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On normalizers of maximal tori
in classical Lie groups

A.A. Gerasimov, D.R. Lebedev and S.V. Oblezin

Abstract. The normalizer NG(HG) of a maximal torus HG in a semisimple complex
Lie group G does not in general allow a presentation as a semidirect product of HG

and the corresponding Weyl group WG. Meanwhile, splitting holds for classical groups
corresponding to the root systems A`, B`, D`. For the remaining classical groups corre-
sponding to the root systems C` there still exists an embedding of the Tits extension of
WG into normalizer NG(HG). We provide an explicit unified construction of the lifts of
the Weyl groups into normalizers of maximal tori for classical Lie groups corresponding
to the root systems A`, B`, D` using embeddings into general linear Lie groups. For
symplectic series of classical Lie groups, we provide an explanation of the impossibility
of embedding the Weyl group into the symplectic group. Also explicit formulas for the
adjoint action of the lifts of the Weyl groups on g = Lie(G) are given. Finally some
examples of the groups closely associated with classical Lie groups are considered.

1 Introduction

Normalizer NG(HG) of a maximal torus HG in a semisimple complex Lie group G allows a
presentation as an extension of the corresponding Weyl group WG by HG

1 −→ HG −→ NG(HG)
p−→ WG −→ 1. (1.1)

This extension does not split in general [CWW], [AH]. For the Weyl groups there is a well-
known presentation via generators and relations. To obtain the corresponding description of
NG(HG) one should pick a section of the projection p. A universal solution to this problem
was given by Demazure [D] and Tits [T2] in terms of the Tits extension W T

G of the Weyl
group WG (for recent discussions of the Tits groups see e.g. [N], [DW], [AH]). One way to
understand the nature of the Tits extensions is via consideration of the maximal split real
form G(R) ⊂ G(C) of a complex semisimple Lie group G(C) [GLO].

In this note we consider the special class of classical Lie groups corresponding to the root
systems A`, B`, C` and D` and provide an explicit description of the group NG(HG) and lifts
of the Weyl group which differs from the one proposed in [D], [T2]. We restrict ourselves to

1



the Lie groups of classical type due to the fact that by simple reasoning, the exact sequence
(1.1) is split for all classical groups except symplectic ones.

It is well-known that classical Lie groups may be defined as fixed point subgroups of
general Lie groups under appropriate involutions. In particular this allows us to express
generators of Weyl groups of the classical Lie groups via generators of the Weyl groups of
general linear Lie groups. The explicit lift of the latter Weyl group into the general linear
Lie groups is compatible with the action of the involution of the Lie algebra root data and
then provides a lift of the Weyl groups for the corresponding classical Lie groups. This way
we obtain sections of p in (1.1) for all classical Lie groups. In the case of orthogonal Lie
groups corresponding to series B` and D`, this provides an embedding of the Weyl groups
into the corresponding Lie groups while for symplectic groups we obtain an embedding of
the Tits extension. In any case this provides a unified construction of the lifts of the Weyl
groups of all classical Lie groups.

The fact that for C`-series of classical Lie groups the considered construction provides
an embedding of the extension of the Weyl group by 2-torsion elements of a maximal torus,
called the Tits group but not an embedding of the Weyl group itself looks rather surprising in
this context. We propose an explanation for this phenomenon based on non-commutativity
of quaternions. The main argument is based on the known fact that while general linear and
orthogonal Lie groups are naturally associated with matrix groups over complex and real
numbers, symplectic groups allow description in terms of matrix groups over quaternions.
This leads to a modification of the standard notion of maximal torus by taking into account
the non-commutative nature of quaternions. As a consequence, the notions of normalizer
of maximal torus and the Weyl group are also modified. The standard Weyl groups of
symplectic Lie groups appear as subgroups of thus defined Weyl groups. The Tits extension
of the symplectic Weyl group then arises via construction of the universal cover of Aut(H) =
SO3 by the three-dimensional spinor group Spin3. Concretely this might be traced back to
the fact that that additional quaternionic unit  squares to minus one.

It is worth mentioning that the standard algorithm of the Gelfand-Zetlin construction
of bases in finite-dimensional irreducible representations fails in the case of symplectic Lie
groups. This fact obviously reverberates with the absence of the splitting of (1.1) in the
symplectic case. We believe that this is not an accidental coincidence and the issue may be
clarified using quaternionic geometry.

Let us note in this respect that the description of classical Lie groups in terms of matrix
algebras over division algebras might be generalized to other, non-classical Lie groups (see
e.g. [B] and references therein). We expect that the (im)possibility of embedding the Weyl
groups into the corresponding Lie groups may be elucidated in all these cases, generalizing
our considerations for symplectic Lie groups and quaternionic matrix algebras.

In this note we also consider the problem of the construction of a section of p in (1.1)
for unimodular linear groups SL`+1, special orthogonal groups SO`+1, pinor/spinor groups
Pin`+1 and Spin`+1. Although these groups are not classical Lie groups in the strict sense,
they are related to classical Lie groups either via central extensions or via taking unimodular
subgroups. In the case of central extension the resulting section is apparently given by
a central extension of the corresponding Weyl group. Moreover the case of unimodular
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subgroups is also covered by central extension of the Weyl group. We provide an explicit
description of maximal torus normalizers in terms of generators and relations in all these
cases.

The plan of the paper is as follows. In Section 2 we recall required facts on semisimple
Lie algebras and groups including normalizers of maximal tori (see also Appendix 10 for a
detailed discussion of classical Lie groups). In Section 3 we recall constructions of classical
Lie groups as fixed point subgroups of appropriate involutions of general Lie groups after
E.Cartan. In Section 4 the structure of normalizers of maximal tori of general linear Lie
groups is considered in detail including explicit lifts of the Weyl groups. In Section 5 we
present a construction of the lifts of the Weyl groups of the classical Lie groups in terms
of those for general Lie groups (see Theorem 5.1). In Section 6 we further clarify the
explicit formulas of the previous Section 5 by establishing connections between maximal
tori normalizers, the Weyl groups and their lifts for general linear groups and its classical
subgroups. In Section 7 the underlying reasons for the special properties of symplectic groups
are considered. In Section 8 we extend our analysis to the groups SL`+1, SO`+1, Pin`+1 and
Spin`+1. In all these cases we construct explicit sections of p in (1.1) realized by central
extensions of the corresponding Weyl groups. Finally in Section 9 we compute the adjoint
action of the lifts of the Weyl groups on Lie algebra g = Lie(G) for all classical Lie groups.
Various technical details of the construction are provided in Appendix.

Acknowledgments: The research of the second and of the third authors was partially sup-
ported by the RSF grant 16-11-10075. The work of the third author was partially supported
by the EPSRC grant EP/L000865/1. The third author is also thankful to the Max Planck
Institute for Mathematics in Bonn, where his work on the project was started.

2 Preliminaries on semisimple Lie algebras and groups

Let g be a complex semisimple Lie algebra and let h ⊂ g be the Cartan subalgebra of g,
so that dim(h) = rank(g) = `. Let Π = {αi, i ∈ I} ⊂ h∗ be the set of simple roots of g,
indexed by the set I of vertexes of the Dynkin diagram Γ. Let Π∨ = {α∨i , i ∈ I} ⊂ h be
the set of corresponding coroots of g. Let Φ be the set of roots and let Φ∨ be the set of
co-roots of g. Then let (Π,Φ; Π∨,Φ∨) be the root system associated with g, supplied with a
non-degenerate Z-valued pairing

〈 , 〉 : Φ× Φ∨ −→ Z . (2.1)

Introduce the weight lattice,

ΛW =
{
γ ∈ h∗ : 〈γ, α∨〉 ∈ Z ,∀α∨ ∈ Φ∨

}
⊂ h∗ , (2.2)

and define the fundamental weights $i, i ∈ I by

〈$i, α
∨
j 〉 = δij . (2.3)

Fundamental weights provide a basis of the weight lattice ΛW and we have

αj =
∑̀
i=1

aij$i , aij = 〈αj, α∨i 〉 , (2.4)
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where A = ‖aij‖ is the Cartan matrix of g. The root lattice ΛR ⊂ h∗ is generated by
simple roots αi ∈ Π, i ∈ I and appears to be a sublattice of the weight lattice ΛW , so that
ΛR ⊂ ΛW . The quotient group ΛW/ΛR is a finite group of order

|ΛW/ΛR| = det(A) . (2.5)

The co-weight and co-root lattices Λ∨W , Λ∨R ⊂ h in the Euclidean space
(
h = C`; 〈·, ·〉

)
are generated by the fundamental co-weights and simple co-roots, given by

〈αi, $∨j 〉 = δij , $∨j =
∑̀
i=1

cjiα
∨
i , α∨j =

∑̀
k=1

ajk$
∨
k , (2.6)

where C = ‖cij‖ = (AT )−1 is the inverse transposed Cartan matrix A.

The corresponding Weyl group W (Φ) is generated by simple root reflections,

si(αj) = αj − 〈αj, α∨i 〉αi = αj − aijαi , (2.7)

and its action in h∗ preserves the root system Φ ⊂ h∗. Each symmetry of the Dynkin diagram
Γ = Γ(Φ) induces an automorphism of Φ, and the group Aut(Φ) of all automorphisms of the
root system Φ ⊂ h∗ contains W (Φ) as a normal subgroup. Moreover, the following holds:

Aut(Φ) = W (Φ) o Out(Φ) , (2.8)

with Out(Φ) being a group of symmetries of Γ(Φ).

Let {hi = hαi , ei = eαi , fi = e−αi , i ∈ I} be the standard set of generators of g:

[hi, hj] = 0 ,[
hi, ej

]
= aijej ,

[
hi, fj

]
= −aijfj ,[

ei, fi
]

= hi ,
[
ei, fj

]
= 0 , i 6= j ;

(2.9)

ad1−aij
ei

(ej) = ad
1−aij
fi

(fj) = 0. (2.10)

In the following a slightly modified presentation of (2.9) will be useful. Namely, the Lie
algebra g can be generated by {$∨i , ei , fi : i ∈ I} subjected to the following relations:

[$∨i , ej] = ejδij , [$∨i , fj] = −fjδij , [ei, fj] = δij
∑̀
k=1

ajk$
∨
k . (2.11)

Now letGc be a connected compact semisimple Lie group of rank `, such that gc = Lie(Gc)
is the tangent Lie algebra at 1 ∈ Gc. Let G = Gc ⊗ C be the complexification of Gc and let
g = Lie(G) = gc⊗C be its Lie algebra. Then the Lie algebra gc is generated by the following
elements:

Hk = ıhk , Jk = fk − ek , Pk = ı(ek + fk) , k ∈ I . (2.12)
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In particular, the following relations hold:

[
Jk, ı$

∨
j

]
= δkjPk ,

[
ı$∨j , Pk

]
= δkjJk , [Pk, Jk] = 2

∑̀
i=1

aki(ı$
∨
i ) . (2.13)

Let HG ⊂ G be its maximal torus, such that h = Lie(HG), and let X∗(HG) be the group
of (rational) characters χ : HG → S1. Then the differential dχ at 1 ∈ G of a character
χ ∈ X∗(HG) is a linear form on h; hence it provides an embedding X∗(HG) ⊂ h∗ as a
discrete subgroup (lattice), supplied with a scalar product 〈 , 〉.

The dual X∗(HG) ⊂ h of the lattice X∗(H) is isomorphic to hZ. Moreover, using the
above notations of the (co)root and (co)weight lattices we have

ΛR ⊆ X∗(HG) ⊆ ΛW , Λ∨R ⊆ X∗(HG) ' hZ ⊆ Λ∨W . (2.14)

The adjoint action of maximal torus HG on the complex Lie algebra g provides the Cartan
decomposition:

g = hC ⊕
⊕
α∈Φ

gα , gα =
{
X ∈ g : adh(X) = α(h)X, ∀h ∈ h

}
;

gα = Ceα , g−α = Cfα , α ∈ Φ+ .

(2.15)

The root system Φ and the lattice X∗(HG) (or its dual lattice X∗(HG) ' hZ) determine
a unique (up to isomorphism) connected semisimple Lie group G. In particular, G is simply
connected if and only if X∗(H) ∼= ΛW .

The center Z(G) of a complex connected Lie group G allows for the following presenta-
tion:

Z(G) ' Λ∨W/X∗(HG) ' X∗(HG)/ΛR , (2.16)

and the group Z(G) o Out(Φ) is isomorphic to the group of symmetries of the extended

Dynkin diagram Γ̃(Φ). More specifically, in the case of simply-connected G its center is
isomorphic to the quotient group (2.5):

Z(G) ' ΛW/ΛR . (2.17)

In particular, for simply-connected complex Lie groups of types A`, B`, C` and D` we have

Z(A`) ' Z/(`+ 1)Z , Z(B`) ' Z/2Z , Z(C`) ' Z/2Z .

Z(D`) '

{
Z/2Z⊕ Z/2Z , ` ∈ 2Z

Z/4Z , ` ∈ 1 + 2Z
.

(2.18)

Let Aut(G) be the group of all automorphisms of a connected complex semisimple Lie
group G. Its connected component can be identified with the group Int(G) of inner auto-
morphisms, which is isomorphic to the adjoint group:

Int(G) ' G/Z(G) . (2.19)
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The quotient group over the connected component is the group of outer automorphisms:

Out(G) = Aut(G)/Int(G) . (2.20)

In the case of simply-connected Lie group G, the following holds (see e.g. [L], Chapter V
Theorem 4.5.B):

Out(G) ' Out(Φ) . (2.21)

2.1 Normalizers of maximal tori

Given a connected semisimple complex Lie group G with a (fixed) maximal torus HG ⊂ G
of finite rank `, let NG = NG(HG) be the normalizer of the maximal torus and let us write

1 −→ HG −→ NG
p−→ WG −→ 1 . (2.22)

The quotient group WG := NG/HG is finite and is isomorphic to the reflection group W (ΦG)
associated with the corresponding root system ΦG. The group WG = W (ΦG) allows a
presentation by simple root reflections {si, i ∈ I} from (2.7) as generators subjected to the
following relations:

s2
i = 1, (2.23)

sisjsi · · ·︸ ︷︷ ︸
mij

= sjsisj · · ·︸ ︷︷ ︸
mij

, i 6= j ∈ I,
(2.24)

where mij = 2, 3, 4, 6 for aijaji = 0, 1, 2, 3, respectively. Here aij = 〈αj, α∨i 〉 is the Cartan
matrix entry (2.4). Equivalently these relations may be written in the Coxeter form:

s2
i = 1, (sisj)

mij = 1 , i 6= j ∈ I . (2.25)

The exact sequence (2.22) defines the canonical action ofWG onHG so that the corresponding
action on the Lie algebra h = Lie(HG) is provided by (2.7):

si(hj) = hj − 〈αi, α∨j 〉hi = hj − ajihi . (2.26)

This action preserves the scalar product 〈 , 〉 in h, which allows to identify Weyl group
WG = W (ΦG) with a subgroup in the orthogonal group O

(
h, 〈 , 〉

)
.

Let us stress that the situation is bit different in the case of non-connected groups. Thus
in the following we encounter an example of a non-connected group, the orthogonal group
O2` having two connected components. In this case, the quotient NO2`

(H)/H is larger then
the Weyl group WO2`

defined by the generators and relations (2.23), (2.24) and contains the
outer automorphism of the root system of the simple connected Lie groups SO2`.

The important fact is that the exact sequence (2.22) does not split in general i.e. NG is not
necessarily isomorphic to the semi-direct product WGnHG (for various details see [D],[T2],
[CWW], [AH]). Thus in general we may only pick a suitable section of the projection map
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p in (2.22). One such universal section for an arbitrary reductive Lie group was constructed
by Tits [T2]. Namely, [T2] says that for general G, there exists a larger subgroup W T

G ⊂ NG

containing WG as a quotient and fitting into the following exact sequence:

1 // H
(2)
G

// W T
G

// WG
// 1 . (2.27)

Here H
(2)
G ' (Z/2Z)` is the 2-torsion subgroup of the maximal torus HG in the reductive

complex Lie group G. In case the group G is semisimple the Tits group W T
G allows for the

following explicit presentation by the following generators [AH] (see the notations of (2.12))1

ṡi = e
π
2
Ji , i ∈ I , (2.28)

and relations (compare with (2.23), (2.24)):

(ṡi)
2 = eπıhi , ṡiṡj · · ·︸ ︷︷ ︸

mij

= ṡj ṡi · · ·︸ ︷︷ ︸
mij

, i 6= j ,

Adṡi(h) = si(h) , ∀h ∈ h .

(2.29)

Using this presentation we readily observe that the Tits group W T
G is not only a subgroup

of the normalizer NG, but is a subgroup of the corresponding compact group Gc ⊂ G, and
more precisely of the normalizer subgroup NGc(Hc) of the maximal torus Hc in the compact
group Gc.

The true meaning of this construction is rather elusive; in [GLO] we have proposed some
underlying reasons for the existence of this Tits construction. Below we will follow another
direction and consider only the case of classical Lie groups G. Recall that a complex classical
Lie group is a simple reductive Lie group allowing embedding in the general Lie group as
a fixed point subgroup of an involution. Equivalently the classical groups may be defined
as a stabilizer subgroup of bilinear forms. Essentially they are exhausted by the following
families of groups

GL`+1(C), O2`+1(C), Sp2`(C), O2`(C), (2.30)

corresponding to the series A`, B`, C` and D` of Dynkin diagrams. Let us stress that we dis-
tinguish the classical Lie groups per se from their various cousins like SL`+1(C), PSL`+1(C),
Spin`+1(C), the metaplectic group Mp2`(C) et cet.

In the case of classical Lie groups the results of [D], [T2], [CWW], [AH] might be formu-
lated as the following statement:

• In the case of the general linear group GL`+1(C) there is a section to the exact sequences
(2.22) and (2.27), so that NGL`+1(C) (and the Tits subgroup W T

GL`+1
) contains the Weyl

group W (A`) = WGL`+1
associated with the root system A`;

1In the following expressions we write the group elements as exponential of the linear combinations of Lie
algebra generators using the canonical exponential map exp : Lie(G)→ G. Note that map has a non-trivial
kernel so that for instance in the case G = GL`+1(C) we have e2πJi = e2πPi = e2πıhi = 1 for each i ∈ I.
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• In the case of the orthogonal groups O`+1(C) there exists a section to the corresponding
exact sequence (2.27), so that W T

O`+1
contains a subgroup isomorphic to WO`+1

;

• In the case of the symplectic group Sp2`(C) no section of the corresponding exact se-
quence (2.27) exists.

3 Classical Lie groups via involutive automorphisms

The definition of classical Lie groups as simple Lie groups isomorphic to fixed point subgroups
with respect to certain involutive automorphism in GL`+1(C) goes back to E. Cartan and
relevant expositions of the subject can be found in [H] and [L]. Below we recall the basics
of this construction.

Given the general linear group GL`+1(C) and a maximal torus H`+1 identified with the
subgroup of diagonal elements, let us describe its group of outer automorphisms Out(GL`+1).
Given Dynkin diagram Γ(A`), let us choose a natural ordering of the set of its vertices
I = {1, 2, . . . , `}, and consider the outer automorphism of the root system induced by the
Dynkin diagram symmetry:

ι : I −→ I , i 7−→ `+ 1− i . (3.1)

It defines the automorphism of the set ΠA` of simple roots, and therefore can be extended
to an (outer) automorphism of the root system Φ(A`). Thus the extended automorphism ι
obviously preserves the lattice hZ and can be lifted to the following involutive automorphism
of the Lie group GL`+1(C) (we keep the same notation ι):

ι : g 7−→ (gτ )−1 , g ∈ GL`+1(C) , (3.2)

where τ is the reflection at the opposite diagonal:

(gτ )ij = g`+2−j,`+2−i, g = ‖gij‖ ∈ GL`+1(C). (3.3)

Note that the automorphism ι respects the maximal torus H`+1 ⊂ GL`+1(C) given by invert-
ible diagonal matrices. Given the involutive automorphism ι ∈ Out(GL`+1) we have a family
of involutive automorphisms still respecting the maximal torus H`+1. Such automorphisms
are obtained by combining ι with arbitrary inner automorphisms AdS ∈ Int(GL`+1), where
S ∈ NGL`+1(C)(H`+1) is subjected to the condition SSι ∈ Z(GL`+1). Each such θ = AdS ◦ ι
defines the corresponding fixed points subgroups

Gθ = (GL`+1(C))θ . (3.4)

Classification of the corresponding subgroups is due to E. Cartan (see [H] Chapter IX, and
[L] Chapter VII for details). A crucial fact following from his theory is that the requirement
of G being a simple reductive Lie group imposes strong restrictions on possible choice of
inner automorphism AdS . The corresponding list of simple reductive groups is exhausted by
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the following cases

O2`+1 =
{
g ∈ GL2`+1 : θB(g) = g

}
,

Sp2` =
{
g ∈ GL2` : θC(g) = g

}
,

O2` =
{
g ∈ GL2` : θD(g) = g } ,

(3.5)

where θG are the involutive automorphisms of general linear group

θG : g 7−→ SG gι S−1
G , (3.6)

with the diagonal matrices SG given by

SB = diag(1,−1, . . . , 1) ∈ GL2`+1 , det(SB) = (−1)` ;

SC = diag(1,−1, . . . , 1,−1) ∈ GL2` , det(SC) = (−1)` ;

SD = SC · η , η = diag(Id`, −Id`) , det(SD) = 1 .

(3.7)

There is also the trivial case of θG = id, which corresponds to the general linear Lie group
GL`+1(C) itself. In the following we will use the term “classical group” in the narrow sense
by excluding the trivial case of general linear groups.

Let us note that the construction of classical Lie groups via involutive automorphims
described above differs from a more traditional one where instead of the reflection at the
opposite diagonal (3.3) the standard transposition is used. For instance elements of the
orthogonal subgroup O`+1 ⊂ GL`+1(C) are defined by the condition g = (gt)−1 where

(gt)ij = gj,i, g = ‖gij‖ ∈ GL`+1(C). (3.8)

Although two constructions are equivalent (one may be obtained from another by adjoint
action of a certain group element of the general linear group) the construction (3.5) is more
convenient when dealing with symmetries of the Dynkin diagrams and abstract root data
[DS]. Thus in the following we use (3.5) as our basic definition.

4 The normalizer of maximal torus in GL`+1

In the case of general linear Lie groups GL`+1 the exact sequence (2.22) is split by simple
reasons. Indeed each element g ∈ N`+1 induces an (inner) automorphism Adg of the Lie
algebra gl`+1(C), preserving the Cartan subalgebra h as well as the scalar product 〈 , 〉 in it.
This defines a group homomorphism from N`+1 into the orthogonal group O

(
hC, 〈 , 〉

)
, so

that its image is the Weyl group:

N`+1/Z(GL`+1) −→ WGL`+1
⊂ O`+1(C) ⊂ GL`+1(C) . (4.1)

This yields a canonical embedding of the Weyl group into the orthogonal group, which gives
rise to the homomorphism WGL`+1

→ GL`+1(C).
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This argument implies the following explicit presentation of the lifts of the simple root
generators si ∈ W (A`) = WGL`+1

, 1 ≤ i ≤ ` as elementary permutation matrices

si 7−→ Si =

(
Idi−1

0 1
1 0

Id`−i

)
∈ N`+1 , S2

i = 1 , (4.2)

satisfying the standard Coxeter relations

(SiSj)
2 = 1 , |i− j| > 1 , (SiSj)

3 = 1 , |i− j| = 1 , (4.3)

of the generators of permutation group S`+1.

The lifts Si of the generators si of the Weyl group WGL`+1
should be compared with

the generators of the corresponding Tits group W T
GL`+1

defined as follows. For the reductive

group GL`+1(C) the Tits group W T
GL`+1

⊂ N`+1 is given by the extension

1 // H
(2)
`+1(C) // W T

GL`+1
// WGL`+1

// 1 , (4.4)

where H
(2)
`+1 is the 2-torsion subgroup of the maximal torus H`+1. Let {ekk, 1 ≤ k ≤ (`+ 1)}

be the bases of the coweight lattice of GL`+1(C) corresponding to the diagonal matrices with
only one non-zero element being a unit on the diagonal (it might be expressed through the

fundamental coweights as follows ekk = p∨k − p∨k−1, see (10.14)). Then H
(2)
`+1 is generated by

the elements

Tk := eπıekk , 1 ≤ k ≤ (`+ 1) . (4.5)

The group W T
GL`+1

is generated by (2.28) for the roots system A`

ṡi = e
π
2
Ji =

( Idi−1

0 −1
1 0

Id`−i

)
∈ N`+1 , (ṡi)

2 = TiT
−1
i+1 , (4.6)

together with an additional central element given by the product of all Tk, k = 1, . . . , `+ 1.
Here we write down the matrix form of generators ṡi using the standard faithful representa-
tion of GL`+1(C). Comparing the matrix forms we arrive at the following relations:

Si = Tiṡi = ṡiTi+1 , 1 ≤ i ≤ ` . (4.7)

This leads to another presentation of the Tits group.

Lemma 4.1 The elements

Si , 1 ≤ i ≤ ` and Tk , 1 ≤ k ≤ (`+ 1) , (4.8)

satisfying the relations

S2
i = T 2

k = 1 , TkTn = TnTk ,

(SiSj)
2 = 1 , |i− j| > 1 , (SiSj)

3 = 1 , |i− j| = 1 ,

SiTk = Tsi(k)Si ,

(4.9)

provide a presentation of the Tits group W T
GL`+1

.
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Proof : The only non-obvious relation in the last line of (4.9) follows from explicit matrix
computation:

TiSiT
−1
i = Ti+1SiT

−1
i+1 = SiTiTi+1 = TiTi+1Si , 1 ≤ i ≤ ` . (4.10)

2

In Section 3 we have introduced involutive automorphisms θG ∈ Aut(GL`+1(C)) (3.5),
(3.6), (3.7) defining the classical Lie groups. The involutions θG do not act on the lift of
WGL`+1

defined by the generators Si but do act on its extension given by the Tits group.
Explicitly we have

θB : ṡi 7−→ ṡ2`+1−i , Ti 7−→ T2`+2−i ,

θC : ṡi 7−→ ṡ2`−i , Ti 7−→ T2`+1−i ,

θD : ṡi 7−→ ṡ2`−i , Ti 7−→ T2`+1−i .

(4.11)

Therefore, thus defined automorphism θG ∈ Aut(W T
GL`+1

) preserves the normal subgroup

H
(2)
`+1 = 〈Tk, 1 ≤ k ≤ `+ 1〉.

Let us describe the action of involutions θG in terms of another set of generators of
W T
GL`+1

; we introduce new elements given by

Si = TiSiT
−1
i = Ti+1SiT

−1
i+1 =

(
Idi−1

0 −1
−1 0

Id`−i

)
, Si = (Si)

−1 . (4.12)

Lemma 4.2 The elements Si, Si ∈ W T
GL`+1

satisfy the following relations:

S2
i = S

2

i = 1 , SiSi = SiSi = TiTi+1 , 1 ≤ i ≤ ` ;

(SiSj)
2 = (SiSj)

2 = (SiSj)
2 = 1 , |i− j| > 1 ,

(SiSj)
3 = (SiSj)

3 = 1 , SiSjSi = SjSiSj , |i− j| = 1 .

(4.13)

Proof : The relations follow from similar relations for the symmetric group (2.24), (2.23) and
(2.25). The latter (braid) relation can be checked using

Si = ṡiTi = Ti+1ṡi , (4.14)

and the braid relation (2.29) in the Tits group. 2

The action of the involutions θG (4.11) may be written as follows

θB(Si) = S2`+1−i , θC(Si) = S2`−i , 1 ≤ i ≤ ` ,

θD(Si) = S2`−i , 1 ≤ i < ` , θD(S`) = S` .
(4.15)

Note that the two sets {Si} and {Si} of generators define two different embeddings of the
Weyl group WGL`+1

into the Tits group W T
GL`+1

(and thus in the normalizer N`+1) which
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are interchanged by involutions θG. Let us stress that for example it is possible to find an
embedding WGL`+1

⊂ GL`+1(C) such that the image of WGL`+1
is invariant with respect to

θO`+1
. Indeed this fact is obvious in the case of the realization of the orthogonal subgroup

O`+1 ⊂ GL`+1(C) based on (3.8) because for Si defined by (4.2) we have Si ∈ O`+1. The same
fact for the realization (3.5) follows from the equivalence of the two realizations. However the
resulting matrix expressions for the lifts of si are more involved and require the use of complex
numbers while in our realization the matrix entries are elements of the set {−1, 0,+1}. Thus
in the following we will use the pair {Si}, {Si} of lifts related by (4.15).

5 Classical groups and their Weyl groups

For each complex classical Lie group G = GL`+1(C)θG the corresponding involution θG ∈
Aut(GL`+1) respecting the embedding H`+1 ⊂ GL`+1(C) of the diagonal maximal torus H`+1

naturally acts on the Lie algebra gl`+1(C), the corresponding root system ΦGL`+1
, normalizer

N`+1(H`+1) of H`+1 and the Weyl group WGL`+1
= N`+1(H`+1)/H`+1. Both the maximal

torus HG of G, normalizer NG(HG) and its quotient WG = NG(HG)/HG can be expressed
in terms of the corresponding objects of the underlying linear group GL`+1. Let us give
explicit expressions for the generators of the group of automorphisms Aut(ΦG) of the root
systems and the corresponding Weyl groups in terms of the generators of the Weyl group of
the corresponding general linear Lie group.

Proposition 5.1 The following explicit description of the generators of the group Aut(ΦG)
of automorphisms of the classical Lie algebra root systems ΦG and the corresponding Weyl
groups holds:

• For G = O2`+1 one has Aut(Φ(B`)) = W (Φ(B`)), and the simple root generators
sB`i ∈ W (Φ(B`)) can be expressed in terms of sA2`

i ∈ W (Φ(A2`)) as follows:

sB`1 = sA2`
` sA2`

`+1s
A2`
` = sA2`

`+1s
A2`
` sA2`

`+1 ,

sB`k = sA2`
`+1−ks

A2`
`+k = sA2`

`+ks
A2`
`+1−k , 1 < k ≤ ` .

(5.1)

• For G = Sp2` one has Aut(Φ(C`)) = W (Φ(C`)), and the simple root generators sC`i ∈
W (Φ(C`)) can be expressed in terms of s

A2`−1

i ∈ W (Φ(A2`−1)) as follows:

sC`1 = s
A2`−1

` , sC`k = s
A2`−1

`+1−ks
A2`−1

`−1+k = s
A2`−1

`−1+ks
A2`−1

`+1−k , 1 < k ≤ ` . (5.2)

• For G = O2` one has Aut(Φ(D`)) = W (Φ(D`)) o Out(Φ(D`)). The simple root gen-
erators sD`i ∈ W (Φ(D`)) together with the generator R ∈ Out(Φ(D`)) = Z/2Z can be

expressed in terms of s
A2`−1

i ∈ W (Φ(A2`−1)) as follows:

sD`1 = s
A2`−1

` s
A2`−1

`−1 s
A2`−1

`+1 s
A2`−1

` = s
A2`−1

` s
A2`−1

`+1 s
A2`−1

`−1 s
A2`−1

` ,

sD`k = s
A2`−1

`+1−ks
A2`−1

`−1+k = s
A2`−1

`−1+ks
A2`−1

`+1−k , 1 < k ≤ ` ;

R = s
A2`−1

` .

(5.3)
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Proof : We verify the assertion via case by case study in Lemmas 10.1, 10.4 and 10.7 in the
following subsections. 2

The Weyl group W (A`) allows embedding into the Lie group GL`+1 as was discussed in
Section 4. Therefore it is now natural to ask for a possibility to lift the presentations (5.1),
(5.2), (5.3) of Weyl groups WG into the corresponding classical groups G = GL`+1(C)θG via
the pair of lifts of the Weyl group WGL`+1

into the general linear group GL`+1(C) considered
previously. For the Tits extension W T

GL`+1
the following result is easily checked.

Proposition 5.2 The explicit presentation for the Tits group W T
G of the classical Lie group

G = (GL`+1)θG may be provided by replacement of all si’s by ṡi’s in (5.1), (5.2) and (5.3).

Proof : We give the case by case verification in Lemmas 10.1, 10.2 and 10.3 by straightforward
computation using standard faithful representations (3.5). 2

For the Weyl groups we can not expect such a simple answer. Indeed we know that
although for the groups O2` and O2`+1, the corresponding Weyl groups allow embedding in
the corresponding classical group this is not so for Sp2`. So for the case of the Weyl groups
we have the following result.

Theorem 5.1 Given a classical group G with its maximal torus HG ⊂ G, let Si, Si, 1 ≤
i ≤ ` be the generators (4.2), (4.12) of the Tits group W T

GL`+1
and let Tk, 1 ≤ k ≤ ` + 1 be

the elements (4.5). Then the following holds:

• In the case G = O2`+1 the generators SBi defined by

SB1 = S`+1S`S`+1 = S`S`+1S` ,

SBk = S`+1−kS`+k , 1 < k ≤ ` ,
(5.4)

are θB-invariant and generate a finite group isomorphic to W (B`) = WO2`+1
.

• In the case G = O2` the generators SDi defined by

SD1 = S`S`−1S`+1S` ,

SDk = S`+1−kS`−1+k , 1 < k ≤ ` ,
(5.5)

are θD-invariant and generate a finite group isomorphic to W (D`) = WO2`
.

• In the case G = Sp2` the Tits group W T
Sp2`

is generated by θC-invariant generators

SC1 = T`S` ,

SCk = S`+1−kS`−1+k , 1 < k ≤ ` ,
(5.6)

while the group of θC-invariant combinations of Si, Si, 1 ≤ i ≤ ` generated by

S̃C1 = S`S` = T`T
−1
`+1 ,

SCk = S`+1−kS`−1+k , 1 < k ≤ ` ,
(5.7)

is isomorphic to a proper subgroup of the Weyl group W (C`).
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Proof : We propose the detailed proof of the assertion via case by case study in Propositions
10.1, 10.2 and 10.3 below. 2

6 Description of θG-invariants

The explicit expressions for the generators of the Weyl and Tits groups of the classical
groups presented above implies some general relations between maximal torus normalizers,
Weyl groups and Tits groups for general linear groups GL`+1(C) and their classical subgroups
G = (GL`+1(C))θG . In this section we prove a set of such relations. First let us note the
following property of the involutions θG defining classical Lie groups G.

Lemma 6.1 The centralizer of the fixed point subset HθG
`+1 in GL`+1(C) is H`+1.

Proof We shall solve the set of equation for g ∈ GL`+1(C)

gh = hg, h ∈ HθG
`+1. (6.1)

Due to the obvious isomorphism HθG
`+1 = H ι

`+1 we may use the basic automorphism ι (3.3)
instead of θG in (6.1). Let H`+1 ⊂ GL`+1 be the diagonal subgroup. Explicitly, elements
g ∈ CGL`+1

(H ι
`+1) of the centralizer CGL`+1

(H ι
`+1) of invariant subtorus H ι

`+1 ⊂ H`+1 satisfy
the conditions

xigij = gijxj , (6.2)

where

g = ‖gij‖, h = diag(x1, x2, . . . , x`+1) , (6.3)

with the additional condition x`+2−i = x−1
i reflecting ι-invariance of h. Since g does not

depend on xi and there are no universal x-independent relations between entries of h (al-
though they are subjected to quadratic relations xix`+2−i = 1) we infer gij = 0, i 6= j i.e.
g ∈ H`+1. 2

As we already notice the definition of the Weyl group as a quotient of the normalizer
NG(HG) by HG is not equivalent to the definition of the Weyl group via generators and rela-
tions (2.23), (2.24) for non-connected classical Lie groups. Precisely the group NG(HG)/HG

for all classical Lie groups obtained as fixed point subgroups of the general linear group (we
exclude the case of trivial involution) may be identified with the group of automorphims of
the corresponding root system

NG(HG)/HG ' Aut(ΦG) . (6.4)

This group fits into the following exact sequence

1 −→ WG −→ Aut(ΦG) −→ Out(ΦG) −→ 1 (6.5)
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and we have

Aut(B`) ' W (B`), Aut(C`) ' W (C`), Aut(D`) ' W (D`)× (Z/2Z). (6.6)

Let us stress that the notation Out(ΦG) is natural for connected simple groups where indeed
this group is the factor of all automorphims over inner automorphisms. In the case of non-
connected groups the whole group Aut(ΦG) is realized by inner automorphims (see a detailed
discussion of the group O2` in Section 10.4).

Proposition 6.1 Let θ be the involution in GL`+1 defining a classical Lie group G with
maximal torus HG and the Weyl group WG. Then the following isomorphisms hold

HθG
`+1 = HG, (6.7)

(N`+1(H`+1))θG = NG(HG), (6.8)

(
WGL`+1

)θG = Aut(ΦG). (6.9)

Proof : Any two θ-fixed elements of H`+1 define a pair of mutually commuting elements of
G. Thus we have an embedding Hθ

`+1 ⊂ HG. By Lemma 6.1 any element commuting with
Hθ
`+1 shall be in H`+1 i.e. we have embedding HG ⊂ H`+1 and taking into account that the

elements of HG are θG-invariant, we obtain HG ' HθG
`+1.

To establish (6.8), first note that elements g ∈ (N`+1(H`+1))θG are θ-fixed elements of
GL`+1 stabilizing H`+1 i.e. ghg−1 ∈ H`+1 for any h ∈ H`+1. It is clear that for any h ∈ HθG

`+1

we have ghg−1 ∈ HθG
`+1. This defines an embedding (N`+1(H`+1))θG ⊂ NG(H). In the

following we use the fact that the involution θG on the commutative group H`+1 defines the
decomposition H`+1 = H+H− into a product of commutative subgroups, so that for each
element h ∈ H`+1 there exist unique h± ∈ H± such that

h = h+h− = h−h+, hθG+ = h+, hθG− = h−1
− . (6.10)

Using (6.7) we can make the identification H+ ' HG.

Now we shall construct an embedding NG(HG) ⊂ N`+1(H`+1)θG i.e. prove that any θ-
invariant element g ∈ GL`+1 stabilizing HG also transforms h ∈ H`+1 into some other element
h′ ∈ H`+1. This is trivial for elements of H+ ' HG and thus we need to prove that gh−g

−1

is an element of H`+1. The element gh−g
−1 commutes with all elements in HθG

`+1 ⊂ H`+1 due
to the fact that H+ and H− mutually commute and g stabilizes H+. Moreover for a given
g all elements gh−g

−1 mutually commute. By Lemma 6.1 this entails that gh−g
−1 ⊂ H`+1.

Combining these two embeddings we obtain (6.8). To prove (6.9) let us compare two groups

N`+1(H`+1)θ/Hθ
`+1 , (N`+1(H`+1)/H`+1)θ . (6.11)

There is a natural map from the first group to the second one as each element in the l.h.s.
coset defines an element of g ∈ N`+1(H`+1) modulo an element of Hθ

`+1 and therefore modulo
H`+1. Note that elements of the second group in (6.11) are defined by the condition

gθ = g · h, g ∈ N`+1(H`+1), h ∈ H`+1, (6.12)
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modulo right action of H`+1 on g. Due to involutivity of θG we have

g =
(
gθ
)θ

= (gh)θ = ghhθ, (6.13)

and thus

hθ = h−1. (6.14)

Changing representative g → g̃ = gh̃, h̃ ∈ H`+1 for g in the coset N`+1(H`+1)/H`+1 we may
also modify (6.12) as follows

g̃θ = g · hh̃θ = g̃ · hh̃θh̃−1. (6.15)

Thus one can get rid of h in (6.12) if we manage to solve the equation

h̃θ = hh̃, (6.16)

for any h. Using the decomposition

h̃− = h̃+h̃− , (6.17)

and taking into account that h ∈ H− we can easily check that the equation (6.16) can
always be solved. Hence we conclude that two groups (6.11) are isomorphic and thus the
last statement (6.9) follows from the fact that the Weyl groups are given by the quotients

W θG
GL`+1

= (N`+1(H`+1)/H`+1)θ = N`+1(H`+1)θ/Hθ
`+1 = NG(HG)/HG = Aut(ΦG).

2

Proposition 6.2 Given a classical complex Lie group G = (GL`+1(C))θG, the following
holds: (

W T
GL`+1

)θG = W T
G . (6.18)

The explicit presentation for (6.18) may be provided by replacement of all si’s by ṡi’s in
(5.1), (5.2) and (5.3).

Proof : To prove the assertion we use the following fact (see [GLO] Proposition 3.1). Let
G(R) be the totally split real form of G(C). Then

π0(NG(R)(H(R))) = W T
G(C)(H(C)) . (6.19)

The connected component of the trivial element of W T
G(R) ⊂ NG(R)(H(R)) is isomorphic

to Rrank(G)
>0 and we have the split exact sequence

1 −→ Rrank(G)
>0 −→ NG(R)(HG(R)) −→ W T

G(C)(HG(C)) −→ 1 . (6.20)
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Thus we have (
W T
GL`+1(C)(H`+1(C))

)θG
=
(
N`+1(R)(H`+1)/R`+1

>0

)θG , (6.21)

while on the other hand

W T
G(C)(HG(C)) = (N`+1(R)(H`+1))θG

/(
R`+1
>0

)θG . (6.22)

There is an obvious map

(N`+1(R)(H`+1))θG
/(

R`+1
>0

)θG −→ (
N`+1(R)(H`+1)/R`+1

>0

)θG , (6.23)

and we have to show that it is actually an isomorphism. The obstruction to the isomor-
phism (6.23) is given by elements in N`+1(R)(H`+1), invariant with respect to θG only up to
multiplication by an element Λ ∈ R`+1

>0 and we shall consider such elements up to the right
action of H`+1. As θG has order two we have the equation

Λ · ΛθG = 1 . (6.24)

Now consider another representative g̃ := gQ in the same H`+1-coset such that

g̃θG = gθGQθG = gΛQθG . (6.25)

Thus we can choose a θG-invariant representative if we can solve the equation

Q = ΛQθG . (6.26)

and consistency of this equation follows from (6.24). Explicitly we have

q`+2−i = λiqi, Q = diag(q1, q2, · · · , q`+1), Λ = diag(λ1, λ2, · · · , λ`+1) , (6.27)

where Q,Λ ∈ R`+1
>0 . A direct check shows that such equations are always solvable and thus

we have the isomorphism

(N`+1(R)/(H`+1))θG /
(
R`+1
>0

)θG ' (N`+1(R)(H`+1)/R`+1
>0

)θG . (6.28)

This completes the proof of (6.18). Note that the calculations above actually prove that the
first cohomology group of Z/2Z generated by θG acting in R`+1

>0 is trivial.

The explicit presentation for the generators of W T
G is obtained in Lemmas 10.2, 10.5 and

10.9 in the following subsections. 2

7 Why Sp2` is different

According to Theorem 5.1 all classical Lie groups G except of symplectic type allow a lift
of the Weyl group WG into the corresponding Lie group G. In other words, the exact
sequence (2.22) splits, so that the map p has a section. The splitting in these cases allows a
simple explanation: the corresponding Weyl group action in hR preserves the standard inner
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product, and therefore the Weyl group may be identified with a subgroup of O(h), which
immediately implies the splitting of the sequence (1.1) in the cases of GL`+1 and O`+1. In
contrast, for symplectic groups the exact sequence (2.22) does not split and as a section
of p we encounter a non-trivial extension W T

Sp2`+2
of the Weyl group WSp2`+2

= W (C`+1)
introduced by Tits. Obviously the peculiarity of the symplectic series of classical Lie groups
begs for explanation. In this section we propose an explanation of this phenomena relying
on the properties of quaternion numbers H, the unique non-commutative associative normed
division algebra over R.

Recall that in the case of the classical Lie groups along with the standard approach to
the classification of the complex Lie algebras via root data, we may use another (Cartan’s)
approach based on the analysis of subalgebras of the general linear algebras fixed by certain
involutions. A closely related approach is based on the classification of normed division
associative algebras. The list of normed division associative algebras A is exhausted by the
algebras of real, complex and quaternion numbers; to these algebras we associate three series
of general linear groups:

GL`+1(R) , GL`+1(C) , GL`+1(H) . (7.1)

The corresponding maximal compact subgroups

O`+1(R) , U`+1 , USp`+1 , (7.2)

may be defined as stabilizer subgroups of the standard quadratic form over the corresponding
division algebra A:

(x, x) =
n∑
i=1

x†ixi =
n∑
i=1

‖xi‖2 , xi ∈ A . (7.3)

Further complexification of the compact groups provides a complete list of the classical
complex Lie groups:

O`+1(R)⊗R C = O`+1(C) , U`+1 ⊗R C = GL`+1(C) ,

USp`+1 ⊗R C = Sp2`+2(C) .
(7.4)

Actually the point of view based on matrix groups over non-commutative fields implies
some adjustment of standard definitions in the structure theory of Lie groups. An obvious
instance is the notion of the maximal torus: for matrix groups over non-commutative fields,
it is more natural to consider diagonal subgroups of general linear groups over A rather than
maximal commutative subgroup. Namely, given a normed division algebra A, let A∗ be its
multiplicative group of invertible elements; then HA = (A∗)`+1 will be the diagonal subgroup
of GL`+1(A). In the special case of symplectic groups the underlying normed division algebra
A = H is non-commutative and the corresponding diagonal subgroup of GL`+1(H),

HH =
(
H∗ × · · · ×H∗

)︸ ︷︷ ︸
`+1

⊂ GL`+1(H) ,
(7.5)

is a non-commutative Lie group. The modification of the notion of maximal torus implies
the following modification of the definition of the Weyl group.
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Definition 7.1 Define the Weyl group WGL`+1
(A) of GL`+1(A) to be the group of inner

automorphisms of the diagonal subgroup HA ⊂ GL`+1(A).

Note that while in the commutative case the group of inner automorphisms of the diagonal
subgroup H`+1 ⊂ GL`+1 is isomorphic to the quotient group N`+1(H`+1)/H`+1, for non-
commutative A this is not true.

Lemma 7.1 The group WGL`+1
(H) allows the following description:

WGL`+1
(H) = S`+1 n (SO3)`+1 . (7.6)

Proof : The group GL`+1(H) acts on its diagonal subgroup HH by conjugation, so let us find
the normalizer subgroup NH = N`+1(H)(HH) which preserves HH. The diagonal group HH
is generated by one-parametric subgroups

H
(k)
H =

{( Idk−1 0 0
0 d 0
0 0 Id`−k

)
, d ∈ H∗

}
⊂ HH , 1 ≤ k ≤ `+ 1 . (7.7)

Let us pick a diagonal element Dk = diag(Idk−1 , dk, Id`−k) ∈ H(k)
H . Then M ∈ GL`+1(H)

belongs to NH if and only if it satisfies the following equations for each 1 ≤ k ≤ `+ 1:

MDk = D′M , for some D′ = diag(d′1, . . . , d
′
`+1) ∈ HH . (7.8)

Explicitly using the matrix notation M = ‖gij‖, the above equation reads

gij = d′igij , j 6= k ; gikdk = d′igik , 1 ≤ i, j , k ≤ `+ 1 . (7.9)

Now for each 1 ≤ i ≤ ` + 1 the former relation in (7.9) implies either gij = 0, ∀j 6= k, or
d′i = 1. In the case gij = 0, ∀j 6= k we necessarily obtain from the latter relation in (7.9)
that gik 6= 0, otherwise M has the i-th zero row and M /∈ GL`+1(H). In the case d′i = 1
it follows from the latter relation in (7.9) that gikdk = gik, which entails gik = 0, since we
assume dk 6= 1 so that Dk 6= Id`+1. Taking into account that gij are subjected to (7.9) for
each 1 ≤ k ≤ `+ 1, we deduce from the above that there is only one non-zero element in the
i-th row of M .

Since the matrix M is invertible its rows are linearly independent, so for different i
the non-zero entries gij have different j’s. This defines the subgroup of monomial matrices
M`+1(H) ⊂ GL`+1(H) consisting of matrices with only one non-zero element in each column
and each row, and yields NH = M`+1(H). Clearly, the quotient group NH/HH is isomorphic
to the permutation group:

M`+1(H)/HH = S`+1 , (7.10)

so that Definition 7.1 reads

WGL`+1
(H) = S`+1 n Int(H)`+1 . (7.11)
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where Int(H) = H∗/R∗ is the group of inner automorphisms of H (note that by Skolem-
Noether theorem all automorphisms of H are inner). The norm homomorphism induces the
following exact sequence:

1 // SU2
// H∗

Nm
// R>0

// 1 ,

Nm(q) = qq̄ , Nm(H) = R>0 .

(7.12)

Taking into account R∗ = Z(H) ∩H∗ = R>0 × µ2 with µ2 = {±1} being a group of roots of
1 in R, we obtain

Aut(H) = H∗/R∗ = SU(2)/µ2 ' SO3 . (7.13)

Thus Aut(H) is identified with the adjoint group SO3 of the group SU2 of unit quaternions.
This complete the proof of (7.6). 2

Let AutC(H) ⊂ Aut(H) be the subgroup of automorphisms preserving the subalgebra
C = (R⊕ Rı) ⊂ H.

Lemma 7.2 The following holds:

AutC(H) = (C∗ t C∗ )/R∗ , (7.14)

and the following central extension splits

1 −→ C∗/R∗ −→ AutC(H) −→ Gal(C/R) −→ 1 . (7.15)

Proof : Consider the faithful two-dimensional representation H→ Mat2(C), q 7→ q̂:

1̂ = Id2 , ı̂ =
(
ı 0

0 −ı

)
, ̂ =

(
0 1

−1 0

)
, k̂ =

(
0 ı

ı 0

)
. (7.16)

The norm homomorphism (7.12) is given by the matrix determinant:

q = q0 + ıq1 + q2 + kq3 ∈ H , |q|2 = qq̄ = q2
0 + q2

1 + q2
2 + q2

3 ,

q̂ =

(
q0 + ıq1 q2 + ıq3

−(q2 − ıq3) q0 − ıq1

)
, |q|2 = det q̂ ∈ R>0 .

(7.17)

Then elements z of the subalgebra C = R⊕Rı ⊂ H are identified with the diagonal matrices

z 7−→ ẑ =
(
z 0

0 z̄

)
, |z|2 = zz̄ = det ẑ , (7.18)

while the general quaternion has a representation for a, b ∈ C

q 7−→ q̂ =
(

a b

−b̄ ā

)
, det q̂ = |a|2 + |b|2 . (7.19)
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Now a quaternion q belongs to centralizer of subalgebra C ⊂ H if and only if q̂ẑ = ẑ′ q̂ for
any z ∈ C, which reads: (

az bz̄

−b̄z āz̄

)
=
(

z′a z′b

−z̄′b̄ z̄′ā

)
. (7.20)

Since z ∈ C is arbitrary, either z = z′ and b = 0, or z = z̄′ and a = 0. Obviously, the case
b = 0 corresponds to q ∈ C∗ ⊂ H∗, and in case a = 0 we have q ∈ C∗ ⊂ H∗. Taking into
account that q ∈ R∗ implies (7.14). The second statement (7.15) follows from the fact that
̂ acts by complex conjugation:

 z −1 = z̄ , (7.21)

and its image in the quotient group (C∗ t C∗ )/R∗ is precisely the generator of Gal(C/R)
given by the complex conjugation. 2

Recall that the standard Weyl group of the symplectic Lie group Sp2`+2 is given by

WSp2`+2
= W (C`+1) = S`+1 n (Z/2Z)`+1 . (7.22)

Here Z/2Z in r.h.s. may be identified with the Galois group Gal(C/R) and thus allowing
via splitting of (7.15) an embedding

WSp2`+2
⊂ WGL`+1

(H). (7.23)

The quaternionic analog WGL`+1
(H) of the standard Weyl group has obvious obstruction

for the embedding into the general Lie group GL`+1(H). Indeed this lift implies in particular
the transition from the adjoint action of quaternions on itself to its left action. On the other
hand we have the following standard exact sequence

1 // R∗ // H∗
π
// Aut(H) // 1 , (7.24)

or taking into account the identifications SU(2) = H∗/Nm(H) (for the notations see (7.12))
and Aut(H) = SO3

1 // µ2
// SU2

π
// SO3(R) // 1 . (7.25)

The generator of µ2 above might be identified with the square 2 of the quaternionic unity.
Indeed, the group Aut(H) ' SO3 acts in the subspace R3 of purely imaginary quaternions

x̂ = ıx1 + x2 + kx3 , (7.26)

via standard three-dimensional rotations. Then the section of projection π may be iden-
tified with the lift of the orthogonal rotations to the conjugation action of the unit norm
quaternions q ∈ SU2:

Adq : x̂ −→ qx̂q−1 . (7.27)
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Let us pick a rotation given by the diagonal element

g = diag(−1,+1,−1) ∈ SO3 . (7.28)

Solving the equation ĝx = qx̂q−1 for (7.28), that is

−ıx1 + x2 − kx3 = q
(
ıx1 + x2 + kx3

)
q̄ , (7.29)

we derive that q =  and thus

ĝ =  , ĝ2 = −1 . (7.30)

The fact that the square is equal to minus a unit element implies that indeed we have a
central extension with generator which may be identified with 2.

Now taking into account (7.11) we arrive at the following result.

Proposition 7.1 The quaternionic Weyl group WGL`+1
(H) allows the extension W̃GL`+1

(H)

1 −→ (µ2)`+1 −→ W̃GL`+1
(H) −→ WGL`+1

(H) −→ 1 . (7.31)

The extended group W̃GL`+1
(H) allows a natural embedding

W̃GL`+1
(H) ⊂ GL`+1(H) . (7.32)

The Tits group extension

1 −→ (µ2)`+1 −→ W T
Sp2`+2

−→ WSp2`+2
−→ 1 , (7.33)

is then obtained by restriction of (7.31) to the subgroup WSp2`+2
⊂ WGL`+1

(H).

Thus the underlying reason for the appearance of the Tits groups in the case of the
symplectic Lie groups may be traced back to the extensions (7.24), (7.25). The non-triviality
of this extension is closely related with the basic µ2-extension of the Galois group Gal(C/R)
characterizing quaternions. Actually the cohomology class measuring non-triviality of this
extension is directly related with the basic invariant characterizing the real central simple
division algebras. Indeed such algebras are characterized by the invariant taking values in
the 2-torsion of the Brauer group (see e.g. [S], [PR]), which coincides with the whole Brauer
group in case of R:

Br(R) = H2(Gal(C/R),C∗) ' H2(Gal(C/R), µ2) ' µ2 . (7.34)

The corresponding cohomology group describes the extensions of the form

1 −→ C∗ −→ A −→ Gal(C/R) −→ 1 , (7.35)

and the case of the semidirect product C o Gal(C/R) with the natural action of Gal(C/R)
via complex conjugation corresponds to the trivial cocycle. The only other non-trivial case
corresponds to the algebra A = H of quaternions so that the lift of the generator σ ∈
Gal(C/R) may be identified with the quaternionic unit , 2 = −1. This provides a link
between the non-trivial extension (7.25) and the construction of quaternions via the non-
trivial extension (7.35) (for more conceptual explanations of the relation between universal
µ2-extension of the orthogonal groups and the second cohomology of the Galois group of the
base field see [BD] and references therein). In particular this directly relates the fact that
2 = −1 in the algebra of quaternions with the unavoidable appearance of the Tits extension
of the Weyl group for classical symplectic Lie groups.
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8 Lie groups closely related with classical Lie groups

In this section we consider several examples of constructions of suitable sections in the
extensions (1.1) for the Lie groups closely related to classical Lie groups. Precisely we will
treat the cases of the unimodular subgroup SL`+1 ⊂ GL`+1 of the general linear group, of the
groups Pin2`+1, Pin2`, Spin2`+1 and Spin2`. In all cases we provide an explicit construction
of sections of (1.1) realized as central extensions of the corresponding Weyl groups. Let
us stress that these sections differ from the Tits lifts (which are not central extensions of
the corresponding Weyl groups in general). Although the possibility to define sections via
central extensions is obvious for Pin groups (they are central extensions of the corresponding
classical orthogonal groups) it is a bit less obvious for unimodular and spinor Lie groups.

8.1 Construction of a section for G = SL`+1

We will freely use the notations for root data of type A` defined in the Appendix. Recall
that the unimodular subgroup SL`+1 ⊂ GL`+1 is defined as a kernel of the determinant map
thus fitting the following exact sequence:

1 // SL`+1(C)
ϕ
// GL`+1(C)

det
// C∗ // 1 . (8.1)

The group center of the unimodular group is identified with the cyclic group: Z(SL`+1(C)) =
Z/(`+ 1)Z generated by ζ = e2πı$∨` . The image ϕ(ζ) belongs to the center Z(GL`+1) = C∗
and is given by:

ϕ(ζ) = e
2πı
`+1

p∨`+1 ∈ Z(GL`+1(C)) . (8.2)

In Section 4 we constructed a lift of the Weyl group WGL`+1
= W (A`) corresponding to

the root system A` to the group GL`+1. As the Weyl groups for SL`+1 and GL`+1 coincide
to construct a section of (1.1) for SL`+1(C), we shall invert the homomorphims ϕ on the
subgroup WGL`+1

⊂ GL`+1. Formally the inverse of ϕ may be written as follows

ϕ−1(g) = g ·
[
det (−1)(det g)

]−1
, g ∈ GL`+1(C) , (8.3)

where det(−1) is a multi-valued inverse of the determinant map det in (8.1), which can be
defined by

det (−1) : C∗ −→ Z(GL`+1) , det (−1)(z) = e
1
`+1

p∨`+1 log(z) , z ∈ C∗ . (8.4)

To make this map single-valued we shall choose a branch of the log-function. Note that all
generators Si of WGL`+1

(C) defined in (4.2) satisfy the relation detSi = −1. Thus we pick
log(−1) = ıπ and introduce the following lift of generators Si in SL`+1(C):

σi = e
πı
`+1

p∨`+1 Si , 1 ≤ i ≤ ` . (8.5)
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Proposition 8.1 The group W̃ (A`) generated by the elements (8.5) provides a central ex-
tension

1 // Z(SL`+1) // W̃ (A`) // W (A`) // 1 , (8.6)

of the Weyl group W (A`) with the defining relations

σ2
k = ζ , for each 1 ≤ k ≤ ` ;

σkσj = σjσk , if mkj = 2,

and σkσjσk = σjσkσj , if mkj = 3 ,

(8.7)

where ζ = e2πıω∨` is the generator of the center Z(SL`+1). The group W̃ (A`) allows an
embedding in NSL`+1

(HSL`+1
) compatible with the exact sequence

1 −→ HSL`+1
−→ NSL`+1

(HSL`+1
) −→ W (A`) −→ 1 , (8.8)

and the embedding Z(SL`+1) ⊂ HSL`+1
.

Proof . The element e
ıπ
`+1

p∨`+1 is in the center of GL`+1(C) and its square is equal to ζ. The
relations (8.7) then follow from the relations (4.2) and (4.3) for the generators of the Weyl
group W (A`). 2

8.2 Construction of a section for SO`+1

The problem of lifting the Weyl groups W (B`) and W (D`) into special orthogonal sub-
groups is similar to that for SL`+1 ⊂ GL`+1. In (5.4), (5.5) we introduced a lift of Weyl
groups W (B`) and W (D`) to the corresponding orthogonal groups. It is natural to split this
construction into two parts depending on the parity of the rank.

In case of the odd orthogonal group the following sequence splits,

1 // SO2`+1

ϕ
// O2`+1

det
// µ2

// 1 , (8.9)

so that

O2`+1 ' Z(O2`+1)× SO2`+1 . (8.10)

Here the generator z of the center Z(O2`+1) = Z/2Z is given by (see Section 10.2 for
notations):

z = TB0 T
B
1 · · ·TB` = TB0 e

πı$∨1 = −Id2`+1 ∈ Z(O2`+1) , (8.11)

The Weyl group generators SBi (5.4) satisfy

det(SB1 ) = −1 , det(SBk ) = 1 , 1 < k ≤ ` , (8.12)

so that SB1 ∈ (O2`+1 \ SO2`+1) and SBk ∈ SO2`+1, 1 < k ≤ `.
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Lemma 8.1 The elements σi ∈ SO2`+1 defined by

σ1 = zSB1 , σk = SBk , 1 < k ≤ ` , (8.13)

generate the group isomorphic to the Weyl group W (B`).

Proof : Follows from the fact that z2 = 1 in SO2`+1. 2

Note that here we follow the analogous construction for the case of the unimodular group
SL`+1 ⊂ GL`+1 by using (8.11) as a lift of the generator of µ2 in (8.9).

In the case of the even orthogonal group generators SDi (5.5) of W (D`), they already
belong to SO2` due to det(SDi ) = 1, and therefore provide an embedding W (D`) ⊂ NSO2`

.

8.3 Construction of a section for Pin`+1

The group Pin(V ) is a central extension of O(V ), which can be defined as follows. Let V be
real vector space supplied with the standard quadratic form

‖v‖2 =

dim(V )∑
i=1

v2
i , v = (v1, . . . , vdim(V )) ∈ V . (8.14)

Let C(V ) be the corresponding Clifford algebra, defined as a quotient of the tensor algebra
T (V ) as follows:

C(V ) = T (V )
/(
v · v − ‖v‖2 · 1

)
. (8.15)

The standard Z-grading on the tensor algebra induces a Z/2Z-grading α : C(V )→ C(V ) of
the Clifford algebra, thus splitting it into the direct sum:

C(V ) = C(V )+ ⊕ C(V )− . (8.16)

Let > : C(V )→ C(V ) be the transposition anti-automorphism of the Clifford algebra, defined
by (v1 · v2)> = v2 · v1 for any v1, v2 ∈ V ⊂ C(V ). Define the conjugation anti-automorphism
x→ x̄ = α(x)> on C(V ). The spinor norm is then given by:

Nm : C(V ) −→ R∗ , x 7−→ Nm(x) = x x̄ , (8.17)

so that for all u, v ∈ V we have

(u, v) =
1

2

(
Nm(u) + Nm(v) − Nm(u+ v)

)
=

u · v + v · u
2

,

Nm(v) = − v · v = −‖v‖2 = −(v, v) .

(8.18)

Definition 8.1 (see [ABS]) The Clifford group Γ(V ) is the subgroup of the group of invert-
ible elements of C(V ) that respects the linear subspace V ⊂ C(V ) i.e.

Γ(V ) =
{
x ∈ (C(V ) \ {0}) |xV α(x)−1 ⊆ V

}
. (8.19)
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The action of Γ(V ) on V defined above respects the norm (8.18) and thus allows a homo-
morphism to O(V ) for all u ∈ V ⊂ C(V ):

u 7−→ su(v) := u · v · α(u)−1 = v − 2
(u, v)

(u, u)
u , ∀ v ∈ V . (8.20)

Moreover, since the orthogonal group is generated by reflections with respect to elements
u ∈ V , the group Γ(V ) maps onto O(V ). Clearly, R∗ ⊂ Γ(V ) acts trivially and this leads to
the following exact sequence:

1 // R∗ // Γ(V )
π
// O(V ) // 1 . (8.21)

Restriction to the subgroup of elements with norm in µ2 = {±1} results in taking a quotient
over the subgroup Nm(R∗) = R>0, which yields the central extension Pin(V ) of O(V ):

1 // µ2
// Pin(V )

π
// O(V ) // 1 , (8.22)

where µ2 = {±1} is a subgroup of the center Z(Pin(V )) of the pinor group Pin(V ).

Taking into account (8.20), we may define a properly normalized lift û of a simple reflec-
tion su with respect to a vector u ∈ V into Pin(V ) as follows

û :=
u√
|Nm(u)|

, û2 = 1 , Nm(û) = −1 , ∀u ∈ V ⊂ C(V ) . (8.23)

Lemma 8.2 Let {ε1, . . . , εdim(V )} ⊂ V be an orthonormal basis. Let Tk, 1 ≤ k ≤ dim(V ) be
reflections at εk ∈ V and let Si, 1 ≤ i ≤ (dim(V )− 1) be reflections at simple root εi − εi+1.
Then the following elements of Pin(V ) represent liftings of the reflections Si, Tk ∈ O(V ):

Tk = ε̂k , (Tk)2 = 1, 1 ≤ k ≤ dim(V ) ,

Si =
ε̂i − ε̂i+1√

2
, (Si)2 = 1 , 1 ≤ i ≤ ` .

(8.24)

Proof : One shall check that the action of the lifts Ti and Si on V according to (8.20)
coincides with the action of Ti and Si. Thus for Ti we have the following:

π(Tk)(v) = Tk · v · α(Tk)−1 = ε̂k · v · (−ε̂k)

= ε̂k · (x1ε̂1 + . . .+ xk ε̂k + . . .+ xdim(V )ε̂dim(V )) · (−ε̂k) = Tkv .

Similarly the action of Si can be verified. 2

Lemma 8.3 The elements (8.24) satisfy the following relations (compare with (4.9)):

TiTj = −TjTi , i 6= j ; SiSj = −SjSi , |i− j| > 1 ,

SiSjSi = SjSiSj , |i− j| = 1 ,

TiSi = −SiTi+1 ,

(8.25)

and therefore provide a central extension of the Tits group W T
GL(V ) (and of its subgroup

WGL(V ) generated by Si, 1 ≤ i ≤ dim(V )− 1) by µ2 ⊆ Z(Pin(V )).
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Proof : The relations can be easily checked by straightforward computation. For example
let us verify the 3-move braid relation: one has

SiSi+1 =
ε̂iε̂i+1 − ε̂iε̂i+2 + ε̂i+1ε̂i+2 − 1

2
,

(SiSi+1)2 =
−ε̂iε̂i+1 + ε̂iε̂i+2 − ε̂i+1ε̂i+2 − 1

2
.

(8.26)

This implies the Coxeter relation (SiSj)3 = 1 for |i − j| = 1, which is equivalent to the
3-move braid relation due to S−1

i = Si. 2

Now let us construct a lift of the generators of the Weyl group WO(V ) into Pin(V ). We
use a version of the embedding that is based on the expressions given in Theorem 5.1 for the

lift of WO(V ) to O(V ). Note that the conjugated generators S
A

i are expressed thorough SAi
and TAi according to (4.12) and the lift of the generators SAi and TAi is provided by Lemma
8.3. We will consider the cases of W (B`) and W (D`) separately.

In the odd orthogonal group case we have O(V ) = O2`+1. By (5.4), Weyl group W (B`)
can be imbedded into the θB-invariant subgroup (W T

GL2`+1
)θB via

SB1 = S`S`+1S` = S`+1S`S`+1 , SBk = S`+1−kS`+k , 1 < k ≤ ` . (8.27)

Using (4.12) and (8.24) we obtain the following:

SB1 = S`S`+1S` , SBk = S`+1−kT`+kS`+kT`+k , 1 < k ≤ ` . (8.28)

In the odd orthogonal group case we have O(V ) = O2`. By (5.5), Weyl group W (D`)
can be imbedded into the θD-invariant subgroup (W T

GL2`
)θD via

SD1 = S`S`−1S`+1S` , SDk = S`+1−kS`−1+k , 1 < k ≤ ` . (8.29)

Therefore, using (4.12) and (8.24) for the lift to Pin2` we obtain

SD1 = S`S`−1T`+1S`+1T`+1S` ,

SDk = S`+1−kT`−1+kS`−1+kT`−1+k , 1 < k ≤ ` .
(8.30)

The subgroups in Pin2`+1 and Pin2` generated by the elements SBi and SDi , respectively,
appears to be central group extensions of the corresponding Weyl groups.

Proposition 8.2 The elements of pinor group Pin(V ) introduced in (8.28), (8.30) satisfy
the following relations for any i, j ∈ I:

(SB1 )2 = 1 , (SBk )2 = −1 , 1 < k ≤ ` ,

SBi SBj = SBj SBi , aij = 0 ,

SBi SBj SBi = SBj SBi SBj , aijaji = 1 ,

SBi SBj SBi SBj = SBj SBi SBj SBi , aijaji = 2 ,

(8.31)
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and

(SDi )2 = −1 , SD1 SD2 = −SD2 SD1 , SD1 SD3 SD1 = −SD3 SD1 SD3 ,

SDi SDj = SDj SDi , aij = 0 , i, j 6= (1, 2) ,

SDi SDj SDi = SDj SDi SDj , aijaji = 1 , i, j 6= (1, 3) .

(8.32)

This results in a central extension of the Weyl group WO(V ) by µ2 ⊆ Z(Pin(V )):

1 // µ2
// W̃O(V )

π
// WO(V )

// 1 . (8.33)

Proof : Relations in the first lines of (8.31), (8.32) follow from ε̂2i = 1 and ε̂i · ε̂j = −ε̂j · ε̂i
for i 6= j. The other relations may be verified by writing explicitly from (8.24):

SB1 =
ε̂` − ε̂`+2√

2
, TiSiT −1

i =
ε̂i + ε̂i+1√

2
,

SD1 =
ε̂`−1ε̂` + ε̂`−1ε̂`+2 + ε̂`ε̂`+1 − ε̂`+1ε̂`+2

2
.

(8.34)

In particular, one can verify in a straightforward way that

SD1 SD3 SD1 =
ε̂`−2ε̂` + ε̂`ε̂`+1 + ε̂`+1ε̂`+3 − ε̂`−2ε̂`+3

2
= −SD3 SD1 SD3 . (8.35)

The other 3-move braid relations from the last lines of (8.31), (8.32) follow by (8.25). 2

8.4 Construction of a section for Spin`+1

In this section we describe a lift of the Weyl group WO(V ) into the spinor group Spin(V )
combining the results of previous Sections 8.2 and 8.3 with the constructions of Section 5.
The construction will be compatible with the following commutative diagram:

µ2

��

µ2

��

1 // Spin(V )

π��
��

ϕ
// Pin(V )

π��
��

det
// µ2

// 1

1 // SO(V )
ϕ

// O(V )
det

// µ2
// 1

.

(8.36)

Note that the elements of Spin(V ) ⊂ Pin(V ) are singled out by the condition that they
are represented by a product of even number of elements û ∈ Pin(V ), or equivalently,
Spin(V ) = Pin(V ) ∩ C(V )+. Moreover, we have an epimorphism Spin(V ) → SO(V ). As
we have already managed to construct the inverse image under ϕ : SO(V ) → O(V ) of the
generators of the corresponding Weyl groups we can use (8.23) to lift generators (8.13) and
generators SDi of W (D`) into the corresponding spinor groups. We again consider the cases
of odd and even orthogonal groups separately.
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Lemma 8.4 Introduce the following elements S̃Bi ∈ Spin2`+1

S̃B1 = ẑ SB1 , S̃Bk = SBk , 1 < k ≤ ` , (8.37)

where SBi are given by (8.28) and

ẑ = ε̂1 · . . . · ε̂2`+1 ∈ Pin2`+1 , (8.38)

is a lift of the central element z = TB0 T
B
1 · · ·TB` ∈ Z(SO2`+1). Then (8.37) satisfy the

following relations:

(S̃Bi )2 = (−1)` , (S̃Bk )2 = −1 , 1 < k ≤ ` ,

S̃Bi S̃Bj = S̃Bj S̃Bi , aij = 0 ,

S̃Bi S̃Bj S̃Bi = S̃Bi S̃Bi S̃Bj , aij = −1 ,

S̃B1 S̃B2 S̃B1 S̃B2 = S̃B2 S̃B1 S̃B2 S̃B1 .

(8.39)

Therefore, (8.37) generate a central extension of Weyl group W (B`) by Z(Spin2`+1) = µ2:

1 // Z(Spin2`+1) // W̃ (B`) // W (B`) // 1 . (8.40)

Proof : By (8.25) one has ẑSBi = SBi ẑ, ∀i ∈ I, therefore using (8.31) one finds out,

(S̃B1 )2 = ẑ2(SB1 )2 = ẑ2 = (−1)` . (8.41)

The same argument implies the remaining relations in (8.39). 2

The even orthogonal group case is already covered by Proposition 8.2 as the elements
SDi entering (8.32) are already in Spin2`.

9 Adjoint action of the Tits groups W T
G

In this section, we compute the action of the elements SGi ∈ W T
G in the corresponding Lie

algebras g = Lie(G) for classical Lie groups G, including G = GL`+1. Given a classical
group G, the calculation of the adjoint action can be done using the appropriate faithful
representation. We provide an explicit description of the action using the description of the
groups W T

G from Sections 4 and 5 above. Note that the resulting formulas easily follow from
the explicit expressions for Adṡi , i ∈ I obtained in [GLO].

Proposition 9.1 The adjoint action of the Tits group W T
G on the Lie algebra g = Lie(G)

via homomorphism (2.29) is given by

ṡi ei ṡ
−1
i = −fi, ṡi fi ṡ

−1
i = −ei , (9.1)

ṡi ej ṡ
−1
i = ej, ṡi fj ṡ

−1
i = fj, aij = 0 , (9.2)
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ṡi ej ṡ
−1
i =

1

|aij|!
[
ei, [. . . [ei︸ ︷︷ ︸
|aij |

, ej] . . .]
]
,

ṡi fj ṡ
−1
i =

(−1)|aij |

|aij|!
[
fi, [. . . [fi︸ ︷︷ ︸
|aij |

, fj] . . .]
]
, i 6= j .

(9.3)

Let us emphasize that we keep the ordering I = {1, . . . , `} of the corresponding set of
vertices of the Dynkin diagram for each classical G, and use the explicit realization of the
Cartan-Weyl generators φ(ei), φ(fi), i ∈ I via the standard faithful representation φ.

Proposition 9.2 (The case A`) The adjoint action of the elements Si ∈ W T
GL`+1

(4.2) for
i ∈ {1, . . . , `} is given by

AdSi(ej) =



fj , i = j

ej , |i− j| > 1

adei(ej) , i− j = −1

−adei(ej) , i− j = 1

, (9.4)

and

AdSi(fj) =



ej , i = j

fj , |i− j| > 1

−adfi(fj) , i− j = −1

adfi(fj) , i− j = 1

. (9.5)

Proposition 9.3 (The case B`) The adjoint action of the elements SBi ∈ W T
SO2`+1

(5.4)
for i ∈ {1, . . . , `} is given by

AdSBi (ej) =



fj , i = j

ej , |i− j| > 1

−(−1)δi,1

|aij|!
ad−aijei

(ej) , i− j = −1

adei(ej) , i− j = 1

, (9.6)

and

AdSBi (fj) =



ej , i = j

fj , |i− j| > 1

1

|aij|!
ad
−aij
fi

(fj) , i− j = −1

−adfi(fj) , i− j = 1

. (9.7)
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Proposition 9.4 (The case C`) The adjoint action of the elements SCi ∈ W T
Sp2`

(5.7) for
i ∈ {1, . . . , `} is given by

AdSCi (ej) =



(−1)δi,1fj , i = j

ej , |i− j| > 1

−adei(ej) , i− j = −1

1

|aij|!
ad−aijei

(ej) , i− j = 1

, (9.8)

and

AdSCi (fj) =



(−1)δi,1ej , i = j

fj , |i− j| > 1

ad
−aij
fi

(fj) , i− j = −1

(−1)|aij |

|aij|!
ad
−aij
fi

(fj) , i− j = 1

. (9.9)

Proposition 9.5 (The case D`) The adjoint action of the elements SDi ∈ W T
O2`

(5.5) for
i ∈ {1, 2; 3, . . . , `} is given by

AdSDi (ej) =



fj , i = j

−ej , aij = 0 , ι(i) = j

ej , aij = 0 , ι(i) 6= j

−adei(ej) , aij = −1 , i < j

adei(ej) , aij = −1 , i > j

(9.10)

and

AdSDi (fj) =



ej , i = j

−fj , ι(i) = j , ι(i) = j

fj , aij = 0 , ι(i) 6= j

adfi(fj) , aij = −1 , i < j

−adfi(fj) , aij = −1 , i > j

. (9.11)

10 Appendix: General linear and classical Lie groups

10.1 General linear group GL`+1(C)

Let gl`+1(C) = gl(V ) be the Lie algebra induced by endomorphisms φ : V → V of the
complex vector space V ' C`+1 via the commutator Lie bracket:

[φ1, φ2] = φ1 ◦ φ2 − φ2 ◦ φ1 , (10.1)
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where ◦ is a composition of linear maps V → V . Let h ⊂ gl`+1(C) be its maximal commuta-
tive subalgebra. Choosing a basis {ε1, . . . , ε`+1} ⊂ V of vector space V we identify gl`+1(C)
with the Lie algebra of matrices with basis eij, 1 ≤ i, j ≤ ` + 1 defined by the following
endomorphisms:

eij : V −→ V , εk 7−→ δikεj , 1 ≤ k ≤ `+ 1 . (10.2)

The corresponding Lie brackets is given by[
eij, ekl

]
= δjkeil − δilekj . (10.3)

The Cartan subalgebra h`+1 ⊂ gl`+1(C) is identified with a subalgebra of diagonal matrices.

Fix an orthonormal basis {ε1, . . . , ε`+1} ⊂ h∗ in the Euclidean space
(
h∗ ' C`+1; 〈 , 〉

)
and identify h and h∗ via the standard scalar product 〈 , 〉 on C`+1. Thus we can consider
the diagonal entries εk := ekk as functions on h, so that they provide a (complex) linear
coordinate system on h. Then any linear functional λ ∈ h∗ has the form

λ = λ1ε1 + . . . + λ`+1ε`+1 . (10.4)

The general linear group GL`+1(C) is isomorphic to the group of invertible rank ` + 1
matrices, and maximal torus H`+1 ⊂ GL`+1(C) is identified with the subgroup of diagonal
matrices. The diagonal entries of tk = tk(g), g ∈ H`+1 provide coordinates on the maximal
torus H`+1 and generate the group of (rational) characters

X∗(H`+1) = Hom(H`+1, C∗) ' h∗Z = Z`+1 . (10.5)

Namely, any λ ∈ h∗ gives rise to a homomorphism

eλ : H`+1 −→ C∗ , eh 7−→ e2πλ(h) = e2π〈λ, h〉 , h ∈ h ;

eλ = tλ11 t
λ2
2 · . . . · t

λ`+1

`+1 .
(10.6)

The elements λ ∈ h∗Z consisting of λ ∈ h∗ with integral components (λ1, . . . , λ`+1) ∈ Z`+1 are
called the weights; they span the weight lattice:

ΛW = Zε1 ⊕ . . .⊕ Zε`+1 ' h∗Z . (10.7)

The adjoint action of H`+1 in Lie algebra gl`+1(C) provides the Cartan decomposition of
gl`+1(C) with respect to H`+1

gl`+1(C) = h ⊕
⊕

αij∈Φ(A`)

(
gl`+1

)
ij
,

(gl`+1)ij =
{
X ∈ gl`+1 : adh(X) = αij(h)X, ∀h ∈ h

}
= Ceij , i 6= j ,

(10.8)

where the corresponding root system Φ(A`) of type A` reads

Φ(A`) =
{
αij = εi − εj , i 6= j

}
⊂ h∗Z . (10.9)
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The simple root system ΠA` ⊂ Φ+(A`) is given by

ΠA` =
{
αi = εi − εi+1

}
⊂ Φ+(A`) ,

Φ+(A`) =
{
αij = εi − εj , i < j

}
⊂ h∗Z ,

(10.10)

and the root lattice is

ΛR = Zα1 ⊕ . . .⊕ Zα` ⊂ ΛW ' h∗Z . (10.11)

Let X∗(H`+1) = Hom(C∗, H`+1) be the group of co-characters (i.e. one-parametric sub-
groups) in the maximal torus:

χ∨a : C∗ −→ H`+1 , t 7−→ diag{ta1 , . . . , ta`+1} . (10.12)

The group of co-characters X∗(H`+1) ' hZ = Z`+1 is dual to X∗(H`+1) via

eλ
(
χ∨a (t)

)
= ta1λ1+...+a`+1λ`+1 = t〈a

∨, λ〉 . (10.13)

The dual basis in hZ is referred to as fundamental co-weights :

p∨k = e11 + . . .+ ekk , 〈p∨k , αi〉 = δki , 1 ≤ k, i ≤ `+ 1 , (10.14)

that span the co-weight lattice:

Λ∨W =
{
h ∈ h : λ(h) ∈ Z , ∀λ ∈ ΛW

}
= Zp∨1 ⊕ . . .⊕ Zp∨`+1 . (10.15)

The lattice Λ∨W can be identified with the kernel of the map exp : h → H`+1, so that
H`+1 = h/Λ∨W .

The determinant map det : GL`+1(C) → C∗ may be defined as a unique homomorphim
such that

det : e

`+1∑
i=1

tieii
−→ e

`+1∑
i=1

ti
.

(10.16)

We have the following exact sequence

1 // SL`+1(C)
π
// GL`+1(C)

det
// C∗ // 1 , (10.17)

where SL`+1(C) is the unimodular subgroup. Its Lie algebra sl`+1 has the standard faithful
representation given by the following homomorphism of associative algebras:

φ : U
(
sl`+1(C)

)
−→ End(C`+1) ,

φ(Xαi) = ei,i+1 , φ(X−αi) = −ei+1,i , φ(hαi) = ei,i − ei+1,i+1 ,
(10.18)

where eij are the matrix units (10.2). The Lie algebra sl`+1 may be identified with the Lie
subalgebra of matrices with zero trace in gl`+1, so that

gl`+1 = sl`+1 ⊕ C . (10.19)
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The Lie algebras sl`+1 and gl`+1 share the Dynkin diagram ΓA` with the set of vertices I of
size `, the reduced root system Φ(A`) and the Weyl group WA` . However, in the case of sl`+1

its rank is equal to the rank of the root lattice, contrary to the gl`+1 case. More precisely,
let {ε1, . . . , ε`+1} be an orthonormal basis in C`+1. Then the fundamental weights pk of gl`+1

are linear forms defined by pk(hαi) = δki (see (10.7), (10.14)):

pk = ε1 + . . .+ εk , 1 ≤ k ≤ `+ 1 . (10.20)

Define a collection of vectors in R`+1,

εA`k = εk −
ε1 + . . .+ ε`+1

`+ 1
; 1 ≤ k ≤ `+ 1 , (10.21)

which span a codimension one Euclidean subspace, due to εA`1 + . . . + εA``+1 = 0. Then the
simple roots and fundamental weights of sl`+1 can be written as follows:

αA`k = εA`k − ε
A`
k+1 , $A`

k = pk −
k

`+ 1
p`+1 = εA`1 + . . .+ εA`k . (10.22)

The Cartan matrix A = ‖aA`ij ‖ with aij = 〈αA`j , (α∨i )A`〉, and its inverse A−1 = ‖cA`ij ‖ take
the form:

A =


2 −1 0 ... 0

−1 2
... ...

...

0
... ... −1 0

...
... −1 2 −1

0 ... 0 −1 2

 , A−1 =
1

`+ 1


` `−1 `−2 ... 2 1

`−1 2(`−1) 2(`−2) ... 2·2 2

`−2 2(`−2) 3(`−2) ... 3·2 3

... ... ... ... ... ...

2 2·2 3·2 ... (`−1)2 `−1

1 2 3 ... `−1 `

 . (10.23)

In these terms one obtains the following expressions for the coroots and coweights:

hA`i = (αA`i )∨ =
∑
j∈I

〈αA`j , (αA`i )∨〉($A`
j )∨ =

∑
j∈I

aA`ij ($A`
j )∨ ,

($A`
i )∨ =

∑
j∈I

cA`ij (αA`j )∨ , i ∈ I .
(10.24)

10.2 The case of type B` root system

The Lie algebra so2`+1 can be identified with the θB-fixed subalgebra:

so2`+1 =
{
X ∈ gl2`+1(C) : X = θB(X)

}
, θB(X) = −SBXτS−1

B ,

SB = diag
(
1,−1, . . . , 1

)
∈ GL2`+1 ,

(10.25)

where τ is the transposition along the opposite diagonal (3.3). This provides the faithful
representation,

φ : so2`+1 −→ gl2`+1(C) , (10.26)
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given by the following presentation of the Chevalley-Weyl generators hk = α∨k , ek, fk, k ∈ I
of so2`+1 in terms of the generators of gl2`+1(C):

φ(e1) =
√

2(e`,`+1 + e`+1,`+2) , φ(f1) =
√

2(e`+1,` + e`+2,`+1) ;

φ(ek) = e`+1−k,`+2−k + e`+k,`+1+k , φ(fk) = e`+2−k,`+1−k + e`+1+k,`+k ,

1 < k ≤ ` ;

φ(h1) = 2(e`` − e`+2,`+2) ,

φ(hk) = (e`+1−k,`+1−k + e`+k,`+k) − (e`+2−k,`+2−k + e`+1+k,`+1+k) ,

1 < k ≤ ` .

(10.27)

The representation (10.27) implies the following presentation of the type B` root system in
terms of the root system of type A2`

αB`i = αA2`
`+1−i + αA2`

`+i , i ∈ I . (10.28)

Explicitly, the symmetry of the Dynkin diagram of type A2` is given by

ι : i 7−→ 2`+ 1− i , i ∈ {1, 2, . . . , 2`} ,

αA2`
i 7−→ αA2`

2`+1−i .
(10.29)

Then (10.28) reads

αB`i = αA2`
`+1−i + ι

(
αA2`
`+1−i

)
. (10.30)

Introduce the Euclidean space R2`+1 with a standard orthonormal basis
{
ε1, . . . , ε2`+1

}
, acted

on by the involution ι as follows:

ι : R2`+1 −→ R2`+1 , εi 7−→ −ε2`+2−i . (10.31)

Consider the ι-fixed Euclidean subspace R` ⊂ R2`+1 spanned by

εB`k = ε`+1−k + ι
(
ε`+1−k

)
= ε`+1−k − ε`+1+k , 1 ≤ k ≤ ` , (10.32)

then the root data of type B` is given by
αB`1 = εB`1

αB`k = εB`k − ε
B`
k−1 ,

1 < k ≤ ` ;


$B`

1 =
εB`1 + . . .+ εB``

2

$B`
k = εB`k + . . .+ εB`` ,

1 < k ≤ ` ;

Φ(B`) =
{
±εB`i ± ε

B`
j , ±εB`i

}
.

(10.33)

The simple co-roots and fundamental co-weights are determined via

〈αB`i , ($B`
j )∨〉 = 〈(αB`i )∨, $B`

j 〉 = δij , (10.34)
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and have the following form:
(
αB`1

)∨
= 2εB`1(

αB`k
)∨

= εB`k − ε
B`
k−1 ,

1 < k ≤ ` ;

{ (
$B`
i

)∨
= εB`i + . . .+ εB`` ,

i ∈ I

Φ∨(B`) =
{
±εB`i ± ε

B`
j , ±2εB`i

}
.

(10.35)

The Cartan matrix A = ‖aB`ij ‖ = ‖〈αB`j ,
(
αB`i
)∨〉‖ and its inverse A−1 = ‖cij‖ are given by

A =


2 −2 0 ... 0

−1 2 −1
...

...

0
... ... ... 0

...
... −1 2 −1

0 ... 0 −1 2

 , A−1 =


`
2

`−1 ... 3 2 1
`−1
2

`−1 ... 3 2 1

...
...

...
...

...
3
2

3 ... 3 2 1
1 2 ... 2 2 1
1
2

1 ... 1 1 1

 ,

hB`i =
(
αB`i
)∨

=
∑
j∈I

〈αB`j ,
(
αB`i
)∨〉($B`

j

)∨
=
∑
j∈I

aB`ij
(
$B`
j

)∨
,

(
$B`
i

)∨
=
∑
j∈I

cij
(
αB`j
)∨
, i ∈ I .

(10.36)

Lemma 10.1 The Weyl group W (B`) is isomorphic to a subgroup in W (A2`) via

sB`1 = sA2`
` sA2`

`+1s
A2`
` = sA2`

`+1s
A2`
` sA2`

`+1 ,

sB`k = sA2`
`+1−ks

A2`
`+k = sA2`

`+ks
A2`
`+1−k , 1 < k ≤ ` .

(10.37)

Proof : For 1 < k ≤ ` given λ = λ1ε
B`
1 + . . .+ λ`ε

B`
` by straightforward computation one has

sB`k (λ) = λ − 〈λ, (αB`k )∨〉B`α
B`
k = λ − 〈λ, εB`k − ε

B`
k−1〉B`(ε

B`
k − ε

B`
k−1)

= λ − (λk − λk−1)(εB`k − ε
B`
k−1)

= λ1ε
B`
1 + . . .+ λkε

B`
k−1 + λk−1ε

B`
k + . . .+ λ`ε

B`
`

= λ1ε
A2`
` + . . .+ λkε

A2`
`+2−k + λk−1ε

A2`
`+1−k + . . .+ λ`ε

A2`
1

−λ1ε
A2`
`+2 − . . .− λkε

A2`
`+k − λk−1ε

A2`
`+1+k − . . .− λ`ε

A2`
2`+1

= λ − 〈λ, (αA2`
`+1−k)

∨〉A2`
αA2`
`+1−k − 〈λ, (αA2`

`+k)
∨〉A2`

αA2`
`+k

= sA2`
`+ks

A2`
`+1−k(λ) .

(10.38)

Similarly, for k = 1 one has

sB`1 (λ) = λ − 〈λ, (αB`1 )∨〉B`α
B`
1 = λ − 〈λ, 2εB`1 〉B`ε

B`
1

= −λ1ε
B`
1 + λ2ε

B`
2 + . . .+ λ`ε

B`
`

= λ`ε
A2`
1 + . . .+ λ2ε

A2`
`−1 − λ1ε

A2`
` + λ1ε

A2`
`+2 − λ2ε

A2`
`+3 − . . .− λ`ε

A2`
2`+1

= sA2`
` sA2`

`+1s
A2`
` (λ) ,

(10.39)
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since sA2`
` sA2`

`+1s
A2`
` simply swaps εA2`

` ↔ εA2`
`+2. 2

The Lie group O2`+1 may be presented as θB-invariant subgroup of GL2`+1:

O2`+1 =
{
g ∈ GL2`+1 : g = gθB

}
. (10.40)

Let us describe the corresponding Tits group W T
O2`+1

in terms of generators of W T
GL2`+1

.

Lemma 10.2 Let ṡBi = e
π
2
Ji , i ∈ I be the Tits generators (2.28). Then the following hold:

1. The Tits group W T
O`+1

is isomorphic to a subgroup of W T
GL2`+1

via

ṡB1 = ṡA2`
` ṡA2`

`+1ṡ
A2`
` , ṡBk = ṡA2`

`+1−kṡ
A2`
`+k , 1 < k ≤ ` . (10.41)

2. The elements (10.41) belong to the θB-fixed subgroup (W T
GL2`+1

)θB .

3. Presentation (10.41) matches with (10.37) due to

AdṡBi |h = sBi . (10.42)

Proof : (1) Since ṡBi ∈ SO2`+1, i ∈ I, one might verify (10.41) using the standard faithful
representation φ : SO2`+1 → GL2`+1. For i = 1, we have

φ(ṡB1 ) = φ(e
π
2
J1) =

( Id`−1

0 0 1
0 −1 0
1 0 0

Id`−1

)
= φ(ṡA2`

` ṡA2`
`+1ṡ

A2`
` ) , (10.43)

and similarly, for 1 < k ≤ ` we obtain

φ(ṡBk ) = φ(e
π
2
Jk) =


Id`−k

0 −1
1 0

Id2k−3

0 −1
1 0

Id`−k

 = φ(ṡA2`
`+1−kṡ

A2`
`+k) . (10.44)

(2) From (4.11) one reads

θB : ṡA2`
i 7−→ ṡA2`

2`+1−i , 1 ≤ i ≤ 2`+ 1 , (10.45)

and using the Tits relations (2.29) one infers that (10.41) are θB-invariant.

(3) Follows by (2.29) and (10.37). 2

By analogy with the general linear group case, there is another way to lift simple root gen-
erators sBi ∈ W (B`) into the Tits group W T

O2`+1
. Recall that W T

GL2`+1
contains the following

elements:

Tk := eπıekk , 1 ≤ k ≤ (2`+ 1) ;

Si = Tiṡi = ṡiTi+1 , Si = Ti+1ṡi = ṡiTi , 1 ≤ i ≤ 2` .
(10.46)
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Lemma 10.3 The following elements belong to the fixed point subgroup (W T
GL2`+1

)θB :

SB1 = S`+1S`S`+1 , SBk = S`+1−kS`+k , 1 < k ≤ ` ;

TBi = T`+1−iT`+1+i = eπıε
B
i , 1 ≤ i ≤ ` and TB0 := T`+1 ,

(10.47)

where TB0 has det(TB0 ) = −1 and generates the center Z
(
W T
O2`+1

)
= µ2.

Proof : The explicit action of θB on generators (10.46) gives (4.15):

θB(Si) = S2`+1−i , θB(Si) = S2`+1−i , θB(Tk) = T2`+2−k . (10.48)

Using (4.13) this implies that (10.47) are invariant under θB. 2

Corollary 10.1 The elements (10.41) and (10.47) can be identified via

SB1 = TB0 ṡB1 , SBk = TBk ṡ
B
k , 1 < k ≤ ` . (10.49)

Proof : By straightforward computation using faithful representation (10.40) one finds

φ(SB1 ) =

(
Id`−1

0 0 1
0 1 0
1 0 0

Id`−1

)
, φ(SBk ) =


Id`−k

0 1
1 0

Id2k−3

0 −1
−1 0

Id`−k

 . (10.50)

Identifying this with (10.43), (10.44) one deduces (10.49). 2

Proposition 10.1 The elements SBi ∈ W T
O2`+1

, i ∈ I defined in (10.47) satisfy the relations
(2.23), (2.24) of type B`:

(SB1 )2 = . . . = (SB` )2 = 1 ,

SBi S
B
j = SBj S

B
i , i, j ∈ I such that aij = 0 ;

SBi S
B
j S

B
i = SBj S

B
i S

B
j , i, j ∈ I such that aij = −1 ,

SB1 S
B
2 S

B
1 S

B
2 = SB2 S

B
1 S

B
2 S

B
1 .

(10.51)

Proof : One might prove (10.51) b applying faithful representation (10.40). Alternatively,
since the relations (10.51) are exactly the relations (2.24), they can be derived from (2.29)
using substitution (10.49). For the first line of (10.51) we have:

(SB1 )2 = TB0 ṡ
B
1 T

B
0 ṡ

B
1 = (TB0 )2(ṡB1 )2 = eπıh1 = e2πı(e``−e`+2,`+2) = 1 , (10.52)

and since ṡBk T
B
k = TBk−1ṡ

B
k we derive

(SBk )2 = TBk ṡ
B
k T

B
k ṡ

B
k = TBk T

B
k−1(ṡBk )2 = (TBk T

B
k−1)2 = 1 . (10.53)
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For i, j ∈ I such that aij = 0, since ṡBi T
B
j = TBj ṡ

B
i we have

SBi S
B
j = TBi ṡ

B
i T

B
j ṡ

B
j = TBj ṡ

B
j T

B
i ṡ

B
i = SBj S

B
i , (10.54)

and similarly, since ṡB1 T
B
2 = TB2 ṡ

B
1 , we obtain

SB1 S
B
2 S

B
1 S

B
2 = TB0 ṡ

B
1 T

B
2 ṡ

B
2 T

B
0 ṡ

B
1 T

B
2 ṡ

B
2 = (TB0 T

B
2 )2ṡB1 ṡ

B
2 ṡ

B
1 ṡ

B
2

= ṡB2 ṡ
B
1 ṡ

B
2 ṡ

B
1 = SB2 S

B
1 S

B
2 S

B
1 .

(10.55)

The 3-move braid relation for i, j = i+ 1 we have:

SBi S
B
i+1S

B
i = TBi ṡ

B
i T

B
i+1ṡ

B
i+1T

B
i ṡ

B
i = TBi T

B
i+1ṡ

B
i T

B
i+1ṡ

B
i+1ṡ

B
i

= TBi (TBi+1)2ṡBi ṡ
B
i+1ṡ

B
i = TBi (TBi+1)2ṡBi+1ṡ

B
i ṡ

B
i+1 = TBi T

B
i+1ṡ

B
i+1T

B
i ṡ

B
i ṡ

B
i+1

= TBi+1ṡ
B
i+1T

B
i T

B
i+1ṡ

B
i ṡ

B
i+1 = SBi+1S

B
i S

B
i+1 ,

(10.56)

since Ti+1ṡ
B
i+1 = ṡBi+1T

B
i . 2

10.3 The case of type C` root system

The Lie algebra sp2` is identified with the θC-fixed subalgebra of gl2`:

sp2` =
{
X ∈ gl2` : X = θC(X)

}
⊆ gl2` , θC(X) = −SCXτS−1

C ,

SC = diag
(
1, −1, . . . , 1, −1

)
,

(10.57)

where τ is the matrix transposition with respect to the opposite diagonal (3.3). This provides
the standard faithful representation:

φ : sp2` −→ gl2` , (10.58)

given by the following presentation of the Chevalley-Weyl generators hi, ei, fi, i ∈ I:

φ(h1) = e`` − e`+1,`+1 ,

φ(hk) = (e`+1−k,`+1−k + e`+k−1,`+k−1) − (e`+2−k,`+2−k + e`+k,`+k) ,

1 < k ≤ ` ;

φ(e1) = e`,`+1 , φ(ek) = e`+1−k, `+2−k + e`+k−1,`+k , 1 < k ≤ ` ,

φ(f1) = e`+1,` , φ(fk) = e`+2−k, `+1−k + e`+k,`+k−1 , 1 < k ≤ ` .

(10.59)

The representation (10.59) yields the following presentation of the type C` root system:

αC`1 = 2α
A2`−1

` , αC`k = α
A2`−1

`+1−k + α
A2`−1

`−1+k , 1 < k ≤ ` . (10.60)

Consider the root system of type A2`−1 endowed with the automorphism ι of its Dynkin
diagram:

ι : i 7−→ 2`− i , i ∈ {1, 2, . . . , 2`− 1} ;

αA2`
i 7−→ α

A2`−1

2`−i ,
(10.61)
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so that (10.60) reads

αC`1 = α
A2`−1

` + ι
(
α
A2`−1

`

)
, αC`k = α

A2`−1

`+1−k + ι
(
α
A2`−1

`+1−k
)
, 1 < k ≤ ` . (10.62)

Introduce the Euclidean vector space R2` with orthonormal basis
{
ε1, . . . , ε2`

}
, supplied with

an action of involution

ι : R2` −→ R2` , εi 7−→ −ε2`+1−i , 1 ≤ i ≤ 2` . (10.63)

Consider the ι-fixed Euclidean subspace R` ⊂ R2`, spanned by

εC`i = ε`+1−i + ι(ε`+1−i) = ε`+1−i − ε`+i , 1 ≤ i ≤ ` . (10.64)

Then the root data of type C` reads
αC`1 = 2εC`1

αC`k = εC`k − ε
C`
k−1 ,

1 < k ≤ `

{
$C`
i = εC`i + . . .+ εC`` ,

i ∈ I ;

〈αC`i , ($C`
j )∨〉 = 〈(αC`i )∨, $C`

j 〉 = δij ,
(αC`1 )∨ = εC`1

(αC`k )∨ = εC`k − ε
C`
k−1 ,

1 < k ≤ ` ;


($C`

1 )∨ =
εC`1 + . . .+ εC``

2

($C`
k )∨ = εC`k + . . .+ εC`` ,

1 < k ≤ ` .

(10.65)

The Cartan matrix A = ‖〈αC`j , (αC`i )∨〉‖ and its inverse are given by

A =


2 −1 0 ... 0

−2 2 −1
...

...

0
... ... ... 0

...
... −1 2 −1

0 ... 0 −1 2

 , A−1 =


`
2

`−1
2

... 3
2

1 1
2

`−1 `−1 ... 3 2 1
...

...
...

...
...

3 3 ... 3 2 1
2 2 ... 2 2 1
1 1 ... 1 1 1

 ,

hC`i = (αC`i )∨ =
∑
j∈I

〈αC`j , (αC`i )∨〉$∨j =
∑
j∈I

aC`ij ($C`
j )∨ , $∨i =

∑
j∈I

cC`ij (αC`j )∨ , i ∈ I .

(10.66)

Lemma 10.4 The Weyl group W (C`) is isomorphic to a subgroup of W (A2`−1) via

sC`1 = s
A2`−1

` , sC`k = s
A2`−1

`+1−ks
A2`−1

`−1+k = s
A2`−1

`−1+ks
A2`−1

`+1−k , 1 < k ≤ ` . (10.67)

Proof : For k = 1 given λ = λ1ε
C`
1 + . . .+ λ`ε

C`
` one has

sC`1 (λ) = λ − 〈λ, (αC`1 )∨〉C`α
C`
1 = λ − 〈λ, εC`1 〉C`2ε

C`
1

= −λ1ε
C`
1 + λ2ε

C`
2 + . . .+ λ`ε

C`
`

= λ`ε
A2`−1

1 + . . .+ λ2ε
A2`
`−1 − λ1ε

A2`−1

` + λ1ε
A2`−1

`+1 − λ2ε
A2`−1

`+2 − . . .− λ`εA2`−1

2`

= s
A2`−1

` (λ) .

(10.68)
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For 1 < k ≤ ` the computation reproduces the one from Lemma 10.1. 2

The symplectic Lie group Sp2` may be identified with the θC-fixed subgroup of GL2`:

Sp2` =
{
g ∈ GL2` : g = gθC

}
⊂ GL2` . (10.69)

Let us describe the Tits group W T
Sp2`

, which is the extension of the Weyl group W (C`) (10.67),

and identify it with the fixed point subgroup in W T
GL2`

.

Lemma 10.5 Let ṡCi = e
π
2
Ji , i ∈ I be the Tits generators (2.28). Then the following hold:

1. The Tits group W T
Sp2`

is isomorphic to a subgroup of W T
GL2`

via

ṡC1 = ṡ
A2`−1

` , ṡCk = ṡ
A2`−1

`+1−kṡ
A2`−1

`−1+k , 1 < k ≤ ` . (10.70)

2. The elements (10.70) belong to the θC-fixed subgroup (W T
GL2`

)θC .

3. Presentation (10.70) matches with (10.67) due to

AdṡCi |h = sCi , i ∈ I . (10.71)

Proof : (1) Since ṡCi ∈ Sp2`, i ∈ I, one might verify (10.70) using the standard faithful
representation φ : Sp2` → GL2`. For i = 1, we have

φ(ṡC1 ) = φ(e
π
2
J1) =

( Id`−1

0 −1
1 0

Id`−1

)
= φ(ṡ

A2`−1

` , (10.72)

and similarly, for 1 < k ≤ ` we obtain

φ(ṡCk ) = φ(e
π
2
Jk) =


Id`−k

0 −1
1 0

Id2k−4

0 −1
1 0

Id`−k

 = φ(ṡ
A2`−1

`+1−kṡ
A2`−1

`−1+k) . (10.73)

(2) From (4.11) one reads

θC : ṡ
A2`−1

i 7−→ ṡ
A2`−1

2`−i , 1 ≤ i ≤ 2` , (10.74)

so that using (2.29) the expressions (10.70) are θC-invariant.

(3) Follows from (2.29) and (10.67). 2

By analogy with thegeneral linear group case, there is another way to lift simple root
generators sCi ∈ W (C`) into the Tits group W T

Sp2`
. Recall that W T

GL2`
contains the following

elements:

Tk := eπıekk , 1 ≤ k ≤ (2`) ;

Si = Tiṡi = ṡiTi+1 , Si = Ti+1ṡi = ṡiTi , 1 ≤ i ≤ 2` .
(10.75)
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Lemma 10.6 The following elements belong to the fixed point subgroup (W T
GL2`

)θC :

SC1 = T`S` = T`+1S` , SCk = S`+1−kS`−1+k , 1 < k ≤ ` ;

TCi = T`+1−iT`+i = eπıε
C
i , 1 ≤ i ≤ ` .

(10.76)

Proof : The explicit action of θC on generators (10.75) gives (4.15):

θC(Si) = S2`−i , θC(Si) = S2`−i , θC(Tk) = T2`+1−k . (10.77)

This implies that (10.76) are invariant under θC . 2

Corollary 10.2 The elements (10.70) and (10.76) can be identified via

SC1 = ṡC1 , SCk = TCk ṡ
C
k , 1 < k ≤ ` . (10.78)

Proof : By straightforward computation using faithful representation (10.69) one finds

φ(SC1 ) =

( Id`−1

0 −1
1 0

Id`−1

)
= φ(ṡ

A2`−1

` ) ,

φ(SCk ) =


Id`−k

0 1
1 0

Id2k−4

0 −1
−1 0

Id`−k

 .

(10.79)

Identifying this with (10.72), (10.73) one deduces (10.78). 2

Proposition 10.2 The elements SCi , i ∈ I of the Tits group W T
Sp2`

satisfy the following
relations:

(SC1 )2 = TC1 = eπıh
C
1 , (SC2 )2 = . . . = (SC` )2 = 1 ,

SCi S
C
j = SCj S

C
i , i, j ∈ I such that aij = 0 , ;

SCi S
C
j S

C
i = SCj S

C
i S

C
j , i, j ∈ I such that aij = −1 ,

(SC1 S
C
2 )4 = (SC2 S

C
1 )4 = 1 ,

(10.80)

and they generate the whole Tits group W T
Sp2`

.

Proof : One might verify (10.80) using the standard fathful representation (10.69). Alterna-
tively, similarly to the proof of Proposition 10.1 the relations (10.80) can be deduced from
(2.29) and (10.78). 2
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10.4 The case of type D` root system

The Lie algebra so2` is identified with a subalgebra of gl2` as follows:

so2` =
{
X ∈ gl2` : X = θD(X)

}
⊆ gl2` , θD(X) = −SDXτS−1

D ,

SD = diag
(
1, −1, . . . , (−1)`−1; (−1)`−1, (−1)`, . . . , 1

)
,

(10.81)

where τ is the matrix transposition with respect to the reverse diagonal (3.3). This provides
the standard faithful representation:

φ : so2` −→ gl2` , (10.82)

which implies the following presentation of the Chevalley-Weyl generators hi, ei, fi, i ∈ I:

φ(h1) = (e`−1,`−1 + e``) − (e`+1,`+1 + e`+2,`+2) ,

φ(hk) = (e`+1−k,`+1−k + e`+k−1,`+k−1) − (e`+2−k,`+2−k + e`+k,`+k) ,

1 < k ≤ ` ,

φ(e1) = e`−1,`+1 + e`,`+2 ,

φ(ek) = e`+1−k, `+2−k + e`+k−1,`+k , 1 < k ≤ ` ,

φ(f1) = e`+1,`−1 + e`+2,` ,

φ(fk) = e`+2−k, `+1−k + e`+k,`+k−1 , 1 < k ≤ ` .

(10.83)

The representation (10.83) yields the following presentation of the type D` root system:

αD`1 = α
A2`−1

`−1 + 2α
A2`−1

` + α
A2`−1

`+1 ,

αD`k = α
A2`−1

`+1−k + α
A2`−1

`−1+k , 1 < k ≤ ` .
(10.84)

Consider the root system of type A2`−1 endowed with the automorphism ι of its Dynkin
diagram:

ι : i 7−→ 2`− i , i ∈ {1, 2, . . . , 2`− 1} ;

αA2`
i 7−→ α

A2`−1

2`−i .
(10.85)

so that (10.84) reads

αD`1 = α
A2`−1

`−1 + α
A2`−1

` + ι
(
α
A2`−1

`−1 + α
A2`−1

`

)
,

αD`k = α
A2`−1

`+1−k + ι
(
α
A2`−1

`+1−k
)
, 1 < k ≤ ` .

(10.86)

Introduce the Euclidean vector space R2` with orthonormal basis
{
ε1, . . . , ε2`

}
, supplied with

an action of involution:

ι : R2` −→ R2` , εi 7−→ −ε2`+1−i , 1 ≤ i ≤ (2`) . (10.87)
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Consider the ι-fixed Euclidean subspace R` ⊂ R2`, spanned by

εD`i = ε
A2`−1

`+1−i + ι
(
ε
A2`−1

`+1−i
)

= ε
A2`−1

`+1−i − ε
A2`−1

`+i , 1 ≤ i ≤ ` . (10.88)

Then the root data of type D` reads

αD`1 = εD`2 + εD`1

αD`k = εD`k − ε
D`
k−1 ,

1 < k ≤ `



$D`
1 =

εD`1 + εD`2 + . . .+ εD``
2

$D`
2 =

−εD`1 + εD`2 + . . .+ εD``
2

$D`
k = εD`k + . . .+ εD`` , 2 < k ≤ ` ;

〈αD`i , ($D`
j )∨〉 = 〈(αD`i )∨, $D`

j 〉 = δij ,

(10.89)

and the Cartan matrix A = ‖〈αD`j , (αD`i )∨〉‖ and its inverse are given by

A =


2 0 −1 0 ... 0

0 2 −1 0
...

...

−1 −1 2 −1
...

...

0
... ... ... ... 0

...
... 0 −1 2 −1

0 ... ... 0 −1 2

 , A−1 = ‖cD`ij ‖ =


`
4

`−2
4

`−2
2

... 3
2

1 1
2

`−2
4

`
4

`−2
2

... 3
2

1 1
2

`−2
2

`−2
2

`−2 ... 3 2 1

...
...

...
...

...
...

...
3
2

3
2

3 ... 3 2 1
1 1 2 ... 2 2 1
1
2

1
2

1 ... 1 1 1

 ,

hD`i = (αD`i )∨ =
∑
j∈I

〈αD`j , (αD`i )∨〉$∨j =
∑
j∈I

aD`ij ($D`
j )∨ ,

$∨i =
∑
j∈I

cD`ij (αD`j )∨ , i ∈ I .

(10.90)

Lemma 10.7 The Weyl group W (D`) is isomorphic to a subgroup of W (A2`−1) via

sD`1 = s
A2`−1

` s
A2`−1

`−1 s
A2`−1

`+1 s
A2`−1

` = s
A2`−1

` s
A2`−1

`+1 s
A2`−1

`−1 s
A2`−1

` ,

sD`k = s
A2`−1

`+1−ks
A2`−1

`−1+k = s
A2`−1

`−1+ks
A2`−1

`+1−k , 1 < k ≤ ` .
(10.91)

In particular, one has sD`1 = s
A2`−1

` sD`2 s
A2`−1

` , so that Out(Φ(D`)) = 〈sA2`−1

` 〉 ' Z/2Z.

Proof : For 1 < k ≤ ` the proof literarily follows similar statement of Lemma 5.1. For k = 1
given λ = λ1ε

D`
1 + . . .+ λ`ε

D`
` one has

sD`1 (λ) = λ − 〈λ, (αD`1 )∨〉D`α
D`
1 = λ − 〈λ, εD`1 + εD`2 〉D`(ε

D`
1 + εD`2 )

= −λ2ε
D`
1 − λ1ε

D`
2 + λ3ε

D`
3 + . . .+ λ`ε

D`
`

= λ`ε
A2`−1

1 + . . .+ λ3ε
A2`
`−2 − λ1ε

A2`−1

`−1 − λ2ε
A2`−1

`

+λ2ε
A2`−1

`+1 + λ1ε
A2`−1

`+2 − λ3ε
A2`−1

`+3 − . . .− λ`εA2`−1

2`

= s
A2`−1

` s
A2`−1

`−1 s
A2`−1

`+1 s
A2`−1

` (λ) ,

(10.92)
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since s
A2`−1

` s
A2`−1

`−1 s
A2`−1

`+1 s
A2`−1

` simply swaps ε
A2`−1

` ↔ ε
A2`−1

`+2 and ε
A2`−1

`−1 ↔ ε
A2`−1

`+1 . 2

The orthogonal group O2` may be identified with the fixed point subgroup of the general
linear group as follows:

O2` =
{
g ∈ GL2` : g = gθD

}
⊂ GL2` . (10.93)

The group O2` is not simply connected and there is the following exact sequence:

1 // SO2`
// O2`

det
// {±1}

z

ii
// 1 , (10.94)

with the non-trivial action of {±1} on SO2`.

Lemma 10.8 The even orthogonal group allows for the following decomposition:

O2` = SO2` t S` · SO2` , S` =

(
Id`−1

0 0 1
0 1 0

Id`−1

)
,

AdS` : αD`1 ←→ αD`2 .

(10.95)

so that AdS` represents the symmetry of the Dynkin diagram of type D`. Moreover, O2` has
a structure of a semidirect product: O2` = SO2` o Out(SO2`).

Proof : We have

(HGL2`
)θD = HO2`

= HSp2`
= (HGL2`

)θC , (10.96)

hence HO2`
= HSO2`

. It is convenient to pick z(−1) = M` ∈ O2` as a representative of section
z : {±1} → O2`, since it represents the outer automorphism of SO2`. 2

Lemma 10.9 Let ṡDi = e
π
2
Ji , i ∈ I be the Tits generators (2.28). Then the following hold:

1. The Tits group W T
SO2`

is isomorphic to a subgroup of W T
GL2`

via

ṡD1 = ṡ
A2`−1

`−1 ṡ
A2`−1

` (ṡ
A2`−1

`+1 )−1(ṡ
A2`−1

`−1 )−1 ,

ṡDk = ṡ
A2`−1

`+1−kṡ
A2`−1

`−1+k , 1 < k ≤ ` .
(10.97)

2. The elements (10.97) belong to the θD-fixed subgroup (W T
GL2`

)θD .

3. Presentation (10.97) matches with (10.91) due to

AdṡDi |h = sDi , i ∈ I . (10.98)
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4. The Tits group W T
O2`

fits into the following exact sequence:

1 // W T
SO2`

// W T
O2`

// Out(Φ(D`)) // 1 , (10.99)

that actually splits, so that W T
O2`

= W T
SO2`

o Out(Φ(D`)).

Proof : (1) Since ṡDi ∈ SO2`, i ∈ I, one might verify (10.97) using the standard faithful
representation φ : SO2` → GL2`. For i = 1, we have

φ(ṡD1 ) = φ(e
π
2
J1) =

 Id`−2

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

Id`−2

 = φ(ṡ
A2`−1

` ) , (10.100)

and similarly, for 1 < k ≤ ` we obtain

φ(ṡDk ) = φ(e
π
2
Jk) =


Id`−k

0 −1
1 0

Id2k−4

0 −1
1 0

Id`−k

 = φ(ṡ
A2`−1

`+1−kṡ
A2`−1

`−1+k) . (10.101)

(2) From (4.11) one reads

θD : ṡ
A2`−1

i 7−→ ṡ
A2`−1

2`−i , 1 ≤ i ≤ 2` , (10.102)

so that (10.97) are θD-invariant.

(3) Follows from (2.29) and (10.91).

(4) The element Ṙ = ṡ` represents R ∈ Out(D`) from (10.91); it is not a reflection
at any root of Φ(D`), that is Adṡ`|h = s` /∈ W (D`) due to (10.91). Moreover, by (2.21)
Out(Φ(D`)) = Out(SO2`) one obtains (10.99). 2

By analogy with the general linear group case, there is another way to lift simple root
generators sDi ∈ W (D`) into the Tits group W T

SO2`
. Recall that W T

GL2`
contains the following

elements:

Tk := eπıekk , 1 ≤ k ≤ 2` ;

Si = Tiṡi = ṡiTi+1 , Si = Ti+1ṡi = ṡiTi , 1 ≤ i ≤ 2` .
(10.103)

Lemma 10.10 The following elements belong to the fixed point subgroup (W T
GL2`

)θD :

SD1 = S`S`−1S`+1S` ,

SDk = S`+1−kS`−1+k , 1 < k ≤ ` ;

TDi = T`+1−iT`+i , 1 ≤ i ≤ ` ,

(10.104)

Proof : The explicit action of θC on generators (10.103) gives (4.15):

θD(Si) = S2`−i , θD(Si) = S2`−i , θD(Tk) = T2`+1−k . (10.105)

This implies that (10.104) are invariant under θD. 2
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Corollary 10.3 The elements (10.97) and (10.104) can be identified via

SD1 = TD2 ṡ
D
1 , SDk = TDk ṡ

D
k , 1 < k ≤ ` . (10.106)

Proof : By straightforward computation using faithful representation (10.93) one finds

φ(SD1 ) =

 Id`−2

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

Id`−2

 ,

φ(SDk ) =


Id`−k

0 1
1 0

Id2k−4

0 −1
−1 0

Id`−k

 .

(10.107)

Identifying this with (10.72), (10.73) one deduces (10.78). 2

Proposition 10.3 The elements SDi , i ∈ I from (10.104) satisfy the relations (2.23), (2.24)
of type D`:

(SD1 )2 = (SD2 )2 = . . . = (SD` )2 = 1 ,

SDi S
D
j = SDj S

D
i , i, j ∈ I such that aij = 0 , ;

SDi S
D
j S

D
i = SDj S

D
i S

D
j , i, j ∈ I such that aij = −1 .

(10.108)

Proof : One might verify (10.108) using the standard faithful representation (10.93). Al-
ternatively, similarly to our proof of Proposition 10.1 the relations (10.108) can be deduced
from (2.29) and (10.106). 2
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[BT] A. Borel, J. Tits, Groupes réductifs, Publ. Math. I.H.E.S., 27, (1965) 35-150.

[BD] J.-L. Brylinski, P. Deligne, Central extensions of reductive groups by K2, Publ. Math.
I.H.E.S. 94 (2001), 5-85.

[C] C. Chevalley, Classification des Groupes Algébriques Semi-simples, Collected works, Vol.
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