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Introduction:

The purpose of this paper is twofold. First, to show
statements of the type conjectured by Sullivan in [Sul
(known as the Sullivan's fixed point conjecture) lead to
criteria for "finite dimensionality" of G-spaces, where
G is a finite group. Secondly, Sullivan's fixed point
conjecture and the Borel-Quillen localization theorem are

closely related in the following sense. For a finite

dimensional G-space KX , where G 1is an elementary p-group,

the Borel-Quillen localization theorem states that

* ' * G X . .
HG(K;FP) — HG(K ,Fp) is an isomorphism modulo
*

G
cohomology [Hw] [Q] . The above theorem is not true for

H;({point};rp)—torsion, where H is Borel's equivariant
finite dimensional spaces in general. The Sullivan con-
jecturé implies that the Borel-Quillen localization holds
for the infinite dimensional G-space Map(EG,K) ., where
dim K <= . Conversely, if the Borel-Quillen localization
holds for Map(EG,X), then EGXX is G-homotopy equi-
valent to EGxK with dim K <= ., Here EG is the usual
universal contractible free G-space. This provides an
answer to a problem posed in [ A2 }. This question and
other problems of this nature arise naturally in the
geometric and differential topological aspects of trans-
formation groups of manifolds. In particular, at present

most methods of constructing group actions on a given

manifold yield only infinite dimension free G-spaces. See

in-



[ a1 1l aB 1l av Il w 1 and their references. The validity
of the Sullivan's conjecture has been announced by G.
Carlson, H. Miller, and J. Lannes

while Borel-Quillen localization theorem applies to
p-elementary abelian groups, and the Sullivan conjecture
holds only for p-groups, we have formulated our results
for all finite groups. The proof of the main topological
result (Theorem 2.4) are reduced to the case of cyclic
groups of prime order using an inductive argument. The
main algebraic tool which provides such a local-to-global
passage is the main algebraic result (Theorem 1.2) of
Section 1 which is a projectivity criterion for integral
and modular representations occuring as the cohomology
of certain G-spaces. (See also [A2] Theorem 2.1). This
theorem is the appropriate substitute for the projectivity
criteria of Rim [R] and is a natural successor of the
criteria of Chouinard and Dade. The proof of our projec-—
tivity criterion uses recent results of J. Carlson on
rank varieties [ Cj 1 and Avrunin-Scott's proof of the
Carlson conjecture on the isomorphism between Quillen's
cohomological support variety and Carlson's rank variety
of a modular representation [ AS ]. In the process, we
introduce a "rank variety" for G-spaces and compare it
with the Quillen's cohomological variety [ @ 1 as well
as Carlson's rank variety associated to the total reduced

cohomology of a G-space (with the induced G-module structure) .



An exposition of some of these ideas and several applications
to topological realizations of homotopy actions are to be

found in [ A2 ].
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Section 1. A Projectivity Criterion

Let G be a finite group, and let k be an algebraic
closure of Fp = the field with p-elements. All modules are
assumed to be finitely generated. A classical result of
Rim [ R ] states that a ZG-module M is ZG-projective if
and only if its restrictions M|ZP are ZP-projective for
all Sylow subgroups P < G . Chouinard has refined this
result [ Ch ] by replacing the p-Sylow subgroups in Rim's
theorem by (maximal) p-elementary abelian subgroups. Thus
the projectivity of M 1is detected by all its restrictions
to M{ZA for all p-elementary abelian A < G, i.e.

A=zZ ©2Z o..... ® Zp . To decide the projectivity of
M|ZA , it suffices to consider the kA-module M ® k . Thus,
let A be a p-elementary abelian group of rank r and

with {e1,....,er} a set of generators, and let I be the

€

augmentation ideal 0 —> I ——> kA > k > 0 . It is

possible to choose a k-subspace L = I with dika =r
and such that I = L & 12 as k-vector spaces. Then L
generates kA as a k-algebra and for each 1 € L,

(1+1)P = 1 . The elementsb g € kA of the form o = 1+1 ,
1 €L (for such an L ) are called "shifted units" and
the cyclic subgroups S = <o> of order p are called
"shifted cyclic subgroup”". (See [ 1C 1. In [ ]

Dade has proved that a given kA-module M is kA-projective

(hence kA-free since kA is local) if and only if M|kS
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is kS—projective for all such shifted cyclic subgroups
of kA . (Note that almost all shifted cyclic subgroups
of kA do not come from cyclic subgroups of A .)

J. Carlson has defined the rank variety of M, Vi(M)
to be the set of all 1 € L such that M|kS is not
kS-free together with 0 , where S 1is generated by
1 +1€ ka. Vi(M) is independent of L up to iso-
morphism and it defines an affine algebraic subvariety
of kT [ Cj]. Thus Carlson's formulation of Dade's result
is then: M is kA-projective if and only if V;(M) =0 .

on the other hand, Quillen had earlier studied [ Q ]
cohomological varieties arising from equivariant cohomo-
logy ring Hg(x;k) for a G-space X , where
H;(X;k) = H*(EG x Gx;k) is the Borel's equivariant
cohomology and the fibration X ——> EG x GX ——> BG is
the Borel construction [ Hw ].

Consider HG ='e HZi(G;k) as a finitely generated

commutative k-algebra and consider the associated affine

variety Max H, . The cohomological variety of HG(X;k)

G
is defined [ Q ] to be the set VG(X) of ring homo-

morphism from HG(X;k) to k endowed with the Zariski

*
topology. Since H (G,M) is also an HG-module, by analogy

one defines the cohomological support variety VG(M) to

*
be the largest support in Max H of H (G,N ® M) where

G
N is any kG-module [ Cj ][ An ]. For an elementary abelian

group A , J. Carlson showed [ Cj ] that Vi(M) injects
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into VA(M) and conjectured that these two varieties are
isomorphic. This conjecture was proved by Avrunin-Scott
[ AS ] and it was used to provide a piecewise description
of VG(M) in terms of strata given by Vi(M) for elementary
abelian subgroup A < G in a manner similar to Quillen's
stratification of HG(X) . Avrunin-Scott's stratification
theorem suggests the search for the definition of a Carlson-
type "rank variety" Vé(x) for G-spaces with similar
relationships VG(X) as in the case of kG-modules.

In [ A2 ], we introduced the rank variety of a G-space
X (with H (X;k) finitely generated) as follows. Two
G-spaces X, and X, are "freely equivalent”, if there
exists a G-space Y such that Xi <Y and Y - xi are
free G-spaces with cohomological dimension mod p of
(Y - X;)/G (for i = 1,2) being finite [ A2 ]. This
defines an equivalence relation between G-spaces and one
has VG(X1) z VG(XZ) if X, and X, are freely equi-
valent. Moreover, for any G-space X with H*(X;k) finitely
generated, we may find a mod kK Moore space Y with a

G-action which is freely equivalent to X , and we define

r -k

VA(X) Vi(H (Y:;k) for each p-elementary abelian subgroup
A < G . The rank variety Vi(X) is independent of Y wup

to isomorphism for each A and for a general finite group

G , we define VG(X) = lim ind V.(X) where E is the
A€E
category of p-elementary abelian subgroups of G with

morphisms induced by inclusions and conjugations in G
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1.1 Theorem

*
Let X be a connected G-space such that H (X;k) 1is
-t 1
infinitely generated, and let H (X) = @ Hl(x;k) considered
i>0
as a kG-module. Then there exists an isomorphism
- . . . _— r =*
VE(X) = VG(X) and an injection j : VG(X) —_ VG(H (X)) .
*

Further, if the H (-;k)-spectral sequence of the Borel
construction X —> EA x AX ——> BA collapses for each
maximal p-elementary abelian A < G . Then j is also an
isomorphism.

This result is used to establish the following pro-

jectivity criterion:

1.2 Theorem

Suppose X 1is a connected G-space such that for each

maximal p-elementary abelian subgroup A < G the

* .

H (-ik)-spectral sequence of X —> EA x AX-——-—> BA

collapses. Then @ Hl(x;k) is a projective kG-module if
i>0

and only if it is projective as a kC-module for subgroup

C § G of order p . Similarly, .e Hi(X;Z) is a projective
ZG-module if and only it is Zc-p;;gective for all cyclic
subgroups C of prime order.

Note that if X 1is a Moore space with G-action and

XG +# § , then the conditions of Theorem 1.2 are satisfied,
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and we get a projectivity criterion for the cohomology of
Moore spaces with G-action. This has the following corollary,
first proved by G. Carlsson for the case G = zp xZ [ Ccgl

P
and for G > Qg by P. Vogel [ V ] by different methods :

1.3 Corollary

Suppose that the Sylow subgroups of G are not all
cyclic. Then there exist ZG-modules which are not isomorphic
(over ZG ) to the homology of any Moore space with G-action.

These modules are constructed from considering the in-
duced modules kG ® k for shifted cyclic subgroups S < kG
which do not arisék%rom cyclic subgroups of G . Such a module

is not kG-projective but it is kC-projective for all cyclic

subgroups of G .-

1.4. Corollarx

Suppose that the Sylow subgroups of G are not all
cyclic. Then there exist a connected G-space X such that
the ZG-module H,(X) is not ZG-isomorphic to the homology
of any Moore space with G-action (with the induced EZG-structure).

Moreover, there are decomposable ZG-modules which do not

occur as homology of any G-space at all.
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1.5 Corollary

Let G be as in 1.4. Then there exists topological
spaces X with n1(X) = G such that X has no homology
decomposition (twisted) in the sense Eckmann-Hilton [ Hp ].

This corollary is in sharp contrast with the simply-
connected case where homology decompositions and Postnikov
decompositions exist [ Hp ]. Note that there are twisted

Postnikov decompositions for all non-simply-connected spaces

[ B 1.



Section 2. Criteria For Finite Dimensionality of G-spaces

Throughout this section we will be concerned with
topological spaces X such that Hi(x) or Hi(X;R) (for
some coefficient system R ) are finitely generated. E
always denotes the universal contractible free G-space. For
any G-space X, Map (E,X) 1is a G-space endowed with the
action (g,f) —> £9 fg(u) = gf(g_1u) and the set of
equivariant maps MapG(E,X) is the fixed set Map(E,X)G .
For each yx € XG , one has "the constant map" fx:E —> X
with £(E) = x which is equivariant. In [Su] Sullivan
conjectured that for any p-group G , "the map of constants"
XG —_— MapG(E,X) induces a weak homotopy equivalence after

p-profinite completion. Recently G. Carlsson and H. Miller

have independently proved this conjecture.

The completion functor used in the proofs of Carlsson
and Miller are adaptations of the Bousfield—Kaﬁ completions
[BK]. In order to clarify those properties of the completion
functors used in the theorems below, we formulate the notion
of a quasicompletion functor. This hopefully allows a wider

domain of applicability of our results.

2.1 Definition

Let R be a functor from the category of topological
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spaces to itself. R is called a quasicompletion functor

if the following are satisfied :

{(C1) R commutes with arbitrary disjoint unions and

finite products.

(C2) There is a coefficient system R associated to R

such that if £ : X —> Y induces an isomorphism
f, : Hy(X;R) —> H,(Y;R) , then

R(£), : H (R(X);R) —> H,(R(Y);R) is also an
isomorphism.

(C3) There is a full subcategory of topological spaces
Top(R) (associated to R ) and there is a natural

transformation <t : identity ——> R which satisfy:

(1) If n1(x) =0 , then X € Top(R) .

(ii) If X € Top(R) then R(X) € Top(R) , and
R(X) —> R(R(X)) 1is induces H,(-;R)-iso-

morphism.

(iii) For all X € Top(R) , the map 1(X) : X —> R(X)

induces an H,(-;R)-isomorphism.

2.2 Definition

Let G be a category of groups and R be a quasi-



completion functor. We say that R is adapted to G if

the following is satisfied:

(C4) For all G € G and all finite dimensional G-spaces
X such that H,_ (X;R) and H*(XG;R) are finitely
generated, the map of constants XG —_— MapG(E,X)

induces an isomorphism

i, (R(x%) ;R) —> H, (Map, (E,R (X)) ;R) .

When R = Fp and Rp is the Bousfield-Kan [BK]
Fp—completion (or the Dwyer-Miller-Neisendorfer version),
then Rp is adapted to the category of all finite p-groups
by the validity of the Sullivan's conjecture mentioned above.
We remark that a quasicompletion functor may be defined only
on a subcategory of topological spaces, in which case the
conditions (C1)-(C4) must undergo the appropriate modi-
fications. For the Bousfield-Kan Fp-completion functor,
Top(R) consists of Fp-good spaces [BK].

Let A be a p-elementary abelian group, and let
£ : X, —> X, be an A-map between A-spaces. Let ep be
the product of 2-dimensional cohomology classes in HZ(AJFP) .
Since the Borel's equivariant cohomology groups H;(Xi;rp)
are modules over H*(A;Fp) , we ﬁay localize H;(Xi;F ) by

P
1] . *
inverting the element e € H (A;Fp) (see [Hw][Q] e.qg.).
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Definition.

We say that f induces a "Borel-Quillen localized
isomorphism" if the induced map f* : H;(XZ;FP)[eA-1]
_— H;(x1;wp)[eA-1] is an isomorphism.

The celebrated Borel-Quillen localization theorem
may be translated into the statement that for all finite
dimensional A-spaces X , the inclusions xA —_> X
induces a Borel-Quillen localized isomorphism. In the
sequel, we will need the following sets of subgroups of
G : Pp(G) is the set of p-subgroups of G and
Ap(G) = {(P1,P2)|Pi € Pp(G) »+ P, <P, and P,/P, is
p-elementary abelian} . This notation is used without

further mention.

2.3 Proposition

For each pl |G| , suppose that Rp is a quasi-com-

pletion functor whose associated coefficient system is

P

finite dimensional G-space such that H*(YP;FP) are

finitely generated for each P € PP(G) and YP belongs

F_ and Rp is adapted to Pp(G) . Assume that Y is a

to Top(Rp) . Let X be a G-space such that E x X and
E x Y are G-homotopy equivalent. Then for each P € Pp(G)
and each (P1,P2) € Ap(G) (for any p ) the following
holds :
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(1) All spaces MapP(E,Rp(X)) are in the image of

Rp up to H*(-;Fp)-isomorphism.

(ii) There exist finite dimensional complexes
F(P) € Top(Rp) (with H*(F(P);Fp) finitely
generated) and maps n(P) : F(P) —> MapP(E,x)
such that the induced composition of maps

no: Rp(F(P)) _ MapP(E,Rp(X)) are H*(-qu)_

isomorphisms.

(iii) The maps A(P1,P2) : MapP1(E,Rp(X)) — MapP2
(E,Rp(x)) induce Borel-Quillen localized
isomorphisms.

The converse of this proposition is the content of the
theorem below which yields the criteria for finite dimen-
sionality of certain classes of G-spaces. We may also regard
this theorem as a converse to Borel-Quillen localization

theorem [Hw][Q].

2.4 Theorem

Let G,P, and Rp be as in 2.3 above. Let X be a
G-space which satisfies conditions (i) and (ii) of Propo-
sition 2.3. Then there exists a finite dimensional G-space
Y such that for each P € Pp(G) ’ H*(YP;FP) is finitely

generated, YP € Top(Rp) rand E x Y and E x X are
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G-homotopy equivalent if and only if for each (P1,P2) €

AP(G) with P1/P2 = zp , the inclusion of the zp-fixed

point sets A(P1,P2) : MapP1(E,Rp(X)) ——> Map, (E,Rp(x))

induces Borel-Quillen localized isomorphisms.

2

2.5 Addendum

In 2.3 and 2.4 if F(P) are finite complexes and
n1(x) = 0 , then a finiteness obstruction w(X) € iO(ZG)
may be defined such that w(X) = 0 if and only if Y <can
be taken to be G-homotopy equivalent to a finite G-complex.
By passage to a quotient of ﬁo(ZG) r W(X) becomes well-
defined in the sense that it will depend only on the
G-homotopy type of X .

In general, the above mentioned obstruction w(X) is
non-zero even in very simple situations, as the example

below shows.

2.6 Example

Let G DbBe the cyclic group of order 23 acting on
M = Z/47Z via the inclusion G < Aut(z/47zZ) = Z/46Z .
Using the calculations of Swan in [Sr], one can show that

for any G-space X with H,(X) = M as ZG-modules, there
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are no finite G-complex K such that E x X 1is G~homo-
topy equivalent to E x K . Of course, there are finite
dimensional G-complexes Y such that ﬁ*(Y) = M as
ZG-modules. For any such Y , ﬁ(YG;F23)

YG € Top(R) where R 1is the Bousfield-Kan F23-completion

= 0 and

functor.
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Section 3. Finite Complexed and p-Groups

We will consider a special case where G 1is a
p-group and the quasi-completion functor satisfies

seemingly simpler hypotheses.

3.1 Definition

Let R be a functor from the category of topological
spaces to topological spaces, together with a natural
transformation «t : identity —> R . Let Top(R) be a
full-subcategory of topological spaces, and let R be a
coefficient system. Assume that R commutes with disjoint

unions and finite products. Then:

(1) R 1is called a "compact" functor if for every compact

space V € Top(R) , R(V) is alsq compact.
(2) R 1is called "2-type dependent" if:

(i) the 2-type of R(V) depends on the 2-type of

V for each V € Top(R)

(ii) If o(V) 1is the fibre of (V) : V —> R(V)
then H_(®(V);R) depends only on the 2-type

of VvV .
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Note that the conditions on the objects of Top(R) are

more relaxed than the ones imposed in the previous section.

3.2 Theorem

Let G be a p-group, and let R be a functor with
coefficient system Fp which is compact, 2-type depen-
dent, and adapted to P(G) . Let X be a G-space such
that MapP(E,R(X)) belongs to Top(R) for all
P € P(G) . Then there exists a finite G-complex Y and
an invariant map f£ : E x Y —> E x X which induces

H*(-;Fp)-isomorphism if and only if:

(1) For each P € P(G) , there exists a finite complex
F(P) and a map n : F(P) —> MapP(E,X) such
that

Ny © H*(R(F(P));Fp) H*(MapP(E,R(X)):Fp)

is an isomorphism.
(ii) For each pair of subgroups P, d P, such that P1/P2
is p-elementary abelian the map
A(P,,P,) : Map_ (E,X) —> Map_, (E,X) induces a
1772 P P,

1
Borel-Quillen localized homology isomorphism.
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To obtain sharper results which would include all
finite groups and replace homology equivalence f in the
above by a G-homotopy equivalence, one should take into
account the finiteness obstructions. The above theorem
in its present form will be used for each p-subgroup of

G, if G 1is not a p-group.
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