehead space of X;

(b) the functor X ........ B '" ap(X) is noi a homotopy functor.

According to Waldhausen [W] (pp. 55-58) these difficuliies are overcome by using bis

IIhomoiopwcaÜOD of fundon". First, let UB remark thai if .$ is CL simplicial objeci in the

ca.tegory of topological 8pace8, so thai for each n ~ 0 Xn is CL topological space and the

d. s.
faces and degeneracies Xn+1 1 I Xn and Xn 1. Xn+1 J 0 ~ i ~ n are homotopy

equivalences, then the geometrie realization I S I is homotopy equivalent to each Xn .

We will use this remark in the following construction.

Lei AaJ be the standard semisimpIicial obJect for which (~CD)n is the standard

simplex An and the boundaries and degeneracies are ihe usual maps Bi: äD
---+ i1n- 1 and

Si : än- 1 --+ AU . Ta each topological space X J we associate the simplicial objeci i1CD(X)

such thai ACD(X)n =An )C X and the boundaries ud degeneracies are Bi )( idX and

~ )( idX ' 0 Si Sn. Now if F is a functor on the caiegory of topologicaJ. spaces, we define

the simplicial object FA(D(X) ta have (FA(D(X»n =F(Au )( X) and F(Di )( id
X

) and

F(si Je idX) ror ita boundaries and degeneracies. We denote by hF(X) ihe geometrie reali­

zation of this simplicial objeci. The functor X --+ hF(X) is a homotopy functor, and if F

itself is a homoiopy functor, then hF(X) and F(X) are homotopy equivaleni [W]. Let us

call hF the homotopificaiion of F .

3.1 Proposition. The homotopiücaüon of ,;: X ............. B J'i apeX) is the functor

X...-.. WhPL(X) (as defined by'Hatcher) up to homotopy.



fIggf. Let tN H be Hatcher's Whitehead category. Then the forgeiful functor which for­

gets the retra.ction r: Y ---+ X in ß sp(X) yields a functor r.p: ,R sp(X) --+ J'I H(X) .

This defines Br: B a sp(X) ---+ WhPL(X) and one has the commuiative diagram:

B dI sp(X) -"''1' ---+. W h PL (X)

1 1
hB tN sp(X) hBso • h WhPL ( X)

in which a and ß are indueed by "inclusiona", and the boitom row ia obiained from the

top lOW by the homoiopification procedure above. The map ß is a homoiopy equivalence,

because WhPL is a homoiopy functOI and in WhPL~lJJ(X) all the boundaries and degene­
racies are homoiopy equivalences. Thus the above remark applies to the geometrie reali-

zaiion hWhPLAlJJ(X) .

3.2 Corollary. The map cp: B 3 sp(X) ---+ WhPL(X) factors through hB ,ß sp(X) .

Now we apply the above ctiscussion to the !unctor Preir: tN sP(B) ---+ H sP(E)

defined above. Apply the homotopification to tbis. functoI, to gei 11hPreu11 I which we call
. .

"the transfer"' and denoie ii by "TI" or liTt( 1])" Ü reference to 1] =(E -!....... B) is needed.

By Proposition 3.1, we have defined Tr: WhPL(B) ---+ WhPL(E) . Delooping TI, we gei

TI : Wh(B) ---+ Wh(E) ,where Wh is ihe delooping of WhPL . Let Tr(11) be the fibre of
ibis, natural transformation ([Q] section ane) , so thai we· have the fibration

Tr(f1) --+ Wh(B) ---+ Wh(E) .
A particularly interesting situation arises from the follawing. Let

(e) : 1 --+ r --+ r ---+ G ---+ 1 be an extension, where G ia a finite group. Then we

have the compaci ANR-fibration (f1) given by the finiie covering G --+ Sr-+ Br .

Such extensions (e) form the objects of a category 6 whose morphisD1B are homo­

morphisms of such exaci sequences. Thna, one has two naturally defined functar8, namely,

(e) ......--.+ WhI(r ---+ r) and (e) ..-..-... r O(Tr( 11» J defined on the category extensions

, . Judging from the long exact sequence of the fibraüon Tr(11) ---+ Wh(B) ---+ Wh(E)
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in homoiopy, and comparing it with the S-term exaci sequence of 2.2, it is natural to con­

jecture the following:

3.3 Conmure. "There is a natural isomorphism between the functors r O(Tr( 7])) and

WhI(r--+ r) .

This will imply, of course thai there is a. leng exact sequence of higher Whitehead

groups enending the five-term sequence of Proposition 1.2. So rar this conjecture has been

verified only in special cases, and we plan to take up tms subject in another paper.
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Intloduction. Suppoae W is a compact manifold with jIf1(W) = 1r and ~ is a finite

group, and we wish to construct a free G-action on W with certain desired properties. In
\

the relative version, we may be given, in addition, a submanifold V CW which has a

G-action cp: G x V~ V and we require that the G-action t/J: G )( W·~ W restriets

to rp on V, i.e. ,I G x V = cp . This ia the extension problem, considered in [AV], for

example. (See [Wr] tor a. aurvey and further examples and applications.) In [AV] and

[Wr], the extra condition is that G should act triviallyon homology, and

'lr1(W /G) = il' )( G .
One systematic approach to construct such group actions is the following. Using some

homotopy theoretic tool8, one constructs aspace X (with il'1(X) = r ,where r fits into

an exact sequence 1~ il'~ r ---+ G --+ 1 ) such thai the regular covering space of X

(1) The author would like to thank D. Bur~helea and P. Vogel for their collaboration on
earlier projects which are continued In this paper, and the referee for helpful
suggestions and corrections.

(2) Parts or tbis research was carried out during a visit to the Max-Planck-Institut für
Mathematik (Bonn). The financial support of MPI and the hospitality of the Institute
ia gratefully acknowledged by the author.



with .....1(5{) = ..... , ia homotopy equivalent to the given W. Thus G aets freely on aspace

5'{ homotopy equivalent to W and the problem reduces to the following:

(a) Find a finitely dominated space Y which ia homotopy equivalent to X.

(b) Find a finite complex K homotopy equivalent to Y and such that the induced

covering ft, with r 1(~) = r , ia I'-simple homotopy equivalent to W .

Once K ia found, the problem ia reduced to surgery theory; that is, to find an appro­

priate normal invariant and to show that the surgery obstruction vanishes for a suitable

choice of the normal invariant. Of course, it could happen that at some stage there ia an

obstruction and one does not succeed to carry out this procedure. The question anses then,

as to how to measure such obstructions, and how to express them in terms of the topological

er other invariants of W .

In tbis paper, we consider problems (a) and (b) above in a fairly general setting.

Namely, in Section 1, we discuss the problem of finite domination of nonsimply-eonnected

free G--5paces for any finite group G, and we show that the question reduces to the case of

G = l/p71. ,where p is a prime. This reduction ia a significant step in computations, and we

illuatrate this by an application.

Next, we addresa the problem (b) above in Section 2, and fonnulate the appropriate

obstruction group Whi (r --. r) from an algebraic point of view, following our earlier

treatment in [AV] for the case r = r)( G and Whi (I' C ..... )( G) . As in [AV] , tbis abe­

lian group ia defined as the Grothendieck group of a certain category of projective modules.

Whi is closely related to the functor Wh! and fto via a five-term exact sequence in­

volving transfer homomorphisms. 1t ia fair to say that Whi play"s the same role in the nen­

simply-eonnected cases that RO does in the simply-<:onnected ones (at least in construction

and classification problems of group actions).

This generalization of WhI as a functor of extensions 1 ---+ ..... --. r --+ G ---+ 1



(rather than pairs of groups '1: C '1: )( G) suggests a further generalization. Namley, to de­

fine Whi on the spa.ce level, as it has been the CUIIent trend ever since Hatcher's "White­

head SpateS tl [H]. The recent developments in geometrie topology, in particular surgery

theory, have put more emphasis on spateS rather than their corresponding algebraie objeets,

and this has proved quite fruitful. Moreover, the topological construetion has a wider domain

of definition than the algebraie. one, and naturally it is expected to have more topological

applicatioDB. Thus we have included a discussion of this point of view in Section 3, based on

Hatcher's and Waldhausen's theories [H] [W] with suitable modifieations. While the semi­

simpliciallanguage is more natural in this context, we have chosen to informally diseuss the

matters in the topological eategory leaving the details and applications for a future oppor­

tunity.

SECTIQN ONE. FINITE DIMENSIONALITY AND FINITE DOMINATIQN. Recall that

a topological space is called finitei! dominated if there exists a finite CW complex K and a

map f: K ---+ X which has a right homotopy inverse r: X ---+ K . A CW cemplex X is

said to be of finite type if every finite dimensional skeleton of X ia a finite complex, i.e. X

has finitely many cella in each dimension. It is easy to see that a finitely dominated complex

ia homotopy equivalent to a finite dimensional CW complex with finitely generated total

·homology. An algebraic criterion for finite dimensionality of complexes can be fonnulated

with the help of the following result of [Wall ll]:

1.0. Theorem ([Wall TI] p. 131. Theorem 6). A projective positive chain complex C* is'

chain hmotopy equivalent to an n-dimensional complex if and only if Hi(C*) =0 for i > n

and Im (d : Cn+1 --+ Cn) is a projective module.

With the help of ([Wall n] Theorem 2) as well as related results of [Wall I] J one ean

translate the above mentioned finite dimensionality criterion of [Wall II] into the following:

A CW complex X with bounded H.(Xjllr1(X)) is homotopy equivalent to a finite

dimensional complex if and only if for C. =C. (Xjllr1(X)) (=, eellular chain eomplex of the

universal covering spare ~ of X) and some sufliciently large n J Ker(d: Cn+1 ---+ Cn)

ia a projeetive 111'1(X)-module. Clearly if the latter condition ho~ds for some large n, then

it hohls for all m ~ n .
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The passage from finite dimensionality to finite domination for spaces is technical in

general. However, for applications to manifolds etc., the results of [Bieri-Eckmann] and

especially, Browder's theorem ([Browder] Corollary 2) are quite useful. Namely, if X is a

Poincare space with finitely presented fundamental group, then X ia finitely dominated. In

our circumstances, we apply Browder's theorem in conjunction with Wall's finite

dimensionality criterion as folIows. Refering to the notation and the set-up of the

introduction, BUppose we have constructed an infinite dimensinal (as it happens in most

homotopy theoretic constructions) space X with r 1(X) = r , Buch that the finite group G

operates freely on the regular covering space X with '1:1(~) = '1:. First, we give a finite

dimensionality criterion for ~ to be G-homotopy equivalent to a finite dimensional free

G-complex r (in tenns of restrietions to suitable subgroups of G). Next, we pose the

hypothesis that ~ ia a Poincare complex, so that r becomes a Poincare complex as well.

Now ~/G = Y is seen to satisfy Poincare duality, since dim ~ < (I) • This shows thai X

satisfies Poincare duality, hence, by Browder's theorem X ia finitely dominated and step

(a) of the Introduction ia carried through. (See [A3] also.)

For simplicity of exposition, and without l08S of generality as far aB applications to

compact manifolds are concemed, we 3ssume thai T ia a finitely presented discrete group,

and we work in the category of CW complexes of finite type and cellular maps. Let G be a

finite group, and let r =r(G) be a disCIete group satisfying the exact sequence l1(G):

!lUll: 1--+ ~--+ r ---+ G --+ 1

Let X = X(G) be a connected space with ~l(X) =r . Denote by ~ the universal

covering space of X. For each subgroup H CG , we consider the corresponding exact

sequence 1](H):

1---+ r ---+ r(H) ---+ H ---+ 1

We set X(H) = 5{/r(H) which is a covering spate of X and '1:1(X(H)) = r(H) .
Thus X(1) ia a free G-space which ia of interest to us, and X =X(G) = X(1)/ G ; X(1) is

homotopy equivalent to the given manifold W in consideration. Our first result in this
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direction is of local-io-global nature. NamelYJ we show that the problem of finite dimen­

sionality of a free G-epace (np to G-homotopy) can be decided by restrieting to elementary

abelian snbgroups of G .

1.1. Theorem. (a) Let X be a CW complex with j'"1(X) = r as above. Then X ia homo­

topy equivalent to a finite dimensi<;>nal complex if and only if X(A) is homotopy equivalent

to a finite dimensional complex for all elementary abelian p-subgroups of G and all primes

p.
(b) Further, suppose that X(l) satisfies Poineare duality. Then X is finitely domi­

nated if and only if X(A) ia finitely dominated for all elementary abelian p-subgroups of G

and all p.

Before giving the proof of 1.1, we state the following conjecture and a supporting

theorem.

1.2. Con iecture. Let G be a nontrivial group. (a) Let X be a CW complex with

j'"1(X) = r aB above. Then X ia homotopy equivalent to a finite dimensional complex if

and only if X(C) ia homotopy equivalent to a finite dimensional complex for all cyclic

subgronps C C G of prime order.

(b) Suppose' further that X(I) ia a Poincare eomplex. Then.X ia finitely dominated if

and only if X(C) ia finitely dominated for all C CG of prime order.

We have proved this conjecture for the cases where r is a finite group, or more

generally where fOI same n sufficiently large, Ker(d : C ---+ C 1) is a finitely presentedn n-
llr-module, where C. = C.(5{) = eellular ehains of the universal covering space (Assadi

[A3] ).

We need some auxiliary algebraic concepts first. Recall that an Rr-module M ia

called (Rr,Rj'")-projective, if there exists an fE HomR",(M,M) such that 1: gf(g-lx) = x

gEG
for all x E M . This ia a generalization of the concept of "weakly projective" (cf. [Cartan-
Eilenberg] ).

1.3. Lemma ([Rim] Proposition 2.2) An Rr-module M is (Rr,R",)-projective if and only
...

if the Tate cohomology H(G;HomRj'"(M,M)) is trivial.



1.4. Lemma. An Rr-module M is Rr-projective if and only if M is (Rr,R-x)-projeetive

and Rr-projective.

Proof of Theorem 1.1. Note that if X is finitely dominated, ihen so are all finite eovering

spaces of X. Therefore, the non-trivial direction is to pass from e1ementary abelian

p-groups to the group G itself. Asaume that for such a A C G ,X(A) ia homotopy equi­

valent to a finite dimensional eomplex. In particular, tbis holds for the eovering space X(I)

with r I(X( I)) = r. Consider the eellu1&r chains C. = c.(Jt) of the universal cover ~,

whieh is a free finite1y generated r(G)-complex, and let d: C. ---+ C. be its boundary

homomorphism. Choose m large enongh so that (C.,d.) is exact in all dimensions n ~ m .

By Wall'a Theorem above M:: Ker(dn : Cn ----. cn- 1) ia ll1'-projective, and by our stan­

ding hypotheses, it ia finitely generated. Further, for every p-elementary abelian group
A C G , Ker dn ia 1lI'(A)-projective, Binee X(A) is homotopy equivalent to a finite dimen-

...
sional complex. By Lemmas 1.3 and 1.4, H(A;Homll'K(M,M)) =0 . By Chouinard's Theorem

(cf. [Jackewski] Theorem 3.1 for a topological proof, er [Chouinard]), the G-module

HO~llr(M,M) ia cohomologically trivial in th.e sense cf Tate-Nakayama (see [Rim]). Sinee

t.his module is also 7I-free, it ia llG-projective. By Lemma 1.4, M is (7If,7I'Jr)-projeetive.

Hence M ia llr-projective. The proof of (b) follows from Browder's theorem ([Browder]

Corollary 2), anee we observe that if a finite group G acta freely on a finite dimensional

Poincare duality complex, then the orbit space also saüafies Poincare duality. (See e.g.

Gottlieb, Proc. AMS 76 (1979) 148-150 or Quinn. Bull AMS 78 (1972) 262-267.)

•
Ta indicate how the abave theorem may apply to prove the above conjecture 1.2, we

consider the special ease where W is a dosed Paineare eomplex of dimension four with a

finite fundamental group.

1.5. Theorem. Let X(I) be a (possibly) infinite dimensional free G-space, where G ia any

finite group. Let 1'1(X(I)) = I' be a finite graup, and asaume that non-equivariantly X(I)

ia homotopy equivalent to a finite 4-dimensional Poineare complex. Aasume that Jt ia the

universal covering spa.ce on which r acts free1y, and as beIare, 1 ---+ r ---+ r L G ---+ 1

is exact. Then the following are necessa.Iy and aufficient for X to be finitely dominated. For

each C er, IC I = prime and C n I' = 1 :



(I) The speciral sequence of the Borel consiruction EC Xc f --+ BC does not

collapse.

(II) di~ H1(C;H2(5{)) ~ 2 when- IC I = p .
p

Ontline of the proof: Snppose X is finitely dominaied. Then one verifies directly thai some

differentials in the spectral sequence of the indicated fibration mllSt be non-trivial in order

*thai ihe iotal cohomology H (X) be finitely generaied. Thus (I) follows. As for (II), again a

direct computation with chain complexes shows that H2(5{) ~ I e I Ei P where I is the

augmentation ideal of 7I.C and P is llC-projective. To prove that these conditions are

sufficient, we apply Theorem 1.1 above to reduce the problem to the case of a ~ementary

abe1ian group. The strategy is to reduce the problem to the case G = ll.p . First, we note

that we need to prove a finite dimensionality statement in view of the pIOO! of Theorem 1.1.

Secondly, observe thai the reduction from G to IIp is a special case of Conjecture 1.2

above, which we formulate as follows.

1.6. Lemma. In the situation of 1.5. X(I) is G-homotopy equivalent to a finite dimensional

free G--oJmplex, if and only if for ea.ch prime order subgroup cer, 5{/c is homotopy

equivalent to a finite dimensional compl~

We postpone the ouiline of proof of tbis Lemma, and proceed to pIove 1.5. First, notice

that for any C C '8, ICI = prime, condiiions (I) and (II) of the theorem are s&tisfied, since

X(I) ia homotopy equivalent (non-equivariantly) to a finite dimensional complex. There­

fore, by Lemma 1.6, we are reduced to the case G = ll.p and i'f1(X(I)) =1 , and we need to

show thai (I) and (II) imply the desired finite dimensionality reault. Bere. we use the notion

of "free equivalence" of [Al]. Namely. finite dimensionality (up to equivariant homotopy)

is preserved under "free equivalencell of G-spaces and G--oJmplexes (cf. [A4] also).

Tbis translates into:

l.7. Lemma. Let r 1(X(I)) =0 , in the above notation. Let X I be a free G-<:omplex

obtained from X(l) by adding free orbits of G-cells of dimension· 3 and 4 so that

l'i(X ') = 0 for i ~ 3 . Then X I /G is homotopy equivalent to a finite dimensional complex

if and only if X is homotopy equivalent to a finite-dimensional complex. (In view of 1.6

above, we may take G = IIp here and in 1.8 below for simpliciiy, although this Iestriction



ia not necess&ry.)

This ia a special case of a more general result in [A2], and we leave out the proof.

Nm, we reduce the problem to cohomology computationa, taking advantage of the fa.ct that

*H (71.p) is periodie in positive dimensions.

1.8. Lemma. Let X' be as above. Then X' /G ia homotopy equivalent to a finite dimen­

sional complex if and only if nb(X ') = 0 for i ~ 5 , and ibis happens if and only if

Hb(X(l)) = 0 for i ~ 5 .

The proof of tbis lemma is computational, using the spectral sequence

ni(BG,nj(X I »~ " (üb+j(X I)) .
We further compute that in the spectral sequence cf EG x G X(l) ---+ BG , if the

differentials di,2 da not identically vanish, then E~'O -.0 for all j ~ 3 . Further, if

d
3
( () = 0 in E~+3,O, then {e Image (da : E~-3,4 ---+ E;,2) . Tbis implies, cf course,

that E~,2 =0 ror i ~ 2 and r ~ 4 . The proof of the latter statement is based. on the

•periodicity of H (G) and the multiplicative properties cf the spectral sequence. Another

computational point is that if da is not identically zero on E~,2 then

n2i(G,H2(X(1») = 0 for i > 0 . Putting an these together, it follows that Ei ,j = 0 when
CD

i+j > 4 , and the theorem follows &om 1.8. •

It remains to indicate the proof of Lemma 1.6.

Qntline of the proof of Lemma 1.6. Consider the free r-5pace X, and assume thai 't/C is

homotopy equivalent to a finite dimensional complex. Let M = Ker(dn : Cn ---+ Cn-I) ,

where C. = C.(~) as before, for some sufficiently !arge n. Using Theorem 1.0 above

([Wall 11]), the hypotheses imply thai M is llC-projective for all prime order cyclic sub­

groups cer. We want to show thai M is 1lf-projective, and tbis will prove 1.6 (using

Theorem 1.0 again). llr-projectivity of M folIows, in principle, from the projectivity

criterion of [Al] (see also [A3]). We make a lew comments in tbis direction. Let k = lf ,p
and A erbe a p-elementary abelian subgroup. We need the following:



1.9. Lemma. The kA-free complex C.(~) GD k ia chain homotopy equivalent to a finite

* *dimensional free kA-complex if and oJily if H (A;k) aeta nilpotently on HA(~;k) .

Thia result ia contained in [A2] (see Assadi [A3] for a summary and further results).

The idea is as follows. In [A2] , we associate cerlain homogeneous affine varieties

VA(C*(~) ti k) and VA(c*(J{) 8 k) which are algebro-geometric invariants of

C*(~) ti k. The variety VA(c*(i) ti k) ia constructed from the support of the

* * * *H (A;k)-module HA(~;k). When H (A;k) acta nilpotentlyon HA(i;k), it follows thai

VA(c.(i) ti k) = 0 . Furthermore, c.(i) GD k ia shown to be chain homotopy equivalent to

a free finite dimensional kA--ehain complex if and only if V1(c*(~) e k) = 0 . On the other

hand, according to ([A2] Theorem 1.4) for connected kA~mplexes with finitely generated
r .

cohomology, VA(c*) ~ VA(C*) . These statements together imply Lemma 1.9.

•
As we have seen in Theorem 1.1, we need 10 consider only prime order 8ubgroups of

p-elementary abelian groups A er, and show that M is kA-projective, or equivalently,

* *H (A;k) acta nilpotentlyon HA(~;k) , using 1.9. The proof of th~ projectivity criterion of

[Al] ean be modified in this set-up to show that:

• •1.10. Lemma: H (A;k) acts nilpotently on HA(~;k) if and only if for each cyclie subgroup
• * -

C CA J H (C;k) acts nilpotently on HC(Jt;k) .

This statement, of course, implies Lemma 1.6, using 1.9 again for each C. The prcof of

*Lemma 1.10 ia based: (a) The faet that HCC5t;k) is equipped with an "Steenrod algebra"

operation, and (b) the notion of support varieties. The details are similar to the proof of

([Al] Theorem 2.1).

1.11 Corollarv. In the situation of Theorem 1.5. if the necessary eonditions are satisfied,

then there exists a well-defined obatruction 8(X) ERo(1Ir) such that 9(X) = 0 Ü and

only if X ia G-homotopy equivalent to a finite Poineare complex with a free G-action.

This corollary follows from the general theory of [Wall I] once we have shown that X
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ia finitely dominaied via Theorem 1.5. Here, one should remark ihai 9(X) can be deter­

mined in terms of the G-module H2(5t) directly. For example, when G = 71.p ' one

computes ihai a2(X) ~ I EI 18 P ,where I C71.G ia ihe augmentation ideal and P ia a

projeciive module. Then 6(X) ia ihe class [P] E~o(71G) if ~ is simply--eonnected. H
O(X) = 0 , then one has a finite Poincar~ complex, and one can apply M. Freedman's topa­

logical surgery in dimension four to diSCUB8 ihe surgery obstruction. It is possible to deter-

mine the precise obsiructions in this case by studying the intersectin form of I. This ana­

lysis ia carried out for a special dass of finite groups in a somewhat different context by 1.

Hambleton and M. Kreck. Theorem 1.5 holds in higher dimensions as well, although the

statement should be suitably modified. These matters will be considered in a future paper.

Finally, we make some remarks about the validity of Conjecture 1.2 under the

additional hypothesis that for some sufficiently large n, Ker(d : Cn ---+ Cn- 1) ia a finitely

presented 7lr-module (using the previous notation etc.). AB we have seen in the proo! cf
Theorem LI, ihe basic step for finite dimensionality up to r-equivariani homotopy (of free

r--ehain complexes) ia ihe projeciivity of ihe r-module M:: Ker(d : Cn ---+ Cn_ l ) for

some aufficiently !arge n. We will mention the relevant algebraic fact below (Lemma 1.12)

which together with ihe projectivity erlterion cf [A4] Theorem 2.1 prove Conjecture 1.2 (a)
in this case (cf. the proof of 1.1 (a) above). The prco! of 1.2 (b) proceeds as in Theorem 1.1

(b), replacing elementary abelian subgroups by prime order subgroupa in that argument. The

following lemma is quite useful in other circumstances as weIl (see [A3]).

1.12. Lemma. In the above situation, suppose that M ia a fiDitely presented Rr-module

which ia Rr-projective. Then HomR~(M,M) ia RG-projective if and only if

HomR(R"".M, R"jf'M) ia RG-projective. (In particular, either condition implies that M

is RI'-projective.)

Sketch of prcof. Suppose HomR(R 81'M, R 81'M) ia RG-projective. It follows that

R 81"M is also RG-projective. On the other hand the only non-vanishing term in

Tor~I'(N,M) is Tor~r(N,M) ~ N 81"M for any Rr-module N, since M is Rr-projec­

tive. These two facta , together with an argument using a Grothendieck-type spectral

sequence: Tor~G(Torfr(M,-).-) ~ TOr~~j(M.-) imply that M is RI'-flat. Since M is
also finitely presented, it follows ihat M is Rr-projective (see e.g. Bourbaki'a Commu­

tative Algebra, Ch.!, p.64, EL 15). Thus, M ia (R!',RI")-projeciive which implies that



HomRr(M,M) ia RG-projective. Conversely, if HomR3r(M,M) is RG-projective, then M

ia Rl'-projective (being (Rr,RiT)-projective and Rir-projective). 1t follows -easily that

R ~ ifM is RG-projective. Consequently HomR(R ~ ifM, R ~r M) is also RG-projective.

•

SECTION TWO. THE ALGEBRAIC WHITEHEAD TRANSFER. Let

(Tl) : 1 --+ iT --+ r --+ G --+ 1 be an extension of groups and let u be a section (not a

homomorphism necessarily). Here G ia a finite greup of order g and ;r and r are dis­

crete groups. Let A be the category whose objects consista of pairs (M,B), where M ia a

finitely generated 1Ir-projective module which ia free over 7liT and B ia a finite 7l1l'"-basis

for M. Let (M1,B1) N (M2,B2) if there exista a 7If-isomorphism f: MI --+ M2 such

that f ia iT-simple with respect to B! md B2 . The set of equivalence classes A' =A/N

has a monoid structure under direct sum of modules and disjoint union of bases, and (0, r/J)

ia the neutral element. Let R be the submonoid generated by (7Ir,u(G)). Then

Wh'f( iT --+ r) is defined to be the quotient monoid A' IR . As in [AV] (Proposition 1.1)

it fellows that WhI(r--+ r) is an abelian group. The forgetful functer (M,B) --+ M

induces a homomorphism ß: Whi(iT --+ r) --+ RO(lIT). On the ether hand, given

t EWh!(iT) , we define a(t) to be the equivalence class of (M,B) where M = (lIT)k· and

B is obtained from twisting the standrad basis u( G)k by t, i.e.,

id : (M,u(G)k) --+ (M,B) has ,,-torsion t. It follows that the sequence

Wh!( r) --!!.... Whi (r --+ r) Tr • lto(1lr) is exact. In [AV] , this sequence is extended to a

five tenn exa.ct sequence involving the transfers in Wh! and Ra where r = iT x G (cf.
[AV] Proposition 1.2).

2.1 Proposition. The following sequence is exact.

Several other properties of Whi extended !rom the product case r = ".. )( G to the

present case. Let P* denote the category of bounded finite1y generated projective

1II'-eomplexes. Let p2 be the category of 1II'-<:omplexes which have the chain homotopy
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type of a complex in f.. Denote by A. the category of pairs (C.,B.) where C. ia a

complex in f. and (Ci'Bi) EA for all i. For (C.,B.) EA., we define

X(C.,B.) = 1: (-l)n[Cn,Bn] EWh'f(r---+ r). If C. is acyclic, then its torsion
n

T(C.,B.) E Wh1(~) is defined.

2.2 Proposition. (a) For (C.,B.) EA. , X(C.,B.) = ß( r(C.,B.») if C. ia acyclic.

(b) Let (C.,B.) and (C' .,B~) be objects in A. and let f: C. ---+ C'. be a
lIr-cha.in homotopy equivalence. Then X(C' .,B' .) = X(C.,B.) + ~ r(f) , where r(f) is

the %'-Whitehead torsion of f.

2.3 Proposition and Definition. Let f be a 7I.r~ain homotopy equivalence !rom a finitely

7I~ased 1lT-eomplex D. to a chain complex C. Ef~ . Let g be a 1Ir-ehain homotopy

equivalence from C. to achain complex C' * with a 11r-basis BI * such that

(C'.,B'.) EA•. Then the element X(C'.,B'.) -,8(r(g-f) EWh'i(r---+r) does not

depend on the choice of (C' .,B'.) and g. This element is denoted by x(!).

A topological application of tbis element is based on the following:

2.4 PrQoosition. Let D. EU~, C. Ef~ , and f: D. ---+ C. be a 7Ir-homotopy equi­

valence. Then X(i) =0 in Whi'(r-+ r) if and only if there exists a finitely 7Ir-based

projective 1Ir-ehain complex C'. and a 1Ir-ehain homotopy equivalence g: C. --+ C' *
such that g -f ia r-6imple.

2.5 Theorem. Let X be a connected CW complex (of finite type) with "'1(X) = r , and let

Y be a connected finite CW subcomplex cf X with r 1(Y) = "'1(X) . Let X and Y be

the covering space of X and Y with r1(X) =~ = "'l(Y) , Le., X = x/a and Y =Y/G .

Let X be ci connected finite CW complex with the commutative diagram:



I)

-
Yc .x

1 la
Yc .x

- -
such that a: X --+ X induces a homotopy equivalence from X to X. And suppose that

the indusion of the n-skeleton (X(n),Y)· to (X,Y) is a finite domination for some

sufficienily large n. -Then x(a. : C.(X,Yj71~) --+ C.(X,Yj1Ir)) = 0 in Whi ('I' --+ r) if

and only if there exists a finite complex Z J Y and a homotopy equivalence g: X ---t Z

(rel. Y) such that g. a : X --+ X --+ Z induces a simple homotopy equivalence

x --+ Z ,where Z ia the covering space of Z with r 1(Z) = I' , Le., Z = Z/G . Here Q.

denotes the composition of the 71. r-chain homotopy equivalence:

=-
C.(X,Y;71.~)--+ C.(X,Yj71.r) and 7Ir-ehain isomrophism: C.(X,Y;llr) --+ C.(X,Y;1Ir) .

Let D. be the category whose objects are finitely llr-based 1Ir-ehain complexes D*

such that D.. fJ71. llq ia llqr-<:hain homotopic to the trivial complex O. We wiah to use the

well-defined element x( -) above to ~efine an invariant of D. E D•. Let R. be a pro­

jective llG-resolution of 7l. as a 1lG-module such that Ra =1l.G . Then it turns out that

the standard 7l.,.-chain map fs : D. --+ D. 81l R. ia a 7lr-ehain homotopy equivalence, (fs
ia given by fs(x) = x «0 1 E Di «0 Ra for· x E Di , where 1 ia the unit of 7IG = RO).

Furthermore, D. «Ou. R. ia an object in p2, and there ia an object (C I *,B I .) E A. and a

7Ir-ehain homotopy equivalence g: 0. ~71. R. --+ C' • . Hence we define 7(0.) to be

X(fs) =X( [C I .,B I .]) - /3{ r(g. fs)) . H r = '1: )( G ud G acta triviallyon D., then

7<0.) depends only on the Reidemeister torsion of D. in Wh1(rju.q) , but this may not

hold in general.

SECTIQN THREE. THE TOPOLOGICAL WIDTEHEAD TRANSFER. As pointed out in

the Introduction, it is possible to lormulate the algebraic construction of Section 2 in terms

of apace&, in accordance with the current emphasis on tlSpacesll rather than tlgroups". Thus,



we teplace the Whitehead groups by Whitehead spaces following HatcherJs highet simple

homotopy theory [H]. HoweverJ there are same technical points which must be dealt with.

Fot example "the naturally suggested transfer functor" in HatcherJs theory ia not a homo­

topy functor. In [W] Waldhausen inttoduces a. "homotopification" procedure for functors,

and this resolves the above-mentioned difficulty. One advantage cf this approach ia that the

5-term exact sequence of the type introduced in Proposition 2.1 tumB out as the lower

portion of the homotopy exact sequence of "the transfer fibration 11 between Whitehead

spaces. Another point which should be remarked ia that the following approach applies to

more general extensions 1 --+ r --+ r ---+ G~ 1 ; e.g., G could be the fundamental

group of an aspherical manifold. While it would be more natural and appropriate to present

ibis material in the semisimplicial language, we continue the discussion in the topological

context.

To every extension (1]): 1---+ ~ ---+ r --+ G ---+ 1 ,where G ia a. finite graup,

ane associates the fibration G~ Br ---+ Br . This is a special case of a compatt ANR

fibration:

Definition: Let ~ be a subcategory cf the category of topological apaces. A tripIe

1/ = (E -!..... B) ia called a compact ANR libration in ~ with the following properties:

(i) r ia a proper mapi

(ii) ~: E --+ B is a Hurewicz fibration;

(ili) aIl the fibres of r are compaet ANR.

In a. combinatorial category, e.g. that of simplicial complexes, we assume that the fibres are

finite simplicial complexes.

Exam,J}les.

(1) Let K be a finite simplicial complex. The produet fibration BxK ---+ B is a

compact ANR fibration.

(2) Any fibre bundle with compact fibres ia a compact ANR fibration. For instance,

covering spa.ces with finite groups of deck transformations are compact ANR fibrations.

(3) Let ~ be a ugeometrie group", i.e. the fundamental group of a closed aspherical

manifold (e.g. cIosed hyperbolie manifolds), and let 1 ---+ 'K ----+ r --+ 'X' --+ 1 be

an extension of groups. Then the fibration B'X ---+ Br ---+ Br' has compact fibres.

In many cases (e.g. if r = ~ x 7;' ) the obstructions for converting tbis fibration to a
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compact ANR fibration vanish. We will see below in such cases, one can define the

transfer and consequently the group WhO( ~ --+ r) . If ~' ia an infinite group, then

the procedure of Section 2 does not apply here.

Fer each topological space X, Hatcher has defined a category WhPL(X) such that

~O(BWhPL(X))~ Wh1(11"1(X)) ,where BWhPL(X) is the classifying space ef WhPL(X) .

We refer the reader to [H] and [W] (in particular § 5) for details and justifications of what

follows. We are interested in a modified version of Hatcher' s construction. Let 9'~ be the

category of topological spaees and 'dd the category of categories. Define a functor

J{ SP : 9'~ ----+ ~aI as follows. The ebjects ef JI sp(X) consist of diagrams

i
X I Y ,where X,Y E 9'~, and i ia an indusion while r ia a deformation retrac-

r
tion, and (Y,X) is a relatively finite CW complex. Further, we aBsume that all maps are

cell-like, i.e., the inverse images cf points are contractible. A mcrphisID f between

r1 r2
Xl

I y and X .y
1 2

11 12
maps:

consists of a strictly commutative diagram cf cell-like

x "

y~~
fy1-----------Y2

~·A
X

We call tH Sp(X) the special Hatcher-Wbitehead category cf X and B r:N sp(X) the

special Hatcher-Whitehead space of X. In the combinatorial version of tbis category, if the

reader prefers, we have simplicial complexes and simplicial maps such thai the inverse image

cf every simplex ia coniractible.

i
Let 11 = (E -!..... B) be a compact ANR fibration." Given Y 4----. B in r:N sP(B)

r
*representing an object x, we define Pretr(x) by the pull-back r 1J = (E' ....!.... Y) . Then
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one has the natural indusion i': E ---t E' and the retraction r': ä' --+ E covering

r : Y ---+ B . Moreover, I' ia cell-like since I ia cell-like and F ia a compact ANR. In

addition, (E' ,E) ia a reiatively finite CW complex. Similar comments apply to the combi­

natorial case. Thus, we have a candidate fOI the tlansfer, namely

functoradefineswhich
i i '

(Y I • B) 1--+ (E I I E)
r r'

Pretr : eN sP(B) --+ J{ sP(E) .

The technical problems which arise hete are:

(a) the dassifying spare B J'{ sp(X) ia not the Whitehea.d space of X ;

(b) the functor X t--+ B JI sp(X) ia not a homotopy funetor.

According to Waldhausen [W] (pp. 55-58) these difficulties are overeome by using bis

"homotopification of functors". First, let U8 Iemark thai if .$ ia a simplicial object in the

category of topological spaees, 80 that for each n ~ 0 Xn ia a topological space and the
d. 8.

faces and degeneracies Xn+1 1 I Xn and Xn 1 I Xn+l' 0 ~ i Sn are homotopy
equivalences, then the geometrie realization I J I is homotopy equivalent to each Xn .

We will use ihis remark in the follawing construction.

Let ArIJ be the standard semisimplicial object for whieh (AaJ)n ia the standard

simplex An and the boundaries and degeneracies are the usual maps 8i : An --+ &n-l and

Si : An- 1 --+ An . Ta each topological space X, we associate the simplicial object AaJ(X)

such that ArIJ(X)n = An x X and the boundaries and degeneracies are Bi )( idX and

Si x idX ' 0 ~ i ~ n . Now if F is a funetor on the category of topologica.l spaces, we define

the simplicial object FärIJ(X) to have (FärIJ(X))n = F(än x X) and F( Bi )( idX) and

F(Si x idX) for its boundaries and degeneracies. We denote by hF(X) the geometrie reali­

zation of tbis simplicial object. The functor X --+ hF(X) is a homotopy funetor, and if F

itse1f is a hamotopy functor, then hF(X) and F(X) are homotopy equivalent [W]. Let us

call hF the homotopification of F .

3.1 Proposition. The homotopification of ,: X~ B JI sp(X) ia the functor

X 1--+ WhPL(X) (as defined by Hateher) up to homotopy.
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~. Let rH H be Hatcher's Whitehead category. Then the forgetful functor which for­

gets the retraction r: Y --+ X in J{ sp(X) yielda a functor tp: J( sp(X) --+ JI H(X) .

This defines Br: B JI sp(X) --+ WhPL(X) and one has the commutative diagram:

B J{ sp(X) -----oI'fJO""'-__--+1 W h PL (X )

1 1
hB eN sp(X) hB'{J I h WhPL ( X)

in which a and ß are induced by "inclusions ll
, and the bottom row is obtained !rom the

top row by the homotopification procedure above. The map ß ia a homotopy equivalence,

because WhPL is a homotopy functor and in WhPL~(I)(X) all the boundaries and degene­

rades are homotopy equivalences. Thus the above remark applies to the geometrie reali-

zation hWhPL&(J)(X).

3.2 CoroUm, The map tp: B JI sp(X)~WhPL(X) ractors through hB t1I sp(X) ,

Now we apply the above diseussion to the functor Pretr: J( sP(B) ----. J'lsP(E)

defined above. Apply the homotopifieation to tbis functor, to get "hPretr", which we call

"the transfer" and denote it by "Trn or "Tr( 1])" if reference to 1J = (E .2:......... B) ia needed.

By Proposition 3.1, we have defined Tr: WhPL(B) --+ WhPL(E) . Delooping Tr, we get

Tr : Wh(B) --+ Wh(E) ,where Wh ia the delooping of WhPL . Let Tr(1J) be the fibre of

tbis natural transformation ([Q] section one), so that we have the fibration
Tr(1J)~Wh(B)~ Wh(E) .

A particularly interesting situation arises !rom the foUowing. Let

(e) : 1 ---+ 'I" ---+ r -+ G -+ 1 be an extension, where G ia a finite group. Then we
have the compa.ct ANR-fibration (1]) given by the finite covering G -+ Br ----. Br ,
Such extensions (e) form the objects of a category ~ whose morphisms are homo­

morphismB of such exact sequences. Thus, one ha.s two naturally defined functors, namely,

(e)_whI(r--+r) and (e)-ro(Tr(l7», defined on the category extensions
8 . Judging from the long exact sequence of the fibration Tr( 11) -+ Wh(B) -+ Wh(E)



in homotopy, and comparing it with the 5-term exact sequence of 2.2, it ia natural to con­

jecture the following:

3.3 Conjecture. "There ia a natural i80morphism between the functola "'O(Tr(11» and

Wh'f(:K ---+ r) .

This will imply, of course that there is a long exact sequence of higher Whitehead

groups extending the five-term sequence of Proposition 1.2. So fa.r this conjecture has been

verified only in special ca.ses, and we plan to take up this subject in another paper.
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