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On the Mordell-Weil group and the Shafarevich-Tate

group of modular elliptic curves

Victor Alecsandrovich Kolyvagin

The main purpose of this paper is to describe some recent results pertaining to the

diophantine analysis of elliptic curves. A new element is an extension of the set of explicit

cohomology cla.sses see section 2.

1. The Conjecture of Birch ud Swinnerton-Dyer and the Hypothesis of Finiteness of the

-Shafarevich-Tate group.

Let E be an elliptic curve defined over the field of rational numbers ~,for example,

by its Weierstra.ss equation y2 = 4x3-g2x-gg . Let R be a finite extension of Q. We are

interested in the group E(R) called the Mordell-Weil group of E over Rand the

Shafarevich-Tate group ill(R,E) . The group ill(R,E) is, by definition,

ker(H1(R,E) --+ n H1(R(v),E)) t where v runs through the set of all places (equiva-
v

lence classes of valuations) of R, R(v) is the v-adic completion of R. For an arbitrary

extension L of ~ , we let L denote an algebraic closure of L. If V/L is a Galbis exten

sion, then G(V/L) denotes its Galois group, and H1(L,E) = H1(G(L/L),E(L)) .

Let Y be some set of algebraic curves over R. By definition, the Hasse principle

holels for Y, if for all X EY one has: X(R) is nonempty ~ X(R(v)) is nonempty for

each v. The group ill(R,E) is the obsiacle to the Hasse principle for the set Y(R,E)
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of main principal homogeneous spaces over E defined over R. In partieular, the Hasse

principle holdB for Y(R,E) if and only if the group ill(R,E) is trivial.

Aecording to the Mordell-Weil theorem, E(R) ~ F)(11r(R,E) ,where F ~ E(R)tor is

a finite group, and r(R,E) is a nonnegative integer ealled the rank of E over R. Con

cerning the group ill(R,E), it is conjeciured that it is finite. In general, it is known that

ill(R,E) is a torsion group (being a subgroup of the torsion group H1(R,E)) and for a

natural M its subgroup ill(RJE)M ia finite. If A is an abe1ian group, we let AM de

note its subgroup of all elements of exponents M. Only recently in works of Rubin and the

author, the finiteness of ill(RJE) was proved for same E and R. We shall diseuss

these reaults later.

The elements of E(R)tor ean be effectively caleulated. For exampleJ let R be ~

and let E be defined by an equation u2 = w3 + ow +ß ,where o,ß E 11, 6 = 403 +
27rr *0 (this is always possible). According to the Nagell-Lutz theorem, if P E E(~)tor

is nonzero, then u(P) = 0 Ol u(P)2 16 . Mazur determined all possible types of E(Q)tor J

in partieular, [E(Q)tor] ~ 16 .

We are interested here in the ease R = ~ . No algorithm is known in general for cal-

eulating r(~,E) and generators of E(Q)/E(~)tor' But reeently here and in the study of

ill(R,E) essential progress was made.

More specifieally, it ia eonneeted to advances towards proving the Bireh-Swinnerton

Dyer eonjeeture (BSD) whieh prediets a conneetion between the arithmetie of E and its

L-funetion.

We let L(E,s) denote the L-funetion of E over q, defined for Re(s) > 3/2 as

tu

nLq(E,s)= l ann-8, an E11.
q n=1
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Here q runs through the set of rational primes. Let NEIN be the conductor of E. If

(q,N) = 1, then Lq(E,s) = (l-aqq-iJ+ql-2S)-1, where aq = q+l-[~(ll/qll)], ~

being the reduction of E module q (E has the good reduction at q). If q IN, then

L (E,s) = 1,(1:i:q-fi)-1 depending on the type of bad reduction of E at q.q

A8sume that E is modular, that is there exists a weak Weil parametrization

7 : XO(N) --+ E [12]. Here Xo(N) is the modular algebraic curve over q

parametrizing classes of isogenies of elliptic curves with cyclic kernel of order N.

According to the Taniyama-Shimura-Weil conjecture, every elliptic curve over ~ ia

modular. Then L(E,s) has an analytic continuation to an entire function on the complex

plane which satisfies a functional equation

Z(E,2-fi) = fZ(E,s) (1)

where Z(E,s) = (2~)-fiNs/2r(S)L{E,s) and f =:i:1 depends on E.

An analogeous L-function L{R,E,s) of E over R can be defined (it8 definition is

essential for UB only up to a finite product of Euler factors), having analogons properties.

We let ar{R,E) denote the order of vanisbing L{R,E,s) at s = 1 . According to BSD,

one conjectures the identity:

r{R,E) = ar{R,E) . (2)

Moreover BSD connects the first nonzero coefficient of the expansion of L(R,E,s) around

8=1 with the order of ill(R,E) (using the hypothesis that ill{R,E) is finite) and

other parameters of E , but we do not go into ibis here.

In the sequel we will omit the letter ~ in the notations ill{q,E), r{~,E),

ar{«l,E) . It follows from (I) that ar{E) is even when f = 1, ar(E) is odd when

f = -1. E ia called even or odd, reapectively.
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For R = ~ the current state of conjecture (2) and of the hypothesis of finitencss of

ill(E) is expressed by the result:

Theorem 1. The equality r(E) = ar(E) holds and ill(E) is finite if ar(E) ~ 1 .

We remark that empirical material shows that curves with ar(E) > 1 compose a re

latively smaIl part in the set cf all curves. Apparently (taking into a.ccount the Taniyama

Shimura-Weil conjecture), Theorem 1 covers a substantial part of all elliptic curves over

~.

Further we <liscuss ascheme of the proof of Theorem 1, formulate earlier results and

give some examples.

Let D be a fundamental discriminant of the imaginary-quadratic field K = Q({TJ)

such that D:: c(mod 4N), D 'f -3,-4 . As E ia modular, there exists the Heegner point

PD E E(K) (which will be defined later), it satisfies the condition:

(3)

where e = exponent of E(~)tor' (f is the generator of G(K/~). The author proved

[6] -[8]:

Theorem 2. The equality r(E) = ar(E) holds and ill(E) is finite if 1) ar(E) ~ 1, 2)

3 D IPD has infinite order.

From the Gross and Zagier results [5] it follows

Theorem 3. H (D,2N) = 1 ,then ar(K,E) ~ 1 , ar(K,E) = 1~ PD has infinite order.
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Waldspurger [21] for ar(E) = 1 and, independently, Bump, Friedberg, Hoffstein

[2] and M. Murty, B. Murty [14] for ar(E) = 0 proved

Theorem 4. If ar(E) ~ 1 ,then (D,2N) = 1 and ar(K,E) = 1 for an infinite set of values

of D.

So from Theorems 3. 4 it then follows that condition 2) in Theorem 2 follows from

condition 1), that is Theorem 2 is equivalent to Theorem l.

From (1) we have that ar(E) = 0 ~ E =1, M(E) = 1 ~ E =-1 . Using (3), we de

duce from the conditions: PD has infinite order, r(K,E) = 1 ,and ar(E) ~ 1 , that

r(E) = ar(E). The kerne! of the natural homomorphism ill(E) -----i ill(K,E) ia

ill(E) n H1(G(K/~),E(K)) Cill(E)2 which is a finite group.

Thus Theorem 2 is a consequence of the author's result [8]:

Theorem 5. The equality r(K,E) = 1 holds, and ill(K,E) ia finite, if PD has infinite

order.

We note that Theorems 5, 3 give (1) for R = K when M(K,E) = 1 . The inequality

r(E) ~ 1 when ar(E) = 1 followB already from Theorem 3 and Waldspurger's result.

A subclaBS in the class of modular e1liptic curves is formed by elliptic curves with

complex multiplication: End(E) f 11 and then End(E) is an order with class number one

of an imaginary-quadratic extension k of ~. We let W' denote this subclass. The

modular invariant j = g~/(g~ - 27g~) , which TUnS through all rational numbers on the set

of elliptic curves over ~,takes on 13 values on the set W' .

The specific property of a curve from W' is the p08sibility to use, in studying it, the

theory of abelian extensions of k because E(GUtor (E(kab) for E EW' . In particular,
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by using 80 called elliptic units, Coates and Wiles [3] proved (2) for E EW' ,

ar(E) 'f 0 . Recently Rubin [17], also using elliptic units (we will come back to tbis later),

proved under the same condition that ill(E) is finite. This gave the first exampIes of

finite groups ill(E) . Moreover he proved that, for E EW' , ar(E) = 1 :::} r(E) 5 1 .

2. Explicit Cohomology Classes.

Now we discuss brießy the method of proof of Theorem 5.

Für an arbitrary extension L of Q the exact sequence 0 ---+ EM ---+ E(L) ---+

E(L) ---+ 0 (EM = E(~M) induces the exact sequence

(4)

The Selmer group SM(R,E), by definition, is the subgroup of H1(R,EM) consisting

of elements whose image in H1(R(v),EM) lies in E(R(v))/ME(R(v)) for all places v of

R . In particular, (4) induces the exact sequence

0---+ E(R)/ME(R) ---+ SM(R,E) ---+ ill(R,E)M ---+ 0 . (5)

It is known (the weak Mordell-Weil theorem) that SM(R,E) is a finite M-torsion

group. In particular, ill(R,E)M ia a finite group as we remarked before.

Let R =K . H P =PD has infinite order, then we define C = CD to be the maxi

mal natural number dividing the image of P in E{K)/E{K)tor ~ 7lr(K,E) . We let C = 0

if P E E(K)tor . Thus P has infinite order ~ C f 0 . We let SM denote the factor

.group of SM(K,M) modulo the aubgroup generated by P. Taking into acconnt (5) and
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the Mordell-Weil theorem: E(K) ~ FXllr(K,E) , with F finite, Theorem 5 will follow

from the existence of e'E IN such that C I SM = 0 VM EW.
*The non-degenerate alternating Weil pairing [ , ] M : EMxEM~ J.'M = ~M

induces a pairing

For v = m the field K(m) ~ ( and the corresponding cohomology groups are trivial.

For v 4= m the group H2(K(v),,uM) is identified ca.nonically with lltMll by local class

1 def
field theory. If a,b E H (K,EM) , then (a,b)M = (a(v),b(v)M ' where a(v), b(v),v ,v

are the localizations of &, b . According to global dass field theory (the reciprocity law)

(a,b) M f. 0 only for a finite set of places v and the following relation holds:,v

(6)

Relation (6) cau be considered aB a condition on a if an element b is fixed. To use

(6) for the study of SM(K,E) it is necessary to find explicit elements b. This was my

strategy. Thus I constructed a set T of explicit elements of H1(K,EM) by using Heegner

points over ring dass fields of K. The special properties of these elements allowed to de

duce from (6) with a E SM(K,E) and b E T the relation C I SM = 0 for same e'E IN ,

the divisor and main component of which is C.

Now we describe the construction of an element from T. First we define the Heegner

points. Fix an ideal i in the ring of integers 0 of K such that O/i ~ ll/Nll (i exiats in

view of the a&sumptions on D). If ..\ EIN, then K..\ denotes the ring class field of K of

conductor '\. It ia a finite abelian extension of K . Let 0..\ be 1l + ..\0, i..\ = i n 0,\ . If

("',N) = 1 , we define the point z'" EXN(K"') as corresponding to the dass of the isogeny
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(/0.-\ --+ (/ri1 , where i.-\1 is the inverse of i.-\ in the group of proper O.-\-ideals. We

let YA = r(z.-\) E E(K.-\), P = PD = the norm of Yl from K1 to K. The points y.-\,

P are called Heegner points (corresponding to the parametrization 7 : Xo(N) -+ E ,

K=~({U) and i).

We use the notation p (or p with (a subscript) for rational primes which do not

divide N and remain prime in K. We let Ar denote the set of all products Pl,..Pr with

(IJ r
distinct Pm' A = U A .

n=1

Let .-\ E A, G~ = G(K~/Kl) . The group G~ is the direet produet of t~e Bub-

groups GA,p = G(K~/K~/p) for p I~ . The natural homomorphism G~,p -+ Gp is an

isomorphism. The group Gp is isomorphie to the group ll./{p+l)ll.. For each p, we fix a

generator tp E Gp j t p E G~ ,p denotes the corresponding generator of G;\,p' We let

p m

Trp = l t~ . Recall that l ann-ß = L(E,s) for Re(s) > 3/2 . For pl;\ one finds the

j=O n=1

relation:

(7)

These relations (7) are the basis for the definition of explicit cohomology classes.

Let ä;\ denote the ring II [G A] . We define a &A-module B;\ in the following

way. Let F.-\ be the direct sum l äq , where G;\ acts on ä,., by the natural homo

,.,IA
morphisID ä;\ -+ ä1] . Let 11] denote the unit of &,." HAbe the ä .-\-ßubmodule of F;\

generated by the elements Trpl fJ - apl,., Ip for all pi fJ 1;\ . Then B..\ = F ;\/H;\ .

It ia not difficult to prove that (B ..\)tor = 0 "Let 1~ be the image of 1,., in B.-\,

the"n {1~,fJ IA} ia a system of generators of BA aver ~;\' By (7) 3! homomoprhism
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p

<p:B~~E(K~) suchthat l~~Yl1' Welet Ip=-~ jt~EA~, I~=rJpl Ip ' Let
j=l

Q;t be the element l;t 1~ .

For MEIN we define A(M) as the subset of A consisting of elements ~ such that

MI (p+l) , MI ap Vp I~ . Furlher, Ar(M) = Ar n A(M) . We claim that (l-g)Q~ E MB ~

for ;t EA(M) and g E G~ . It is enough to verif"y this for g = t p ,where p I~ . It is clear

that

(8)

Thus, we have (l-tp)Q~ = 1~/p(l-tp)lpl ~ = 1~/p(Trp-{p+l))l ~ = = 1~/p(apl ~/p 

(p+l)l~) E MB~ .

AB (B ~)tor = 0 , there exists a unique element ((l-g)QJ.)/M E BJ. . We define the

element 'T~(M) E H1(Kl'EM) to be the dass of the cocycle: '

,,: g 1---+ (g-l)(f,O{QJ.)/M) + CP«((l-g)QJ.)/M) ,

where g EG(K1/K1) . The element T~(M) EH1(K,EM) we define as the corestriction of

'T~(M) . We call T the set {'TJ.(M),M E IN,J. E A(M)} .

Let (b) denote the image of b EH1(K,EM) in H1(K,E)M' cJ.(M) = (T~(M)) .

That is, CJ.(M) is the corestriction of the element of H1(Kl'E)M defined by the cocycle,

g ..........-+ CP«(l-g)Q,\)/M). H ~ E Ar(M) , then the automorphism u E G(K/~) acts on

cJ.(M) by multiplication by (_l)r+l E • The symbol (a,b)M,v depends only on (b), if

a E SM(K,E) .

The elements Cp(M) were defined first see [6J. This allowed to prove the relation

C' (u+E)SM(K,E) = 0 , which is equivalent to the finiteness of E(Q) and ill(E) when

f = 1 J and to the finiteness of E(D)(~) and ill(E(D)) when f =-1 . Here E(D) is
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the elliptic curve (the form of E over K) defined by the equation Dy2 = 4x3 -

gr:- g3 .

In [8] there were defined elements T ~ (M) for some subset of the set {M E IN,'\ E

A(M)} containing the set {M I(M,d) = 1,'\ EA(M)} , where d = exponent of E(K)tor'

IK is the composite of the K,\ I for ,\' EA . By using here the modu1es B,\ and the

property (B,\)tor = 0 we shake off the additional restrictions on (M,'\) when

(M,d) > 1. The relation (6) with (b) = c,\(M) when ,\ EAr(M) , r ~ 2, allowed to

prove the relation c' SM = 0 .

We note that an application of the elements 'T~(M) when ~ EAr with arbitrary

r ~ 0 allowed in [8] to pass from a relation of the type C ill(K,E) = 0 to a relation of

the type [ill(K,E)] IC2 . Because of the existence on ill(K,E) of a non-degenerate

(as ill(K,E) is finite) alternate Cassels pairing with values in ~rll., it then follows that

the second relation implies the first relation.

In [20] Thaine used the cydotomic units for a new proof of annihilating relations in

the ideal dass groups of real abelian extensions of ~. Rubin [16] adapted Thaine's

approach, using elliptic units instead of cyclotomic units, for proving annihilating relations

in the ideal class groups of abelian extensions of the imaginary-quadratic field

k = End(E) 8 ~ when E EW' . By using the natural connection between ideal dass

groups and the Selmer group SM(Q,E) Rubin proved an universal annihilating relation for

SM(~,E) by the condition that ar(E) = 0 .

A comparison of the approaches of Thaine [20] and of the author [6] for proving

annihilating relations in the ideal dass groups and in the Selmer groups, respectively, sug

gested the possibility in [7] of combining them into a single general framework. A further

step was a construction and use in [8] of sets of cohomology classes of the type T, both

in the theory of modular elliptic curves and in the theory of ideal class groups of abelian

extensions of ~ or an imaginary-quadratic extension of ~. For information on this theo-
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ry and some further applicationB we refer to the papers [8], [1], [4], [9], [10], [11],

[13], [15], [18], [19].

3. Examples.

Example 1, Rubin [17]. For the curves with complex multiplication

(k = ~({=f)) y2 = x3 - x, y2 = x3 + 17x we have: r(E) = ar(E) = 0, ill(E) =0 ,

11./271. + 71./271 , respectively.

Example 2, Kolyvagin [7]. Let E: y2 = 4x3 - 4x + 1 . It ia an odd modular curve

without complex multiplication, of conductor N = 37. Let (D,2N) = 1. The curves

(9)

are even and have no complex multiplication. For computation of L(E(D),l) and CD the

following identity can be used:

(I)

~ &n[DJ 2L(E(D),1) = 2 L n n exp(-2rn/( ID I{M)) = (20--,{U)CD
n=l

(10)

where n_ - the imaginary period of E, [~J -the Legendre symbol. See [22] for (10);

the connection between L(E(D),l) and CD is a consequence of the results of Grass and

Zagier [5].

Let L(E(D),l) f 0 or, equivalently, CD f 0 . Then E(D)(~) ia finite and, more

over, is trivial because always E(D)(~)tor = 0 . That ia equation (9) has no solutionB in
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rational numbers. Further, ill(E(D)) is finite and CDill(E(D)) = 0 . For example, if

D = -7, -11 then CD = 1 ,80 ill(E(D)) = 0 . See [7] for further information on this

example.

We recall that CD f 0 for an infinite set cf values of D according to a result of

Waldspurger.

It is a classical fact that E(~) ~ 1l. is generated by the point (y=l, x=O) . Of course,

ar(E) = 1 ,see [22], for example. The author proved [8] that ill(E) = 0 .
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