On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves

by

V.A. Kolyvagin

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Federal Republic of Germany

Steklov Mathematical Institute Vavilova 42 117966 Moscow, GSP-1

USSR

MPI/90-69

On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves

Victor Alecsandrovich Kolyvagin

The main purpose of this paper is to describe some recent results pertaining to the diophantine analysis of elliptic curves. A new element is an extension of the set of explicit cohomology classes see section 2.

1. The Conjecture of Birch and Swinnerton-Dyer and the Hypothesis of Finiteness of the Shafarevich-Tate group.

Let E be an elliptic curve defined over the field of rational numbers Q, for example, by its Weierstrass equation $y^2 = 4x^3 - g_2x - g_3$. Let R be a finite extension of Q. We are interested in the group E(R) called the Mordell-Weil group of E over R and the Shafarevich-Tate group ||||(R,E). The group ||||(R,E) is, by definition, $\ker(H^1(R,E) \longrightarrow \bigvee_V H^1(R(v),E))$, where v runs through the set of all places (equivalence classes of valuations) of R, R(v) is the v-adic completion of R. For an arbitrary extension L of Q, we let L denote an algebraic closure of L. If V/L is a Galois extension, then G(V/L) denotes its Galois group, and $H^1(L,E) = H^1(G(L/L),E(L))$.

Let Y be some set of algebraic curves over R. By definition, the Hasse principle holds for Y, if for all $X \in Y$ one has: X(R) is nonempty $\iff X(R(v))$ is nonempty for each v. The group |||(R,E) is the obstacle to the Hasse principle for the set Y(R,E) of main principal homogeneous spaces over E defined over R. In particular, the Hasse principle holds for Y(R,E) if and only if the group |||(R,E) is trivial.

According to the Mordell-Weil theorem, $E(R) \simeq F \times \mathbb{Z}^{\Gamma(R,E)}$, where $F \simeq E(R)_{tor}$ is a finite group, and r(R,E) is a nonnegative integer called the rank of E over R. Concerning the group $\coprod (R,E)$, it is conjectured that it is finite. In general, it is known that $\coprod (R,E)$ is a torsion group (being a subgroup of the torsion group $H^1(R,E)$) and for a natural M its subgroup $\coprod (R,E)_M$ is finite. If A is an abelian group, we let A_M denote its subgroup of all elements of exponents M. Only recently in works of Rubin and the author, the finiteness of $\coprod (R,E)$ was proved for some E and R. We shall discuss these results later.

The elements of $E(R)_{tor}$ can be effectively calculated. For example, let R be Q and let E be defined by an equation $u^2 = w^3 + aw + \beta$, where $a, \beta \in \mathbb{I}$, $\delta = 4a^3 + 27\beta^2 \neq 0$ (this is always possible). According to the Nagell-Lutz theorem, if $P \in E(Q)_{tor}$ is nonzero, then u(P) = 0 or $u(P)^2 | \delta$. Mazur determined all possible types of $E(Q)_{tor}$, in particular, $[E(Q)_{tor}] \leq 16$.

We are interested here in the case $\mathbf{R} = \mathbf{Q}$. No algorithm is known in general for calculating $r(\mathbf{Q}, E)$ and generators of $E(\mathbf{Q})/E(\mathbf{Q})_{tor}$. But recently here and in the study of $||||(\mathbf{R}, E)$ essential progress was made.

More specifically, it is connected to advances towards proving the Birch-Swinnerton-Dyer conjecture (BSD) which predicts a connection between the arithmetic of E and its L-function.

We let L(E,s) denote the L-function of E over Q, defined for Re(s) > 3/2 as

$$\operatorname{tr}_{q} L_{q}(\mathbf{E},s) = \sum_{n=1}^{\infty} a_{n} n^{-s} , a_{n} \in \mathbb{I} .$$

Here q runs through the set of rational primes. Let $N \in \mathbb{N}$ be the conductor of E. If (q,N) = 1, then $L_q(E,s) = (1-a_qq^{-s}+q^{1-2s})^{-1}$, where $a_q = q+1-[\tilde{E}(\mathbb{Z}/q\mathbb{Z})]$, \tilde{E} being the reduction of E modulo q (E has the good reduction at q). If $q \mid N$, then $L_q(E,s) = 1, (1 \pm q^{-s})^{-1}$ depending on the type of bad reduction of E at q.

Assume that E is modular, that is there exists a weak Weil parametrization $\gamma: X_0(N) \longrightarrow E$ [12]. Here $X_0(N)$ is the modular algebraic curve over Q parametrizing classes of isogenies of elliptic curves with cyclic kernel of order N. According to the Taniyama-Shimura-Weil conjecture, every elliptic curve over Q is modular. Then L(E,s) has an analytic continuation to an entire function on the complex plane which satisfies a functional equation

$$Z(E,2-s) = \epsilon Z(E,s)$$
(1)

where $Z(E,s) = (2\pi)^{-s} N^{s/2} \Gamma(s) L(E,s)$ and $\epsilon = \pm 1$ depends on E.

An analogeous L-function L(R,E,s) of E over R can be defined (its definition is essential for us only up to a finite product of Euler factors), having analogous properties. We let ar(R,E) denote the order of vanishing L(R,E,s) at s = 1. According to BSD, one conjectures the identity:

$$\mathbf{r}(\mathbf{R},\mathbf{E}) = \mathbf{ar}(\mathbf{R},\mathbf{E}) . \tag{2}$$

Moreover BSD connects the first nonzero coefficient of the expansion of L(R,E,s) around s=1 with the order of ||||(R,E) (using the hypothesis that ||||(R,E) is finite) and other parameters of E, but we do not go into this here.

In the sequel we will omit the letter \mathbf{Q} in the notations $\mathbf{\prod}(\mathbf{Q},\mathbf{E})$, $r(\mathbf{Q},\mathbf{E})$, $ar(\mathbf{Q},\mathbf{E})$. It follows from (1) that $ar(\mathbf{E})$ is even when $\epsilon = 1$, $ar(\mathbf{E})$ is odd when $\epsilon = -1$. E is called even or odd, respectively.

For $\mathbf{R} = \mathbf{Q}$ the current state of conjecture (2) and of the hypothesis of finiteness of $||||(\mathbf{E})$ is expressed by the result:

<u>Theorem 1</u>. The equality r(E) = ar(E) holds and ||||(E) is finite if $ar(E) \leq 1$.

We remark that empirical material shows that curves with ar(E) > 1 compose a relatively small part in the set of all curves. Apparently (taking into account the Taniyama— Shimura-Weil conjecture), Theorem 1 covers a substantial part of all elliptic curves over Q.

Further we discuss a scheme of the proof of Theorem 1, formulate earlier results and give some examples.

Let D be a fundamental discriminant of the imaginary-quadratic field $K = Q(\sqrt{D})$ such that $D \equiv \Box \pmod{4N}$, $D \neq -3, -4$. As E is modular, there exists the Heegner point $P_D \in E(K)$ (which will be defined later), it satisfies the condition:

$$\sigma \ \epsilon \ \mathbf{P}_{\mathrm{D}} = -\epsilon \ \mathbf{e} \ \mathbf{P}_{\mathrm{D}} \tag{3}$$

where e = exponent of $E(Q)_{tor}$, σ is the generator of G(K/Q). The author proved [6]-[8]:

<u>Theorem 2</u>. The equality r(E) = ar(E) holds and $\parallel \parallel \mid (E)$ is finite if 1) $ar(E) \leq 1$, 2) $\exists D \mid P_D$ has infinite order.

From the Gross and Zagier results [5] it follows

<u>Theorem 3</u>. If (D,2N) = 1, then $ar(K,E) \ge 1$, $ar(K,E) = 1 \iff P_D$ has infinite order.

Waldspurger [21] for ar(E) = 1 and, independently, Bump, Friedberg, Hoffstein [2] and M. Murty, B. Murty [14] for ar(E) = 0 proved

<u>Theorem 4</u>. If $ar(E) \leq 1$, then (D,2N) = 1 and ar(K,E) = 1 for an infinite set of values of D.

So from Theorems 3, 4 it then follows that condition 2) in Theorem 2 follows from condition 1), that is Theorem 2 is equivalent to Theorem 1.

From (1) we have that $\operatorname{ar}(E) = 0 \Rightarrow \epsilon = 1$, $\operatorname{ar}(E) = 1 \Rightarrow \epsilon = -1$. Using (3), we deduce from the conditions: P_D has infinite order, $\operatorname{r}(K,E) = 1$, and $\operatorname{ar}(E) \leq 1$, that $\operatorname{r}(E) = \operatorname{ar}(E)$. The kernel of the natural homomorphism $||||(E) \longrightarrow ||||(K,E)$ is $||||(E) \cap \operatorname{H}^1(\operatorname{G}(K/\mathbb{Q}), \operatorname{E}(K)) \subset ||||(E)_2$ which is a finite group.

Thus Theorem 2 is a consequence of the author's result [8]:

<u>Theorem 5</u>. The equality r(K,E) = 1 holds, and $\coprod (K,E)$ is finite, if P_D has infinite order.

We note that Theorems 5, 3 give (1) for R = K when ar(K,E) = 1. The inequality $r(E) \ge 1$ when ar(E) = 1 follows already from Theorem 3 and Waldspurger's result.

A subclass in the class of modular elliptic curves is formed by elliptic curves with complex multiplication: $\operatorname{End}(E) \neq \mathbb{Z}$ and then $\operatorname{End}(E)$ is an order with class number one of an imaginary-quadratic extension k of Q. We let W' denote this subclass. The modular invariant $j = g_2^3/(g_2^3 - 27g_3^2)$, which runs through all rational numbers on the set of elliptic curves over Q, takes on 13 values on the set W'.

The specific property of a curve from W' is the possibility to use, in studying it, the theory of abelian extensions of k because $E(Q)_{tor} C E(k^{ab})$ for $E \in W'$. In particular,

by using so called elliptic units, Coates and Wiles [3] proved (2) for $E \in W'$, ar(E) $\neq 0$. Recently Rubin [17], also using elliptic units (we will come back to this later), proved under the same condition that ||||(E) is finite. This gave the first examples of finite groups ||||(E). Moreover he proved that, for $E \in W'$, $ar(E) = 1 \Rightarrow r(E) \leq 1$.

2. Explicit Cohomology Classes.

Now we discuss briefly the method of proof of Theorem 5.

For an arbitrary extension L of Q the exact sequence $0 \longrightarrow E_M \longrightarrow E(L) \longrightarrow E(L) \longrightarrow 0$ ($E_M = E(\overline{Q})_M$) induces the exact sequence

$$0 \longrightarrow E(L)/ME(L) \longrightarrow H^{1}(L,E_{M}) \longrightarrow H^{1}(L,E)_{M} \longrightarrow 0.$$
(4)

The Selmer group $S_M(R,E)$, by definition, is the subgroup of $H^1(R,E_M)$ consisting of elements whose image in $H^1(R(v),E_M)$ lies in E(R(v))/ME(R(v)) for all places v of R. In particular, (4) induces the exact sequence

$$0 \longrightarrow E(R)/ME(R) \longrightarrow S_{M}(R,E) \longrightarrow \coprod (R,E)_{M} \longrightarrow 0.$$
(5)

It is known (the weak Mordell-Weil theorem) that $S_M(R,E)$ is a finite M-torsion group. In particular, $\parallel \parallel \mid (R,E)_M$ is a finite group as we remarked before.

Let R = K. If $P = P_D$ has infinite order, then we define $C = C_D$ to be the maximal natural number dividing the image of P in $E(K)/E(K)_{tor} \simeq \mathbb{Z}^{r(K,E)}$. We let C = 0 if $P \in E(K)_{tor}$. Thus P has infinite order $\iff C \neq 0$. We let S'_M denote the factor group of $S_M(K,M)$ modulo the subgroup generated by P. Taking into account (5) and

the Mordell-Weil theorem: $E(K) \simeq F \times \mathbb{Z}^{r(K,E)}$, with F finite, Theorem 5 will follow from the existence of $C' \in \mathbb{N}$ such that $C'S'_{M} = 0 \forall M \in \mathbb{N}$.

The non-degenerate alternating Weil pairing [,]_M: $\mathbf{E}_{\mathbf{M}} \times \mathbf{E}_{\mathbf{M}} \longrightarrow \mu_{\mathbf{M}} = \overline{\mathbf{Q}}_{\mathbf{M}}^*$ induces a pairing

$$\langle , \rangle_{\mathbf{M},\mathbf{v}} : \mathrm{H}^{1}(\mathrm{K}(\mathbf{v}), \mathrm{E}_{\mathbf{M}}) \times \mathrm{H}^{1}(\mathrm{K}(\mathbf{v}), \mathrm{E}_{\mathbf{M}}) \longrightarrow \mathrm{H}^{2}(\mathrm{K}(\mathbf{v}), \mu_{\mathbf{M}})$$

For $v = \omega$ the field $K(\omega) \simeq \mathbb{C}$ and the corresponding cohomology groups are trivial. For $v \neq \omega$ the group $H^2(K(v),\mu_M)$ is identified canonically with $\mathbb{Z}/M\mathbb{Z}$ by local class field theory. If $a,b \in H^1(K,E_M)$, then $\langle a,b \rangle_{M,v} \stackrel{\text{def}}{=} \langle a(v),b(v) \rangle_{M,v}$, where a(v), b(v) are the localizations of a, b. According to global class field theory (the reciprocity law) $\langle a,b \rangle_{M,v} \neq 0$ only for a finite set of places v and the following relation holds:

$$\sum_{\mathbf{v}\neq\mathbf{\omega}} \langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}, \mathbf{v}} = 0 .$$
 (6)

Relation (6) can be considered as a condition on a if an element b is fixed. To use (6) for the study of $S_M(K,E)$ it is necessary to find explicit elements b. This was my strategy. Thus I constructed a set T of explicit elements of $H^1(K,E_M)$ by using Heegner points over ring class fields of K. The special properties of these elements allowed to deduce from (6) with $a \in S_M(K,E)$ and $b \in T$ the relation $C'S'_M = 0$ for some $C' \in \mathbb{N}$, the divisor and main component of which is C.

Now we describe the construction of an element from T. First we define the Heegner points. Fix an ideal i in the ring of integers O of K such that $O/i \simeq \mathbb{Z}/N\mathbb{Z}$ (i exists in view of the assumptions on D). If $\lambda \in \mathbb{N}$, then K_{λ} denotes the ring class field of K of conductor λ . It is a finite abelian extension of K. Let O_{λ} be $\mathbb{Z} + \lambda O$, $i_{\lambda} = i \cap O_{\lambda}$. If $(\lambda, N) = 1$, we define the point $z_{\lambda} \in X_N(K_{\lambda})$ as corresponding to the class of the isogeny

 $\mathbb{C}/\mathcal{O}_{\lambda} \longrightarrow \mathbb{C}/i_{\lambda}^{-1}$, where i_{λ}^{-1} is the inverse of i_{λ} in the group of proper \mathcal{O}_{λ} -ideals. We let $y_{\lambda} = \gamma(z_{\lambda}) \in E(K_{\lambda})$, $P = P_{D}$ = the norm of y_{1} from K_{1} to K. The points y_{λ} , P are called Heegner points (corresponding to the parametrization $\gamma: X_{0}(N) \longrightarrow E$, $K = \mathbb{Q}(\sqrt{D})$ and i).

We use the notation p (or p with (a subscript) for rational primes which do not divide N and remain prime in K. We let Λ^{r} denote the set of all products $p_{1}...p_{r}$ with distinct p_{m} , $\Lambda = \bigcup_{n=1}^{\infty} \Lambda^{r}$.

Let $\lambda \in \Lambda$, $G_{\lambda} = G(K_{\lambda}/K_{1})$. The group G_{λ} is the direct product of the subgroups $G_{\lambda,p} = G(K_{\lambda}/K_{\lambda/p})$ for $p \mid \lambda$. The natural homomorphism $G_{\lambda,p} \longrightarrow G_{p}$ is an isomorphism. The group G_{p} is isomorphic to the group $\mathbb{Z}/(p+1)\mathbb{Z}$. For each p, we fix a generator $t_{p} \in G_{p}$; $t_{p} \in G_{\lambda,p}$ denotes the corresponding generator of $G_{\lambda,p}$. We let $Tr_{p} = \sum_{j=0}^{p} t_{p}^{j}$. Recall that $\sum_{n=1}^{\infty} a_{n}n^{-6} = L(E,s)$ for Re(s) > 3/2. For $p \mid \lambda$ one finds the

relation:

$$\mathrm{Tr}_{\mathbf{p}}\mathbf{y}_{\lambda} = \mathbf{a}_{\mathbf{p}}\mathbf{y}_{\lambda/\mathbf{p}} \,. \tag{7}$$

These relations (7) are the basis for the definition of explicit cohomology classes.

Let Δ_{λ} denote the ring $\mathbb{Z}[G_{\lambda}]$. We define a Δ_{λ} -module B_{λ} in the following way. Let F_{λ} be the direct sum $\sum_{\eta \mid \lambda} \Delta_{q}$, where G_{λ} acts on Δ_{η} by the natural homomorphism $\Delta_{\lambda} \longrightarrow \Delta_{\eta}$. Let 1_{η} denote the unit of Δ_{η} , H_{λ} be the Δ_{λ} -submodule of F_{λ} generated by the elements $\operatorname{Tr}_{p} 1_{\eta} - a_{p} 1_{\eta \mid p}$ for all $p \mid \eta \mid \lambda$. Then $B_{\lambda} = F_{\lambda}/H_{\lambda}$.

It is not difficult to prove that $(B_{\lambda})_{tor} = 0$. Let $1'_{\eta}$ be the image of 1_{η} in B_{λ} , then $\{1'_{\eta}, \eta | \lambda\}$ is a system of generators of B_{λ} over Δ_{λ} . By (7) \exists ! homomorphism $\varphi: B_{\lambda} \longrightarrow E(K_{\lambda})$ such that $1'_{\eta} \longrightarrow y_{\eta}$. We let $I_{p} = -\sum_{j=1}^{p} jt_{p}^{j} \in \Delta_{\lambda}$, $I_{\lambda} = \prod_{p \mid \lambda} I_{p}$. Let Q_{λ} be the element I_{λ} $1'_{\lambda}$.

 Q_{λ} be the element $I_{\lambda} 1'_{\lambda}$.

For $M \in \mathbb{N}$ we define $\Lambda(M)$ as the subset of Λ consisting of elements λ such that $M \mid (p+1)$, $M \mid a_p \forall p \mid \lambda$. Further, $\Lambda^{T}(M) = \Lambda^{T} \cap \Lambda(M)$. We claim that $(1-g)Q_{\lambda} \in MB_{\lambda}$ for $\lambda \in \Lambda(M)$ and $g \in G_{\lambda}$. It is enough to verify this for $g = t_p$, where $p \mid \lambda$. It is clear that

$$(1-t_p)I_p = Tr_p - (p+1).$$
(8)

Thus, we have $(1-t_p)Q_{\lambda} = I_{\lambda/p}(1-t_p)I_p1_{\lambda}' = I_{\lambda/p}(\mathrm{Tr}_p-(p+1))1_{\lambda}' = = I_{\lambda/p}(a_p1_{\lambda/p}' - (p+1)1_{\lambda}') \in \mathrm{MB}_{\lambda}$.

As $(B_{\lambda})_{tor} = 0$, there exists a unique element $((1-g)Q_{\lambda})/M \in B_{\lambda}$. We define the element $\tau'_{\lambda}(M) \in H^{1}(K_{1}, E_{M})$ to be the class of the cocycle:

$$\psi: \mathbf{g} \longmapsto (\mathbf{g}-1)(\varphi(\mathbf{Q}_{\lambda})/\mathbf{M}) + \varphi(((1-\mathbf{g})\mathbf{Q}_{\lambda})/\mathbf{M})$$
,

where $g \in G(\overline{K}_1/K_1)$. The element $\tau_{\lambda}(M) \in H^1(K, E_M)$ we define as the corestriction of $\tau'_{\lambda}(M)$. We call T the set $\{\tau_{\lambda}(M), M \in \mathbb{N}, \lambda \in \Lambda(M)\}$.

Let (b) denote the image of $b \in H^1(K, E_M)$ in $H^1(K, E)_M$, $c_\lambda(M) = (\tau_\lambda(M))$. That is, $c_\lambda(M)$ is the corestriction of the element of $H^1(K_1, E)_M$ defined by the cocycle, $g \longmapsto \varphi((1-g)Q_\lambda)/M)$. If $\lambda \in \Lambda^r(M)$, then the automorphism $\sigma \in G(K/\mathbb{Q})$ acts on $c_\lambda(M)$ by multiplication by $(-1)^{r+1}\epsilon$. The symbol $\langle a, b \rangle_{M,v}$ depends only on (b), if $a \in S_M(K, E)$.

The elements $c_p(M)$ were defined first see [6]. This allowed to prove the relation $C'(\sigma+\epsilon)S_M(K,E) = 0$, which is equivalent to the finiteness of E(Q) and $\coprod (E)$ when $\epsilon = 1$, and to the finiteness of $E_{(D)}(Q)$ and $\coprod (E_{(D)})$ when $\epsilon = -1$. Here $E_{(D)}$ is

the elliptic curve (the form of E over K) defined by the equation $Dy^2 = 4x^3 - g_2 x - g_3$.

In [8] there were defined elements $\tau_{\lambda}(M)$ for some subset of the set $\{M \in \mathbb{N}, \lambda \in \Lambda(M)\}$ containing the set $\{M \mid (M,d) = 1, \lambda \in \Lambda(M)\}$, where $d = \text{exponent of } E(\mathbb{K})_{\text{tor}}$, \mathbb{K} is the composite of the $K_{\lambda'}$ for $\lambda' \in \Lambda$. By using here the modules B_{λ} and the property $(B_{\lambda})_{\text{tor}} = 0$ we shake off the additional restrictions on (M,λ) when (M,d) > 1. The relation (6) with (b) = $c_{\lambda}(M)$ when $\lambda \in \Lambda^{r}(M)$, $r \leq 2$, allowed to prove the relation $C'S'_{M} = 0$.

We note that an application of the elements $\tau_{\lambda}(M)$ when $\lambda \in \Lambda^{\Gamma}$ with arbitrary $r \geq 0$ allowed in [8] to pass from a relation of the type $C \parallel \parallel (K,E) = 0$ to a relation of the type $[\parallel \parallel \parallel (K,E)] | C^2$. Because of the existence on $\parallel \parallel \parallel (K,E)$ of a non-degenerate (as $\parallel \parallel \parallel (K,E)$ is finite) alternate Cassels pairing with values in \mathbb{Q}/\mathbb{Z} , it then follows that the second relation implies the first relation.

In [20] Thaine used the cyclotomic units for a new proof of annihilating relations in the ideal class groups of real abelian extensions of \mathbf{Q} . Rubin [16] adapted Thaine's approach, using elliptic units instead of cyclotomic units, for proving annihilating relations in the ideal class groups of abelian extensions of the imaginary-quadratic field $\mathbf{k} = \text{End}(\mathbf{E}) \otimes \mathbf{Q}$ when $\mathbf{E} \in \mathbf{W}'$. By using the natural connection between ideal class groups and the Selmer group $S_{\mathbf{M}}(\mathbf{Q}, \mathbf{E})$ Rubin proved an universal annihilating relation for $S_{\mathbf{M}}(\mathbf{Q}, \mathbf{E})$ by the condition that $ar(\mathbf{E}) = 0$.

A comparison of the approaches of Thaine [20] and of the author [6] for proving annihilating relations in the ideal class groups and in the Selmer groups, respectively, suggested the possibility in [7] of combining them into a single general framework. A further step was a construction and use in [8] of sets of cohomology classes of the type T, both in the theory of modular elliptic curves and in the theory of ideal class groups of abelian extensions of Q or an imaginary-quadratic extension of Q. For information on this theory and some further applications we refer to the papers [8], [1], [4], [9], [10], [11], [13], [15], [18], [19].

3. Examples.

Example 2, Kolyvagin [7]. Let $E: y^2 = 4x^3 - 4x + 1$. It is an odd modular curve without complex multiplication, of conductor N = 37. Let (D,2N) = 1. The curves $E_{(D)}$:

$$Dy^2 = 4x^3 - 4x + 1$$
 (9)

are even and have no complex multiplication. For computation of $L(E_{(D)},1)$ and C_{D} the following identity can be used:

$$L(E_{(D)},1) = 2 \sum_{n=1}^{\infty} \frac{a_n}{n} \left[\frac{D}{n} \right] \exp(-2\pi n / (|D|\sqrt{37})) = (2\Omega_{/}\sqrt{D})C_D^2$$
(10)

where Ω_{-} the imaginary period of E, $\left(\frac{D}{n}\right)$ - the Legendre symbol. See [22] for (10); the connection between $L(E_{(D)},1)$ and C_{D} is a consequence of the results of Gross and Zagier [5].

Let $L(E_{(D)},1) \neq 0$ or, equivalently, $C_D \neq 0$. Then $E_{(D)}(Q)$ is finite and, moreover, is trivial because always $E_{(D)}(Q)_{tor} = 0$. That is equation (9) has no solutions in rational numbers. Further, $\underline{|||}(E_{(D)})$ is finite and $C_{D}\underline{|||}(E_{(D)}) = 0$. For example, if D = -7, -11 then $C_{D} = 1$, so $\underline{|||}(E_{(D)}) = 0$. See [7] for further information on this example.

We recall that $C_D \neq 0$ for an infinite set of values of D according to a result of Waldspurger.

It is a classical fact that $E(\mathbf{Q}) \simeq \mathbb{Z}$ is generated by the point (y=1, x=0). Of course, ar(E) = 1, see [22], for example. The author proved [8] that ||||(E) = 0.

References

- 1. Bertolini, M., Darmon, H.: Kolyvagin's descent and Mordell-Weil groups over ring class fields. Preprint (1989)
- Bump, D., Friedberg, S., Hoffstein, J.: A non vanishing theorem for derivatives of automorphic L-functions with applications to elliptic curves. Bull. AMS. Math. Soc. 21, 89-93 (1989)
- 3. Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39, 223-251 (1977)
- 4. Gross, B.H.: Kolyvagin's work on modular elliptic curves. Proceedings of Durham Conference on L-functions and Arithmetic, 1989. Cambridge University Press (to appear)
- 5. Gross, B.H., Zagier, D.B.: Heegner points and derivatives of L-series. Invent. Math. 84, 225-320 (1986)
- Kolyvagin, V.A.: Finiteness of E(Q) and <u>|||(E,Q)</u> for a subclass of Weil curves, Izvestia AN SSSR, Ser. Mat., 52, 522-540 (1988) English transl.: Math. of the USSR Izvestia 32, 523-542 (1989)
- Kolyvagin, V.A.: On the Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves, Izvestia AN, SSSR, Ser. Mat., 52, 1154-1180 (1988) English transl.: Math. of the USSR Izvestia 33, 474-499 (1989)
- 8. Kolyvagin, V.A.: Euler systems (1988). Birkhäuser volume in honor of Grothendieck (to appear)
- Kolyvagin, V.A., Logachev, D.Y.: Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra and Analysis 1, N^o5 (1989)

3

- Kolyvagin, V.A.: On the structure of Shafarevich-Tate groups. Proceedings of USA-USSR Symposium on Algebraic Geometry, Chicago, 1989. Springer Lecture Notes series (to appear)
- 11. Kolyvagin, V.A.: On the structure of Selmer groups. Preprint (1990)
- 12. Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil curves. Invent. Math. 25, 1-61 (1974)
- McCallum, W.G.: Kolyvagin's work on Shafarevich-Tate groups, Proceedings of Durham Conference on L-functions and Arithmatic, 1989. Cambridge University Press (to appear)
- 14. Murty, M.R., Murty, V.K.: Mean values of derivatives of modular L-series. Preprint (1989)
- 15. Perrin-Riou, B.: Travaux de Kolyvagin et Rubin. Séminaire Bourbaki 717 (1989/1990)
- 16. Rubin, K.: Global units and ideal class groups. Invent. Math. 89, 511-526 (1987)
- 17. Rubin, K.: Tate-Shafarevich group and L-functions of elliptic curves with complex multiplications. Invent. Math. 89, 527-560 (1987)
- Rubin, K.: The Main Conjecture. Appendix to: Cyclotomic fields I-II (second ed.) by S. Lang. Grad. Texts in Math. 121. Springer, New York, Berlin, Heidelberg, 1990. pp. 397-419.
- 19. Rubin, K.: The "main conjectures" of Iwasawa theory for imaginary quadratic fields. Preprint (1990)
- 20. Thaine, F.: On the ideal class groups of real abelian extensions of Q. Ann. Math. 128, 1-18 (1988)

- 21. Waldspurger, J.-L.: Sur les valeurs de certaines fonctions L automorphes en leur centre de symmetrie. Comp. Math. 54, 173-242 (1985)
- Zagier, D.B.: Modular points, modular curves, modular surfaces and modular forms. (Lecture Notes in Mathematic, vol. 1111). Springer, New York, Berlin, Heidelberg, 1985, pp. 225-246.