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Abstract

We prove that the associativity equations of two-dimensional topological
quantum field theories are very natural reductions of the fundamental nonlin-
ear equations of the theory of submanifolds in pseudo-Euclidean spaces and
give a natural class of potential flat torsionless submanifolds. We show that
all potential flat torsionless submanifolds in pseudo-Euclidean spaces bear nat-
ural structures of Frobenius algebras on their tangent spaces. These Frobe-
nius structures are generated by the corresponding flat first fundamental form
and the set of the second fundamental forms of the submanifolds (in fact, the
structural constants are given by the set of the Weingarten operators of the
submanifolds). We prove in this paper that each N-dimensional Frobenius
manifold can locally be represented as a potential flat torsionless submanifold
in a 2N-dimensional pseudo-Euclidean space. By our construction this sub-
manifold is uniquely determined up to motions. Moreover, in this paper we
consider a nonlinear system, which is a natural generalization of the associa-
tivity equations, namely, the system describing all flat torsionless submanifolds
in pseudo-Euclidean spaces, and prove that this system is integrable by the
inverse scattering method.
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1 Introduction. Associativity equations and
Frobenius structures

In this paper we prove that the associativity equations of two-dimensional topolog-
ical quantum field theories (the Witten—Dijkgraaf—Verlinde—Verlinde and Dubrovin

equations, see [1]) for a function (a potential or prepotential) ® = ®(ul, ..., u"),
N N 3 3 N N 3 3
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where 7% is an arbitrary constant nondegenerate symmetric matrix, n* = n’t, n¥ =
const, det(n*”) # 0, are very natural reductions of the fundamental nonlinear equa-
tions of the theory of submanifolds in pseudo-Euclidean spaces and give a natural
class of potential flat torsionless submanifolds. All potential flat torsionless subman-
ifolds in pseudo-Euclidean spaces bear natural structures of Frobenius algebras on
their tangent spaces. These Frobenius structures are generated by the corresponding
flat first fundamental form and the set of the second fundamental forms of the sub-
manifolds (in fact, the structural constants are given by the set of the Weingarten
operators of the submanifolds). We recall that each solution ®(u!,... u") of the
associativity equations (1.1) gives N-parametric deformations of Frobenius algebras,
i.e., commutative associative algebras equipped by nondegenerate invariant symmet-
ric bilinear forms. Indeed, consider algebras A(u) in an N-dimensional vector space

with basis ey, ..., ey and multiplication (see [1])
PP
_ k k _ ks
eioe; = ci(uler, cj(u)=n S duia O (1.2)
For all values of the parameters u = (u!, ..., u") the algebras A(u) are commutative,
e; o e; = e;j oe;, and the associativity condition
(e;oej)oe, =e;0(ejoe) (1.3)
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in the algebras A(u) is equivalent to equations (1.1). The matrix 7;; inverse to the
matrix 7/, 7', = 0}, defines a nondegenerate invariant symmetric bilinear form on
the algebras A(u),

<€z‘7 €j> = Nij, <€z’ © €y, 6k> = <€z‘7 €; © €k>- (1‘4)

Recall that locally the tangent space at every point of any Frobenius manifold (see [1])
bears the structure of Frobenius algebra (1.2)—(1.4), which is determined by a solu-
tion of the associativity equations (1.1) and smoothly depends on the point. Besides,
one should also impose additional conditions on Frobenius manifolds, but we do not
consider these conditions here. We prove in this paper that each N-dimensional Frobe-
nius manifold can locally be represented as a potential flat torsionless submanifold
in a 2/N-dimensional pseudo-Euclidean space. By our construction this submanifold
is uniquely determined up to motions. Moreover, in this paper we consider a non-
linear system, which is a natural generalization of the associativity equations (1.1),
namely, the system describing all flat torsionless submanifolds in pseudo-Euclidean
spaces, and prove that this system is integrable by the inverse scattering method.
The connection of the construction with integrable hierarchies, nonlocal Hamiltonian
operators of hydrodynamic type with flat metrics, Poisson pencils and recursion op-
erators can be found in [2]. The results of applications of this construction to the
theory of Frobenius manifolds will be published in a separate paper.

2 Fundamental nonlinear equations of the theory
of submanifolds in Euclidean spaces

Let us consider an arbitrary smooth N-dimensional submanifold M* in an (N + L)-
dimensional Euclidean space EN*E MY ¢ EN*L and introduce the standard classic
notation. Let the submanifold M?” be given locally by a smooth vector-function
r(ul,...,u") of N independent variables (u!, ..., u") (some independent parameters
on the submanifold), r(u',...,u") = (2'(ul, ... u?), ... 2N (!, ... u?)), where
(21, ..., 2N are coordinates in the Euclidean space EN L (21,... 2N*L) € EN*E
(ul,...,uV) are local coordinates (parameters) on MY, rank(dz'/0u’) = N (here
1<i<N+L, 1<j<N). Then 0r/ou’ = r,, 1 < i < N, are tangent vectors
at an arbitrary point u = (u!,...,u’) on M¥. Let N, be the normal space of the
submanifold M¥ at an arbitrary point u = (u!,...,u") on MY, N, = (n,...,n.),
where n,, 1 < o < L, is an orthonormalized basis of the normal space (orthonormal-

ized normals), (ng,7,) = 0,1 <a <L, 1 <i<N, (ng,ng) =0,1<a,8 <L,
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a# [, and (ng,ne) =1, 1 <a < L.

Then I = ds? = g;j(u)du'du?, g;j(u) = (ryi, 7y ), is the first fundamental form and
I1, = waj(u)du'du?, wei;(w) = (Mg, Tyiwi), 1 < < L, are the second fundamental
forms of the submanifold M¥.

Since the set of vectors (1,1 (u), ..., ry~(u),ni(u), ..., np(u)) forms a basis in EN*E
at each point of the submanifold M?, we can decompose each of the vectors Naui (1),
1 <a<L,1<i<N, with respect to this basis, namely, 1, ,:(u) = A% ;(u)ry(u) +
stapi(u)ng(u), where AE (u) and s4p,(u) are some coefficients depending on u (the
Weingarten decomposition). It is easy to prove that AX (u) = —wa;(u)g’"(u),
where ¢’%(u) is the contravariant metric inverse to the first fundamental form g;;(u),
9" (u)gsj(u) = 0% The coefficients s¢,5,(u) are said to be the coefficients of torsion
of the submanifold MY, »,5,(u) = (ng.(u),ng(u)). It is also easy to prove that
the coefficients s,4,(u) are skew-symmetric with respect to the indices o and S,
#45.i(U) = —54,(u), and form covariant tensors (1-forms) with respect to the index
i on the submanifold M~ . The 1-forms sc,s;(u)du’ are said to be the torsion forms
of the submanifold M™ .

It is well known that for each submanifold MY the forms g;;(u), wa.;(u) and
2,5, (u) satisfy the Gauss equations, the Codazzi equations and the Ricci equations,
which are the fundamental equations of the theory of submanifolds. In our case, the
Gauss equations have the form

L
7,]k:l Z wa,]l wa,ik(u) - wa,jk(u)wa,il(u)) ) (21)
a=1

where R;;ii(u) is the tensor of Riemannian curvature of the first fundamental form
gi;(u), the Codazzi equations have the form

Vi (Wa,i (1) = Vj(Wair (1) = sapr(w)ws,ij(u) — apj(u)ws,ix(u), (2.2)

where V. is the covariant differentiation generated by the Levi-Civita connection of
the first fundamental form g;;(u), the Ricci equations have the form

L
Vi(#ap,i(u) — Vi(stap k() + Z Hary,i(W) 32351 (W) — an (1) 52,5, (1)) +

+ (Wa i (w)wg ji(u) — ww(u)wmk(u)) 9" (u) = 0. (2.3)

The Bonnet theorem. Let KV be an arbitrary smooth N-dimensional Rie-
mannian manifold with a metric g;j(u)du'du?. Let some 2-forms we ;j(u)du’du?,
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1 < a < L, and some 1-forms »,s,(u), 1 < a,3 < L, be given in a simply con-
nected domain of the manifold KN. If wyi;(w) = waji(W), 5api(u) = —3gq:(u), and
the Gauss equations (2.1), the Codazzi equations (2.2), and the Ricci equations (2.3)
are satisfied for the forms g;;(u), wa,ij(u) and sus,(u), then there exists a unique
(up to motions) smooth N-dimensional submanifold M™ in an (N + L)-dimensional
Euclidean space ENTE with the first fundamental form ds* = g;;(u)du'du?, the second
fundamental forms we i;(u)du'du’ and the torsion forms sag;(u)du’.

Similar fundamental equations and the Bonnet theorem are true for all totally
nonisotropic submanifolds in pseudo-FEuclidean spaces (we recall that if we have a
submanifold in an arbitrary pseudo-Euclidean space E]", then the metric induced on
the submanifold from the ambient pseudo-Euclidean space E]" is nondegenerate if
and only if this submanifold is totally nonisotropic, i.e., it is not tangent to isotropic
cones of the ambient pseudo-Euclidean space EI™" at its points).

3 Flat submanifolds with zero torsion
in pseudo-Euclidean spaces

Let us consider totally nonisotropic smooth N-dimensional submanifolds with zero
torsion in an (N + L)-dimensional pseudo-Euclidean space, i.e., the torsion forms
of submanifolds of this class vanish, s.5;(u) = 0. In the normal spaces N, we
will also use bases n,, 1 < a < L, with arbitrary admissible Gram matrices fiqs,
(Nay 8) = Hap, Map = CONSt, [lag = figa, det f1a3 7# 0 (the signature of the metric pqg
is determined by the signature of the first fundamental form of the submanifold and
the signature of the ambient pseudo-Euclidean space).

For torsionless N-dimensional submanifolds in an (N + L)-dimensional pseudo-
Euclidean space we obtain the following system of fundamental equations, the Gauss
equations

L L
Riji(u) = > Y 1 (wagik (w)wp i (1) — waa(w)wg jr(u)), (3.1)
a=1 =1
where 17 is the inverse to the matrix pas, s = 6%, the Codazzi equations
Vi(Wa,ij(u) = Vj(wa,i(u)), (3.2)
and the Ricci equations

9" (1) (Waie(w)wg ji(u) — waa(w)ws ji(u)) = 0. (3.3)
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Now let g;;(u) be a flat metric, i.e., we consider flat torsionless N-dimensional
submanifolds M? in an (N + L)-dimensional pseudo-Euclidean space. Then we can
consider that u = (u',...,u’) are certain flat coordinates of the metric g;;(u) on
MY . In flat coordinates the metric is a constant nondegenerate symmetric matrix

iy Mij = Nji» Mij = const, det(n;;) # 0, and the Codazzi equations (3.2) have the form

8Wa,ij o awa,z‘k

ouk  ouw
Thus there exist locally some functions y,i(u), 1 <o < L, 1 <i < N, such that

(3.4)

- aon,i

wa,ij(u) = O . (35)
iFrom symmetry of the second fundamental forms w, ;;(u) = wy ;i(u) we have
aXa % aXa 7
s = = 3.6
ou’ ou’ (36)
Therefore, there exist locally some functions v, (u), 1 < a < L, such that
Mo ta
Xa,i(u) - oui’ wa,ij(u) - uious” (37>

Thus we have proved the following important lemma.

Lemma 3.1 All the second fundamental forms of each flat torsionless submanifold in
a pseudo-Fuclidean space are Hessians in any flat coordinates in any simply connected
domain on the submanifold.

Moreover, in any flat coordinates the Gauss equations (3.1) have the form

L L
S (P P P P ,
a=1 p=1 a’uﬂauk au]aul aw@ul au]auk

and the Ricci equations (3.3) have the form

N N 2 2 2 2
> > Oa Owp Ot Ous ) _ (3.9)
outouk Ouwiou!  Outout Oul duk

i=1 j=1

where 7/ is the inverse to the matrix 75, 7*n,; = 0%
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Theorem 3.1 The class of N-dimensional flat torsionless submanifolds in (N + L)-
dimensional pseudo-FEuclidean spaces is described (in flat coordinates) by the system
of nonlinear equations (3.8), (3.9) for functions 1(u), 1 < o < L. Here n" and
u® are arbitrary constant nondegenerate symmetric matrices, n¥ = n’*, n¥ = const,
det(n¥) # 0, u®® = const, u® = pP*, det u®® # 0, the signature of the ambient
(N+L)-dimensional pseudo-Euclidean space is the sum of the signatures of the metrics
0 and p®?, 1 = ds?® = n;du'du’ is the first fundamental form, where n;; is the inverse
to the matrizn, n**ny; = 8%, I, = (0% /(Ou'0u?))du'du’, 1 < a < L, are the second
fundamental forms given by the Hessians of the functions ¥4 (u), 1 < a < L.

According to the Bonnet theorem any solution 1, (u), 1 < « < L, of the nonlinear
system (3.8), (3.9) determines a unique (up to motions) N-dimensional flat torsionless
submanifold of the corresponding (N + L)-dimensional pseudo-Euclidean space with
the first fundamental form nijduiduj and the second fundamental forms w,(u) =
(0%1hy /(OuiOu?))duldu?, 1 < oo < L, given by the Hessians of the functions 1, (u), 1 <
a < L. It is obvious that we can always add arbitrary terms linear in the coordinates
(u',...,u’) to any solution of the system (3.8), (3.9), but the set of the second
fundamental forms and the corresponding submanifold will be the same. Moreover,
any two sets of the second fundamental forms of the shape wy, ;;(u) = 821,/ (Ou’du?),
1 < a < L, coincide if and only if the corresponding functions ¢, (u), 1 < a < L,
coincide up to terms linear in the coordinates, so we must not distinguish solutions of
the nonlinear system (3.8), (3.9) up to terms linear in the coordinates (u!,..., u®).

Theorem 3.2 The nonlinear system (3.8), (3.9) is integrable by the inverse scattering
method.

Consider the following linear problem for vector-functions da(u)/du’ and b, (u),
1<a<lL:

d*a N Ob, . da
owow A w5 (w)bs(w), oui pnk]"da,ij(u)%a (3.10)

where 77,1 <i,5 < N, and u®?, 1 < a, 8 < L, are arbitrary constant nondegenerate
symmetric matrices, ¥ = /%, 5% = const, det(n¥) # 0, u*® = const, u*® = pe,
det u®® # 0; it is obvious that here the coefficients w, ;;(u), 1 < o < L, must be
symmetric matrix functions, w,;;(4) = waji(u); A and p are arbitrary constants
(parameters).



The consistency conditions for the linear system (3.10) are equivalent to the non-
linear system (3.8), (3.9) describing the class of N-dimensional flat torsionless sub-
manifolds in (N + L)-dimensional pseudo-Euclidean spaces. Indeed, we have

3a ow Ob
e S— Y LR A u®Pwy B _
Juowigar ~ M g o) T A wai (W) 5oE
=\ aaOéZ]b A af ls aa’_
= A 3(1) + A P weii(u)pn Wﬂ,ks(u)w =
Oow Oa
o off a,ik ls
_)‘:u Wb ( )+)‘:u Woczk( )077 w@ﬁ(“)%? (3'11)
whence we obtain 3 W o (w)
Wa,ij\U Wa ik \U
’ = = 12
ouk ouw’ (3.12)
and
1w (W)wp s (1) = PP we g (U)wp js(u). (3.13)
Moreover,
sza kj &uaﬂ-j da kj (92a .
outoul — P oul  Ouk o o (u )aukaul N
Ow,.ii Oa -
k o, k. —
=pn" 8u1]% + PN Waij (W) A 17 w’ykl( )bs(u) =
-&ua,l- da :
= P o+ o wa g (WA 7w ()b (), (3.14)
whence we have 9 9
Wa,ij Wa,lj
- , 3.15
ou! ou’ ( )
and . .
1 wai5 (W)ws k(1) = 7% wa 1 (W)wn ki (w). (3.16)

It follows from (3.12) and (3.15) that there exist locally some functions ¢, (u), 1 <
a < L, such that
Jutou’
and then the relations (3.13) and (3.16) are equivalent to the nonlinear system (3.8),
(3.9) for the functions ¥, (u), 1 < a < L.

In arbitrary local coordinates, we obtain the following integrable description of all
N-dimensional flat torsionless submanifolds in (/N + L)-dimensional pseudo-Euclidean
spaces.

(3.17)

Waij(u) =



Theorem 3.3 For each N-dimensional flat torsionless submanifold in an (N + L)-
dimensional pseudo-Euclidean space with a flat first fundamental form g;;j(u) there
locally exist functions ,(u), 1 < a < L, such that the second fundamental forms
have the form

(wa)ij(u) = ViVta, (3.18)

where V; is the covariant differentiation defined by the Levi-Civita connection gener-
ated by the metric g;;(w). The class of N-dimensional flat torsionless submanifolds in
(N + L)-dimensional pseudo-FEuclidean spaces is described by the following integrable
system of nonlinear equations for functions ¥, (u), 1 < a < L:

N N
> V'Vitho Vi Vits = Y V"VithsVyVitha, (3.19)
n=1 n=1
L L L L
Z Z 1PNV 1 Vi Vi = Z Z TRAVA VTR VAT (3.20)
a=1 pg=1 a=1 =1

where V; is the covariant differentiation defined by the Levi-Civita connection gener-
ated by a flat metric g;j(u), V' = ¢"*(u)Vy, g*(u)gs;(u) = 0% Moreover, in this case
the systems of hydrodynamic type

uia = (Vivﬂﬂa) ugm

1<a< (3.21)
are commuting integrable bi-Hamiltonian systems of hydrodynamic type.

Now we will also find some natural and very important integrable reductions of
the nonlinear system (3.8), (3.9).

4 Reduction to the associativity equations
of two-dimensional topological quantum field
theories and potential flat torsionless
submanifolds in pseudo-Euclidean spaces

Theorem 4.1 If we take L =N, p¥ = cn, 1 <1i,j < N, ¢ is an arbitrary nonzero
constant, and Y, (u) = 0P /0u*, 1 < a < N, where ® = ®(ul, ... u), then the Gauss
equations (3.8) coincide with the Ricci equations (3.9) and both of them coincide with



the associativity equations of two-dimensional topological quantum field theories for
the potential ®(u):

Y X R R R 3
D . S — . —0, (4.1)
' £ Outoum™Ou* Ouwi duroul  Ouidu™oul dul Qurouk

=1 j=1

Theorem 4.2 The associativity equations of two-dimensional topological quantum
field theories describe a special class of N-dimensional flat submanifolds without tor-
sion in 2N -dimensional pseudo-Euclidean spaces (a class of potential flat torsionless
submanifolds).

Definition 4.1 A flat torsionless N-dimensional submanifold in a 2N -dimensional
pseudo-Euclidean space with a flat first fundamental form g;;(u)du’du? is called po-
tential if locally there always ezist a certain function ®(u) in a neighborhood on the
submanifold such that locally, in this neighborhood, the second fundamental forms of
this submanifold have the form

(W) p(w)dwdu® = (V,V;V,®(u)) duidu*, 1<i< N, (4.2)

where V; is the covariant differentiation defined by the Levi-Civita connection gener-
ated by the flat metric g;;(u).

According to the Bonnet theorem any solution ®(u) of the associativity equations
(with the corresponding constant metric 7;;) determines a unique (up to motions) N-
dimensional potential flat torsionless submanifold of the corresponding 2/ N-dimensio-
nal pseudo-Euclidean space with the first fundamental form 7;;du’du’ and the second
fundamental forms w, (u) = (8*®/(Ou"Ou'du?))du'du’ given by the third derivatives
of the potential ®,(u). Here, we do not distinguish solutions of the associativity
equations up to terms quadratic in the coordinates wu.

Theorem 4.3 On each potential flat torsionless submanifold in a pseudo-FEuclidean
space there is a structure of a Frobenius algebra given (in flat coordinates) by the flat

first fundamental form n;; and by the Weingarten operators (As)j- (u) = —n™(ws)xj(u),

0

(ei,€j) =mij, € 0€e; = cfj(u)ek, €= 5

ci(uty . uN) = — ()5 () = e (w)g (L ul). (4.3)

ij J
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In arbitrary local coordinates, this Frobenius structure has the form

0

(€i,€5) = gij, € oej = cfj(u)ek, €= 55

cfj(ul, . ,uN) = —(Az)f(u) = gks(ul, . ,uN)(wi)sj(ul, . ,uN), (4.4)
where g”(u) is the contravariant metric inverse to the first fundamental form g;;(u),
9 (u)gsj(u) = 0%, (wi)ij(u)du'du’, 1 <k < N, are the second fundamental forms.

Theorem 4.4 FEach N-dimensional Frobenius manifold can locally be represented as
a potential flat torsionless N-dimensional submanifold in a 2N -dimensional pseudo-
FEuclidean space. This submanifold is uniquely determined up to motions.
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