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Abstract

The number of solutions of the "unit equation" x +y = 1 in units of (the ring of integers
of) an algebraic number field of degree n and unit rank r is known to be bounded abovc
by an exponential function of n or T, but the best known lower bounds yield merely
some fields with at least a constant times T

3 solutions, or infinitely many fields of each

degree with at least a constant times n solutions.

We will present some data about solution numbers in various individual fields of
low degree, and then outline a programme for obtaining more general results. This
involves the study of parametrie families of polynomials defining fields in which the unit
equation has certain forced solutions, and applying Baker's method and diophantine
approximation techniques to show that for almost all parameter values, these fields
contain no other solutions than the forced ones.

1. Introduction
In spite of a 66-year history of research - the unit equation x + y = 1, to be solved in
invertible algebraic integers, first appears in C. L. SIEGEL 1929 [33] - not very much
is known in general about how 111any solutions x, I-x it can have in any given algebraic
number field. (Such x are called exceptional units, a term introduced by T. NAGELL
in 1969 [25].) Siegel already knew that their nUluber in any given field is finite, an easy
consequence of Satz 7, Zusatz 1 of his dissertation [32], and it follows from A. BAI<ER's
theory of linear forms in logarithms that the solutions are effectively computable, which
was first made explicit by K. GVÖRV in the 1970s [13] . .J. H. EVERTSE proved in 1983 [6,7]
that the number of solutions is at most 3 . 7n +2r+2 , whcre n = [I( : Q] is the degree and 1

the rank of the group of units of the field I<. (By DIRICHLET's theorem, 1 = 11 + T2 - 1
if the field has 11 real and 12 pairs of complex embeddingsj since 11 + 212 = n, we have
n/2 ~ T + 1 ~ n.) Although the numbers 3 and 7 can be reduced somewhat, EVERTSE's
bound has not yet been improved in substance; all known upper bounds are of this form
- exponential in n or in 1 or in some cOlubination of 11 and I.

EVERTSE's method, which does not produce effective bounds for the solutions them
selves, applies to a wider dass of equations. In particular, his bound remains valid for the
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S-unit equation x + y = 1 where now x and y range over the subgroup of elements of [{X

which are integral with integral inverse at all places except those in the finite set S. The
rank of this group is r + s where s is the number of finite places in S, and the exponent
n +2r +2 in the bound has to be replaced accordingly by n +2(r + s + 1). In this situation,
one has at least a subexponential lower bound as far as the dependence on s is concerned,
i.e., when we keep the field !( fixed and let S grow by inserting suitable primes. Clearly
it suffices to consider [{ = Q here. This bound is duc to P. ERDÖS, C. L. STEWART and
R. TIJDEMAN 1988 (5). It says that by choosing S carefully, one can produce at least a
constant times exp((4 + o(l))(s/log S)1/2) solutions.

Unfortunately, it is very much harder to exhibit large numbers of solutions when we
restrict ourselves to ordinary units and let K vary among the fields of a given degree n and
unit rank r. A lower bound which is valid for infinitely many fields of any given degree
n, but which is merely linear in n, is straightforward to establish (see section 2 below);
moreover, the maximal real subfields of cyclotomic fields of prime level possess at least
a constant times n 3 exceptional units [28], but this applies to at most one field up to
isomorphism of given degree.

Ta the extent that numbers of exceptional units (e.u.s) in individual fields are known
- a survey is presented in section 3 - they seem to suggest that thc true rate of growth
of the largest number of solutions for a given signature (n, r) is somewhat faster than
polynomial, and that the maximum should be attained by one 01' more fields near the
smallest absolute field discriminant in that signature. We cau also ask for a sharp upper
bound on the number of e.u.s valid for all but finitely many fields of a given signature.
Experimental data suggest that this latter bound tends to be rather smalleI' than the
former. It is in order to study this kind of bound that we will consider parametric families
of number fields containing e.u.s of a prescribed form in section 4. In the final section, we
indicate some possible further developments, point out some stumbling blocks, and provide
a few links to related topics.

Much work remains to be done here, and this article offers more conjectures and
heuristics than definite results. We hope to be able to present some theorems in the not
tao distant future.

Acknowledgements. The question, "How many exceptional units... ?", was first posed
to the author by K. GVÖRY in 1989, and since then repeatedly by several others, in
conversation and in correspondence.

Some of the computational results of this paper were obtained with the aid of Maple
V.3 running on a Sun SPARCstation ELCj a few last-minute checks involved Maple anel
PARI/GP on a Sun SPARCclassic.

I would like to thank the organisers of the 1gemes Journees Arithmetiques for a11 their
efforts which have succeeded in providing a very enjoyable and fertile atmosphere during
the conference. The telnet terminals they kindly made available to the participants
were instrumental in carrying out, between lectures, some of the computations on which
section 3 is based. This article was written while the author was a guest at the Max
Planck-Institut für Mathematik in Bonn whose support in terms of desk space, computer
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facilities, finance, and creative atmosphere throughout the day, seven days a week, it is my
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2. Basic facts
First we recall some well-known simple properties of exceptional units. (See [19] and the
references cited there for more details.) Let R be a commutative ring with an identity
element 1 for multiplication; write R X for its group of units and

for the set of exceptional units of R. Homomorphisms of such rings are understood to
preserve identity elements.

2.1 Lemnla. a) /f x E E(R) is an exceptional unit, then so are

x i :=l/x, xi :=l-x, x k :=x/(x-1), x ii =1-1/x, xii =l/(l-x).

These are distinct unless either x2 - x + 1 = 0, in which case we hatJe x = x ij = xii
and xi = xi = x k , or 1+1 E R X and x E {-I, 1+1, (1+1)-1}, when x = xi or x k or xi,
respectitJely. We write

1i = (i,j, k; i 2 = j2 = k2 = (ij)3 = ijik = id)

for this nonabelian group of order 6 of homographic transformations.

b) Ring homomorphisms map units to units and exceptional units to exceptional units. I

In general, a surjective ring homomorphisln need not induce a surjective morphism between
the groups of units, and b) can then be replaced with a stronger statement. This will not
be needed here. Note that b) applies in particular to automorphisms of R.- It will always
be clear from the context whether i, j, k are used to denote the involutions in 1i 01' carry
some other meaning.

Clearly b) will prevent R from possessing any exceptional units at all if there exist an
epimorphic image ring of R without exceptional units, e.g., if R has an ideal of index 2.
Since many algebraie number fields have ideals (of their maximal orders) of norm 2, there
is no hope of a nontriviallower bound for the number of exceptional units in all fields of
a given degree and unit rank. The best we ean hope for are lower bounds which apply to
infinitely many nonisomorphie fields of the same signature.

Now let f E Z[X] be a monie irreducible polynomial, x a root of f (in some fixed
algebraie closure of Q) and Z[x] the subring of the ring of integers of the number field
!{ = Q(x) generated by x. The intersection of Z {x] with the group of units of ]( is a
subgroup of finite index and hence of fuH rank. In particular, whenever an elelnent of Z{x]
is invertible in the fnil ring of integers of ](, then it is already a unit of Z[x].

2.2 Le111111a. a) // 9 E Z{X] is such that g(x) E Z[x] x, then the canonical homomorphism
from Z[X] onto Z[x] which takes X to x extends to a unique homomorphism 0/ the ring
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0/ Laurent polynomials Z[X][g-l] onto Z[x]. The same is true, mutatis mutandis, when
the single polynomial 9 is replaced with a subset 0/ nonconstant elements 0/ Z[X].

b) [19] The exceptional units x E E(R) are in one-to-one eorrespondenee with the homo
morphisms /rom the ring Z[X][X-1

, (l-X)-l] into R.

c) [16, Lemma (2.5)] I/ 9 E Z[X] is also monie and irredueible, and i/ y denotes a root 0/
g, then g(x) is a unit in Z[x} i/ and only i/ f(y) is a unit in Z[y}.

PROOF of c): g(x) E Z[x} x if and only if the norm NglQ (g(x)) is ±1, if and only if the
resultant of f and 9 is ±1, and this last eondition is symmetrie in f and 9 when both
are monie. (By analogy with funetion fields [35, Ex. 2.11}, this might be ealled "Weil
reciprocity" .) I

Combining a) and e), we see that the monie irreducihle polynomial f E Z[X} is the
minimal polynomial of an exeeptional unit if and only if 1(0), /(1) E {±l}. The following
proposition is an immediate eonsequenee.

2.3 Proposition. The only exeeptional units in (the rings of integers o/) quadratic number
fields are the roots 0/ the Jour polynomials

X 2
- X + 1, X 2

- X - 1, X 2 + X - 1, X 2
- 3 X + 1 ;

t. e., the sixth roots 0/ unity (tl and the ti-orbit 0/ the golden ratio {) = ~ (1 + V5). I

In [19] it is shown how one ean eompute the exeeptional units (e.u.s fronl now on) of rings
of Laurent polynomials (finitely generated quotient rings of Z[X]). Here are a few such
rings which we will use helow. In eaeh ease the claim that the elements listed are indeed
e.u.s is trivial, and the claim that there are no others ean he verified hy a tedious hut
straightforward eomputation.

2.4 Proposition. a) The ring Z[X][X-1 , (X-1)-1] /rom 2.2 b) contains only the six
built-in e. u.s.

h) The ring

contains 18 e.u.s, whose orbits under the action 0/ ti are represented by X, -X and X 2 .

(Thus homomorphisms out of this ring classify what J .-D. THEROND has called unites
vraiment exceptionnelles [39}.)

e) The ring
Z[X][X-1, (X-1)-1, (X 2 -X+1)-1]

contains 24 e. u. s, repres ented by X and the results 0/ substituting Xi, X j and X k for
X into X 2 - X + 1. On this ring, 1-l aets as a group 0/ automorphisms /rom the le/t,
with i E ti eorresponding to the substitution X H Xi, ete. (In fact, it gives the whole
automorphisrn group of the ring, hut we will not need this.)

d) The ring
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contains 48 e.u.s, those/rom b) and the 1i-orbits 0/ X(X-1}, (X-l)2(X+l), (X2-1)/X,
(X+1}/X 2

, and (X+l?(X-l)/X 3
. I

By generalizing the progression from a) to b), we obtain the following weak lower bouud
for the nunlber of e.u.s in infinitely many fields of any prescribed degree n > 2.

2.5 Proposition. For each n 2: 3, infinitely many number jields 0/ degree n contain at
least 12 n - 30 e.u.s.

PROOF: Fix n and consider the set of monic polynomials 1 E Z[X] of degree n which
satisfy 1(0) = ... = f(n-2) = 1. It is easy to see that there is one such polynomial for
each integer value prescribed for the coefficient of xn-l in f. At most finitely many of
them can be reducible, because any nontrivial factor g of such an f would have to take
values ±1 at each of 0, ... ,n-2 and thus would have to come from alnong a finite set of
candidates. Also, any field generated by a root of an irreducible f can contain roots of
only finitely many others, since otherwise it would contain infinitely many e.u.s. It follows
that infinitely many nonisomorphic fields of degree n possess a subring Z[x] of algebraic
integers which receives an epimorphism from the ring

Without looking too hard, we can see at least 2 n - 5 1i-orbits of e.u.s in R, represented
by X, X -1, ... , X -n+3 and by (X -1?, ... , (X -n+3? It relnains to show that these
will sufficiently often map to distinct elements of Z[x] under the substitution X f---t x. Eut
if, picking one example at random, it should happen that x/(x-1) = (x-3)2, then

(X -3?(X -1) - X = X 3
- 7X 2 + 14X - 9

is in the kernel of that substitution, and x lives in the cubic number field of discriminant
-31 (which shows that this particular coincidence could not have happened at all 
the elements we had used exist only for n 2::: 6). In thc same way one shows that every
identification of two e.u.s of Runder X M x forces x to be a root of a particular polynomial,
and even determines the field Q(x) up to isomorphism when this polynomial is irreducible.
Thus we lose only finitely many of the remaining examples.- At least for 3 :::; n ::; 5, the
Laurent ring used here has exactly 12n - 30 e.u.s. I

2.6 Remark. J. H. SILVERMAN [36] has recently obtained an upper bound for the number
of e.u.s which can be powers of a fixed algebraic unit, anel more generally for the number of
exponents 7n > 0 such that xm - 1 E Z[xJx for a fixcd algebraic integer x, which depends
on x only via the degree n = [Q(x) : Q] and which is of the form c . n1+o(1) with an
effectively computable absolute constant c. Eut, as he points out himself, his approach
does not seem to generalize to our situation.
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3. Numbers of exceptional units in fields of snlall rank
We have already seen that among the fields of unitrank l' = 0, only Q ((6) contains any
exceptional units at all, that one real quadratic field (r = 1) contains 6 e.u.s, and that all
other fields of degree n = 2 and rank 1 contain none. The cubic fields with exceptional
units are given by foul' families of monic irreclucible cubic polynomials, one family for each
choice of signs in the conditions /(0) E {±l}, /(1) E {±1}, with each family depending
on a single integer parameter. Thc action of 1-l permutes three of the families and fixes
the fourth, and this latter produces only cyc1ic (hence real, hence rank two) cubic fields,
whereas the former are responsible for 12, 6 and 18 e.u.s in the rank-one cubic fields of
discriminants -23, -31 and in the cyclic cuhic field of discriminant +72 , respectively, and
define real non-cyc1ic cubic fields for all other parameter values. These families have been
the subject of numerous studies, e.g., in roughly chronological order, by NAGELL [24,25],
SHANI<S [31], M.-N. GRAS [10,11}, ENNOLA [4}, E. THOMAS [40], MIGNOTTE [21} and the
present author [27}. The main result of [27} is that cyclic cubic fields contain at most 6
e.u.s,- as was known already to NAGELL, infinitely many cyclic cubic fields do contain
at least 6 e.u.s - ,except for the foul' such fields of smallest discriminants 72 , 92 , 132 , 192 ,

which contain 42, 18, 12 and 12 e.u.s, respectively. NAGELL conjectured that non-cyclic
real cubic fields contain either 6 e.u.s or none (and, equivalently, that for the three non
cyclic families of polynomials, distinct parameter values - apart from the action of 1i. 
always lead to nonisolllorphic fields). Again, it is clear from thc falnilies of polynomials
that infinitely many such fields do contain at least 6 e.u.s. The conjecture is still open
despite a lot of work [4}. The methods of [27} ought to show that it holels at least up to
finitely many exceptions, hut treating the potentially exceptional cases may involve a very
large computational effort. We will briefly return to this issue in section 5.

In [22} and [23}, NAGELL proceedeel to eletenTIine all e.u.s in the third type of fields of
unit rank one, viz. totally complex quartic fields. Here one encounters a new phenomenon.
Indeed, in contrast to real quadratic and complex cubic fields, infinitely lTIany totally
complex quartic fields contain e.u.s. But this is due to the fact that each of the quadratic
fields Q(0) and Q( (6) possesses infinitely many distinct quadratic extensions which are
totally complex. If one counts only those e.l1.s which generate quartic fields over Q, the
result is the same as for the other rank-one fields: There ure only finitely many complex
quartic fields with exceptional units not contained in proper subfields.

A pattern is beginning to emerge. What we should expect to find in any given signa
ture is: several fields with small absolute discriminants which contain many e.u.s, infinitely
many which contain rather smaller numbers of them, and infinitely many fields which con
tain none at all , where we are careful to count only e.u.s which generate the fields under
consideration for the latter two types of fields. We will see in a lTIOment how this pattern
continues into ranks 2 ... 3 and degrees 4 ... 5.

3.1 Remark. In [24}, NAGELL wrote: an est interessant d'observer que les valeurs max
imales [du nombre d'unites exceptionnelles dans un corps} sont obtenues pour les corps
biquadmtiques du premier rang qui possedent les discriminants les plus petits." This ob
servation extends far beyond the cases known to NAGELL. A. LEUTBECHER and J. MAR

TINET [18,17} have noted that it can be turned around to discover nunlber fields with small
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absolute discriminants in degrees up to 11, and recently A. ZIEGLER, a cliplolna student of
LEUTBECHER, has reached degree 15 [26]. It is still not weH understood why this kind of
heuristics is so successful; it will become obvious in a moment why fields with very lllany
e.u.s should be expectecl to have small discriminants, but it is far from clear what causes
these fields to exist at all. I

Let us summarise the above in the first half of a little tablc. We list fields by increasing
absolute discriminant within each signature, and indicate the total numbers of e.u.s as weIl
as the numbers of e.u.s not contained in proper subfields (for complex quartic fields, in
square brackets). The discriminants are the signed, slanted figures, the numbers of e.u.s are
unsigned and upright, and are highlighted by boldface type to indicate the largest number
attained ·within the signatnre and the largest number attained infinitely often.- Within
the range of the table, there is only one fielel (up to isolllorphism) of given signature ancl
discriminant.

3.2 Table, part I.

I Rank r = 0, degree n = 2:

-3: 2 I -4, ... : 0

I Rank r = 1, degree n = 2:

+5: 6 I +8, ... : 0

I R,ank r = 1, degree n = 3:

-23: 12 I -31: 6 I -44, ... : 0

I Rank r = 1, degree n = 4:

+117: 20 [18] I +125: 18 [12] I +144: 14 [2] I +189: 8 [6] I +225: 8 [0] I +229: 6
+256: 0 [0] I +257: 0 I +272: 6 [0] I +320, ... : 0, 2 or 6 [0]

1 Rank r = 2, degree n = 3: I

+72
: 42 1 +92

: 18 I +148: 0 I +132
: 12 I +229, +257, +316, +321: 0 1 +192

: 12 I

+404, ... : 0 or 6, conjecturallyj +31 2
, •.• : 0 or 6

Until quite recently, there were hardly any data about numbers of e. u.s in fields of larger
degree. Quartic fields of lnixed signature with areal quadratic subfield are the subject of a
study which the author has been pursuing since 1991; a detailed report will be submitted
in due course. Just before and dnring the Journees Arithmetiques at Barcelona, the author
made an effort to determine at least the "small" e.u.s in several quiutic fielels of rank 2.
Thus we can now extend the table, albeit somewhat tentatively.

Only for five of the fielels listeel below is the number of e.u.s known exactly. The
field Q(v:ä) of discriminant -400 is very unusual in that it has e.u.s of elegree 4, is not a
cyclotolnic field, and cau nevertheless be haJldled entirely by elementaryarguments. Thc
extension of Q(17) of discriminant -275 was treated in the author's doctoral dissertation.
Both fall of course within the scope of the aforementioned stucly. For Q((7) and Q((9),
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see GVÖRV 1971 [12, Lemme 12], together with the known numbers of e.u.s in their real
cubic subfields froln [25]. The real subfield of the eleventh cyclotomic field is included
here courtesy of B. M. M. OE WEGER [pers. comm.]; there are another 90 non-real e.u.s
inQ((11)'

Thanks to recent advances in transcendence theory and diophantine approximation,
the routine determination of all exceptional units in a few dozen fields is now rather less
of a computational chore than it used to be, and we hope soon to be able to eliminate the
":;:::" signs. (Since "Iarge" solutions tend to be extremely rare, I do not actually expect
any of the numbers to increase, and have used boldface as before for thc largest numbers
seen. )

3.3 Table, part II.

I Rank r = 2, degree n = 4:

-275: 54 [48] I -283: ~54 I -331: ~42 1 -400: 30 [24] I -448: ~18 [~18] I
-475: 2::30 [:;:::24] I -491: :;:::18 I -507: ~24 [~24] I -563: ~18 I -643: ~18 I
infinitely often: [26]

I Rank r = 2, degree n = 5:

+1609: ~78 I +1649: :;:::78 I +1777: :;:::72 I +2209 = 472
: :;:::54 I +2297: 2::48

+2617: :;:::42 I +2665: :;:::42 I +2869: :;:::36 I +3017: :;:::36 I +3089: 2::24 I
infinitely often: :;:::6
I Rank r = 2, degree n = 6:

-9747 = -33 192
: 7 [7] I -10051 = -19.232

: 2::102 [90] I ... !
-16807 = _75

: 72 [30] I ... I -19683 = 39
: 38 [18] I ...

I Rank r = 3, degree n = 4:

+725: :;:::162 [156] 1 +1125: ~90 [84] 1 ...

infinitely often: :;:::18 [:;:::18]

I Rank r = 3, degree n = 5:

-4511: 2::228 I ...
infini tely often: ~ 24

1 Rank r = 3, degree n = 6, 7, 8:
no data available yet

[ Rank r = 4, degree n = 5:

+14641 = 11 4
: 570 I +24217: ? I +36497: ~138 1 ...

infinitely often: :;:::48

Apart from the growth of the first boldface numbers in each row - naIve interpolation
suggests a faster rate of growth than a cubic polynomial in n 01' r, but weH below expo
nential growth - the most striking observation to be made here is the surprisingly smooth
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deerease of the numbers of e.u.s as we move away from the minimal absolute diserimi
nant in the signatures (12,1') = (4,2) and (5,2). Neither the varying presence 01' absence
of ideals of small nonD, nor the different isomorphism types of the Galois groups of the
normal closures (symmetrie 01' dihedral) seem to affeet this significantly. One is tempted
to speculate that some (number-geometric?) mechanislD is at work behind the scenes.

""hat might be expeeted to playa rale in the signature (6,3) is the possible presence
of roots of unity of order 4 01' 6 in quadratic subfields, since these enlarge the supply of
units into which the unit groups of Laurent rings can be mapped. There are hardly any
data available for this signature, but we will see later that a far-reaching effect is unlikely.

We have reached the heart of this paper:

3.4 Challenge: a) To determine, lor as many signatures (12,-1') as possible, the nonnegative
integer Cl (12, 1') such that there exist number Jields 01 this signature containing this many
exceptional units and none containing more than this numher, and to determine all jields
01 this .'signature which attain the bound.

b) To find lor gitJen signatures upper and lower bounds which are as sharp as possible /or
the nonnegative integer C2 = C2 (12,1') deJined as /ollows: InJinitely many nonisomorphic
Jields 0/ this signatu1'e possess C2 e.u.s which do not lie in proper subfields, and only
finitely many, up to isomorphism, contain more than C2 e. n.s 0/ /ull degree 12. Besides the
dependence on n and r, C2 might be considered sepamtely /or each type 0/ Galois group
acting on the normal closures, and /or each possible nnmber 0/ roots 0/71,nity contained in
a proper subfield. I

The existence of Cl (n, r) follows of course from EvERTSE's bound, and implies that of
C2 (n, r). Implicit in this Challenge is the hope that they are effectively computable, along
with the witness fields for Cl 01', more ambitiously, along with all fields which exceed the
C2 bound (but see subseetion 5.5 at the end of this paper).

From the first part of the table, we read off C1(2,0) = 2, G1

t (2, 1) = 6, C1 (3, 1) = 12,
C1(4,1) = 20, and (almost certainly) C1(3,2) = 42; furthermore, C2(12,0) = C2(12, 1) = °
and conjecturally C2 (3,2) = 6. The seeond part eontains hints concerning C2 (4,2),
C2 (5,2), C2 (4,3), C2 (5,3) and C2 (5,4). We will investigate these more closely in the
following seetion and establish that they are bounded below by 6, 6, 18, 24 and 48, re
spectively, and it will be explained why the author believes that these are already the true
values.

4. Families of fields with exceptional units
To set the scene, we will briefly look at the eyclie eubie family mentioned at the start of the
last seetion. In the usual parametrisation it arises from integral monie eubie polynomials
f satisfying f(O) = f( -1) = -1. The conditions immediately ensure irredueibility of all
such f IDOd 2. There is an 'ti-orbit of e.u.s represented by -x, and the two nontrivial field
automorphislDS send -x to (-x )i;' and to (-x );'i. Explicitly, these polynomials take the
form

fa(X) = X 3
- aX2

- (a+3)X - 1
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with a E Z, and since the involutions of tl exchange fa and f - a _ 3, one cau restrict
attention to a 2 -1. The discriminant of ia is (a2 + 3 a + 9)2, and it is easy to compute
the field discriminant from it [10, Prop. 2].

The unclerlying universal ring, as in the constructions of Prop. 2.4, is obviously
Z[X][X-] , (X+1)-]], the same as in Prop. 2.4 a) except for a change of variable. But the
homomorphisms from this ring to the individual Z[x] ~ Z[~]j(fa) factor through a COffi

mon intennediate ring, universal for the conditions 1(0) = f( -1) = -1 ancl "/ rnonic of
degree 3". This ring can be constructed by treating the coefficients of f as indeterrninatesj
it is

Z[X, A2 ,A], Ao]j(Ao+I, I+A 2 +A1+Ao+I, X 3 + A2 X 2 + A1 X + Ao) (4.1)

01', using the conditions to eliminate Al and Ao and writing A for A2 ,

Z[X, A]j(X3
- AX2

- (A+3) X-I).

It turns out that this last ring is still isomorphic to Z [Y] (Y -], (Y -1) -1] via the subs ti tu
tion X f---t -Y, A f---t -Y - yij - yji. In other words, the Z[x] have one gencric 1l-orbit
of e.u.s, and their unit groups Z[x]X are generically generated by -1, x alld x+I, aud any
further e.u.s which they 01' their integral closures in the quotient fields Q(x) lllight contain
arise only after specializing A to a E Z.- Notice that in the intermediate ring we had to
fix one choice of signs for our conditions, whereas the Laurent ring encompasses all sign
combinations.

A farnily of exceptional units can thus be considered as a ring of the shape (4.1)
together with its parameter specializations. Unfortunately, as 800n as polynomials 9i of
degree 2 or ruore are made invertible in the Laurent ring, the intermediate ring becomes
a rather more complicated objeet. The ideal by which we have to divide will then eontain
expressions built frorn resultants, of the form Res(f,9ä) =f 1, amol1g its generators, and we
are headed for the deep waters of arithmetic geometry. On the other hand, we can still
bypass the intermediate ring and work with Lemrua 2.2 e) instead, whieh is what we will
do now. We go straight to (n,1') = (5,3), whieh offers a rieh pieture while postponing
problems with possible subfields.

4.1 Quintic flelds ~ith three real places. Dur first task is to choose a Laurent ring.
If we pick the generator polynomials gi of its unit group in such a way that they are
lnonie and irredllcible and that the sum of their degrees is 4, and use Lemma 2.2 c) to
translate the invertibility of the 9i il1to prescribed vallles of f at certain algebraic integers,
each choice of algebraic units as values leads to a linear systern of 4 equations for the
5 unknown coefficients of f. Since this is an interpolation problem with distinct support
points, the foul' equations are independent, and we ~ave a one-dimensional space of rational
solutions. With a littlc care we can ensure an infinity of integral solutions. E.g., wc might
have chosen the 9i as in Prop. 2.5 as X, X-I, X - 2, X - 3, and accordingly prescribed
each of /(0), f(I), /(2) and /(3) to take a value chosen frorn {±I}, but if we choose
/(0) = ±I = - f(3), congruences rnoel 3 will prevent integral solutions. In fact, this choice
of conditions is not a good one for the signature we have in mind:
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4.1.1 Heuristics. A Laurent ring with unit group generated by -1 and by k multiplica~

tively independent polynomials 9i will admit infinitely many embeddings X t-+ x into the
rings 0/ integers 01 number fields Q(x) 01 signature (n, r) only il k :::; 1', and then the
images 01 the 9i in the number rings will usually be multiplicatively independent.

Rationale: Assume that the images 9i(X) üf the 9i in one Z[x] satisfy a multiplieative
relation, as they must when k > r. (Rüots of unity in the field Q(x) da not help much; if
sorne product of powers of the gi (x) is a root of unity of order I!, then the e- th power of that
produet equals 1, so we always get a relation of the form n9i (x )ei = 1.) This relation
implies that x is a root of a partieular polynomial with integer coefficients. Although
the exponents ei ean be chosen in infinitely many ways, we eannot expect more than a
finite number of the polynornial relations thus obtained to""be compatible with x having
a minimal polynomial of given degree n. (In applicatians, a different line of reasoning is
used, cf. below.) I

We will therefore use three 9i, two linear ones anel one which is quaelratic. The
combination X, X-I, X 2 -X -1 would work, but guarantees only 12 e.u.s, whereas X,
X -1, X 2 - X +1 guarantees 24 of them by Prop. 2.4 c) - unless some of them should
be mapped to the sarne algebraic number, which cau happen only finitely often (as in
the proof of Prop. 2.5). These trauslate into the conditions 1(0) E {±1}, 1(1) E {±1},
f ((6) E { ±1, (t1, (t2

}. Hence there are 24 such faruilies, but the action of 1-l on the
Laurent ring permutes them in foul' orbits of six each. We choose representatives as
folIows:

4.1.2 Proposition. Each field 01 degree 5 rcce~V'ing a homomorphism Irom thc rzng
specified in Prop. 2.4 c) taking X to an algebmic integer x can be defined by one 01 the
following polynomials, with suitable a E Z:

fa(X) = X 5 + aX4
- (2a+2) X 3 + (2a+3) X 2

- (a+2) X + 1

with values +1, +1, +1 for 1(0), 1(1), 1((6);

la (X) = X 5 + aX4
- (2a+3) X 3 + (2a+5) X 2

- (a+3) X + 1

with values +1, +1, (6;

la(X) = X 5 + aX4
- (2a+2) X 3 + (2a+5) X 2

- (a+4) X + 1

with values +1, +1, -1; or

/a(X) = X 5 + aX4
- (2a+4) X 3 + (2a+5) X 2

- (a+4) X + 1

with values +1, -1 (forcing at least three real roots), anel +1.

(4.2.i)

(4.2.ii)

(4.2.iii)

(4.2.iv)

PROOF: Straightforward linear algebra. We leave it to the reader, as weIl as working out
the other 20 polynomials arising from the action of H. I
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Next, we must verify that we have succeeded infinitely often in avoiding the totally real
quintic fields. Indeed, we will see that we have succeeded in avoiding them entirely. (This
is no accidentj it has actually been built in on purpose by the choice of g3 = X 2 - X + 1.
We leave it as an exercise to show that no totally real algebraic integer x other than 0 01' 1
will make g3(X) an algebraic unit. The theory behind this will be explained in [29].)

Since the discriminant of a quintic field is negative if and only if the field has three
real places, one way of showing that we are seeing infinitely many such fields is simply to
examine the signs of the polynomial discriminants. One can also compute Sturm chains.
Using a slightly modified subresultant algorithm (a combination of algorithms 3.3.7 and
4.1.11 from [3]), one can in fact compute both at the same time, since the Sturm chain
properties are unaffected by the positive factars introduced and removed during the pseu
dodivisions, and one can da this without specifying a particular value for a. E.g., starting
from Po the polynomial from (4.2.i) and P1 its derivative with respect to X, one gets

P2 -52 Po +(5X+a)P1

_ (4a 2 +20a+20) X 3
- (6a 2 +36a+45) X 2 + (4a2 +26a+40) X - (a2 +2a+25) ,

P3 - 5-2 (-(4a2+20a+20)2 PI + (5 (4a 2+20a+20) X + (16a3 +110a2+260a+225)) P2 )

-(4a4 +40a3 +148a2 +240a+149) X 2 + (4a4 +48a3 +188a2 +286a+164) X

- (-2a4 +63a2+198a+193) ,

and so forth. The leading coefficients of Po, P1 and P2 are positive for all aj that of P3 is
-4 (a2 +5a+6)l - 5, hence always negative; that of P4 turns out to be positive precisely for
-3 ::; a ::; 1; and the discriminant P5 is positive precisely for -4 ::; a ::; 2. Thus we have
oue sign change at +00 and foul' at -00, and therefore 3 real places, for almost every a.
In the range -4 :::; a ::; 2 where the discriminant is positive, there exists only one real
root, as claimed above. Submitting the other three polynomials to similar treatment gives
the following results. (The action of H does not affect the discrin1inant since the irnages
of x always generate the same ring, so it is enough to look at one representative from each
orbit. )

4.1.3 Proposition. The polynomials Jrom the previous proposition haue, respectiuely, the
Jollowing discriminants:

- 3as - 20a7
- 4a6 + 230a5 + 382a4

- 716a3
- 1363a2 + 486a + 2617 ,

- 3aS
- 28a7

- 96a6
- 58a5 +494a4 + 1032a3

- 7a2
- 1206a + 1649,

- 3as - 52a7
- 412a6

- 1962a5
- 6046a4

- 12108a3
- 14611a2

- 8006a + 1609,

- 3as - 44a7
- 360a6

- 1890a5
- 7094a4

- 18824a3
- 35759a2

- 44842a - 33503.

Por no ualue oJ a does a totally real quintic field arise. The first Jamily giues quintic fields
of rank 2 Jor -4 ::; a ::; 2, the second for -3 :::; a :::; 2, the third Jor -4 :::; a ~ 0, the Jourth
neuer. The rank 2 fields involved are those oJ discriminants + 1609 which appears three
times) + 1649 (thrice), + 1777 (twice), +2209 (twice), +2297 (twice), +2617 (once), +2665
(once), +3017 (twice), +3889 (once) and +4417 (once). I
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We are seeing here one of the mechanisms which contribute to many fields of sma11 absolute
discriminants having large numbers of e.u.S: Homomorphisms from Laurent rings with a
unit rank defect. The values of the foul' discriminant expressions are bounded above, so
only fields of small positive discriminants can appeal' here, and those which do appeal' do
so with generators of their maximal orders. The fields of discriminants +2869 and +3089
are missed by these families. They have ideals of norms 4 and 3, respectively, but the
Laurent ring has sets of five elements whose pairwise differences are units, and therefore
does not accommoclate a composite homomorphism into a ring with 0 t= 1 and fewer than
5 elements.

Although it is not strictly relevant to our main topic, it may be interesting to note,
firstly, that the discriminants are of lower degree in a than might have been expected by
looking at the coefficients of the defining polynomials - some cancellation has been going
on - and secondly, that it is straightforward to compute the minimal polynolnials of the
other generic e.u.s. They have coefficients which are at worst quadratic in a, e.g. for the
family (4.2.i), x 2 -x+1 is a root of

X 5
- (a2 +5a+9)X4 + (2a2 +10a+15)X3

- (a2 +7a+12)X2 + (2a+5)X - 1. (4.3)

This in itself is not exciting, were it not for the fact that this polynomial has the same
discriminant as the corresponding Ja itself, which shows that in this family, the ring Z[x]
can always be generated by single elements which are not of the form ±x+ k with k E Z.
The whole story is: x 2 - X+1 generates the full ring Z[x] for every a in the flrs t three
families, and a subring of index 16a + 131 in the fourth; (x i )2_x i+1 generates subrings of
index J2a - 11, J2a + 31, 1, and 12a2 +4a+11; anel (xk)2_xk+1 generates subrings of index
12a2 +4a+11, 12a-11, 2a2 +10a+13, and 12a2 +10a+lll in the first, second, third and fourth
family's Z[x], respectiveIy.

Another amusing observation is that some of these latter polynomials reappear else
where in our foul' defining families. For a = -2, the polynomial (4.3) is the image under
j E 1l of the lnelnber f -2 of family (4.2.ii); for a = -1, it is the j-image of the Jo
from (4.2.ii). There are a few more coincidences of this type. ClearIy they also contribute
to the large nUlnbers of e.u.s in the fields involved.

A third contribution to Iarge numbers of e.u.s in the fields beionging to small absolute
values of the family parameter comes from additional units of the form 9 (x) with "simple"
polynomials 9 E Z[X]. E.g., 9 = X + 1 gives a unit in the (4.2.i) family if a = -1; and
9 = X 2 - X - 1 gives a ullit for a = -4 and a = -2. For a = -4, anothcr unit is x - 2,
and moreover, X - 2, X 2

- X - 1 and X 3
- X-I a11 yield units under X l---t x 2

- X + 1
in this case (their resultants with (4.3) become ±1).

It is clear at this point that C2 (5, 3) ~ 24. We sha11 now take a few more steps towards
an upper bound. Our ultimate goals are the following, although time and space do not
allow us to attain them in these pages.

4.1.4 Heuristics. Consider a one-parameter /amily 0/ polynomials coming /rom a single
Laurent ring, as above.

a) Write G /or the subgroup 0/ Z[x] x generated by -1 together with the gi (x) - the
image 0/ the units 0/ the Laurent ring under X l---t x. Then when lai is large enough, every
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exceptional unit ~ E G n (1 - Z[x] X) is generic, i.e., it is the image 01 an exceptional unit
01 the Laurent ring.

b) Write G lor the subgroup 0/ the units 01 the ring 0/ integers 01 K = Q(x) which
are multiplicatively dependent on G. (This is the whole unit group when G contains a

system 0/ r in(lependent units.) Then when lai is large enough, every exceptional unit
~ E G n (1 - Z[x]X) is generic. I

We will sketch for one half of one of our foul' families how an assertion like a) can be
provedj the discussion of b) will be postponed to section 5.

Furthermore, there remains the task of justifying the choice of Laurent ring. Oue
would like to know that our families constitute essentially· the only way of squeezing 24
e.u.s into each of infinitely many number rings of this signature. This is another point to
which we will return in section 5.

The next task is now to bracket the real roots. For <each of our foul' falnilies, there
is one root elose to b = -a - 2, in addition to roots which are elose to 0 and elose to
1, provided that lai is large enough to give three real raots. One feasible approach here
is to apply one 01' two symbolic Newton iterations startiug from each of the three initial
approximations we have just indicated. Then ane expands the resulting expressions into
series in b-1 , cutting off after the b- 1 01' b-2 term, and evaluates Ja at that point and on
either side of it. (A computer algebra package is very helpful here.) The values there will
have uniform sign, depending on the sign af a but not on its size, as soon as lai is large
enough. Oue abtains:

4.1.5 Proposition. For lai 2:: 7, the real roots Xv 0/ the polynomials (4.2.x) are enclosed,
one each, in the lollowing intervals (4.4.x)} where b = -CL - 2:

a < 0, b> 0: 1

a > 0, b< 0: 1

a < 0, b> 0: 1
a > 0, b< 0: 1

_b- 1 + b-2 < Xo < _b- 1 + 2 b- 2 < 0 ,

1 < 1 +b-1
- b-2 < Xl < 1 +b- l

,

b - 2 b-4 < X b < b - b-4 < b,

b - b-4 < X b < b,

o< _b- l + 2 b-2 < Xo < -b-] + 3 b- 2 ,

1 +b- 1 - 2 b-2 < X] < 1 +b-1 - b-2 < 1 ;

_b- l < IO < _b- l +b-2 < 0 ,

1 < 1 + b- l
- b-2 < Xl < 1 + b- 1

,

b < Xb < b +b-1
,

b + b- l < Xb < b,

o< _b- l + b-2 < xo < _b- 1 +2b-2 ,

1 +b- l - 2 b- 2 < x] < 1 +b- 1 - b-2 < 1 j
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I

(4.4.iv)

(4.4.iii)

-b-1 < Xo < _b- 1 + b-2 < 0,

1 < 1+ b- 1 + b-2 < Xl < 1+ b- 1 + 2b-2
,

b - 3b-2 < Xb < b - 2b-2 < b,

b - 2b-2 < Xb < b - b-2 < b,

o< _b- 1 + b-3 < Xo < _b- 1 ,

1 + b- 1 < Xl < 1+ b-1 + b-2 < 1;

-b-1 +b-3 < Xo < _b- 1 < 0 ,

1 - b-1 +b-2 < Xl < 1 - b- 1 +2b-2 < 1,

b < b+2b-1 < ;b < b + 3 b-1 ,

{

{

{

{

a < 0, b> 0:

a > 0, b< 0:

a< 0, b> 0:

a > 0, b< 0:

b + 2 b- 1 < Xb < b + b- 1 < b,

O b-1 b-2 b- 1< - -. < Xo .S - , ._
1 <-1 - b-1 < Xl < 1 - b-1-+ b-2 < 1 .

Some 0/ these inequalities hold already tor smaller lai.
The most useful eonsequenee of these estimates is that one ean now eompute intervals
eontaining the logari thnls of the absolute values of the gi (Xv) for eaeh of the three eondition
polynomials and eaeh of the three real embeddings, and justify our Heuristics 4.1.1 by
showing that the detenninant of these logarithms, when they are arranged as a matrix in
the obvious way, does not vanish. One can also stick on a fourth eolumn which is minus the
sum of the first three and thus contains the logarithlns of the squared absolute values of
the complex embeddings of our gi(X). Let us do this just for the first of the eight subcases
of Prop. 4.1.5. Put Ov = 1 when v labels areal place, Sv = 2 for complex places, and
abbreviate.\ = In b. Using the fundamental estimate y > 0 ::::> In(l + y) < Y several times,
together with inequalities of the form (1 - 2/b)-1 < 1 + 3/b and some simpler variants all
of which are valid for b 2:: 6, we find that the matrix

(4.5)

has entries in the following intervals:

-.\ - ~ < e < -.\ O<e<t .\-!<e<.\ _! < e < .1.
b b b

O<e<t -.\ - ~ < e < -.\ .\-%<e<.\ !<e<.1.
b b

O<e<t O<e<~ 2.\ - ~ < e < 2.\ -2.\ - I < e < -2.\ + ~

(the last column here was indeed übtained from the first three; a direct estimate für the
complex roots might have yielded somewhat narrower bounds), and the determinant of
the first three columns, using SARRUS' rule, is at least

2,\3 (1 - b\ - (b~)2) > O.
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Thus we have at our disposal a conveniently parametrised family of three independent
units. It was E. THOMAS [40] who first pointed out that in such a situation one can
apply BAI<ER's method simultaneously to all members of the family with large enough
parameter. The essence of the method is to cOlnbine three kinds of inequalities. Let

3

Y = ± rr 9i(X)e i

i=l

be a putative exceptional unit in the group G. Its four-component logarithmic embedding
(ov In IYv I)v is obtained by multiplying the three-component row vector of integer expo
nents (e1 , e2 , e3) from the right wi th the nlatrix (4.5). These vectors are nonzero , and by
inspectioll, at least one coordinate of the result is quite large - a nonzero integer multiple
of A plus something small. (Actually, a rather detailed analysis is required at this point.)
Thus at least one embedding Yv is comparable in size to apower of b. If Y is to be excep
tional, there must be at least one other embedding for which Yv is extremely elose to 1.
Theri, for this v,

3

Av = In IYvl = Lei In 19i(X v )!
i=J

is extremely elose to zero (hut not equal to zero) when v denotes areal place. If it is the
cOlnplex place where the elose approximation is happening, one can fix the three complcx
logarithms f i,V = log9i(X v ) arbitrarily among their possible values, and then there fiUSt
be some integer eo such that

3

Av = L eil!i,v + eo . 21fi
;=1

is extremely elose (but not equal) to zero. When "extremely elose" is n1ade explicit, it
takes the form

IAvl < exp( -cu\E)

with some positive constant Cl, where E = rnax{leil}. This is the first inequality. The
second will be a BAKER-vintage lower bound of the form

Here, C2 is essentially a polynolnial in A(it also depends on the degree, which remains fixed
in our application, and on the nUlllber of logarithms which actually occur, i.e., for which
ei is nonzero), and K, E {1, 2} depending on the type of theorenl employecl (those fronl
the SCHNEIOER-MIGNOTTE&WALDSCHMIDT line of which the sharpcst is [15], for fornls
in which only two logarithms appeal', have K, = 2 with a very small C2; the best published
result for three 01' more logarithms is [1], but work in progress by P. VOUTIER is expected
to yield further significant improvements). Comparing these two estimates for IAv 1, one
obtains an explicit upper bound for E which is still polynomial in A.
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In order to see how the third inequality arises, we nlust look again at the bounds for
the entries of the matrix (4.5). Since we are nlerely trying to illustrate the method, let us
assume that we are not in a special case, i.e., that none of the components of (el , e2, e3) is
zero and that this vector is not a multiple of one which belongs to a generie solution. (The
generic solutions, by the way, have exponent vectors (1,0,0), (0, 1,0), (1, -1,0); (0,0, 1),
(1,1,0), (1,1,-1); (1,0,-1), (1,-2,0), (0,-2,1); (2,0,-1), (2,-1,0), (0,-1,1) and their
negatives.) Then we find that the only way in whieh one of the first three eolumns ean
beeome small (the fourth requires special considerations, although the result remains the
same) is that one ei, the one whieh is multiplied with A 01' 2..\, is rather small, and one
01' both of the others are larger in absolute value by a factor proportional to bA. This
is an example of what is known in diophantine approximation as a gap principle. The
generic solutions together with bare responsible for the very disparate sizes of the entries
of (4.5), and these in turn force any non-generic solutions to have a very large E, indeed
exponentially large when written in terms of ..\.

But above we had already obtained an upper bound on E which was only polynomial
in A.· Gnee all the intermediate steps have been filled in, this will give us an upper bound
on A and thus on b beyond which no non-generie e.u.s ean exist, as claimed by Heuristics
4.1.4 a). Moreover, we will have done much of the work required to determine any non
generic e.u.s in the small family members. Thanks to the gap principle, these are strongly
restricted as soon as b is at alllarge, and very large nUlnbers of fields ean be handled with
a moderate eomputational effort. (See [21] for an exalnple of such a computation in a
similar situation.) - We will end our portrait sketch of this family here; a full treatment
will have to wait for another oeeasion. In the remainder of this section we will look very
brießy at a few other field signatures.

4.2 Quintic flelds with one real place. There are several options for finding fanülies of
e.u.s meeting this signature infinitely often, hut none of them is entirely satisfaetory, aud
one may have to consider infinitely many distinet families before the whole picture becolues
dear. One idea is to enforce polynonlials with a Galois group strietly snlaller than the
symmetrie group - dihedral of order 10, affine of order 20, 01' alternatingj none of these
heing eompatible with three real plaees - and to use condition polynomials 9i which
prevent totally real fields. Obviously, we then miss all the fields with normal closures
having the full symluetrie group as their Galois group. Another idea is to go for sheer
quantity and employ eombinations of several condition polynomials chosen with a view to
obstruet real places, e.g. to use a Laurent ring of the form

(4.6)

with a fixed integer k > 0, 01' even

which leaves two eoefficients of our quintie polynomials undetermined (and is therefore
more diffieult to handle). The ring (4.6) with k = 1 suffiees to show that infinitely many
distinet fields of this signature possess at least 6 e.u.s. Using Lenlma 2.2 e) and observing
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that exchanging ...-Y and -x does not alter anything, we lnay as weH fix f(H) = +1,
leaving the foul' possibilities +1, -1, +(4, -(4 for f((4) which give, respectively, the poly
nomials

X 5 + aX4 + 3X3 + 3aX2 + 2X + (2a+l) ,

X 5 + aX4 + 3X3 + (3a-2) X 2 + 2X + (2a-3) ,

X 5 + aX4 + 4X3 + (3a-l)X 2 + 4X + (2a-l),

X 5 + aX4 + 2X3 + (3a-l) X 2 + (2a-1).

Their discriminants

32a8
- 240a7 + 576a6

- 800a5 + 2132a4 + 224a3
- 248a2 + 6596a + 4897,

32a8
7 48a7 + 448a6

- 1248a5 + 2164a4
- 7192a3 + 10584a2

- 6484a + 4409,

32a8
- 144a7 "+ 152a6 + 68ri5 + 1248a4

,- 2752a3
- 1284a2

- 984a + 9137,
...

(2a -1)· (16a7
- 64a6 + 460a5

- 520a4 + 3844a3
- 1820a2 + 5250a - 2617)

relnain positive for all a E Z, and only fields with one real place are prodllced. The
exceptional unit _(x2 + 1) generates the fuH ring Z{x] in thc first three families, and a
subring of index 12a - 11 in thc fourth. Some coincidences are obvious froln thc constant
coefficients: Whenever these are ±1, we get at least another two 1l-orbits of e.u.s since we
then get a hOl1l0morphisl1l X f-t x 2 + 1 from the ring froln Prop. 2.4 b), and this happens
twice in eaeh of the foul' families. The corresponding fields have diserilllinants +1609,
+1649, +2617, +2665, +4549, +4897, +5653 and +9137.

By our heuristies, homomorphisms from the universal ring of Lemma 2.2 b) should
generically map X and X-I to multiplieatively independent lUlits of Z[x], and should
therefore obstruct further e.u.s if the unit rank of the field is 2. The large numbers of e.u.s
listed in the table for quintic rank 2 fields must then all be due to coincidences.

4.3 Totally real quintic fields. While Prop. 2.5 guarantees 30 c.u.s infinitely often,
there is a family whieh guarantees 48, but the parrunetel' depenclenee is of a kind we have
not seen before. We use the ring froln Prop. 2.4 cl). Since the sum of the clegrees of the
9i is 5, the coefficients of f will be cOlnpletely dctermined onee we have fixed the values
f(O), f(±l) and f(iJ). Now Q(iJ) has unit rank one, so there is an infinity of unit values
{±'19k j k E Z} to choose from for f({)). If Fk denotes the k-th Fibonaeci number, with
subscripts arranged to make Fo = 0, these units are ±(Fk - 1 + FkiJ). There are sixteen
ways of choosing thc signs of thc values. In euch ease oue obtains integer-valued cxpressions
for the coefficients of f which are simple Z-linear eOlnbinations of F k - 1 , Fk and constant
summands. As predicted by Heuristies 4.1.1, the families produee totally real ficlds most
of the time, but some others do appeal' - among others, we see again the discrinunants
+1609, +1649, +1777, +2209, +2297, +2617, +2665 of rank 2 fields, and -4511, -4903,
- 551g, - 5783, - 7031, - 7367, - 7463 und several more of rank 3 fields, lllany of them
more than onee. The totally real fields with small diseriminants +11\ +24217, +38569
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also appear repeatedly, whereas +36497 is missed (it has an ideal of norm 3, but the
Laurent ring again has systems of five elements whose pairwise differences are units).

4.4 Totally real quartic fields. Here, Prop. 2.5 - Le., prescribing 1(0), /(1), j(2) E
{±1} - gives a bettel' result (18 generic e.u.s) than using, by analogy with the preceding
section, X and X - 1 and X 2 - X - 1 as the gi, which only yields twelve. There is
same reelundancy due to the actions of X I---t 2 - X anel of (X -1) I---t (X_1)-1 on the
Laurent ring. One can show that each of the possible sign cOlnbinations leads to a one
parameter family containing only finitely lnauy nOll-totally real quartic fields from among
the following: the totally cOlnplex fields of discrilninants +117 and +144, and the fields of
mixed signature with discriminants -275, -283 (several times), -331 (twice), -400, -448
and -643. This is a simple exereise, and was carried out alreacly in the course of the proof
of Theorem 5.1.1 of [18]. It follows that C2(4,3) ;::: 18. Sonle of the families yield only fields
in whieh (x-I) I---t -(X-1)-1 is an automorphism, so we do get infinitely many polynonlials
whose Galois group is not alternating 01' ,symmetrie. Other falnilies eontain polynomials
with the full symmetrie group as Galois group, and then contain infinitely many of them,
e.g. X 4 +(a-4) X 3 +( -3a+5) X 2 +(2a-2) X -1 with diseriminant 4a6 -47a4 +112a2 -400.
Setting a = 1 gives a polynomial belonging to the priInitive field of diseriIninant -283. It
is irredueible lnod 2, and will be so whenever a is odd, ensuring that there are 4-eycles in
the Galois group of the polynolnial. There are faetors of degree 1 and of degree 3 luod 5,
henee, whenever ±a == 1 (mod 5), we also have 3-eycles. (Note that a I---t -a has the
same effeet on the polynomials of this family as X I---t 2 - X.) Thus at least every value
a _ ±1 (mod 10) yields a polynomial with full syulmetrie Galois group. Working with
other primes, one easily shows that the same is true, e.g., for a == ±3 (mod 14). The
value a = 0, however, produces a diheelral Galois group acting on (the normal closure of)
Q(VJ).

4.5 Quartic flelds with two real places. We have now cstablished all the lower C2

bounds claimed in our table above save one, viz. that C2 (4, 2) ;::: 6. There are two families
of self-reciproeal polynomials with j(O) = 1 and /(1) = ±1 defining generically dihedral
fieldsj in eaeh family, these fields are real in one half of the parameter range and of mixed
signature in the other. 0 n the other hand, using Z [X] [X-1, (X2+1) -1] as the Laurent ring
one obtains eight families of polynomials whieh avoid totally real fields, again with some
redundancy, and among them several for which neither X I---t I/X nor X I---t -1/X induces
an automorphism. One interesting family is X 4 + a X 3 + X 2 + a X - 1 with discriminant
-4a6 - 47d4 - 112a2 - 400; setting a = 1 gives a polynomial with full symmetrie Galois
group defining the field of discriminant -563, und as in the previous scetion one easily
extends this to all a = ±1 (mod 6), as well as to all a _ ±2 (mod 21). Again, a = 0 gives
a dihedral polynolnial (even the field Q( v:D) happens to be the same as above).

5. Discussion
5.1 Larger base rings. We begin by noting that if one wants to study families of
fields eontaining a fixed subfield 1(0 other than Q, one ean work with Laurent rings of
the form Ra [X][{g;l }], where Ra is the ring of integers of K o 01' some suitable subring.
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The techniques from [19] can be transferred to the determination of the e.u.s of such rings
without difficulty as soon as the e.u.s of the base ring R{) are known. One potentially
useful special case of this is the insertion of roots of unity by taking Ra = Z((m]'

5.2 Further treatnlent of the slnall fal11ily l11enlbers. When onc carries out the
procedure sketched in subsection 4.1, one obtains an upper bound for the size E of any
exponent vectors attached to e.u.s in fields belonging to the family considered. With mod
ern estimates for linear forms in logarithms, the magnitude of these bounds no longer lives
up to the ancient reputation of transcendence theory as being a source of astronomical
numbers [38]. When only two logarithms are involved, a typical bound for E would be
less than 5.105

, with three logarithms, bounds of 107
... 108 are within reach [M. WALD

SCHMIDT and P. VOUTIER, pers. comm.]. Of course, they are still far too large to obtain
all small and medium solutions by a brute force search. (Indeed one should think twice
before even searching blindly up to E :::; 40 01' so when the unit rank is foul' 01' luore.)

Several methocls are ·available for covering the range.of "ruedium large" solutions,
say for E between 102 and the BAI<ER bound B. Three of these depend on diophantine
approximation techniques and require the matrix (4.5) of logarithmic embeddings of the
generator units to be known with very high accuracy, roughly to bettel' than one part in
BN, where N is the number of logarithms involved. The "classical" method, preferred
by the POHST school, is to combine an N-dimensional continued fraction algorithm with
the BAI<ER-DAVENPORT-ELLISON lelnma. B. M. M. OE WEGER suggested a lattice
based approach [43,44], where the main computational effort goes into the LLL basis
reduction of an integrallattice (using only integer operations). This method is very easy
to implement from scratch and reasonably fast, and has been used extensively, in particular
by N. TZANAKIS and OE WEGER [41,42]. [44] contains a (somcwhat biased, of course)
comparison of both methods. Both do weIl at excluding solutions in very large ranges
for E, hut have difficulty in reducing the upper bound on E below a threshold of, very
roughly, 20N. In order to find "medium small" solutions, one can e.g. use algorithms which
enumerate short vectors in a latticc, like the FINCI<E-POHST algorithul or its variants [9].

Recently, two other methods have been introduc~d. Y. BILU [2] has pointed out
that OE WEGER's lattice basis reduction cau be replaced by reductions of bases of suitably
chosen 2-dimensional sublattices of an integer lattice, which amount to computing ordinary
continued fraction expansions, and then applying the 2-dimensional BAKER-DAVENPORT
lemma. The main computational hurdle is that one first needs to invert a quadratic
submatrix of the matrix (4.5), and this must be done with rigorous precision control.

A completely different suggestion was made by N. P. SMART [37 and pers. comm.]. It
rests on observations of the following kind. Whenever y E G is not exceptional, y - 1 lies
in some proper ideal I of Z[x], and we know thus a nontrivial element of the kernel of the
group homomorphism Z[x] x -+ (Z[x]/ I) x. Trallslating this into exponent vectors, where
we now need to carry along a component for the torsion part of the unit group as weIl, we
can thus exclude an entire (almost always infinite) subgroup. Also, when we consider an
ideal generated by apower of a rational prime p, and thus have approximations to all n
embeddings of y into extensions of the p-adic field Qp at our disposal, we cau conclude that
y - 1 is a non-unit when we find the product of the embeddings of y - 1 to be incongruent
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to ±l. Combining information of these two types, one can subject the exponent vectors to
a sieving process and, hopefully, exclude all non-e.u.s within a large E range in reasonable
time. (Implementing this efficiently is an interesting challenge; the algorithm seems to
lend itself well to parallelization. )

SMART'S method is obviously a candidate for computing small and not-quite-small
solutions in combination with a diophantine approximation method for the medium large
solutions, but it is potentially capable of covering that range as weIl with a single algorithm.
Whether this works weH in practice remains to be seen. One advantage is that with this
method it might be possible to keep track of the 1t action, as weIl as the "higher mesh
groups" from [19]. In particular, the exponent vector belonging to the j-irnage of an e.u.
which had itself been found and recorded as an exponent vector can be obtainecl almost for
free when the required discrete logarithms have been precomputed; with other methods,
matching up the pairs requires extensive sorting 01' hashing.

There is another potential advantage. When one applies this method to a single field,
one usually knows the fuU group of units, and can sicve y by the more stringent criterion
that y - 1 modulo any proper ideal must lie in the image of the global units if y is to
be exceptional. The two criteria mentioned above are weaker, hut do not rely on prior
information about lUlits outside G. Moreover, whenever we apply them, the result will
depend on a only up to congruence modulo some finite integer. Thus each sieving step
provides information about many fields at once - we can sieve on exponents and on the
family parameter at the same time.

5.3 Going beyond the subring. We promised an explanation how Heuristics 4.1.4 b) is
supposed tü be realised. Here it is: Assurne that G is thc fuH unit group for large enough
parameter values. One considers two cases. If the regulator of the field is above a suitably
chosen bound, the known regulator of our parametrie independent units (the determinant
computed from the matrix (4.5)) immediately yields an upper bound on thc index of G
in G. This upper bound is polynomial in A. One can then repeat the argument used for
Heuristics 4.1.4 a), being careful to clear denominators from the exponents which occur
as coefficients in IAul before cOluputing the lower bound. Thc gap principle also requires
same additional work. One arrives, as before, at an upper bound for A. This leaves the
fields with small regulators, hut a simple argument (less simple in the presence of subfields)
shows that the discriminants of these fields are bounded, so there are only finitely many of
them up to isomorphislu. The cutoff point should be chosen large enough to exclude any
non-generic solutions in the first case. The number of fields falling under the second case
will then be quite formidable; it seems just about tractable (several 105 ) for non-cyclic
cubic fields, and fortunately is smaH enough (only several hundred) für cyclic cubic fields
to treat every one of them, as will be discussed in detail in [27].

5.4 How weIl can one da with ineffective methods? While transcendence theory has
made great progress in prüducing ever sharper estimatcs for linear forms in logarithms, the
diophantine side has not been idle. Thanks luainly to H. P. SCHLICI<EWEI, the SCHMIOT
Subspace Theorem is now available in p-adic as weH as archimedean versions, and in a
form which yields explicit bounds Oll numbers of solutions, although not on the solutions
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themselves. This is supplemented with general gap principles which yield restrietions
already for quite small solutions [SCHLICKEWEI, pers. comm.]. No longer does one have to
count 1?lindly all candidates for solutions of small height in all ficlds of a given signature,
as in the early days. However, the exponential dependcnce of thc resulting bounds on 11,

and r is mainly causecl by the number of potentialiarge solutions, whose existence cannot
be excluded with this type of rnethod.

In our families, thc BAI<ER-type estimates guarantee the absence of large solutions.
The price we have to pay is precisely the need to work with families. The ineffective
methods are far superior when it comes to considering all fields of a given signature at
once.

Still, oue is left wondering whether one could not cornbine both approaches to achieve
whatneither seerns to provide on its own. Specifically, could one perhaps use modern
gap principles, maybe in combination with techniques from [19], to show that it is indeed
impossible to squeeze more than 24 sma11 e.u.s into infinitely many rings of integers of
quintic rank three fields in any other way than via our families (4.2)?

5.5 Exponential parameters and overdetermined hOlnomorphisms. There is 00

difficulty in principle in transferring the reasoning from subsections 4.1 and 5.3 to cases
like that considered in 4.3 where the family depends on a single pararneter entering as an
exponent. (This parameter takes over the röle of our A.) When one attempts to proceed
to larger degrces, one is soon led to Laurent rings in which several condition polynonlials
belang themselves to fields with infinitely many units, and possibly to fields of rank larger
than one. Take, e.g.,

R = Z[X][.X,"-l, (X-1)-I, (X+1)-I, (X 2 -X-l)-I, (X3 -X-l)-I]

and write a for a raat af the last generator polynomial. Then Z[a] is the ring of integers
of the cubic field of discriminant -23, and its units are ±az. The ring R admits hamo
rnorphisms inta fields of degree as low as 3 and rank as low as 2: The rninimal polynomial

f = X 3 + X 2
- 2X-I

of 2 cos(2rr /7) satisfies all five conditions. Clearly this is just a coincidence. The SUfi of
the degrees of the 9i is 8, so we get a farnily of oetic fields depending on two exponential
parameters. How about fields of degree 7?

For any choiee of values af f at the five points 0, ±1, {), a, one is confronted with
eight independent equations for seven unknown coeffieients. Thus there is a single linear
solvability eondition, whose precise shape depends on how the five independent signs were
chosen, and whieh ean then be brought into the form

8Ft. +tGm = U, (5.1)

with small fixed integers s, t, u. Thc Ft are again the Fibonaeei numbers and the Gm the
members of the appropriate linear reeurrence attached to a, which is defined by Go =
G2 = 0, GI = 1 and, for all mEZ,

Gm + Gm+ l .
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Hs characteristic polynoluial is of course our fifth generator polynomial 95. One has

It follows from general (ineffective!) theorems about sums of algebraic numbers which
are fixed multiples of members of a finitely generated selnigroup [8,14,30] that (5.1) has
only finitely many solutions. (Equation (5.1) can be expressed a.s the vanishing of such a
sum.) Thus we do not get an infinite family.

The bad news is that at present no general method is known for solving (5.1). A
theorem of MIGNOTTE [20] ensures that such an equation can bc solved effectively by
reduction to a linear form in two logarithms provided that each of the two recurrences
involved has a unique characteristic root of largest absolute value (and provided that
these are multiplicatively independent, as is the case in our example; otherwise one might
indeed have an infinity of solutions. This could happen e.g. if one 9i were the reciprocal of
another). This applies in our situation for all m 2:: O. The quadratic minimal polynomial
of {) and its reciprocal polynolnial each have a single root which is larger than 1 in absolute
value, and 95 has a single real root 1.324 ... > 1 and a pair of cOlnplex conjugate roots
of absolute value less than one. However, MIGNOTTE's theorem fails to be applicable to
m < 0, when the dominant roots of the reciprocal of 95 COlne into play - a complex
conjugate pair of roots with the same absolute value. Thus at present we do not know how
to effectively cletermine all 11lembers of this finite family in degree 7.
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