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Abstract

The number of solutions of the “unit equation” £ +y = 1 in units of (the ring of integers
of) an algebraic number field of degree n and unit rank r is known to be bounded above
by an exponential function of n or 7, but the best known lower bounds yield merely
some fields with at least a constant times 7 solutions, or infinitely many fields of each
degree with at least a constant times n solutions.

We will present some data about solution numbers in various individual fields of
low degree, and then outline a programme for obtaining more general results. This
involves the study of parametric families of polynomials defining fields in which the unit
equation has certain forced solutions, and applying Baker’s method and diophantine
approximation techniques to show that for almost all parameter values, these fields
contain no other solutions than the forced ones.

1. Introduction

In spite of a 66-year history of research — the unit equation = 4+ y = 1, to be solved in
invertible algebraic integers, first appears in C. L. SIEGEL 1929 [33] — not very much
is known in general about how many solutions z,1—z it can have in any given algebraic
number field. (Such z are called exceptional units, a term introduced by T. NAGELL
in 1969 [25].) Siegel already knew that their number in any given field is finite, an easy
consequence of Satz 7, Zusatz 1 of his dissertation [32], and it follows from A. BAKER'’s
theory of linear forms in logarithms that the solutions are effectively computable, which
was first made explicit by K. GYORY in the 1970s [13]. J. H. EVERTSE proved in 1983 [6,7]
that the number of solutions is at most 3 - 7*+2"*2 where n = [/{ : Q) is the degree and r
the rank of the group of units of the field K. (By DIRICHLET’s theorem, r = ry + 73 — 1
if the field has r; real and ro pairs of complex embeddings; since r; + 2r; = n, we have
n/2 <r+1 < n.) Although the numbers 3 and 7 can be reduced somewhat, EVERTSE’s
bound has not yet been improved in substance; all known upper bounds are of this form
— exponential in n or in r or in some combination of n and r.

EVERTSE’s method, which does not produce effective bounds for the solutions them-
selves, applies to a wider class of equations. In particular, his bound remains valid for the
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S-unit equation z + y = 1 where now z and y range over the subgroup of elements of K*
which are integral with integral inverse at all places except those in the finite set S. The
rank of this group is 7 + s where s is the number of finite places in S, and the exponent
n+2r+2 in the bound has to be replaced accordingly by n-2(r+s+1). In this situation,
one has at least a subexponential lower bound as far as the dependence on s is concerned,
1.e., when we keep the field K fixed and let S grow by inserting suitable primes. Clearly
it suffices to consider K = Q here. This bound is due to P. ERDSS, C. L. STEWART and
R. TUUDEMAN 1988 [5]. It says that by choosing S carefully, one can produce at least a
constant times exp((4 + o(1))(s/log s)!/?) solutions.

Unfortunately, it is very much harder to exhibit large numbers of solutions when we
restrict ourselves to ordinary units and let K vary among the fields of a given degree n and
unit rank r. A lower bound which is valid for infinitely many fields of any given degree
n, but which is merely linear in n, is straightforward to establish (see section 2 below);
moreover, the maximal real subfields of cyclotomic fields of prime level possess at least
a constant times n® exceptional units [28], but this applies to at most one field up to
isomorphism of given degree.

To the extent that numbers of exceptional units (e.u.s) in individual fields are known
— a survey is presented in section 3 — they seem to suggest that the true rate of growth
of the largest number of solutions for a given signature (n,r) is somewhat faster than
polynomial, and that the maximum should be attained by one or more fields near the
smallest absolute field discriminant in that signature. We can also ask for a sharp upper
bound on the number of e.u.s valid for all but finitely many fields of a given signature.
Experimental data suggest that this latter bound tends to be rather smaller than the
former. It is in order to study this kind of bound that we will consider parametric families
of number fields containing e.u.s of a prescribed form in section 4. In the final section, we
indicate some possible further developments, point out some stumbling blocks, and provide
a few links to related topics.

Much work remains to be done here, and this article offers more conjectures and
heuristics than definite results. We hope to be able to present some theorems in the not
too distant future.
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to the author by K. GYORY in 1989, and since then repeatedly by several others, in
conversation and in correspondence.
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2. Basic facts

First we recall some well-known simple properties of exceptional units. (See [19] and the
references cited there for more details.) Let R be a commutative ring with an identity
element 1 for multiplication; write R* for its group of units and

E(Ry=R*N(1~R™)

for the set of exceptional units of R. Homomorphisms of such rings are understood to
preserve identity elements.

2.1 Lemma. a) If z € E(R) i3 an ezceptional unit, then so are
e i=1/z, 2di=1-z, 2F:=2/(z-1), z¥ =1-1/z, 27" =1/1-2).

These are distinct unless either 22 —x + 1 = 0, in which case we have z = z'7 = g
and z* =2/ = z¥, or 141 € RX and z € {-1,1+1,(14+1)7 !}, when z = z' or a* or 7,
respectively. We write

H={(i,5,k; i* =j*=k* = (ij)° = ijik = id)

for this nonabelian group of order 6 of homographic transformations.

b) Ring homomorphisms map units to units and ezceptional units to ezceptional units. |

In general, a surjective ring homomorphism need not induce a surjective morphism between
the groups of units, and b) can then be replaced with a stronger statement. This will not
be needed here. Note that b) applies in particular to automorphisms of R.— It will always
be clear from the context whether 7, j, & are used to denote the involutions in H or carry
some other meaning.

Clearly b) will prevent R from possessing any exceptional units at all if there exist an
epimorphic image ring of R without exceptional units, e.g., if R has an ideal of index 2.
Since many algebraic number fields have ideals (of their maximal orders) of norm 2, there
is no hope of a nontrivial lower bound for the number of exceptional units in all fields of
a given degree and unit rank. The best we can hope for are lower bounds which apply to
infinitely many nonisomorphic fields of the same signature.

Now let f € Z[X] be a monic irreducible polynomial, z a root of f (in some fixed
algebraic closure of Q) and Z[z] the subring of the ring of integers of the number field
K = Q(z) generated by z. The intersection of Z{z] with the group of units of K is a
subgroup of finite index and hence of full rank. In particular, whenever an element of Z[z]
is invertible in the full ring of integers of I, then it is already a unit of Z[z].

2.2 Lemma. a) If g € Z[X)] s such that g(z) € Z[z]*, then the canonical homomorphism
from Z[X] onto Z|z] which takes X to x eztends to a unique homomorphism of the ring
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of Laurent polynomials Z[X][g™'] onto Z[z]. The same is true, mutatis mutandis, when
the single polynomial g is replaced with a subset of nonconstant elements of Z[X].

b) [19] The exzceptional units x € E(R) are in one-to-one correspondence with the homo-
morphisms from the ring Z[X]|{X ™}, (1-X)~1] into R.

c) {16, Lemma (2.5)] If g € Z[X] 1s also monic and irreducible, and if y denotes a root of
g, then g(z) is a unit in Z[z] if and only if f(y) is a unit in Z[y].

PROOF of c¢): g(z) € Z[z]* if and only if the norm Ny q(g(z)) is &1, if and only if the
resultant of f and ¢ is +1, and this last condition is symmetric in f and g when both
are monic. (By analogy with function fields [35, Ex. 2.11], this might be called “Weil
reciprocity”.) . i

Combining a) and c), we see that the monic irreducible ;;)olynomial f € Z[X] is the
minimal polynomial of an exceptional unit if and only if f(0), f(1) € {£1}. The following
proposition is an immediate consequence.

2.3 Proposition. The only exceptional units in (the rings of integers of ) quadratic number
fields are the roots of the four polynomials

X?-X+1, X2-X-1, X?4+X-1, X*-3X+1;
i.e., the sizth roots of unity (:g:l and the H-orbit of the golden ratio 9 = %(1 +V5). |

In [19] it is shown how one can compute the exceptional units (e.u.s from now on) of rings
of Laurent polynomials (finitely generated quotient rings of Z[X]). Here are a few such
rings which we will use below. In each case the claim that the elements listed are indeed
e.u.s is trivial, and the claim that there are no others can be verified by a tedious but
straightforward computation.

2.4 Proposition. a) The ring Z[X][X ™', (X=1)""] from 2.2 b) contains only the siz
buslt-in e.u.s.
b) The ring

ZIX][X 1, (X-1)7, (X+1)7]

contains 18 e.u.s, whose orbits under the action of H are represented by X, —X and X2.
(Thus homomorphisms out of this ring classify what J.-D. THEROND has called unités
vraiment exceptionnelles [39).)
c) The ring

ZIX) X7 (X-1)7, (XP=X41)7]

contains 24 e.w.s, represented by X and the results of substituting X', X7 and X* for
X into X? — X 4+ 1. On this ring, H acts as a group of automorphisms from the left,
with i € H corresponding to the substitution X + X', etc. (In fact, it gives the whole
automorphism group of the ring, but we will not need this.)
d) The ring

ZIX)[ X7, (X-1)7Y (X+)Th (X =X-1)7Y
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contains 48 e.u.s, those from b) and the H-orbits of X (X 1), (X-1)2(X+1), (X?2-1)/X,
(X+1)/X?, and (X+1)3(X-1)/X3. i

By generalizing the progression from a) to b), we obtain the following weak lower bound
for the number of e.u.s in infinitely many fields of any prescribed degree n > 2.

2.5 Proposition. For each n > 3, infinitely many number fields of degree n contain at
least 121 — 30 e.u.s.

PROOF: Fix n and consider the set of monic polynomials f € Z[X] of degree n which
satisfy f(0) = ... = f(n—2) = 1. It is easy to see that there is one such polynomial for
each integer value prescribed for the coefficient of X™~! in f. At most finitely many of
them can be reducible, because any nontrivial factor g of such an f would have to take
values +1 at each of 0,...,n—2 and thus would have to come from among a finite set of
candidates. Also, any field generated by a root of an irreducible f can contain roots of
only finitely many others, since otherwise it would contain infinitely many e.u.s. It follows
that infinitely many nonisomorphic fields of degree n possess a subring Z[z] of algebraic
integers which receives an epimorphism from the ring

R = Z[X][X', (X-1)7", ..., (X—n+2)7'].

Without looking too hard, we can see at least 2n — 5 H-orbits of e.u.s in R, represented
by X, X—1, ..., X—n+3 and by (X-1)?, ..., (X—n+3)% It remains to show that these
will sufficiently often map to distinct elements of Z[z] under the substitution X + z. But
if, picking one example at random, it should happen that z/(z—1) = (z~3)2, then

(X=3)(X-1)—-X=X*—-7X?*414X -9

is in the kernel of that substitution, and z lives in the cubic number field of discriminant
—~31 (which shows that this particular coincidence could not have happened at all —
the elements we had used exist only for n > 6). In the same way one shows that every
identification of two e.u.s of R under X +— z forces = to be aroot of a particular polynomial,
and even determines the field Q(z) up to isomorphism when this polynomial is irreducible.
Thus we lose only finitely many of the remaining examples.— At least for 3 <n < 5, the
Laurent ring used here has exactly 12n — 30 e.u.s. i

2.6 Remark. J. H. SILVERMAN [36] has recently obtained an upper bound for the number
of e.u.s which can be powers of a fixed algebraic unit, and more generally for the number of
exponents m > 0 such that 2™ — 1 € Z[z]* for a fixed algebraic integer z, which depends
on z only via the degree n = [Q(z) : Q] and which is of the form ¢ - n'*°1) with an
effectively computable absolute constant ¢. But, as he points out himself, his approach
does not seem to generalize to our situation.



3. Numbers of exceptional units in fields of small rank

We have already seen that among the fields of unit rank r = 0, only Q((s) contains any
exceptional units at all, that one real quadratic field (r = 1) contains 6 e.u.s, and that all
other fields of degree n = 2 and rank 1 contain none. The cubic fields with exceptional
units are given by four families of monic irreducible cubic polynomials, one family for each
choice of signs in the conditions f(0) € {£1}, f(1) € {£1}, with each family depending
on a single integer parameter. The action of H permutes three of the families and fixes
the fourth, and this latter produces only cyclic (hence real, hence rank two) cubic fields,
whereas the former are responsible for 12, 6 and 18 e.u.s in the rank-one cubic fields of
discriminants —23, —31 and in the cyclic cubic field of discriminant +72, respectively, and
define real non-cyclic cubic fields for all other parameter values. These families have been
the subject of numerous studies, e.g., in roughly chronological order, by NAGELL [24,25],
SHANKS [31], M.-N. GRras [10,11], ENNOLA [4], E. THOMAS [40], MIGNOTTE [21] and the
present author [27]. The main result of {27] is that cyclic cubic fields contain at most 6
e.n.s-— as was known already to NAGELL, infinitely many cyclic cubic fields do contain
at least 6 e.u.s — except for the four such fields of smallest discriminants 7%, 9%, 132, 192,
which contain 42, 18, 12 and 12 e.u.s, respectively. NAGELL conjectured that non-cyclic
real cubic fields contain either 6 e.u.s or none (and, equivalently, that for the three non-
cyclic families of polynomials, distinct parameter values — apart from the action of H —
always lead to nonisomorphic fields). Again, it is clear from the families of polynomials
that infinitely many such fields do contain at least 6 e.u.s. The conjecture is still open
despite a lot of work [4]. The methods of {27] ought to show that it holds at least up to
finitely many exceptions, but treating the potentially exceptional cases may involve a very
large computational effort. We will briefly return to this issue in section 3.

In [22] and [23], NAGELL proceeded to determine all e.u.s in the third type of fields of
unit rank one, viz. totally complex quartic fields. Here one encounters a new phenomenon.
Indeed, in contrast to real quadratic and complex cubic fields, infinitely many totally
complex quartic fields contain e.u.s. But this is due to the fact that each of the quadratic
fields Q(6) and Q((s) possesses infinitely many distinct quadratic extensions which are
totally complex. If one counts only those e.u.s which generate quartic fields over Q, the
result is the same as for the other rank-one fields: There are only finitely many complex
quartic fields with exceptional units not contained in proper subfields.

A pattern is beginning to emerge. What we should expect to find in any given signa-
ture is: several fields with small absolute discriminants which contain many e.u.s, infinitely
many which contain rather smaller numbers of them, and infinitely many fields which con-
tain none at all, where we are careful to count only e.u.s which generate the fields under
consideration for the latter two types of fields. We will see in a moment how this pattern
continues into ranks 2...3 and degrees 4...5.

3.1 Remark. In [24], NAGELL wrote: “Il est intéressant d’observer que les valeurs maz-
imales [du nombre d’unités exceptionnelles dans un corps| sont obtenues pour les corps
biquadratiques du premier rang qui possédent les discriminants les plus petits.” This ob-
servation extends far beyond the cases known to NAGELL. A. LEUTBECHER and J. MAR-
TINET [18,17] have noted that it can be turned around to discover number fields with small
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absolute discriminants in degrees up to 11, and recently A. ZIEGLER, a diploma student of
LEUTBECHER, has reached degree 15 [26]. It is still not well understood why this kind of
heuristics is so successful; it will become obvious in a moment why fields with very many
e.u.s should be expected to have small discriminants, but it is far from clear what causes
these fields to exist at all. 1

Let us summarise the above in the first half of a little table. We list fields by increasing
absolute discriminant within each signature, and indicate the total numbers of e.u.s as well
as the numbers of e.u.s not contained in proper subfields (for complex quartic fields, in
square brackets). The discriminants are the signed, slanted figures, the numbers of e.u.s are
unsigned and upright, and are highlighted by boldface type to indicate the largest number
attained within the signature and the largest number attained infinitely often.— Within
the range of the table, there is only one field (up to isomorphism) of given signature and
discriminant.

3.2 Table, part I. .
| Rank r = 0, degree n = 2: |
~3:2 | —4,...: 0

| Rankr =1, degree n = 2: I
+5:6 | +8,...: 0

| Rankr =1, degreen = 3: ]
-23:12 | =31: 6 | —44,...: 0

I Rank r = 1, degree n = 4: I
+117: 20 [18]) | +125: 18 [12] | +144: 14 (2] | +189: 8[6] | +225: 8 (0] | +229: 6 |
+256: 0[0) | +257: 0 | +272: 6 [0] | +320,...: 0, 2 or 6 (0]

| Rank r = 2, degree n = 3: I
+7% 42 | +9%: 18 | +148: 0 | +13%: 12 | +229, +257, +316, +-321: 0 | +19% 12 |
+404,...: 0 or 6, conjecturally; +31%,...: O or 6

Until quite recently, there were hardly any data about numbers of e.u.s in fields of larger
degree. Quartic fields of mixed signature with a real quadratic subfield are the subject of a
study which the author has been pursuing since 1991; a detailed report will be submitted
in due course. Just before and during the Journées Arithmétiques at Barcelona, the author
made an effort to determine at least the “small” e.u.s in several quintic fields of rank 2.
Thus we can now extend the table, albeit somewhat tentatively.

Only for five of the fields listed below is the number of e.u.s known exactly. The
field Q(V/9) of discriminant —400 is very unusual in that it has e.u.s of degree 4, is not a
cyclotomic field, and can nevertheless be handled entirely by elementary arguments. The
extension of Q(¥) of discriminant —275 was treated in the author’s doctoral dissertation.
Both fall of course within the scope of the aforementioned study. For Q({r) and Q((s),
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see GYORY 1971 [12, Lemme 12], together with the known numbers of e.u.s in their real
cubic subfields from [25]. The real subfield of the eleventh cyclotomic field is included
here courtesy of B. M. M. DE WEGER [pers. comm.]; there are another 90 non-real e.u.s
in Q(¢11)-

Thanks to recent advances in transcendence theory and diophantine approximation,
the routine determination of all exceptional units in a few dozen fields is now rather less
of a computational chore than it used to be, and we hope soon to be able to eliminate the
“>” signs. (Since “large” solutions tend to be extremely rare, I do not actually expect
any of the numbers to increase, and have used boldface as before for the largest numbers
seen.)

3.3 Table, part II.

I Rank r = 2, degree n = 4: |
—275. 54 [48] | —283: 554 | —331: >42 | —400: 30 [24] | —448: >18 [>18] |
—475: >30 [>24] | —~491: 18 | —507: >24 [>24] | —563: >18 | —643: >18 | ...
infinitely often: [>6]

| Rank r = 2, degree n = &: |
+1609: >78 | +1649: >T8 | +1777: 272 | +2209 = 47%: >54 | +2297: >48 |
+2617: >42 | +2665: >42 | +2869: >36 | +3017: 236 | +3089: >24 | ...
infinitely often: >6

[ Rank r = 2, degree n = 6: I
—9747 = —3%19%: 7 [?] | —10051 = —19-23%*: >102 (90] | ... |

—16807 = —7°: 72 [30] | ... | —19683 = 3°: 38 [18] | ...

r Rank r = 3, degree n = 4: |
+725: >162 [156] | +1125: >90 [84] | ...

infinitely often: >18 [>18]

I Rank r = 3, degree n = 5: 4]
—4511: >228 | ...
infinitely often: >24
| Rank r = 3, degreen =6, 7, &8: J

no data available yet

l Rank r = 4, degree n = 5: I
+14641 = 11*: 570 | +24217: 7 | +36497: >138 | ...
infinitely often: >48

Apart from the growth of the first boldface numbers in each row — naive interpolation
suggests a faster rate of growth than a cubic polynomial in n or r, but well below expo-
nential growth — the most striking observation to be made here is the surprisingly smooth
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decrease of the numbers of e.u.s as we move away from the minimal absolute discrimi-
nant in the signatures (n,r) = (4,2} and (5,2). Neither the varying presence or absence
of ideals of small norm, nor the different isomorphism types of the Galois groups of the
normal closures (symmetric or dihedral) seem to affect this significantly. One is tempted
to speculate that some (number-geometric?)} mechanism is at work behind the scenes.

What might be expected to play a role in the signature (6, 3) is the possible presence
of roots of unity of order 4 or 6 in quadratic subfields, since these enlarge the supply of
units into which the unit groups of Laurent rings can be mapped. There are hardly any
data available for this signature, but we will see later that a far-reaching effect is unlikely.

We have reached the heart of this paper:

3.4 Challenge: a) To determine, for as many signatures (n,r) as posstble, the nonnegative
integer C1(n,r) such that there exist number fields of this signature containing this many
exceptional units and none containing more than this number, and to determine all fields
of this-signature which attain the bound.

b) To find for given signatures upper and lower bounds which are as sharp as possible for
the nonnegative integer C2 = Cy(n,r) defined as follows: Infinitely many nonisomorphic
fields of this signature possess C; e.u.s which do not lie in proper subfields, and only
finitely many, up to tsomorphism, contain more than Cy e.u.s of full degree n. Besides the
dependence on n and r, Cy might be considered separately for each type of Galois group
acting on the normal closures, and for each possible number of roots of unity contained in
a proper subfield. |

The existence of Cy(n,r) follows of course from EVERTSE’s bound, and implies that of
C2(n,r). Implicit in this Challenge is the hope that they are effectively computable, along
with the witness fields for C; or, more ambitiously, along with all fields which exceed the
C bound (but see subsection 5.5 at the end of this paper).

From the first part of the table, we read off C1(2,0) =2, C1(2,1) =6, C1(3,1) = 12,
Cy(4,1) = 20, and (almost certainly) C;(3,2) = 42; furthermore, Cy(n,0) = C2(n,1) =0
and conjecturally C2(3,2) = 6. The second part contains hints concerning Cy(4,2),
C2(5,2), C2(4,3), C3(5,3) and C,(5,4). We will investigate these more closely in the
following section and establish that they are bounded below by 6, 6, 18, 24 and 48, re-
spectively, and i1t will be explained why the author believes that these are already the true
values.

4. Families of fields with exceptional units

To set the scene, we will briefly look at the cyclic cubic family mentioned at the start of the
last section. In the usual parametrisation it arises from integral monic cubic polynomials
f satisfying f(0) = f(~1) = —1. The conditions immediately ensure irreducibility of all
such f mod 2. There is an H-orbit of e.u.s represented by —z, and the two nontrivial field
automorphisms send —z to (—z)¥ and to (—z)’*. Explicitly, these polynomials take the
form

fo(X) = X® —aX? — (a43)X -1
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with a € Z, and since the involutions of ‘H exchange f, and f-,_3, one can restrict
attention to @ > —1. The discriminant of f, is (¢® + 3a + 9)%, and it is easy to compute
the field discriminant from it [10, Prop. 2].

The underlying universal ring, as in the constructions of Prop. 2.4, is obviously
Z[X)[ X!, (X41)71], the same as in Prop. 2.4 a) except for a change of variable. But the
homomorphisms from this ring to the individual Z[z] = Z[X]/(f.) factor through a com-
mon intermediate ring, universal for the conditions f(0) = f(—1) = —1 and “f monic of
degree 3”. This ring can be constructed by treating the coefficients of f as indeterminates;
it 1s

Z[X, Az, A1, Ao)/(Ao+1, 14+As+A 1+ Ap+], X2 4+ Ay X? + A1 X + Ap) (4.1)

or, using the conditions to eliminate 4, and Ag and writiﬂg A for A,
ZIX, A/(X° — AX — (A443) X - 1).

It turns out that this last ring is still isomorphic to Z[Y][Y ™!, (Y —1)7!] via the substitu-
tion X — =Y, A — =Y —Y¥ — Y7 In other words, the Z[z] have one generic H-orbit
of e.u.s, and their unit groups Z[z]* are generically generated by —1, ¢ and z+1, and any
further e.u.s which they or their integral closures in the quotient fields Q(z) might contain
arise only after specializing A to a € Z.— Notice that in the intermediate ring we had to
fix one choice of signs for our conditions, whereas the Laurent ring encompasses all sign
combinations.

A family of exceptional units can thus be considered as a ring of the shape (4.1)
together with its parameter specializations. Unfortunately, as soon as polynomials g; of
degree 2 or more are made invertible in the Laurent ring, the intermediate ring becomes
a rather more complicated object. The ideal by which we have to divide will then contain
expressions built from resultants, of the form Res(f, ¢i) F 1, among its generators, and we
are headed for the deep waters of arithmetic geometry. On the other hand, we can still
bypass the intermediate ring and work with Lemma 2.2 ¢) instead, which is what we will
do now. We go straight to (n,r) = (5,3), which offers a rich picture while postponing
problems with possible subfields. :

4.1 Quintic fields with three real places. Our first task is to choose a Laurent ring.
If we pick the generator polynomials g; of its unit group in such a way that they are
monic and irreducible and that the sum of their degrees is 4, and use Lemma 2.2 ¢) to
translate the invertibility of the ¢; into prescribed values of f at certain algebraic integers,
each choice of algebraic units as values leads to a linear system of 4 equations for the
5 unknown coefficients of f. Since this is an interpolation problem with distinct support
points, the four equations are independent, and we have a one-dimensional space of rational
solutions. With a little care we can ensure an infinity of integral solutions. E.g., we might
have chosen the g; as in Prop. 2.5 as X, X -1, X - 2, X — 3, and accordingly prescribed
each of f(0), f(1), f(2) and f(3) to take a value chosen from {£1}, but if we choose
f(0) = £1 = —f(3), congruences mod 3 will prevent integral solutions. In fact, this choice
of conditions is not a good one for the signature we have in mind:
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4.1.1 Heuristics. A Laurent ring with unit group generated by —1 and by k multiplica-
tively independent polynomaials g; will admit infinitely many embeddings X — z into the
rings of integers of number fields Q(z) of signature (n,r) only if k < r, and then the
tmages of the g; in the number rings will usually be multsplicatively independent.

Rationale: Assume that the images gi(z) of the g; in one Z[z] satisfy a multiplicative
relation, as they must when k > r. (Roots of unity in the field Q(z) do not help much; if
some product of powers of the g;(z) is a root of unity of order £, then the £-th power of that
product equals 1, so we always get a relation of the form [] g;(z)¢* = 1.) This relation
implies that z is a root of a particular polynomial with integer coefficients. Although
the exponents e; can be chosen in infinitely many ways, we cannot expect more than a
finite number of the polynomial relations thus obtained to be compatible with z having
a minimal polynomial of given degree n. (In applications, a different line of reasoning is

used, cf. below.) I

We will therefore use three g;, two linear ones and one which is quadratic. The
combination X, X—1, X?2—X—1 would work, but guarantees only 12 e.u.s, whereas X,
X—1, X?—X+1 guarantees 24 of them by Prop. 2.4 ¢) — unless some of them should
be mapped to the same algebraic number, which can happen only finitely often (as in
the proof of Prop. 2.5). These translate into the conditions f(0) € {£1}, f(1) € {%1},
f(¢G) € {£1,¢F",¢E?}. Hence there are 24 such families, but the action of H on the
Laurent ring permutes them in four orbits of six each. We choose representatives as
follows:

4.1.2 Proposition. Fach field of degree 5 receiving a homomorphism from the ring
specified in Prop. 2.4 ¢) taking X to an algebraic integer = can be defined by one of the
following polynomsals, with suitable a € Z:

fa(X) = X° 4+ aX' — (2a42) X® 4 (2a+3) X% — (a+2) X + 1 (4.2.7)
with values +1, +1, +1 for f(0), f(1), f({s);

fa(X) = X5 + aX* — (2a+3) X* + (2a4+5) X? — (a+3)X + 1 (4.2.47)
with values +1, +1, (s;

fa(X) = X5 4 aX* — (2a42) X® 4+ (2045) X? — (a4+4) X + 1 (4.2.441)
with values +1, +1, —1; or

fa(X) = X5 + aX* — (2a+4) X® + (2a+5) X? — (a+4) X + 1 (4.2.iv)
with values +1, —1 (forcing at least three real roots), and +1.

PROOF: Straightforward linear algebra. We leave it to the reader, as well as working out
the other 20 polynomials arising from the action of H. I
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Next, we must verify that we have succeeded infinitely often in avoiding the totally real
quintic fields. Indeed, we will see that we have succeeded in avoiding them entirely. (This
is no accident; it has actually been built in on purpose by the choice of g3 = X? — X + 1.
We leave it as an exercise to show that no totally real algebraic integer = other than 0 or 1
will make g3(z) an algebraic unit. The theory behind this will be explained in [29].)

Since the discriminant of a quintic field is negative if and only if the field has three
real places, one way of showing that we are seeing infinitely many such fields is simply to
examine the signs of the polynomial discriminants. One can also compute Sturm chains.
Using a slightly modified subresultant algorithm (a combination of algorithms 3.3.7 and
4.1.11 from [3]), one can in fact compute both at the same time, since the Sturm chain
properties are unaffected by the positive factors introduced and removed during the pseu-
dodivisions, and one can do this without specifying a particular value for a. E.g., starting
from Py the polynomial from (4.2.7) and P, its derivative with respect to X, one gets

P, = —5'Py+ (5X +a) P,
= (4a*420a+20) X? — (6a®+36a+45) X? + (4a*+26a+40) X — (a®+2a+25),

Py = 57%(—(4a®+20a+20)* Py + (5 (4a*+20a+20) X + (16¢°+110a°+260a+225)) P,)
= —(4a*+40a>+148a*+240a+149) X? -+ (4a"+48a°-+188a*+286a+164) X
— (—2a"+63a*+198a+193),

and so forth. The leading coefficients of Py, P; and P, are positive for all a; that of Pj is
—4 (a’+5a+6)% — 5, hence always negative; that of Py turns out to be positive precisely for
—3 < a < 1; and the discriminant Ps is positive precisely for —4 < a < 2. Thus we have
one sign change at +oo and four at —oo, and therefore 3 real places, for almost every a.
In the range —4 < a < 2 where the discriminant is positive, there exists only one real
root, as claimed above. Submitting the other three polynomials to similar treatment gives
the following results. (The action of H does not affect the discriminant since the images

of z always generate the same ring, so it is enough to look at one representative from each
orbit.)

4.1.3 Proposition. The polynomaials from the previous proposition have, respectively, the
following discriminants:

— 3a® -~ 200" — 4a® + 2304 + 382¢* — 7164 — 1363a* + 486a + 2617,

— 3a® — 284" — 96a® — 58a° + 494a* + 1032¢® — 7a® — 1206a + 1649,

—3a® — 524" — 412a% — 19624® — 60464 — 121080 — 14611a? — 8006a + 1609,
— 3a® — 444" — 360a® — 1890a° — 7094a® — 18824a® — 3575942 — 448424 — 33503 .

For no value of a does a totally real quintic field arise. The first family gives quintic fields
of rank 2 for —4 < a < 2, the second for —3 < a < 2, the third for —4 < a <0, the fourth
never. The rank 2 fields involved are those of discriminants 41609 which appears three
times, +1649 (thrice), +1777 (twice), +2209 (twice), +2297 (twice), +2617 (once), +2665
(once), +3017 (twice), 43889 (once) and +4417 (once). 1
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We are seeing here one of the mechanisms which contribute to many fields of small absolute
discriminants having large numbers of e.u.s: Homomorphisms from Laurent rings with a
unit rank defect. The values of the four discriminant expressions are bounded above, so
only fields of small positive discriminants can appear here, and those which do appear do
so with generators of their maximal orders. The fields of discriminants +2869 and +3089
are missed by these families. They have ideals of norms 4 and 3, respectively, but the
Laurent ring has sets of five elements whose pairwise differences are units, and therefore
does not accommodate a composite homomorphism into a ring with 0 # 1 and fewer than
5 elements.

Although it is not strictly relevant to our main topic, it may be interesting to note,
firstly, that the discriminants are of lower degree in a than might have been expected by
looking at the coefficients of the defining polynomials — some cancellation has been going
on — and secondly, that it is straightforward to compute the minimal polynomials of the
other generic e.u.s. They have coefficients which are at worst quadratic in a, e.g. for the
family (4.2.1), 22—z+1 is a root of

X5 — (a®45a+9) X* + (2a®+10a+15) X°® — (a*+7a+12) X? + (2a+5) X — 1. (4.3)

This in itself is not exciting, were it not for the fact that this polynomial has the same
discriminant as the corresponding f, itself, which shows that in this family, the ring Z[z]
can always be generated by single elements which are not of the form -z 4+ k with k € Z.
The whole story is: z?2—z+1 generates the full ring Z[z] for every @ in the first three
families, and a subring of index |6a 4 13| in the fourth; (z*)?—z'+1 generates subrings of
index |2a — 1|, |2a + 3|, 1, and |2a*+4a+1[; and (z¥)?—z*+1 generates subrings of index
|2a2+4a+1], |2a—1}, 2a®+10a+13, and |2a®+10a+11| in the first, second, third and fourth
family’s Z{z], respectively.

Another amusing observation is that some of these latter polynomials reappear else-
where in our four defining families. For @ = —2, the polynomial (4.3) is the image under
7 € H of the member f_, of family (4.2.21); for ¢« = —1, it is the j-image of the fp
from (4.2.i7). There are a few more coincidences of this type. Clearly they also contribute
to the large numbers of e.u.s in the fields involved.

A third contribution to large numbers of e.u.s in the fields belonging to small absolute
values of the family parameter comes from additional units of the form g(z) with “simple”
polynomials g € Z[X]. E.g.,, g = X + 1 gives a unit in the (4.2.7) family if a = —1; and
g=X?—-X —1 gives a unit for a = —4 and a = —2. For a = —4, another unit is z — 2,
and moreover, X —2, X? — X — 1 and X% — X — 1 all yield units under X — 2? —z +1
in this case (their resultants with (4.3) become +£1).

It is clear at this point that C3(5,3) > 24. We shall now take a few more steps towards
an upper bound. Our ultimate goals are the following, although time and space do not
allow us to attain them in these pages.

4.1.4 Heuristics. Consider a one-parameter family of polynomsals coming from a single
Laurent ring, as above.

a) Write G for the subgroup of Z[z]* generated by —1 together with the gi(z) — the
image of the units of the Laurent ring under X w z. Then when |a| ts large enough, every
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ezceptional unit £ € GN (1 — Z[z]*) is generic, i.e., it s the image of an ezceptional unit
of the Laurent ring.

b) Write G for the subgroup of the units of the ring of integers of K = Q(z) which
are multiplicatively dependent on G. (This is the whole unit group when G contains a

system of r independent units.) Then when |a| is large enough, every exceptional unit
£ € GN(1—2Z[z]*) 1s generic. |

We will sketch for one half of one of our four families how an assertion like a) can be
proved; the discussion of b) will be postponed to section 5.

Furthermore, there remains the task of justifying the choice of Laurent ring. One
would like to know that our families constitute essentially the only way of squeezing 24
e.u.s into each of infinitely many number rings of this signature. This is another point to
which we will return in section 5.

The next task is now to bracket the real roots. For each of our four families, there
is one root close to b = —a — 2, in addition to roots which are close to 0 and close to
1, provided that |a| is large enough to give three real roots. One feasible approach here
is to apply one or two symbolic Newton iterations starting from each of the three initial
approximations we have just indicated. Then one expands the resulting expressions into
series in b~!, cutting off after the ~! or 572 term, and evaluates f, at that point and on
either side of it. (A computer algebra package is very helpful here.) The values there will
have uniform sign, depending on the sign of a but not on its size, as soon as |a| is large
enough. One obtains:

4.1.5 Proposition. For |a| > 7, the real roots z, of the polynomials (4.2.x) are enclosed,
one each, in the following intervals (4.4.z), where b= —a —2:

bbbt <z < —b7 42672 <0, w
a<0,b>0 ¢ 1<l4bt1-b?2<z;<l+b1,
b—2b"" <y <b-0b"1<b,

b—b~" < xy <b,
a>0,b<0: ¢ 0<—-b14+2b2<ay< b1 43072,
1407 —2b2 <y <140 =b2<; )

b l<zog=b14+b72 <0, )
a<0,b>0 ¢ 1<l4+bt=-b%<z <1+t
b<my <b4+b71,

S (4.4.1)
( b+b"! <y < b,
a>0, b<0: 0< =b"1+b"? <xg<—b"1+2b72,
1461 —2b %2 <z <1401 -b"2<1; )
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b V<< =b"1 4 b2 <0, )
a<0,b>0 ¢ 1<14b'4+b2<z <1407t 4+2b72,
\ b—3b72 <apy <b—2b"2 <0,
S (4.4.0)
( b—2b2<ay<b—b"2<b,
a>0, b<0: A 0< =b"14b3 <29 < ~b71,
{ 14b M <oy <1407 4072 < 15 )
( b+ b << -1 <00, )
a<0, b>0: 1-b14b 2% <z; <1 -b"1 +2b"2<« 1,
) \ b<b+2b! <z <b+3b71,
? (4.4.iv)
( b+2bl<zy<b+b"! <b,
a>0,b<0: ¢ 0<—b"1—b2<go<—b7",
\ 1<l-bl<oy <l=b1+b72<1. )
Some of these inequalities hold already for smaller |a]. |

The most useful consequence of these estimates is that one can now compute intervals
containing the logarithms of the absolute values of the g;(z, ) for each of the three condition
polynomials and each of the three real embeddings, and justify our Heuristics 4.1.1 by
showing that the determinant of these logarithms, when they are arranged as a matrix in
the obvious way, does not vanish. One can also stick on a fourth column which is minus the
sum of the first three and thus contains the logarithms of the squared absolute values of
the complex embeddings of our g;(z). Let us do this just for the first of the eight subcases
of Prop. 4.1.5. Put 4, = 1 when v labels a real place, §, = 2 for complex places, and
abbreviate A = Inb. Using the fundamental estimate y > 0 = In(1+y) < y several times,
together with inequalities of the form (1 —2/b)~! < 1 + 3/b and some simpler variants all
of which are valid for 4 > 6, we find that the matrix

(5. lgi(=a)1), , (45)

has entries in the following intervals:

“A-f<e< =) O<e<i A—j<e<) —lcect
0<e<i —A-Zce<-) A-2cec<) p<e<i
O<e< i} 0<e< 2 -2ce<2) -2x-3<ce<-22+12

(the last column here was indeed obtained from the first three; a direct estimate for the
complex roots might have yielded somewhat narrower bounds), and the determinant of
the first three columns, using SARRUS’ rule, is at least

syt _ 1
STFERI
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Thus we have at our disposal a conveniently parametrised family of three independent
units. It was E. THOMAS [40] who first pointed out that in such a situation one can
apply BAKER’s method simultaneously to all members of the family with large enough
parameter. The essence of the method is to combine three kinds of inequalities. Let

y =+ Hg,—(:c)e‘

be a putative exceptional unit in the group G. Its four-component logarithmic embedding
(6yIn|yy|)y is obtained by multiplying the three-component row vector of integer expo-
nents (e, €2, e3) from the right with the matrix (4.5). These vectors are nonzero, and by
inspection, at least one coordinate of the result is quite large — a nonzero integer multiple
of A plus something small. (Actually, a rather detailed analysis is required at this point.)
Thus at least one embedding ¥y, is comparable in size to a power of b. If y is to be excep-
tional, there must be at least one other embedding for which y, is extremely close to 1.

Then, for this v,
3

Ay =lnly| = Zei In|gi(z,)|

=1

is extremely close to zero (but not equal to zero) when v denotes a real place. If it is the
complex place where the close approximation is happening, one can fix the three complex
logarithms €; , = log g:(z,) arbitrarily among their possible values, and then there must
be some integer ep such that

3
Ao = eiliy+eo-2m

=1

is extremely close (but not equal) to zero. When “extremely close” is made explicit, it
takes the form
Ay < exp(—c1AE)

with some positive constant ¢;, where E = max{|e;|}. This is the first inequality. The
second will be a BAKER-vintage lower bound of the form

|As| > exp(—c2(A)(In E)*) .

Here, c; is essentially a polynomial in A (it also depends on the degree, which remains fixed
in our application, and on the number of logarithms which actually occur, i.e., for which
e; is nonzero), and « € {1,2} depending on the type of theorem employed (those from
the SCHNEIDER~MIGNOTTE& WALDSCHMIDT line of which the sharpest is [15], for forms
in which only two logarithms appear, have k = 2 with a very small c;; the best published
result for three or more logarithms is [1], but work in progress by P. VOUTIER is expected
to yield further significant improvements). Comparing these two estimates for |A,|, one
obtains an explicit upper bound for E which is still polynomial in A.
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In order to see how the third inequality arises, we must look again at the bounds for
the entries of the matrix (4.5). Since we are merely trying to illustrate the method, let us
assume that we are not in a special case, i.e., that none of the components of (e1,eq,e3) is
zero and that this vector is not a multiple of one which belongs to a generic solution. (The
generic solutions, by the way, have exponent vectors (1,0,0), (0,1,0), (1,—1,0); (0,0,1),
(1’ 13 0)) (1? 1’ “1)1 (17 01 _1)’ (1’ _2’0)) (0) —27 1)1 (2: 0) —1)1 (21 "'la O)a (07 _]-’ 1) a'nd their
negatives.) Then we find that the only way in which one of the first three columns can
become small (the fourth requires special considerations, although the result remains the
same) is that one e;, the one which is multiplied with A or 2}, is rather small, and one
or both of the others are larger in absolute value by a factor proportional to bA. This
is an example of what is known in diophantine approximation as a gap principle. The
generic solutions together with b are responsible for the very disparate sizes of the entries
of (4.5), and these in turn force any non-generic solutions to have a very large E, indeed
exponentially large when written in terms of A.

But above we had already obtained an upper bound on F which was only polynomial
in A. Once all the intermediate steps have been filled in, this will give us an upper bound
on A and thus on b beyond which no non-generic e.u.s can exist, as claimed by Heuristics
4.1.4 a). Moreover, we will have done much of the work required to determine any non-
generic e.u.s in the small family members. Thanks to the gap principle, these are strongly
restricted as soon as b is at all large, and very large numbers of fields can be handled with
a moderate computational effort. (See {21] for an example of such a computation in a
similar situation.) — We will end our portrait sketch of this family here; a full treatment
will have to wait for another occasion. In the remainder of this section we will look very
briefly at a few other field signatures.

4.2 Quintic fields with one real place. There are several options for finding families of
e.u.s meeting this signature infinitely often, but none of them is entirely satisfactory, and
one may have to consider infinitely many distinct families before the whole picture becomes
clear. One idea is to enforce polynomials with a Galois group strictly smaller than the
symmetric group — dihedral of order 10, affine of order 20, or alternating; none of these
being compatible with three real places — and to use condition polynomials g; which
prevent totally real fields. Obviously, we then miss all the fields with normal closures
having the full symmetric group as their Galois group. Another idea is to go for sheer
quantity and employ combinations of several condition polynomials chosen with a view to
obstruct real places, e.g. to use a Laurent ring of the form

ZIX)[(X2+k) (X2 4+ k+ 1) (4.6)
with a fixed integer k& > 0, or even
ZX| X (X207,

which leaves two coefficients of our quintic polynomials undetermined (and is therefore
more difficult to handle). The ring (4.6) with £ = 1 suffices to show that infinitely many
distinct fields of this signature possess at least 6 e.u.s. Using Lemma 2.2 c) and observing
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that exchanging X and —X does not alter anything, we may as well fix f(/—2) = +1,
leaving the four possibilities +1, —1, +(s, —(4 for f(4) which give, respectively, the poly-
nomials

X% + aX* +3X® + 3aX? + 2X + (2a+1),

X% + aX* 4+ 3X? + (3a—2) X% + 2X 4 (2a-3),
X5 4+ aX?® +4X° 4+ (Ba—1) X* 4 4X + (2a-1),
X% 4+ aX* 4+ 2X? + (8a—1) X* + (2a-1).

Their discriminants

32a® — 240a” + 576a® — 800a® + 2132a* + 224a® — 2484 + 6596a + 4897,
32a® — 48a" + 448a° — 12484 + 2164a* — 71924 + 10584a® — 6484a + 4409,
32a® — 144a” "+ 152a° + 68a° + 1248¢* — 27520 — 1284a® — 984a + 9137,
(2a —1) - (162" — 64a® + 460a® — 520a" + 3844c° — 18204 + 5250a — 2617)

remain positive for all a € Z, and only fields with one real place are produced. The
exceptional unit —(z? + 1) generates the full ring Z[z] in the first three families, and a
subring of index |2a — 1| in the fourth. Some coincidences are obvious from the constant
coefficients: Whenever these are 1, we get at least another two H-orbits of e.u.s since we
then get a homomorphism X ~ z? 4 1 from the ring from Prop. 2.4 b), and this happens
twice in each of the four families. The corresponding fields have discriminants +1609,
+1649, 42617, +2665, +-4549, 44897, +5653 and +9137.

By our heuristics, homomorphisms from the universal ring of Lemma 2.2 b) should
generically map X and X — 1 to multiplicatively independent units of Z[z], and should
therefore obstruct further e.u.s if the unit rank of the field is 2. The large numbers of e.u.s
listed in the table for quintic rank 2 fields must then all be due to coincidences.

4.3 Totally real quintic fields. While Prop. 2.5 guarantees 30 e.u.s infinitely often,
there is a family which guarantees 48, but the parameter dependence is of a kind we have
not seen before. We use the ring from Prop. 2.4 d). Since the sum of the degrees of the
gi is 5, the coeflicients of f will be completely determined once we have fixed the values
f(0), f(£1) and f(¥). Now Q(9) has unit rank one, so there is an infinity of unit values
{£9*%; k € Z} to choose from for f(¥9). If Fi denotes the k-th Fibonacci number, with
subscripts arranged to make Fp = 0, these units are £(Fr~y + Fx?). There are sixteen
ways of choosing the signs of the values. In each case one obtains integer-valued expressions
for the coefficients of f which are simple Z-linear combinations of Fi—_,, Fi and constant
summands. As predicted by Heuristics 4.1.1, the families produce totally real fields most
of the time, but some others do appear — among others, we see again the discriminants
+1609, +1649, 41777, +2209, 4-2297, 42617, +2665 of rank 2 fields, and —4511, —4903,
—5519, —5783, ~7031, —7367, —7463 and several more of rank 3 fields, many of them
more than once. The totally real fields with small discriminants 4114, 424217, +38569
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also appear repeatedly, whereas 436497 is missed (it has an ideal of norm 3, but the
Laurent ring again has systems of five elements whose pairwise differences are units).

4.4 Totally real quartic fields. Here, Prop. 2.5 — i.e., prescribing f(0), f(1), f(2) €
{#1} — gives a better result (18 generic e.u.s) than using, by analogy with the preceding
section, X and X — 1 and X% — X — 1 as the g;, which only yields twelve. There is
some redundancy due to the actions of X — 2 — X and of (X~1) — (X—1)"1 on the
Laurent ring. One can show that each of the possible sign combinations leads to a one-
parameter family containing only finitely many non-totally real quartic fields from among
the following: the totally complex fields of discriminants +117 and +144, and the fields of
mixed signature with discriminants —275, —283 (several times), —331 (twice), —400, —448
and —643. This is a simple exercise, and was carried out already in the course of the proof
of Theorem 5.1.1 of {18]. It follows that C5(4,3) > 18. Some of the families yield only fields
in which (z—1) = —(z~1)"" is an automorphism, so we do get infinitely many polynomials
whose Galois group is not alternating or symmetric.  Other families contain polynomials
with the full symmetric group as Galois group, and then contain infinitely many of them,
e.g. X1 +(a—4) X3 +(-3a+5) X?+(2a—2) X —1 with discriminant 4a® —47a* +112a? —400.
Setting a = 1 gives a polynomial belonging to the primitive field of discriminant —283. It
is irreducible mod 2, and will be so whenever a is odd, ensuring that there are 4-cycles in
the Galois group of the polynomial. There are factors of degree 1 and of degree 3 mod 5,
hence, whenever +a = 1 (mod 5), we also have 3-cycles. (Note that a — —a has the
same effect on the polynomials of this family as X — 2 — X.) Thus at least every value
a = 1 (mod 10) yields a polynomial with full symmetric Galois group. Working with
other primes, one easily shows that the same is true, e.g., for a = +3 (mod 14). The
value a = 0, however, produces a dihedral Galois group acting on (the normal closure of)

Q(V9).

4.5 Quartic fields with two real places. We have now established all the lower C,
bounds claimed in our table above save one, viz. that C3(4,2) > 6. There are two families
of self-reciprocal polynomials with f(0) = 1 and f(1) = =1 defining generically dihedral
fields; in each family, these fields are real in one half of the parameter range and of mixed
signature in the other. On the other hand, using Z[X][X !, (X?+1)7!] as the Laurent ring
one obtains eight families of polynomials which avoid totally real fields, again with some
redundancy, and among them several for which neither X — 1/X nor X — —1/X induces
an automorphism. One interesting family is X* +a X® + X2 + a X — 1 with discriminant
~4a% — 474* — 1124? — 400; setting @ = 1 gives a polynomial with full symmetric Galois
group defining the field of discriminant —563, and as in the previous section one easily
extends this to all @ = £1 (mod 6), as well as to all a = £2 (mod 21). Again, a = 0 gives
a dihedral polynomial (even the field Q(v/9) happens to be the same as above).

5. Discussion

5.1 Larger base rings. We begin by noting that if one wants to study families of
fields containing a fixed subfield Ky other than Q, one can work with Laurent rings of
the form Ro[X][{g;'}], where Ry is the ring of integers of Ko or some suitable subring.
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The techniques from [19] can be transferred to the determination of the e.u.s of such rings
without difficulty as soon as the e.u.s of the base ring Ry are known. One potentially
useful special case of this is the insertion of roots of unity by taking Ry = Z{(,n].

5.2 Further treatment of the small family members. When one carries out the
procedure sketched in subsection 4.1, one obtains an upper bound for the size £ of any
exponent vectors attached to e.u.s in fields belonging to the family considered. With mod-
ern estimates for linear forms in logarithms, the magnitude of these bounds no longer lives
up to the ancient reputation of transcendence theory as being a source of astronomical
numbers {38]. When only two logarithms are involved, a typical bound for £ would be
less than 5-10%, with three logarithms, bounds of 107...10® are within reach [M. WALD-
SCHMIDT and P. VOUTIER, pers. comm.]. Of course, they are still far too large to obtain
all small and medium solutions by a brute force search. (Indeed one should think twice
before even searching blindly up to E < 40 or so when the unit rank is four or more.)

Several methods are available for covering the range of “medium large” solutions,
say for E between 10? and the BAKER bound B. Three of these depend on diophantine
approximation techniques and require the matrix (4.5) of logarithmic embeddings of the
generator units to be known with very high accuracy, roughly to better than one part in
BY, where N is the number of logarithms involved. The “classical” method, preferred
by the POHST school, is to combine an N-dimensional continued fraction algorithm with
the BAKER-DAVENPORT-ELLISON lemma. B. M. M. DE WEGER suggested a lattice-
based approach [43,44], where the main computational effort goes into the LLL basis
reduction of an integral lattice (using only integer operations). This method is very easy
to implement from scratch and reasonably fast, and has been used extensively, in particular
by N. TZANAKIS and DE WEGER [41,42]. [44] contains a (somewhat biased, of course)
comparison of both methods. Both do well at excluding solutions in very large ranges
for E, but have difficulty in reducing the upper bound on E below a threshold of, very
roughly, 20N . In order to find “medium small” solutions, one can e.g. use algorithms which
enumerate short vectors in a lattice, like the FINCKE-POHST algorithm or its variants [9].

Recently, two other methods have been introduced. Y. BILU [2] has pointed out
that DE WEGER's lattice basis reduction can be replaced by reductions of bases of suitably
chosen 2-dimensional sublattices of an integer lattice, which amount to computing ordinary
continued fraction expansions, and then applying the 2-dimensional BAKER-DAVENPORT
lemma. The main computational hurdle is that one first needs to invert a quadratic
submatrix of the matrix (4.5), and this must be done with rigorous precision control.

A completely different suggestion was made by N. P. SMART (37 and pers. comm.]. It
rests on observations of the following kind. Whenever y € G is not exceptional, y — 1 lies
in some proper ideal I of Z[z], and we know thus a nontrivial element of the kernel of the
group homomorphism Z[z]* — (Z[z]/I)*. Translating this into exponent vectors, where
we now need to carry along a component for the torsion part of the unit group as well, we
can thus exclude an entire (almost always infinite) subgroup. Also, when we consider an
ideal generated by a power of a rational prime p, and thus have approximations to all n
embeddings of y into extensions of the p-adic field Q, at our disposal, we can conclude that
y — 1 is a non-unit when we find the product of the embeddings of y — 1 to be incongruent
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to £1. Combining information of these two types, one can subject the exponent vectors to
a sieving process and, hopefully, exclude all non-e.u.s within a large E range in reasonable
time. (Implementing this efficiently is an interesting challenge; the algorithm seems to
lend itself well to parallelization.)

SMART’s method is obviously a candidate for computing small and not-quite-small
solutions in combination with a diophantine approximation method for the medium large
solutions, but it is potentially capable of covering that range as well with a single algorithm.
Whether this works well in practice remains to be seen. One advantage is that with this
method it might be possible to keep track of the H action, as well as the “higher mesh
groups” from [19]. In particular, the exponent vector belonging to the j-image of an e.u.
which had itself been found and recorded as an exponent vector can be obtained almost for
free when the required discrete logarithms have been precomputed; with other methods,
matching up the pairs requires extensive sorting or hashing.

There is another potential advantage. When one applies this method to a single field,
one usually knows the full group of units, and can sieve y by the more stringent criterion
that y — 1 modulo any proper ideal must lie in the image of the global units if y is to
be exceptional. The two criteria mentioned above are weaker, but do not rely on prior
information about units outside G. Moreover, whenever we apply them, the result will
depend on a only up to congruence modulo some finite integer. Thus each sieving step
provides information about many fields at once — we can sieve on exponents and on the
family parameter at the same time.

5.3 Going beyond the subring. We promised an explanation how Heuristics 4.1.4 b) is
supposed to be realised. Here it is: Assume that G is the full unit group for large enough
parameter values. One considers two cases. If the regulator of the field is above a suitably
chosen bound, the known regulator of our parametric independent units (the determinant
computed from the matrix (4.5)) immediately yields an upper bound on the index of G
in G. This upper bound is polynomial in A\. One can then repeat the argument used for
Heuristics 4.1.4 a), being careful to clear denominators from the exponents which occur
as coeflicients in |A,| before computing the lower bound. The gap principle also requires
some additional work. One arrives, as before, at an upper bound for A. This leaves the
fields with small regulators, but a simple argument (less simple in the presence of subfields)
shows that the discriminants of these fields are bounded, so there are only finitely many of
them up to isomorphism. The cutoff point should be chosen large enough to exclude any
non-generic solutions in the first case. The number of fields falling under the second case
will then be quite formidable; it seems just about tractable (several 10%) for non-cyclic
cubic fields, and fortunately is small enough (only several hundred) for cyclic cubic fields
to treat every one of them, as will be discussed in detail in [27].

5.4 How well can one do with ineffective methods? While transcendence theory has
made great progress in producing ever sharper estimates for linear forms in logarithms, the
diophantine side has not been idle. Thanks mainly to H. P. SCHLICKEWEI, the SCHMIDT
Subspace Theorem is now available in p-adic as well as archimedean versions, and in a
form which yields explicit bounds on numbers of solutions, although not on the solutions
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themselves. This 1s supplemented with general gap principles which yield restrictions
already for quite small solutions [SCHLICKEWEI, pers. comm.]. No longer does one have to
count blindly all candidates for solutions of small height in all fields of a given signature,
as in the early days. However, the exponential dependence of the resulting bounds on n
and 7 is mainly caused by the number of potential large solutions, whose existence cannot
be excluded with this type of method.

In our families, the BAKER-type estimates guarantee the absence of large solutions.
The price we have to pay is precisely the need to work with families. The ineffective
methods are far superior when it comes to considering all fields of a given signature at
once.

Still, one is left wondering whether one could not combine both approaches to achieve
what neither seems to provide on its own. Specifically, could one perhaps use modern
gap principles, maybe in combination with techniques from [19], to show that it is indeed
impossible to squeeze more than 24 small e.u.s into infinitely many rings of integers of
quintic rank three fields in any other way than via our families (4.2)7

5.5 Exponential parameters and overdetermined homomorphisms. There is no
difficulty in principle in transferring the reasoning from subsections 4.1 and 5.3 to cases
like that considered in 4.3 where the family depends on a single parameter entering as an
exponent. (This parameter takes over the réle of our A.) When one attempts to proceed
to larger degrees, one is soon led to Laurent rings in which several condition polynomials
belong themselves to fields with infinitely many units, and possibly to fields of rank larger
than one. Take, e.g.,

R = ZX|[X7' (x-1)7', (X+1)7!, (XP-x-1)7", (XX -1)7"]

and write « for a root of the last generator polynomial. Then Z[a] is the ring of integers
of the cubic field of discriminant —23, and its units are +a?. The ring R admits homo-
morphisms into fields of degree as low as 3 and rank as low as 2: The minimal polynomial

Ff=X4X¥-2X -1

of 2 cos(2n/7) satisfies all five conditions. Clearly this is just a coincidence. The sum of
the degrees of the g; is 8, so we get a family of octic fields depending on two exponential
parameters. How about fields of degree 77

For any choice of values of f at the five points 0, *1, 9, «, one is confronted with
eight independent equations for seven unknown coeflicients. Thus there is a single linear
solvability condition, whose precise shape depends on how the five independent signs were
chosen, and which can then be brought into the form

5F€+tGm =u, (51)

with small fixed integers s,t,u. The Fp are again the Fibonacci numbers and the G, the
members of the appropriate linear recurrence attached to «, which is defined by Go =
Gy =0, Gy =1 and, for all m € Z,

Gtz = Gm + Gmy1 -
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Its characteristic polynomial is of course our fifth generator polynomial gs. One has

It follows from general (ineffective!) theorems about sums of algebraic numbers which
are fixed multiples of members of a finitely generated semigroup [8,14,30] that (5.1) has
only finitely many solutions. (Equation (5.1) can be expressed as the vanishing of such a
sum.) Thus we do not get an infinite family.

The bad news is that at present no general method is known for solving (5.1). A
theorem of MIGNOTTE [20] ensures that such an equation can be solved effectively by
reduction to a linear form in two logarithms provided that each of the two recurrences
involved has a unique characteristic root of largest absolute value (and provided that
these are multiplicatively independent, as is the case in our example; otherwise one might
indeed have an infinity of solutions. This could happen e.g. if one g; were the reciprocal of
another). This applies in our situation for all m > 0. The quadratic minimal polynomial
of ¥ and its reciprocal polynomial each have a single root which is larger than 1 in absolute
value, and g5 has a single real root 1.324... > 1 and a pair of complex conjugate roots
of absolute value less than one. However, MIGNOTTE’s theorem fails to be applicable to
m < 0, when the dominant roots of the reciprocal of g5 come into play — a complex
conjugate pair of roots with the same absolute value. Thus at present we do not know how
to effectively determine all members of this finite family in degree 7.
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