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Abstract

In the pseudodifferential calculus on manifolds with singularities there appear oper­
ators in terms of Fourier and Mellin transforms. This gives rise to abstract Fourier­
Laplace transforms. We describe pseudodifferential operators and 80bolev spaces
with respect to such transforms. It is indicated how these techniques may be used
to get an index formula on manifolds with one-point singularities.
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tors, index.





Contents

Introduction 2

1 Abstract Fourier-Laplace Transform 4
1.1 Fourier transform . . . . . 4
1.2 Fourier-Laplace transform 5

1.3 Inversion formula . 6
1.4 Properties . . . . . . . . . 6
1.5 Sobolev spaces . . . . . . . . 7
1.6 Pseudodifferential operators 9

2 Elements of Pseudodifferential Calculus 10
2.1 The Laplace-Beltrami operator on a manifold with cusps 10
2.2 Typical differential operators on manifolds with singular points 12
2.3 !{ernel cut-off . . . . . . . . . 14
2.4 Algebras without asymptotics . 17
2.5 Asyrnptotics........ 18
2.6 Algebr'as with asymptotics 22

3 Index formula 28
3.1 Overview............. 28
3.2 Trace estimates tor remainders 30
3.3 Regularized trace of product 40
3.4 Algebraical index 43
3.5 A nalytical index . 47
3.6 Topological index 50

Bibliography 55

1





Introduction

The concept of the conification of an operator algebra was introduced in Schulze
[17]. It applied earlier results of [16]. Roughly speaking, the conification is a pseu­
dodifferential calculus along the cone axis IR+, based on the Mellin transform, with
operator-valued symbols taking their values in the given operator algebra. The es­
sential key words in this context are Fuchs-type operators, conormal symbols, Mellin
quantization, kernel cut-off, meromorphie operator functions, weighted eone Sobolev
spaces, discrete and eontinuous asymptotics, Green operators. In partieular, given
a closed eompact manifold X, the conification of the algebra of pseudodifferential
operators on X gives rise to a cone algebra on the stretched cone X D = lR.t x X.

Let us comment in this connection on the role of the Mellin transform which
is the relevant integral transform here, whenever a new cone axis lR+ :3 tappears.
We could always substitute the diffeomorphism r = log t of R+ ~ lR and pass to
the Fourier transform in the new coordinate. However in the original t-variable the
calculus needs the Mellin and the Fourier transform at the same time. The link
between the Mellin and the Fourier description of operators by means of Mellin
operator conventions belongs to the essential technical points of the calculus. Thus,
the coordinate change by r = log t would destroy this relation, and it seems in fact
much more natural to employ the Mellin transform in its classical form, though
the elements of the Mellin pseudodifferential ealculus have to be established and
accepted as a tooI.

The advantage of using the Mellin transform in the analysis on manifolds with
conical singularities lies in the fact that it "quantizes" the covariable z as the Fuchs­
type derivative -t dJ dt which is the only characteristic component in a local basis
of vector fields at the singular point. The basic geometrie ingredient is the "germ"
of the diffeomorphism t 1-+ log t at t = 0 (or, more precisely, tbe behavior of this
diffeomorphism in an infinitesimal interval (0, e), where e > 0).

More generally, consider an arbitrary diffeomorphism r = M(t) of the half-axis
T = IR+ onto the whole axis IR, with M'(t) > 0 for t E T. We associate to M
an isomorphism F : L2(T, dm) ~ L2(IR), where dm = 21r M'(t) dt, by changing
the variable in the Fourier transform. Then, we study the integral transform F for
complex values of the covariable, too.

Similar considerations apply to the multidimensional case provided that the
mapping M under consideration does not mix up the variables.

The integral transform so obtained is easily verified to "quantize" the covariable
z as the derivative D = M~(t) td/ dt which keeps an information on the geometrie
nature of the singular point in question via the "germ" of the diffeomorphism t t--4
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Introductioll 3

M(t) at t = o. It is therefore to be expected that F is the relevant integral transform
in the analysis on manifolds with one-point singularities, such as "conical points",
power-like and exponential "cusps" , etc.

.In the literature there exists a number of directions studying the analysis on
manifolds with one-point singularities under different aspects (cf., in particular,
Plamenevskii [14], Levendorskii [10], Maz'ya, Kozlov and Rossmann [12], et al.).
Melrose and Nistor [13] defined a "cusp" calculus on a manifold with boundary by
use of blow up techniques. They also described the Hochschild homology of this
algebra and various of its ideals and so deduced a pseudodifferential generalization
of the Atiyah-Patodi·Singer Index Theorem. In arecent paper of Schulze, Sternin
and Shatalov [19], asymptotics of solutions to differential equations on manifolds
with power-like cusps are studied. They also constructed an operator algebra on
such manifolds by use of non-commutative analysis (cf. [20]).

The aim of the present work is to develop the calculus of pseudodifferential
operators on a manifold with one-points singularities by use of the integral transform
F. Thus, Ollr approach is similar in spirit to the cone calculus of [17].

We will restriet our attention to the local algebra at a singular point, for we
use the standard pseudodifferential operators away from the singularity. In this
situation, we introduce the notion of ellipticity and establish the Fredholm property
of elliptic operators. We then apply Fedosov's techniques to derive an index formula
for elliptic operators of order zero (cf. Fedosov and Schulze [8]).

Acknowledgments. The authors are greatly indebted to Professor Fedosov for
numerous discussions on his techniques.



Chapter 1

Abstract Fourier-Laplace
Tr'ansform

1.1 Fourier trans/orm

Until further notice we assurne that T = (a, b) is an arbi trary interval in the real
axis and r = M(t) is a diffeomorphism of T onto lR. To be specific, consider the
case where M'(t) > 0 for t E T.

It is easy to see that, given any u, v E C:mp(T), we have

(u 0 M-1
, VOM-I) 2 = -2

1
(u, v)L2(Tdm) '

L (1.) 7r '
(1.1.1)

where dm (t) = 27r tM'(t)1 dt. Hence it follows that U 0 M-1 is of dass L2(IR), for
any u E L 2(T, dm).

Thus, we may define the Fourier transform on L 2(T, dm) (denoted by F in
contrast to the usual Fourier transform :F) so as to make the following diagram
commutative:

L 2 (T,dm)

1(WIr '\. F

L2 (IR) ~ L2(1R).

In other words,

Fu(r) 1. e-in U (M-1
( r )) dr

2.- f e-i'TM(tlu(t)dm(t),
27r JT

r E IR,

for any u E L2(T, dm).
The main property of the Fourier transform so defined is that Parsevars formula

remains valid.

4



1.2 Fourier-Laplace transform

Lemma 1.1.1 I/u,v E L2 (T,dm), then

(Fu, FV)L2(R) = (u, V)P(T,dm)'

Proof. Indeed, applying Parseval 's formula yields

(Fu, FV)L.(R) = 27r (u 0 M-1
, V 0 M-1

) L.(B) ,

which gives the desired conclusion when combined with (1.1.1).

5

o
Hirschmann [9] defines regular F -trans/orms on L2 (T, dm) by requiring the Par­

seval formula as weH as 3 properties more to hold. Then, he proves that any regular
F-transform is of the form F = F 0 (M-1r, with M a diffeomorphism of T ~ IR.

1.2 Fourier-Laplace transform

If u E &'(T), then F u (r) is also well-defined for every complex value TEe. In this
way we obtain what will be referred to as the Fourier-Laplace trans/orm. Namely,

Fu(z) = ~ r e-izM(t)u(t)dm(t)
21I" JT

= F (e1JM(f)u) (r), z = r + iv E C, (1.2.1)

where we first assume u E C:mp(T).
Obviously, Fu (z) is an entire function in the complex plane and the restrietion

of Fu (z) to the real axis coincides with the Fourier transform of u (i.e., Fu (r)). ,
Given a,E IR, set r"Y = {z E C: ~z = I} and consider the "weighted Fourier

transform" F -,u = Fu Ir..,..

Lemma 1.2.1 For any , E lR, the trans/orm F"Y extends by continuity to a
unitary isomorphism

F-, : L 2(T, e2"YMdm) ~ L 2(r')').

Proof. If u E C:mp(T), then

sup (1 + Izl)N IF"Yu (z)l < 00
zEr")'

for all N = 0,1, .... Now, applying Lemma 1.1.1 gives

(F')'u,F"Yv)L.(f")') - (F(e"YMu),F(e"YMv))p(R)

= (e')'Mu e"YMv )
, L2(T,dm)

= (U,V)L1(T,e2")'Mdm)

(1.2.2)

whenever u, v E C:mp(T). Hence (1.2.2) is an easy consequence of the relation
between Fand the Fourier transform on IR via the substitution r = M(t).

D



6 1 Abstract Fourier-Laplace Transform

1.3 Inversion formula

The following is actually an equivalent fonnulation of the Fourier inversion f01'1nula.

Lemma 1.3.1 The inverse of (1.2.2) is given by the formula

F-1 f (t) =.2.- f eiM(t)z f( z) dz.
"Y 21r Jr.,

Proof. Indeed, given any u E L'2(T, e'2"YMdm), we have

F"Yu (r +i,) = F t_ r (e"YMu)

= /T-r (e"YTu(M-1 (r))) ,

whence by Fourier's inversion formula

F~l (F"Yu) (t)

= e-"YM(t)~ 1. eiM(t)r:Fr _ r (e"YTu(M- 1 (r))) dr
21r :&

=u.

This proves the lemma.
o

1.4 Properties

The Fourier-Laplace transform on L2(T, dm) is related to the derivative

in the same manner as the usual Fourier-Laplace transform to the derivative D =
t d/dt.

Lemma 1.4.1 For any u E C:mp(T), it follows that

F (Du) (z) = z Fu (z).

Prüof. Indeed, integrating by parts yields

as desired.

F t_ z (Du) = f e-izM(t) (_l_Dtu) IM'(t)ldt
JT M'(t)

sign (M') Ir (-D t e-izM(t») u dt

= z Ftt-oz(u),

D



1.5 Sobolev spaces 7

It is therefore to be expected that the Fourier-Laplace transform F will prove
useful by studying "totally characteristic" differential operators, i.e., those of the
form A = L~o Aj(t)Dj with Aj(t) smooth functions on T.

Yet another basic property of the Fourier-Laplace transform is that multiplica­
tion of u by the weight function e1'M(t) is interpreted under (1.2.1) as the displacement
of the reference line by i,.

Lemma 1.4.2 FOT any / E IR, we have

F(e1'M u) (z) = F(u) (z + i,),

Proof. Indeed,

z E C.

F(e1'Mu) (z) = !r e-izM(t) (e1'M(t)u(t)) dm (t)

- F(u)(z+i,),

as desired.
D

1.5 Sobolev spaces

We want to define weighted Sobolev spaces of functions on T, based on the Fourier­
Laplace transform. Lemmas 1.4.1 and 1.4.2 shed some light on how we should begin.

Definition 1.5.1 Let s E Z+ and , E IR. Denote by 1{tJ·1'(T) the set 0/ all
distributions u on T whose derivatives up to order s are locally integrable with respect
to the measure dm and satis/y

For integer s < 0, we could define the space 1t1f'1'(T) by duality and then, for
fractional 8, by complex interpolation. However we derive a direct description of
the space HtJ·1'(T) so obtained, from the following lemma.

Lemma 1.5.2 Suppose 8 E Z+. Then

1

lIu ll1i'.'(T) ~U_, (1+ Iz 1
2
)' IFu (zWdzr

where the equivalence 0/ two norms means that their ratio is bounded uni/orrnly in
u both from below and above by positive constants.



8 1 Abstract Fourier-Laplace Transform

Praaf. For the proof, we transform the norm 11 . 11~""l'(T) by using the Fourier­
Laplace transform. Namely, Lemmas 1.2.1 and 1.4.1 imply

Since

we conclude that

This is precisely the assertion of the lemma.
D

Since r = M(t) is a monotone function, there is no embedding 1{S
fI,"y

lI

(T) ~
'H s

' ,"'1' (T) for s' ~ s", " ~ ,". However, we get an embedding theorem if we cut off
the functions in question at one of the bounds of T.

Lemma 1.5.3 Let r = M(t) be a monotone increasing mapping of an interval
T = (a, b) onto IR and let w E CI~(T) be equal to 1 elose to a and 0 elose to b. Then,

for a// s' ~ SN, " ~ ,N.

Praaf. The proof is straightforward.
D

The following example was intended as an attempt to describe the weighted
Sobolev spaces KS,"Y(XD ) of Schulze [17] in terms of a global integral transform.

Example 1.5.4 If T = IR+ and M(t) = log t, then

Fu (z) = tX> t-iz u(t) dt
Jo t

= Mu(-iz), zEC,

M being the Me/tin trans/orm. The corresponding spaces 'Hs'/'(lR+) have proved
extremely useful in the cone theory (cf. Schulze [17]).

On the other hand, if T = IR and M(t) = t, then F = :F is the usual Fourier­
Laplace transform on the line. Then, HS,O(IR) are the classical Sobolev spaces.



1.6 Pseudodifferen tial operators

r
r=t

r = log t

t
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Fig. 1.1: The graph of r = M(t).

We now combine these examples by considering a diffeomorphism r = M(t) of
IR+ ~ IR, such that

M(t) = { log t elose to t = 0,
t elose to t = 00,

see Figure 1.1. ..
Then, 1i",O(R+) are isomorphie (as normed spaces) to the spaces K"'O(lR.+) widely

used in the cone theory (cf. Schulze [17]).
o

1.6 Pseudodifferential operators

Lemmas 1.2.1 and 1.4.1 imply that F D = z F, defined, for instance, on all u E
L2 (T, dm) with Du E L2 (T, m). This leads to the nation of pseudodifferential
operators with respect to the transform F via

OPF,--y(a) u (t) = (F-"1);2.t Ft't-+z (a(t, t' , z)u(t' ))

= _1_
2

r dz r ei(M(t)-M(t'»z a(t, t', z)u(t') dm(t'),
(271") Jr _'1 JT

where a E Cr~'c(T x T x r _--y) (see Hirschmann [9]).
U a( t, i' , z) is independent of t', then this reduces to

(1.6.1)



Chapter 2

Elements of Pseudodifferential
Calculus

2.1 The Laplace-Beltrami operator on a mani­
fold with cusps

Consider the surface

in IR? which is obtained by revolving the curve Zl = !(Z3) around the axis OZ3.
We assume that ! : R+ -Jo IR+ is a positive Coo function on the half-line R+,

with /(0+) = O. Then S has a singularity at the origin unless /'(0+) = 00. We
will restriet our discussion to the case of singular points by requiring fri° f~~) to be
infinite (see Figure 2.1).

In particula.r, if f( t) = t P, P ;::: 1, then the origin is a conical point, if p = 1, and
a cusp, if p > 1.

Fig. 2.1: This surface has a singularity at the origin, provided that fci° I~~) =
00.

10



2.1 The Laplace-Beltrami operator on a manifold with cusps

Let us parametrize the surface by

{

Zl = f(t) cos fjJ,
Z2 = f(t) sin </>,

Z3 = t,

11

where cP runs over [0, 21r) and t E [0,00).
Then, the Riemannian metric on the smooth part of S is given in the coordinates

(t,4» by

dz; + dz~ + dz~ = (1 + (f'(t))2) d(J + (f(t))'l d4>'J

or, in tensor form,

9 = (9ii )i=1,2
i=1,2

_ (1 +(f
O
'(t))2 0 )

(f(t))2 .

Note that this metric is degenerate at the singular point.
Denote by Ö. the Laplace-Beltrami operator on the smooth part of S with respect

to the metric g. In order to compute 60, we note that the inverse of the matrix (9ii)
is the matrix

(9ii) = (l+U\t»)2 ~ ).
o (f(t))2

Then, a trivial verification shows that the Laplace-Beltrami operator is given in the
coordinates (t, fjJ) as

~ =

where 81 = 8/ßt and 82 = 818fjJ.
Since

we may rewri te this as

~ = 1(1 2 ff!;22 ( 1) 2)- - (V92281 ) + - 81 ~ (V92281 ) +82
922 911 911 V 911

1 (1 2 f(t)f'(t)f"(t) )
(f(t))2 1 + (f'(t))2 (f(t) 8lat) - (1 + (f'(t))2)2 (f(t) a/Bt) + tJ.,p



12 2 Elements of Pseudodifferential Calculus

r

/ l' = M(t)

rt dO
r = Jto 1(0)

t

Fig. 2.2: Correcting r = M(t) away from a neighborhood of t = 0, we arrive
at a diffeomorphism r = M(t) of IR+ onto IR.

where 6.4> is the Laplace-Beltrami operator on the unit cirele (the cross-section of S
elose to the singular point).

We have thus arrived at a totally characteristic differential operator related to
the mapping r = M(t) of IR+ ---40 IR, where

t dB
M(t) = Jto 1(0)

with any fixed to > 0.
The important point to note here is the form of M. Namely, since M'(t) = At)

is positive for a11 t > 0, it follows that the function r = M(t) is monotonically
increasing and so one-to-one. However, the image of IR+ by this function may
be different from IR. While M(O) = Jt~ A:) = -00, the case of power-like cusps

f(t) = tP
, p > 1, gives M(t) = I~P (.P~l - t~~l) and so the image of lR.+ by M is

( -00, P~1 t~~1 ). Thus, the Fourier-Laplace transform of Seetion 1.2 needs making

more precise to apply in this situation. Namely, what is merely important for us is
the behavior of the mapping M elose to the singular point t = 0. Thus, we may
correct the mapping r = M(t) away from an infinitesimal interval (O,e), c > 0, in
order to arrive at a diffeomorphism r = M(t) of the half-axis IR+ onto the whole
axis IR.

2.2 Typical differential operators on manifolds
with singular points

When blown up, a manifold with singular points has loca11y the form of a cylinder
X O = T x X elose to a singular point, where T = IR+ and X is a smooth compact
manifold of dimension n without boundary. Moreover, the "push-forwards" of the
vector fields on the manifold, which originate from the singular point, splits ioto a
totally characteristic derivative D = M~(t)+dJ dt along the half-axis T ~nd smooth
vector fields along the base X.



2.2 Typical differential operators 13

The loeal algebra of pseudodifferential operators elose to the singular point is
completely detennined by the "germ" of r = M(t) at t = O. Dur basic assumption
is the following: the "germ" of M at t = 0 can be represented by a smooth diffeo­
morphism of T onto R, with a positive derivative. We continue to write r = M(t)
for this representative.

Clearly, the form of r = M(t) in an infinitesimal neighborhood of t = 0 depends
on the geometrie nature of the singular point in question. In particular, if M(t) =
log t near.t = 0, then the singular point is a eonical point. If M(t) = l~p tP~l elose
to t = 0, with p > 1, then the singular point is a power-like eusp. Yet another case
is M(t) = -e+ for t E (0, c:), that eorresponds to exponential eusps, etc.

By the above, when construeting a loeal algebra elose to the singular point, we
have to begin with typical differential equations on X O whieh are of the form

m

(M'(t))m L AAt) D;'u(t) = f(t), t > 0,
;'=0

(2.2.1 )

where Aj(t) E Cl:c(R+, DifF-j(X)), j = 0,1, ... , m. We did not specify the variable
x in (2.2.1), keeping in mind that, for fixed t, the value u(t) is a distribution on X
and Aj(t) act as differential operators with respect to the x-variables.

The relevant weighted Sobolev spaces in a neighborhood of the singular point
are defined as follows. Fix a farnily of order reductions A"(.\), s E JR., on X depending
on a parameter A E IR. Now, for S,i E IR, we let H"''"T(XO) be the completion of
C:mp(lR+ x X) with respeet to the norm

(2.2.2)

Lemma 2.2.1 A function u E V'(JR.+ x X) belongs to H"''"T(X O
) if and only if

the "puU.back" t*u = u(M-l (log e)) 0/ u under the diffeomorphism e I-t M- 1 (log e)
0/ IR+ belongs to the corresponding cone weighted Sobolev space.

Proof. Indeed, if e= eM(t), then an easy computation shows that

whenee

lId
"'[ M'(t) di

dM(t)
(2.2.3)

Fu (z) = M (t*u) (-iz), z E C,

M being the Mellin transform (cf. ExampIe 1.5.4). This gives the desired conelu8ion
when substituted in (2.2.2).

o
Sinee the derivative M'(t) i8 different from zero for t > 0, equation (2.2.1) is

equivalent to the equation

Au(t) = (M'(t))-m f(t), t > 0,



14

where

2 Elements oi Pseudodifferential Calculus

(2.2.4)
m

A = L Aj(t)Di.
i=O

From what has already been proved in Sections 1.4 and 1.6, it follows that
the operators (2.2.4) behave properly in the scale (2.2.2). Hence, when one treats
typical differential equations in a neighborhood of the singular point, there naturally
appears an addi tional seale of norms

(2.2.5)

(2.2.6)

with parameters s", Jl E R.

Lemma 2.2.2 Let w E C:mp (1R+ ). Th en, for each real numbers s' ~ S", " ~ ,"
and p.' ::; Jl" J we have a continuous embedding

Proof. This is obvious beeause of (2.2.2) and (2.2.5).
o

We now return to the "transcedental" change of variables f! = eM(t) used in the
proof of Lemma 2.2.1. The first equality of (2.2.3) shows that the "pull-back" of
the operator A under the diffeomorphism e ...... M-l(log e) oI R+ is the differential
operator

t 11 A = f: t *A j (e) (;e~) j ,
j=O z de

so that t*(Au) = tttA (t*u). Thus, we deduce that the operator A transforms, under
the change of variables t = M-1 (log e), into a Fuchs-type operator tU A. Conversely,
eaeh Fuchs-type operator on lR.+ x X transforms, under the change of variables
e = eM(t), into an operator of the form (2.2.4).

It is worth pointing out that t = M-1 (log e) is a homeomorphism of the closed
semi-axis 1R+, with the inverse e = eM(t). Therefore, the coefficients t- Aj (e) =
Aj (M- 1 (log e)) of ttt Aare continuous up to e= 0 if and only if so are the coefficients
of A. However, as the change of variables t = M- 1 (log e) is not smooth up to f! = 0
in general, the eoefficients of t ÖA need not be smooth up to e = 0, even if so are the
coefficients of A.

Another way of stating this observation is to say that topologically all the one­
point singularities are equivalent. However, having fixed a geometrie type of the
singular point, we .are allowed to use only those homeomorphisms of lR.+ elose to
t = 0 which preserve the geometrie structure of the singularity.

2.3 Kernel ·cut-off

The Mellin calculus in the form developed by Schulze [17, 18] gives also a gen­
eral framework for the analysis on manifolds with arbitrary one-point singularities.
The basic idea is the following. Outside the singular point, one uses the standard



2.3 !(ernel cut-off 15

pseudodifferential calculus and the standard Sobolev spaces. Near the singularity,
however, the analysis reHes on the operators constructed by use of the transform F,
and the spaces 'H~ ...y(XO ).

More precisely, one considers the operators (2.3.1) on the semiaxis whose sym­
bols take their values in the algebra of all pseudodifferential operators on X.

In the sequel, let m" ERbe fixed. Given any a E C~(IR+ x lR.+,.cm (X j r _')')),
we shall write a = a(t, t', z), where z = T - i, indicates the variable in r _')'. For t,
t', z fixed, this a(t, t', z) is a pseudodifferential operator on X.

Definition 2.3.1 Suppose that a E C1:(lR+ x IR+, .cm(X; r _')')). The operator
opF,')'( a) with the symbol a on C:mp(IR+ x X) = C:mp(IR+, COO(X)) is

OPF,~(a)u (t) = (2~)21_, dz !a'" e,(M(t)-M("))z a(t, t', z )u(t') dm(t'). (2.3.1)

The right-hand side of (2.3.1) is to be understood as an iterated integral. We did
not specify the variable x in (2.3.1), understanding that, for fixed t', the value u(t')
is in COO(X) and that a(t, t', z) acts as a pseudodifferential operator with respect to
the x-variables.

If X consists of one point, then (2.3.1) reduces to what has already been defined
in Section 1.6. In general, we have

op (a) = eSAf(t) op (a(t t' z - io)) e-SM(t}
~')'+S ~')" , , (2.3.2)

which is due to Lemma 1.4.2.
Like pseudodifferential double symbols, the double symbols in (2.3.1) are not

uniquely determined.

Example 2.3.2 It is immediate from integration by parts in (2.3.1) that

o

Smoothness of a up to zero yields the continuity of oPF,')'(a) on the weighted Sobolev
spaces. The preceding Example 2.3.2, however, shows that the smoothness is not
necessary.

Proposition 2.3.3 Let a E CI::(IR.+ x IR+,.cm(X;r_')')). For each s E IR and
Wl, W2 E C~mp(IR+), there is a continuous extension
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Proof. See Schulze [17, 1.2.3).

2 Elements of Pseudodifferential Calculus

o
We also mention the following results. The first of them shows that, just a.s in

the case of pseudodifferential operators, one has asymptotic summation of symbols.

Proposition 2.3.4 Let (mj)j:;:1,2,... be a sequence in IR tending to -00, let aj E

C~(IR+ x IR+, Lmj(X; r _,)), and let m = maxmj. Then there exists a symbol

a E C,%(lR+ X IR+, Lm (X; r_,)) with a rv Eb:l aj, i. e., for any N E Z+ there is a

J such that a - E;:;:1 aj E C~(1R+ X IR+, Lm
- N (X; r _,)). Moreover, a is unique

modulo G1::(IR+ x lR.r, L-oo(X; r _,)).

Proof. See Schulze [17, 1.2.4].

o
Moreover, one obtains smoothing operators by a special analytic procedure that­

Schulze [17) calls "kernel cut-off."

For the standard pseudodifferential operators, we may calculate the Schwartz

kerneis in terms of the amplitude functions. For operators (2.3.1), we can analo­
gously wri te

1 (oo
oPF,,(a)u (t) = 27r Ja k(a) (t, t' ,M- 1 (M(t) - M(t' ))) u(t' )dm(t')

is interpreted in the distributional sense. Obviously, k(a) is a Goo function of (t, t') E
lR+ X R+ with values in 'D'(IR+, Lm(X)). For fixed t and t', the singular support of
k( a) (t, t', ~) is contained in the only point (0 E R+ where M (0) = 0 (cf. Schulze
[17, 1.2.4)). Moreover, we have a( t, t', z) = F -'"YC:I--Ozk(a) (t, t', z).

Proposition 2.3.5 Assume that w E C~mp(lR+) is a cut-off function dose to ~o

(i.e., w(,) =1 near, = ~o). Given anya E G~(lR+ x IR.+,Lm(X;f_,)), let

al(t,t',Z) = F,I--OZ (w()F=~zl--O,a(t,tl,z)),

a2(t, t' , z) = F,_z ((1 - w())F=~z_,a(t, t/, z)) .

Then

al E C,~(ll4 x R+,Lm(X;f_-y)),
a2 E GI:(IR+ x 14, L-oo(X; r -'"Y)).

Proof. See Schulze [17, 1.2.4].

o
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We are now ahle to describe an algebra withoul asymptotics on a manifold 9Jt with
singular points. We shall not attempt any discussion of the rigorous definition
of such a manifold. The important point to note here is the form of transition
diffeomorphisms elose to a singular point - they have to preserve the geometrie type
of the singularity. We shall instead deal from the very beginning with the "stretched
object" assoeiated to 9Jt.

Proposition 2.4.1 Por any manifold 9Jt with singular points S there is a smooth
manifold with boundary M such that:

1) 9Jt \ S is diffeomorphic to MI \ 8M; and
2) there ~'s a neighborhood N 01 S in 9J1 and a collar neighborhood N ~ 8M x

[0,1) 018MI in MI such that N \ S is diffeomorphic to 8M x (0,1).

Proof. We construct MI by replacing, for every one-point singularity pES, a
neighborhood N of p by [0,1) x X via gluing with any one of the diffeomorphisms
N \ {p} -t (0, 1) x X of which equivalenee elasses determine the structure of 9J1
elose to p. We even get DM = UpEsXp, the subscript p pointing to the dependence
of X on p.

o
We begin with definition of weighted Sobolev spaces K"'I'(M) (cf. Sections 1.5,

2.3). We shall say that a function or distribution is supported dose to the boundary
01 M if it vanishes outside the part of M that is identified with [0,1) x X. Fix a
smooth funetion w on MI which is supported elose to the boundary and equal to
1 in a smaller neighborhood of the boundary. Given a distribution 'U E V'(int MI),
we ean write it as U = Ul + Uz with Ul = wu supported elose to the boundary and
U2 = (1 - w)u supported away from the boundary. We sha.ll say that U E K",I'(M),
provided that Ul E 1-l"'1'(XO ) and U2 E Ht"oc(int MI). It is easy to see that this
definition is independent of the particular ehoice of w. We ean topologize K",1'(M)
as a Hilbert space, using the Hilbert spaee structures on 1-l"'1'(XO ) and H"(IR1+n).

In the sequel, we use the notion of the weight datum of an algebra without
asymptotics. By such a datum is meant any couple ~ = (,,8) of numbers ,,8 E IR.

For a weight datum ~ = (,,8), denote by VL:-oo(M,~) the set of all operators
SF : C:mp(int MI) -t 'D'(int MI) such that, for all s E lR, there is a continuous
extension SF : K",'"Y(MI) -t Koo,6(M).

Given any 1n and weight datum D = (,,8), let 'DL:m(MI, D) be the space of all
operators A : C:mp(int M) -t 'D'(int MI) of the form A = AF + AF + SF, where

AF is an operator based on the transform F elose to the boundary, i.e., there are
functions <.po, 'l/Jo E Coo(MI) supported elose to the boundary of M, and a symbol
a E C1:(ll4 x ll4, L:m (X; r -1')) such that AF = e(6-1')M(t) <.po opF,")' (a) 7/;0;

AF is a pseudodifferential operator supported away from the boundary, i.e., there
are functions <.pOCl' 7/;00 vanishing in a neighborhood of the boundary of M, and
a symbol a E sm(int M) such that AF = <.poo 0PF(a) 'l/Joo;
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SF is an operator in V.c -00 (M, D).

The collection of all the spaces v.cm (MI, D) with m, 1,8 E. IR. is the algebra
without asymptotics. With the help of Proposition 2.3.3 it is easy to see that an
operator A E V.cm(MI, D) induces a continuous mapping ,

for any s E IR.
H is not so trivial that the algebra without asymptotics is an "algebra" in the

sense that, for all mt, m2" E IR, the composition of operators induces a continuous
mult iplication

v.cm·(I~lI, (2) x v,Cm 1 (M, Dd -t v.cm1 +m ·(M, D),

where Dt = (,,8), D2 = (8, t:) and D = (" t:).
1t follows from the mapping properties that the operators in V.c-oo(M, D) form

an "ideal" in the sense that the above multiplication restricts to continuous maps

'O.c-oo(M, (2) x 'O.cm1 (M, Dt ) -t V,C-oo(M, D),
'O.cm• (M, ( 2 ) x 'O.c-oo(M, Dt} -+ 'O.c-oo(M, D),

Dj being as above.

Remark 2.4.2 If m = 0, then V'c°(M, '0) is an algebra in the usual sense, and
V.c-oo(M, D) is an ideal in this algebra.

Finally, the important point to note here is the following relation between the
operators based on the transform Fand the usual pseudodifferential operators.

Proposition 2.4.3 Suppose .,pF is an operator as above. Then, for any func­
tions 'POOl tPoo E C~p(int MI), there is a pseudodifferential operator 'l/JF E .cm(int M)
supported in the interior 0fM such that 'Pco "pF 'l/Jco = 1/1:F.

Proof. The reader should recognize that this assertion is none other than the
change of variables on the space of usual pseudodifferential operators.

o
Under the hypotheses of Proposition 2.4.3, if moreover supp 'Pco n supp 1/100 = 0,

then 'Pco 1/1F 1/100 E v.c-oo (M, D).
From what has been said at the end of Section 2.2, it may be coneluded that the

algebra V.cm(M, D) is an extension of the cone algebra in the sense that, elose to the
singular points, the pull-back of the cone algebra under the mapping t l-+ f! = eM(t)

is a proper subalgebra of V.cm(M, D).

2.5 Asymptotics

In general, asymptotic expansions of solutions to equation (2.2.1) in a neighborhood
of the singular point seem to be controlled by the scale of norms (2.2.5), Le., the
remainders, when cut off, He in the spaces 1{"'')''~(XD) with Jl large enough.



2.5 Asymptotics 19

In the last two sections of this chapter we will restrict the discussion to the
situation when the asymptotic expansions of solutions may be controlled by the
scale (2.2.2). Roughly speaking, this corresponds to the case where the standard
parametrix construction for elliptic operators A leads not only to a gain in the power
of (M'(t))-l but also to a gain in the power of eM(t). To ensure this, we need an
additional assumption on smoothness of the coefficients of A elose to t = 0, namely,
that Aj (M-l(log e)) are Coo up to e = 0, for j = 0,1, ... , m. This assumption is
satisfied, in particular, jf all the coefficients Aj are constant in a small interval [0, €),
€ > 0.

Ta begin with, we make more precise the definition of the spaces K:··"r(XO ) on
the infinite cylinder X O = R.+ x X. The analysis on X O employs the transform F
and weights only near the base t = 0. The weight factor e-2"rM(t) in Definition 1.5.1
affects the space also for t ~ 00. It is advantageous to introduce another variant
of spaces on X O that l'efers to the Fourier-Laplace transform and to weight factol's
only neal' t = 0. The idea is to multiply rl"'''r(XO ) by a cut-off function wand therf - ~

to add (1 - w) ri"(XO ), where 1-l"(XO ) is the usual Sobolev space on X O properly
intel'pl'eted 1. Thus, for 8" E IR, we set

with w a fixed cut-off function on R+. We topologize K>""r(XO) by the norm

It is easy to check that the space K>""r(XO ) i5 independent of the particulal'
choice of the cut-off function w up to an equivalent norm. Moreover, the topology
of K:"'''r(XO ) is still induced by a Hilbert inner product 2.

Having disposed of this preliminary step, we can now return to spaces with
asymptotics. The following assertion is of basic interest in the analysis of the conor­
mal asymptotics of distributions on X O for t ~ 0.

Lemnla 2.5.1 Let w E C:mp(I14) be a cut-off function with respect to t =
0, and let p E C, J.l E Z+. Then the Fourier-Laplace transform of the function
w(t) eipM(t) (M(t))J.-' extends to a meromorphic fun~tion in the whole complex plane
with exactly one pole, of multiplicity Il +1, at p.

Proof. We first prove a reduced form of the lemma, namely, assume that both
p and J.l are zero.

For ~z > 0, write
1

Fw (z) = - u(z),
z

IThe proper definition of 1i'(XO ) should perhaps take into account the behavior of r = M(t)
for t - 00.

2In the same way, starting with 1i'·1"~(Xo)1 we can define the spaces X::",1"~(Xo) far all s, "Y, J.l E
R.
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where u(z) = F (Dw) (z). Since Dw E C~mp(IR+), we conclude that u is an entire
function of z E C. Moreover,

u(O) 1 100

dw d- -t
i ° dt
-1

= -.w(O)
1

z.

Hence it follows that ; u(z) is a meromorphic function with a single pole located at
z = 0 and of multiplicity fl. = 1.

For the general case, take z E C with ~(z - p) > o. An easy computation shows
that

Ftt-+z (w(t) eipM(t) (M(t)y')

= 2~ 10"''' e-üM(') (w(t) e;pM(') (M(tW) dm(t)

= (i a/az)~ Fw (z - p)

= (i a/az)~ (_1_ u(z - P)) .
Z-P

By the above, the right-hand side here is a meromorphic function with a single pole
located at z = p and of multi plicity I-l + 1. Hence the lemma follows.

o
The proof above gives more, namely, given any point p E C and excision function

X( z) of p, the function X F (w( t) eipM (t) (M (t))~) is rapidly decreasing on each weight
line r -'Y' uniformly in f on finite intervals.

Remark 2.5.2 It is easily seen from the proof that the difference

F tt-+z (w( t) eipM(t) (M(t) )~) _ (-i)~ 1
Jl! (z - p)~+1

extends to an entire function.

Fix a cut-off function w E C:mp(lR.+) with respect to t = o. Given a point
p E C, it follows from Lemma 2.2.1 that the asymptotics

u(t, x) = w(t) eipM(t) (M(t))~ Ul(X)

lies in JC"'-Y(XO
), for each I-l E Z+ and Ul E H"(X), if and only if ~p < -,. We

want to introduce subspaces K~~'Y(XO) consisting of functions u E K"''Y(XO ) which
have a gain in the weight up to elements of some finite-dimensional subspace of
asymptotics. To make this more precise we give the following definitions.

A weight datum D = (..,., (-1,0)) consists of a number f E IR and an interval
(-1,0] on the real axis. We consider finite weight intervals (i.e., those with 0 < 1<
00) as weIl as thc infinite one (i.e., (-00,0]).

By an asymptotic type associated with the weight datum D is meant any col­

lection as = ((Pi 1 fl.j, ~j)) j=O,l,... ,J' where
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Fig. 2.3: A carrier of an asymptotics for the weight datum j) = (" (-1,0]).

• (Pj) are complex numbers in the strip -, - I < ~Pj < -,;

• (}.Lj) are non-negative integers; and

• (~j) are finite-dimensional subspaces of COO(X).
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For the infinite weight interval, the value J = 00 is also admissible. However,
we assume that each strip {d :::; ~z :::; eil} contains only a finite number of the points
(Pj). Thus, a condition on (Pi) is ~Pi ~ -00 when j ~ 00.

Definition 2.5.3 Given a weight datum j), we denote by AS(j)) the set 01 all
asymptotic types associated with j). Asymptotic types 01 such a kind are called dis­
ereie.

By the above, when working with the spaces 1C"tY(XD ), we have to consider
weight data j) = (,,(-1,0]). Fix such a datum.

Given any asymi?totic type as E As(j)), we denote by 2lo" the finite-dimensional
space spanned by the functions

(w(t) eipjM(t) (M(t))~ Ci~(X))i=O.l, ,J ,
Jj=O,l ,~j

where ei~ E Ej . (The cut-off function w(t) is kept fixed.)
From what has already been proved it follows that 2ta " C K:~,I'(XD), for all

s E IR, and 21a" n K"·I'+I-O(XO) = 0, where K"ty+l-O(XO) = nt:>oK"·I'+I-t:(XO). The
elements of Je".I'+I-O(XO) may be regarded as heing Bat of order 1- 0 relative to the
weight ,.

We endow 2ta" with the natural topology, and Je",I'+I-O(XO) with the topology
of projective limit of Hilhert spaces.

Definition 2.5.4 FOT S" E IR and as E AS(j)), let

K:~I'(Xo) = 2la .. +K",y+l-O(XO).
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We make K~:7(XO) a Frechet space by giving it the topology of the sum of
Frechet spaces. Obviously, K~:7(XO) is independent of the particular choice of the
cut-off function w up to an equivalent topology.

Remark 2.5.5 Spaces with asymptotics are also well-defined on a manifold with
one-point singularities i/ we either keep coordinates fixed or else interpret the sub­
scnpt 'as' associated with an asymptotic type 'as' as an equivalence dass 0/ possible
asymptotic types.

We finish this section by abrief discussion of operator-valued meromorphic
functions. Namely, for a discrete set D in the complex plane, we define meromorphic
functions h(z) E A(C \ D, l.d (X)) whose values are c1assical pseudodifferential
operators on X.

The space l.'J(X) is endowed with its natural Freechet topology, and A(C\D, l.)
is the space of .c-valued holomorphic functions on C \ D. Clearly, .A(C \ D, l.r;;(X))
has a natural Frechet structure, again.

Denote the points of D by (Pj)j=O,I, .... We will assume that each strip {Cl ~

~z ::; eil} contains only a finite number of points in D.
Furthermore, let us fix a sequence (p.j) of positive integers and a sequence (.c j )

of finite-dimensional subspaces of operators of finite range in .c-OO(X).
Every collection as = ((Pj, Pj, .cj))j=O,I,... will be called a (discrete) asymptotic

type for F-symbols.
Now Ma,,(C, l.d(X)) denotes the subspace of A(C \ D, .cd(X)) consisting of

all functions h(z) such that

• for every D-excision function x(z) (Le., X E C,~(C) is equal to 0 near D
and 1 away from a neighborhood of D) we have X(z) h(z)lr_-, E .c~j(X; r -,,)
uniformly in / on finite intervals in IR;

• h(z) is meromorphic with poles at Pi of multiplicities J1.j + 1, and the Laurent
expansion at Pj is h(z) = L~~O Ij (z - Pj)-(i!+l) + hj(z) with Ij E .c j and
hj(z) E A(N, .cd(X)) for some neighborhood N of Pj'

The space Ma,,(C, l.d (X)) has a natural Frechet topology. We will write it
simply M(C,l.d(X)) when D = 0.

2.6 Algebras with asymptotics

Until further notice, we restrict our attention to a coordinate patch on X with
variable x and covariable e.

For m E IR and a weight datum D = (,,8), we denote by VSm(X O , D) the
subspace of sm((lR+ x X) X R,1+n) consisting of symbols of the form

(t t) - (5-,,)M(t) .. (t _1_ t)a ,X,T,,,, - e a ,x, MI(t) T,,,, , (2.6.1 )
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Since the weight factor e(S--y)M(t) is fixed for every m, we can endow each space
Dsm(xO

, D) with a canonical Frechet topology. The elements of Dsm(XD , D) are
called degenerate symbols of order m.

We use the symbol DS'd(XO , n) to denote the subspace of vsm(xO , n) induced
by Sd(XO X Rl+n) in the same way. As usually, we set

By definition, each symbol a E VSd(XO, n) can be written in the form (2.6.1),
where a E sm(XD X JR.l+n). Write G"" Lj X am-j, with X an excision function and
am-j E C~(XO X JR.l+n) homogeneous of degree m - j.

Definition 2.6."1 Given an a E VSrzt(XO
1 n), by the principal inner symbol 0/ a

is meant

m( )(t t) - (S-,)M(t) - (t 1 t) t 0
Cf":!: a ,X,i,~ - e a m ,x, M,(t)i,~, >.

Since M(t) ---+ -00 as t ---+ 0, the principal inner symbol itself cannot control the
behavior of a at t = O. For this purpose, we may invoke the component äm(t, x, f,~)
because it is well-defined up to t == 0 and captures the behavior of a.F(a) away from
t = 0.

A symbol a E VSd(XO 1 D) is said to be elliptie if äm(t, x, f,~) i- 0 for all
(t, x, 7\~) E X O X (lR.1+n

\ {O}). The important. point to emphasize here is that the
ellipticity of adegenerate symbol subtends the non-singularity of Gm up to t = O.
By the above, every elliptic symbol a E VS'd(XO, D) is also elliptic in the sense of
symbol algebra on the interior of X O . Therefore, a has a Leibniz inverse in this
algebra, which is unique modulo S-oo((IR+ x X) X IR1+n). The crucial fact is that
we can ensure the existence of a Leibniz inverse within the dass VS;rm(X D

, D).
Under ellipticity, we want to associate with the Leibniz inverse of a a continu­

ous mapping between weighted Sobolev spaces on X O • We first demonstrate these
techniques by example of those degenerate symbols which are polynomial in i.

Example 2.6.2 Let A be of form (2.2.4). We have A = oP.:F(a) with a unique
symbol a E DSd(XD

, D), for each weight data D == C" ,). In this case,

(2.6.2)

Fix a cut-off function w on lR.+, so that w(t) = 1 for t ~ a and w(t) =°for t 2:: A,
where 0 < a < A < 00. Then <Po == wand <Poo = 1 - w give the partition of unity
on the semiaxis subordinated to the covering 10 = {0,2A), 100 == (~a, 00). We now
choose "pv E C,~(I4) (v = 0,00) such that supp"pv C Iv and 7/;v = 1 near supp <pv'
Since the operator A is loeal, it is a simple matter to see that A = Ao + Aoo , where
Ao == <pooP.:F(a) "po, Aoo = <Poo oP.:F(a) 7/;00' The operator Aoo is "supported" away
from the singularity t = 0, so it extends to a continuous linear operator K"';(XO ) ~

K,,-m,,(xO), for each s" E IR, provided that the coefficients A j are independent
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of t for t > 0 large enough. The next task is to rewrite A as a pseudodifferential
operator wi th respect to the transform F, thus making Ao more prepared to act in
the weighted Sobolev spaces elose to t = O. However, a trivial verification shows
that, for every 'I E IR, we have A = oPF,,,(h) on C~p(IR+ x X), where

m

h(t, z) = E Aj(t) zj.
j=O

(2.6.3)

Thus, the operator Al = 'Po opF,,,( h).,po extends to a continuous linear operator of
K:"'''(XO ) --+ K"-m,,,(xO ), for each s, 'I E IR.

o

For arbitrary degenerate symbols, it is no longer possible to obtain a precise
representation just as in Example 2.6.2. When studying arbitrary symbols we had
to look for such a representation only modulo "smoothing" operators.

To each symbol a E VS'd(XO, il), we may assign a pseudodifferential operator
A = oP:F(a) which is well-defined on distributions supported in the interior of XO.

Fix an open covering 10 U 100 of the semiaxis lR+, where 10 = [0,2A) and
100 = (~a, 00) (0 < a < A < 00). Let ('Pv)v=o,oo be a partition of unity on IR+
subordinated to this covering, and let 'l/Jv E C~(lR+) satisfy supp 'l/Jv c Iv and
.,pv = 1 in a neighborhood of sUPPlt'v'

Since the operator A is pseudo-local, we see at once that A = A o + Aoo modulo
smoothing operators in lR.+ x X, where

Ao = <po 0P:F(a) 'l/Jo,
Aoo - 'Poo 0P:F(a) 'l/Joo'

Dur next goal is to find a suitable reformulation of the operator Ao in terms of the
transform F.

Theorem 2.6.3 Given anya E VSd(XO , D), there exists an F-symbol h(t, z) E
C,e~~(lR+, M(C, .cd(X))) such that, for each 'I E IR, we have

0P:F(a) = e(5-'"Y)M(t) opF,')' (h) (mod .c-00(R.+ x X)) .

Proof. CL Egorov and Schulze [4, 8.1.3].

Summarizing, we have

(2.6.4 )

o

for each 'I E lR.. Moreover, Proposition 2.3.3, when combined with bounded­
ness properties of pseudodifferential operators in Sobolev spaces, shows that the
right-hand side of (2.6.5) extends to a continuous linear operator of K"''"Y(XO ) ---+

K,,-m,8(XO ), for each s E IR, provided a is independent of t for t > 0 large enough.
We are now in a position to describe our algebra with asymptotics on a man­

ifold with singular points. By the above, we are interested in a simple edition of
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this algebra based on the spaces with asymptotics of Section 2.5. In order to get
asymptotic results, it is necessary to put some restrietions on the symbols in ques­
tion. The requireluent on a is that a(M- 1 (log e), x, T,~) is smooth up to e = 0 (cL
(2.6.1)). Such is the case, in particular, if CL is independent of t elose to t = O.

The algebra witb asym'ptotics on a manifold with singular points starts with
operators of the form (2.6.5), where the Fourier symbol a(t, x, T,~) and the F-symbol
h(t, z) are compatible in the sense of Theorem 2.6.3. Dur operator convention (2.6.4)
does produee at onee smoothing errors of different kind under changing h(t, z) or
the cut,-off functions. It is worth pointing out that if we add to h(t, z) a symbol
ho(t, z) E Cl~ (IR+, M a,,(C, .c~t() (X))) whose poles do not meet tbe reference line
r -"f' then the equality (2.6.4) is still true. In this way we obtain what we shall call
the smoothing F ·operators, by analogy with smootbing Mellin operators (cf. Schulze
[18, 1.4.3]). Since the parametrix constructions for tbe typical elliptic differential
operators (2.2.4) lead to smoothing F -operators, it is adequate to have them from
tbe very beginning in the dass.

To describe more precisely the smootbing F-operators, we need the notion of a
weight datum for an algebra with asymptotics. By such a datum we mean any tripie
1) = (" 8, (-1, 0]) consisting of real numbers "OE IR and a weight interval (-1, 0],
1> O.

The smoothing F-operators with respect to a weight datum D = (,,0, (-1,0]),
I = 1,2, ... , are defined to be operators of the form

1-1
SF = e(S-"f)M(t) " ejM(t) op .(h·)

~ F."f} ),
j=o

(2.6.6)

with hj(z) E Masj(C, L:~tO(X)), where hj(z) has no poles on tbe weight line r -"fj

and 1 - j :::; Ij :::; , for all j = 0,1, ... ,1 - 1. The latter two conditions en­
sure, by Proposition 2.3.3, that '-Po SF'l/Jo extends to a continuous linear mapping of
1Cs·"f(XO) ~ 1Coo•S(XO ), for each s E R.

Remark 2.6.4 The absence in (2.6.5) 01 smoothing F.operators with meromor·
phic symbols allows actions on spaces with arbitrary weights , E IR, in contrast to
what we obtain by adding an operator 01 the form (2.6.6), which contains meromor·
phic ingredients and hence natural restrietions on the weights.

The only point remaining concerns the smoothing errors produced by (2.6.4)
under changing the partition of unity ('-Pv)v=o,oo on the half-line R+. These are
known as the Green operators and defined via their mapping properties.

For an operator A E .c(1C"'''f(XO) ~ 1Ct
•5(XO)), we can define the transpose

A' as an element of L:(x::-t.-S(XO ) ~ X::-"·-"f(XO )) via tbe non-degenerate pairings
1C"·"f(XO) x x::-s·-"f(XO) ~ C induced by the inner product in 1Co.O(XO). Namely,
we require (Au,g),co,O(XO) = (u,A'g),co,o(X O) to hold for all U,9 E C~p(XO).

Since we are again aimed at the analysis near t = 0, we shall replace K::\XO
)

and K::,-"f(XO) by subspaces S:,,/(XO) and S:';;(XO) respectively, where

S!",(XO
) = w 1C::s(XO) + (1 - w) S(XO),

S;,,;,(XO) = w K::,-"f(XO) + (1 - w) S(XO).
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Here w(l) is a cut-off function and S(XO ) = S(IR+, COO(X)). It is easily seen that
these new spaces are independent of the concrete choice of w.

Definition 2.6.5 An operator G E n"EBL:(JC"''1(XO ) ----7 }(oo,8(XO )) is said to
be a Green operator with respect to a weight datum i) = (." 6, (-l, 0]) J if there are
asymptotic types as' E As (b, (-l, 0]) and as" E As (-/" (-1,0]) such that

G E n"EIl .c(K ",'1 (XO
) ----7 S:", (XO

)),

G' E n"EIlL:(K",-8(XO ) -+ S:,;'(XO )).

These operators can be eharacterized in the following way: Gis a Green operator
with asymptotic types as' and as" if and only if G is an integral operator with a
kernel in sg",(XO)~.,.S:,,7,(XO).

The differenee between a smoothing F-operator and a Green operator is that
the former preserves the asymptotics of the argument function and adds speeific
ones, whereas the latter forget the original asymptotics and produces new ones.
The reason for taking / - 1 as the upper summation bound in (2.6.6) is that
e(8-ry)M (t) e jM (t) opF,'1j ( hj) is a Green operator with respect to a weight datum i) =
(,,8,(-/,0]), provided that j ~ /.

We leave it to the reader to carry over the above loeal results to the whole
manifold X by using a familiar argument invoking a partition of unity on X.

To complete the construction of the algebra with asymptotics on a stretched
manifold MI, we can argue just as in Section 2.3. Given any m E :R and weight
datum D = Cf', 0, (-1,0]), let 'O.c m (M, D) stand for the space of all operators A :
C:mp(int MI) -+ V'(int MI) of the form

(2.6.7)

where

AF is an operator based on the transform F elose to the boundary, aB in the right­
hand side of (2.6.4);

AT is a pseudodifferential operator of order m in the interior of MI, whieh differ
from AF , elose to the boundary, by a smoothing operator;

SF is a smoothing F-operator elose to the boundary, as in (2.6.6); and

G is a Green operator with respeet to the weight data D, defined via its mapping
properties.

The colleetion of all the spaces 'V.cm(M, l)), with m E IR and weight data D =
(1,8, (-/,0]), is the algebra with asymptotics. As follows, }C~~ry(M) is an adequate
ehoice of domains for the operators in this algebra.

Proposition 2.6.6 If A E VL:m(M, D), then for each asymptotic type as' E
As (." (-1,0)) there is an asymptotic type as" E As (8, (-1,0]) such that A has a
continuous extension

(2.6.8)

fOT any s E R.
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Proof. Cf. Theorem 1.4.42 in Schulze [18].
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o
To see that the algebra with asymptotics is an "algebra" in the sense of Section

2.3, we refer the reader to Schulze [18, 1.2]. It is worth mentioning that the operators
<Po SF.,pO +G form an "ideal" in tbis algebra.

By the above, if the mapping t 1--4 e = eM(t) is Coo up to t = 0, then the
algebra V,Cm(M, b) just constructed is an extension of the cone algebra with discrete
asymptotics (cL Schulze (18, 1.2]) in the sense that, elose to the singular points, the
pull-back of the latter under the mapping e is a proper subalgebra of tbe former.

The symbol aF(A) controls the interior ellipticity of operator (2.6.7). However,
there is yet another symbolic level given by the principal conormal symbol a}-5(A)
(elsewhere this is referred to as the operator penciD. For the typical differential
operators (2.2.4), this is defined by a~(A) (z) = Lj:=o Aj (0)zi. For the operators A
on the right-hand side of (2.6.5), we have o}-5(A) (z) = h(O, z). In the general case
(2.6.7), also the component ho(z) of SF invests to the principal conormal symbol,
thus giving a}-5(A) (z) = h(O, z) + ho(z). Given any fixed zEr--f) the principal
conormal symbol is a pseudodifferential operator along the base X, of order m. In
tbis way we obtain a family of operators ap-5(A) (z) : HII(X) ---+ HII-m(x), S E lR,
parametrized by zEr -"Y'

Definition 2.6.7 An operator A E V,Cm(M, b) is said to be elliptic if:
1) the interior symbol 0/ A is elliptic up to t = 0;
f) ap-O(A) (z) : HII(X) ---+ H$-m(x) is an isomorphism for each zEr -"Y and

s E IR.

It follows from the elliptic theory on closed compact manifolds that, in condition
2), we may require a}-5(A) (z) to be an isomorphism for any one s E IR.

The key result in the algebra V.cm(M, b) can be then formulated as folIows.

Theorem 2.6.8 1/ A E 'V.cm(M, b) is elliptic, then for each asymptotic type
as' E As (" (-1,0]) there is an asymptotic type as" E As (8, (-1,0]) such that the
operator (2.6.8) is Fredholm.

Proof. See Schulze [18, 1.2.2].
o



Chapter 3

Index formula

3.1 Overview

Let r = M(t) be a diffeomorphism of an interval T = (a, b) onto the whole axis lR..
We assurne that M'(t) > 0 for all t E T.

In this chapter we consider a special case of F -pseudodifferential operators on
the cylinder XO = T x X, whose base X is a smooth compact manifold of dimension
n without boundary. These operators have the form

(Au)(t) = (2~) 2 l dz h. e,(M(t)-M(t'))z a(t, z) u(t') dm(t'), (3.1.1)

when defined on functions u E C:mp(T, Coo(X)). The weight line r may be any
horizontal line r -'1 = {z E C : ~z = -,} in the complex plane. We may assume
without loss of generality that r coincides with the real axis r0 (cf. (2.3.1)).

The operator-valued symbol a(t, z) is assumed to satisfy the following condi­
tions:

• a(t,z) E Cl~(T,.cd(Xj r)) is "sufficiently" smooth up to the endpoint t = a
of T in the sense that a(M-1(1og e), z) is Coo up to e = 0;

• a(t, z) is independent of t elose to the endpoint t = b of T, more precisely,
a(t, z) = a(b-, z) for t E (C, b), with a < C < bj

• for t E [a, c), with a < c < C, the symbol a(t, z) admits an analytic contin­
uation to some strip {z E C : l<2rz + ,I < e} and on each line r -ß it is a
parameter-dependent pseudodifferential operator of order m on X, uniformly
in ß E [, - f, , + f], f < c.

As described above, operators (3.1.1) are of great importance for the caleulus
of pseudodifferential operators on manifolds with singular points. Here we restrict
our attention to the model case where the singular manifold is an infinite cylinder
and the operator may be written globally via the F-transform. Since the symbol
behaves weIl elose to the endpoints of T, it follows from Proposition 2.3.3 that A

28
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Fig. 3.1: The symbol of an elliptic operator induces a Fredholm familyon
the cotangent bundle, which is invertible away from a compact set.

extends to a continuous linear operator Aß : 1{ß'1'(XO ) --+ 1{ß-m·1'(XO ), for each
s E IR.

Throughout this chapter we assurne that m ~ O. In particular, we need the
following concept of elliptic operators of order 0 (cf. Definition 2.6.7).

Definition 3.1.1 An operator A 0/ order 0 is called elliptic if its symbol satisfies
the /ollowing conditions:

1) for each t E T, the sYlnbol a(t, z) is a parameter-dependent elliptic operator
on X with parameter z E f;

2) a( t, z) is invertible for each t E [a, c) and each z in the strip {z E C :
I~z + ,I< cl; and

9) a(b-, z) = 1, where 1 stands for the identity operator on X.

When compared with Definition 2.6.7, this includes the additional assumption
3) which is connected with the exit condition on the infinite cylinder XO (cf. Schulze
[18, 1.2.3]).

We prove in Section 3.5 that ellipticity implies the existence of a parametrix for
A, Le., an inverse up to smoothing operators of trace dass. The important point to
note here is the form of the parametrix, which is again an elliptic operator of order
O. Thus, the kernel and the cokernel of the operator Aß are actually independent of
s. Moreover, a farniliar argument of functional analysis yields that the mapping Aß
is Fredholm for each s E IR. Hence, for every elliptic pseudodifferential operator A
of order zero, we may defined its index via ind A = dirn ker Aß - dirn coker Aß,

In order to evaluate the index of A, a basic observation is that the ellipticity
conditions imply that the Fredholm family a(t, z), parametrized by (t, z) E T X f, is
trivial outside a compact set in T x f 1 (see Figure 3.1). Therefore it defines an index
bundle ind a E j(comp(T x f), where ](comp means ](-functor with compact support
(cf. Atiyah and Singer [3]). The Chern charaeter of this bundle is represented by a
closed differential from of compact support, and we prove the following result.

IThat is, a(t, z) is invertible.



30

Theorem 3.1.2 For any elliptic operator (9.1.1), we have

iod A = J' r eh (ind a).
lTxr

3 Index formula

(3.1.2)

The proof of (3.1.2) follows the scheme developed in Fedosov [5]. It consists in
comparing three expressions:

• analytical index
indA = tr(1 - PA) - tr(l- AP),

where P i8 a parametrix of A up to a trace class operator;

• algebraical index

ind a = tr (1 - po a) - tr (1 - a 0 P),

where p is a fonnal complete SYll1bol of P and 0 means a composition of formal
complete symbols (Leibniz product); and

• topological index given by the right-hand side of (3.1.2).

The most important step is transition from the analytical index to the alge­
braical one, or, using the terminology of Fedosov [5], the Theorem on a Regularized
Trace 0/ Product. The transition from the algebraical index to the topological one
is based on the machinery developed by Fedosov [6]. Namely, we prove that

iod a = _1_, J' r tr (Pada A Pada + dpa A da) ,
27r'l JTxf

(3.1.3)

where Po (t, z) is a point-wise parametrix for a (t, z), such that both 1-Paa and 1-aPo
are trace dass operators, for aoy (t, z) E T x r, aod Po = a-1 outside a compact
subset of T x r. Then, (3.1.2) is a consequence of the fact that the integrand in
(3.1.3) represents the ehern character of ind a in terms of a and Po (cf. Fedosov [6]).

Let us mention some particular cases of Theorem 3.1.2. If T = IR, M(t) = t
and a( t, z) = 1 away from a finite interval in R, then (3.1.2) follows from the
Atiyah-Singer theorem on the index of a family of elliptic operators (cf. [3]) and the
Atiyah-Singer Index Theorem (cL [1, 2]). This formula goes back to the work of
Luke [11]. Yet another case correspoods to T = IR+ and M(t) = logt (i.e., conical
singularities). In this situation the Atiyah-Singer theorem for families is 00 longer
applicable, ahd formula (3.1.2) is due to Fedosov and Schulze [8] (cf. also Rosenblum
[15] for another proof).

3.2 Trace estimates for remainders

In the sequel, we need a special order reduction A"(.\) on X which admits an analytic
extension in .\ to the strip I~.\ + ,I < 1 and in 8 to the whole complex plane C. To
construct such ao order reduction, we consider the function

(1 + (2)t = e! iog(l+(l)



3.2 Trace estimates far remainders 31

for I~(I < 1 and sEC, assuming that the branch of log(l + (2) in the strip I~(I < 1
is real at ( E r Q. Since 1+(2 = 1+(~()2 - (~()2 +2i ~( ~(, the function (1 +(2) t
is well-defined and holomorphic in (, belonging to the strip 1~(1 < 1, and in sEC.

)

Lemma 3.2.1 For any R > 0 tkere exists a constant CJ depending only on R,
such that

1(1 +(2)tl ::; c(l + 1(12)~'

whenever I~(I < 1 and I~sl ::; R.

Proof. Indeed, since arg(l + (2) < 1r for all ( in the strip ISS(I < 1, we get

1(1 + (2) tl = e~ log Il+(~I-" arg(l+(~)

< e1j1r (1 + 1(12)~,

as desired.
o

Now, letting ß denote the Laplace-Beltrami operator on X, we set

A"(z) = (1 + (z +i,)2 - ß)t (3.2.1)

for I~z + 1'1 < 1 and sEC. A complex power is understood in the sense of elliptic
theory (cf. Seeley [21]). This family is holomorphic in z and s belonging to the
mentioned stri ps.

Let us return to the symbols a( t, z) of operators (3.1.1) under consideration. In
what follows, we tacitly assume that these symbols are "sufficiently" smooth up to
t = a and independent of t elose to the endpoint b of T.

Lemma 3.2.2 Let a(t,z) E C~(T,.cm(X;r)), where m::; 0, and let a(b-,z) =
O. Then

for zEr and ( E r -6, S < 0, with c a constant depending only on j and S.

Proof. The integral

= 2- f e-iCM(t)a(t, z) dm(t)
21r JT

= foo e-iC a(M- 1(log e), z) de
Ja e

converges in the upper half-plane ~( > O. Moreover, for ~( > 0, we have

1 .
Ft ......ca(t, z) = (i Ft ......c(DJa(t, z)), j = 1,2, ... ,

where Ft ......c(Dia(t, z)) is holomorphic for SS( > O.
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Thus, if ( E r -0 with 8 < 0, then

3 Index formula

(3.2.2)

11 Ft_,a(t, z) 11 C(L2(X))
eM(C) d

:::; I(I-j r e-01IDja(M-l(loge),z)IIC(L4(x))...!..,
Ja e

where C E T is such that a(t, z) = 0 for t > C. We now invoke the condition
that, for fixed t E T, the derivative Dia(M-1(log e), z) is a parameter-dependent
pseudodifferential operator of order m :::; 0 on X. Hence it follows that

IIDja(M-1(log e), z)IIC(L2(x» :::; const (j, C) (1 + IzI2)T

for all e E (0, eM(C)] and zEr (cf. Shubin [22]). Substituting this estimate into
(3.2.2), we obtain the desired condusion.

o
A slight change in the proof actually shows that if m < -~, then Ft_,a(t, z)

is a Hilbert~Schmidt opemtor in L2(X) and its Hilbert-Schmidt norm 11 . 112 satisfies

(3.2.3)

for all zEr and ( E r -0, 8 < O.
Finally, if m < -n, then the operator Ft_,a(t, z) is of trace dass in L2 (X) and

its trace norm 11 . Ih satisfies an estimate

whenever zEr and ( E r -0, 8 < O.
Given any two symbols a(t,z) and p(t,z) in C;:(T,.c'(X;f)), we set

K-l 1
po alK = (; k!(ß/ßz)kp(t, z) Dka(t, z), ]( = 1,2, ...

(3.2.4)

(3.2.5)

(in this way we obtain what is known as the Leibniz product).
We will write an operator oPF.1' (a) simply op (a) when no confusion can arise.

With these notations the main result of this section is as follows.

Theorem 3.2.3 Let

a(t, z) E C~(T, .cm(Xj f)),
p(t, z) E Cl~(T, .cW(Xj f)),

m :::;0,
ttT :::; 0,

and let both a(t, z) and p(t, z) vanish at t = b. Then, for K large enough, the
operator R K = op (p) op (a) - 0P (p 0 alK) as an operator in the space 1fJ·I'(XO ) is
0/ trace dass.

Proof. Choose a partition of unity (4)0., <Pi, <Pb) on T in such a way that

4>0.=1 on (a,c/), sUPP<Po.C(a,c")j
sUPP <Pi C (c', C)j

4>b = 1 on (c, b), supp 4>b C (clll
, b),
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a C' c"cm
C b

Fig. 3.2: The partition of unity (rPa, rPi' rPb) on T.

where a < c' < c" < cm< c < b. It follows that the supports of rPa and <Pb do not
meet each other (see Figure 3.2).

Then any operator op (a) may be represented as the surn

op (a) =E op (<Pv a),
v

the symbols <Pa (t) a(t, z) and l/Ji( t) a( t, z) being holomorphic in z belonging to the
strip {z E C: Is.'rz + ,I < e}. Hence it follows that the operator RK is the sum

(3.2.6)

and we consider several CaBes according to the values of jL, v.
Gase 1 (jL, v =1= a) In this case the supports of symbols rP~p and <Pva are bounded

away from t = o. The F -calculus of such operators on the interval T may be reduced
to the usual Fourier calculus of pseudodifferential operators on the whole real axis
by the change of variables t = M-1(r). Indeed, equality (3.1.1) transforms to

1 lr Joo.( ,Au(M-1(r)) = - dz e l r-r)za(M- 1(r),z)u(M- 1(r' ))d1",
21T" r -00

and the Leibniz product of two symbols becomes

K-I 1 1
po alK = E k! (8/8z)kp(M- 1 (r), z) (i 8/8r)ka(M- 1(r), z),

r E IR,

which is the usual composition rule for Fourier pseudodifferential operators. The
symbols

cPJ'(M-1(r)) p(M-l (r), z),
<pv(M-l(r)) a(M-l (r), z)

have compact supports in r, so the theorem follows from the usual calculus of pseu­
dodifferential operators (cL Fedosov [5]).

Gase 2 (tl = b, v = a) In this case (<pJ'P) 0 (<Pva)IK = 0, for the supports of <Pa
and <Pb do not meet each other. Consequently, we need to prove that the operator
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is of trace dass 2.

The operator op (a) is bounded in ?-{o'')'(XO), for its order m is non-positive,
and hence it suffices to prove that op (tPbP) </>0 belongs to trace dass. To this end,
we represent it as a composition

(3.2.7)

with some integer s > nil and some t > 0, and show that both operators in (3.2.7)
are Hilbert-Schmidt operators. The second operator is an embedding.

The following lemma is a kind of the Rellich Embedding Theorem for the spaces
rf,3'')' (XO).

Lemma 3.2.4 I/ s > nil and t > 0, then the embedding

when considered on the subspace 0/ /unetions u E ?-{.!,'"Y+l(XO) whose supports belong
to an interval (a, Al C T, is a Hilbert-Schmidt operator.

Proof. Suppose first u E Cl~(T, COO(X)) has a compact support in the interval
(a, A]. Since

Izi eizM(A) Fu(z)1 = 12~ l A
e;·(M(A)-M(l)) Diu(t) dm(t)1

< ~ l A
eo(M(A)-M(t» IDiu(t)1 dm(t) for ~z 2:: -Ö,

211'" a

we deduce that eizM(A) Fu(z) is an entire function rapidly decreasing in each half-
plane ~z 2:: -Ö, where Ö E IR. .

The norm of u(t) in the Sobolev space 'H",')'+l(XO) is equal to the L2-norm of
A"(z) Fu(z) on the line r -')'-l' Here A"(z) is the order-reducing family given by
(3.2.1). The norm of u(t) in 'Jtl'')'(XO

) is equal to the L 2-norm of the restriction of
Fu(z) to the line r _')'. Applying the Cauchy formula to the function eizM(A) Fu(z)
in the half-plane ~z 2:: -, - E, we see that the restrietions of Fu(z) to r -')'-l and
r _')' ar~ connected by the Cauchy integral

1 lr ei(z-<)M(A)
Fu(() = -. ---Fu(z)dz,

211'"z r _.,_( z - (

for ( E r _')"
Setting v = F=~_l A.!(z) Fu, we rewrite (3.2.8) in the form

(3.2.8)

1 lr ei(z-()M(A)
Fu(() = -. A-"(z) Fv(z) dz,

211'"z r _.,_( z - (

2This is referred to as the pseudolocality property.
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This operator acts between L2-spaces on the lines r -,-r.. and r -"'I and its Hilbert­
Schmidt norm is equal to the L 2-norm of its Schwartz kernel

ei(z-()M(A)
J«((, z) = z _ ( A-"(z)

which is an operator-valued function.
For s > ~, we may estimate the Hilbert-Schmidt norm of the operator A-" (z)

in L2 (X) by
~IIA-"(z)112 ~ 11 + (z + i,)21 'l , zEr-"'I-r..

(cf. (3.2.3)). Hence it follows that

e2r..M(A) n

IIJ«(, z)ll~ ~ (~( _ ~z)2 + €2 11 + (3?z - i€?I-"+~

for ( E r_, and zEr-,-r..' Integrating this over ~( and ~z and using that
-8 + ~ < -~, we obtain that the L 2-norm of !«((, z) is finite, whence the lemma
follows.

D
To prove that the operator P in (3.2.7) is a Hilbert-Schmidt operator, we use

the fact that the product rPb(t) rPa(t') vanishes on the diagonal t = t'. So, writing

ei(M(t)-M(t'»z = (M(t) _ M(t'))-K(-i 0/oz)Kei(M(t)-M(t'»z

for any I< E Z+ and integrating by parts, we represent P as an integral operator

Pu (t) ~ -.!..- [ dz [
21T Jr JT

x ei(M(t)-M(t'»z,J.. (t),J.. (t') (io /8z)Kp(t, z) _/M'(t')e,M(t') v(t')dt'
!Pb !pa (M(t) _ M(t'))K V '

where V = VAfie-"'IM u belangs to L2(T,L 2(X)) if u E 1fl"(XO ). The inclusion
Pu E 1-l""+r..(XO) for a non-negative integer 8 rneans that, given any j = 0,1, ... ,s
and any differential operator A j of order s - j on X, we have

This operator, when acting on v = vM'e-"'IM u , has the Schwartz kernel

I«t, t') = -.!..- [ JM'(t)e-h+()M(t)
21T Jr

x D1 (ei(M(t)-M(tl»Z ,J.. (t)).. (t') A j (io / oz)Kp(t, z)) JM'(t')e"'lM(t')dz
t o/b 'jJa (M(t) _ M(t'))K '

(3.2.9)

and we are going to estimate the L2-norm of this kernel. More precisely, our objective
is to prove that

J'[ Il!«(t, t') Ili dtdt' < 00,
JTxT
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the integration being in fact over t E (cm , C) and t' E (a, CO).
To do this, we observe that

D{ ei(M(t)-M(t'))z = zj ei(M(t)-M(t'))z

and
lei(M(t)-M(t'))z I = e,,(M(t)-M(t'))

for zEr. Moreover,

3 Index formula

lID: (4)b(t) Aj (i8/8z)Kp(t, z))112 ~ const (j, C) (1 + lzl2) w-~+i,

the constant being independent of t E [C", Cl (cf. (3.2.3)). Taking into account that
<pb(t) 4>a(t') vanishes in a neighborhood of the diagonal t = t', we may estimate the
Hilbert-Schmidt norm of the integrand in (3.2.9) as

w-K+9"

JM'(t) e-lM(t) Izl j (1 + [ZI1) 2 JM'(t')
(1 + IM(t) - M(t')I)K

l:t7-K+i+~

< JM'(t) e-lM(t) (1 + Iz1
2

) 2 • JM'(t' )- (1 + IM(t) - M(t' )I)l\
(3.2.10)

up to a constant, uniformly in zEr, (t, t') E (em
, C) x (a, eil) and j ~ s.

If ]( is large enough, then the integral of (3.2.10) over zEr converges and we
obtain .

IIK(t, t')112 :::; const (K) JM'(t) e-<M(t) (1 + IM(t/- M(t')I)K JM'(t')

for all (t, t') E (cm
, G) x (a, c'). Thus, for the L2-norm of 11]((t, t' )112 we obtain an

estimate

J'f 11]((t, t')II~ dtdt'
JTxT

C CU -ZlM(t)

:::; const (K) L, dM(t)1 (1 + IM~t) _ M(t')1)2K dM(t')

M(C) M(c") -2lT

= const (]() [ dr j ( je 1)2K dr'
JM(cll/) -00 1 + r - r '

< 00,

provided that ]( 2: 1. This proves Gase ~,

Gase 9 (}-l, v = a, i) This is the most difficult case, Here we will make use of the
fact that both q,~(t) p(t, z) and q,v(t) a(t, z) are holomorphic functions in the strip
{z E C: I~z + ,I < f}. To shorten notation, we omit the factors 1>~(t) and <Pv(t)
including them ioto p(t, z) and a(t, z).

For u E C:mp(T, Coo(X)), we have

Au (t) = op (a)u (t)

= ~ f eiM(t)za(t,z)Fu(z)dz,
21t" Jr_1'
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where r -ß may be any horizontal line with , - c < ß < f + c. Given any ( E C
with ~( > -ß, it follows that

= ~ r (_1 r e-i((-Z)M(t)a(t,z)dm(t)) Fu(z)dz
21r Jr -13 21r JT

~ r Fa(( - z, z) Fu(z) dz
21r Jr_ ß

(cf. Lemma 3.2.2). In much the same way for F(PAu) we obtain

Ft ......wPAu= -(1)21 d(1 Fp(w-(,()Fa((-z,z)Fu(z)dz, (3.2.11)
21r r _~ r_ß

with ~w > -5 > -ß. Analysis similar to that in the proof of Lemma 3.2.2 shows
that the integral in (3.2.11) converges.

Now, using the Taylor formula, we write

K-I 1
Fp(w - (, () = {; k! (8/84Fp (w - (, z) (( - 4 +9lKFp (( - z)K, (3.2.12)

where

r1 (1 - O)K-l K
9tK Fp(w-(,(,z) = Ja (1(-1)! F(8j8z) p(w-(,z+O((-z))dO. (3.2.13)

By Lemma 1.4.1, the regular terms in (3.2.12) after substitution into (3.2.11) and
integration over ( give

-!:- r (8/a4Fp(w - (,z)(( - 4 Fa(( - z,z)d(
1r Jr_~

=..!.- r F(8j8z)kp (w-(,z)FDka((-z,z)d(
27r Jr_6

= F t......w- z ((8j8z)kp(t, z) Dka(t, z)) ,

thus resulti ng in op (p 0 alK)u. Hence the operator RK corresponds to the remainder
term in (3.2.12), i.e.,

. 1 f r K
Ft ......wRKU = (2 )2 Jr d( Jr 9tK Fp (w - (, (, z) F D a(( - z, z) Fu(z) dz.

7r r -6 r -13

(3.2.14)
If !( ~ 1, then the function F D K a (( - z, z) i8 holomorphic in ( belonging to

the half-plane ~(> -ß-1, for a(M-1(logg),z) is Cco up to g = 0 (cL (3.2.2)).
Hence it follows that the integration line r -8 may be shifted arbitrarily within the
strip I~( + ,I < c. Thus, the assumption ~w > -5 > -ß i8 need~d no longer, and
the only requirement remaining is zrw > -8. It will be convenient to take

- 8 < ~w ~ -ß. (3.2.15)
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To prove that (3.2.14) belongs to the trace dass, we again represent it as the
composition of two Hilbert-Schmidt operators

for some s > nil, which may be taken as an even integer, and some € > O. The
second operator in this sequence is an embedding. By Lemma 3.2.4, the weight
gain € is necessary to have a Hilbert-Schmidt embedding. Now, we choose ß = "
~w = -, - € and ,+ € < 8 < , +c in (3.2.15).

Lemma 3.2.5 Suppose s is a non-negative even integer. Then the operator

is a Hilbert-Sch'1nidt operator provided ]( is sufficiently large.

Proof. The assumption that s is an even integer serves only to simplify the
proof. Using representation (3.2.14) for RK, we have to evaluate the Hilbert-Schmidt
norm of the operator between L 2-spaces on the lines r -'1 and r -'1-(., whose Schwartz
kernel is

. 1 lr ~ K]((w,z) = -()2 A (w)91K Fp(w - (,(,z)FD a(( - z,z)d(.
27r r_6

To estimate the Hilbert-Schmidt norm of the integrand, we invoke Lemma 3.2.2.
Namely, we have

IIA~(w)91KFp(w - (,(,z)FDKa(( - z,z)112
K

~ IIA~(w)91KFp(w - (,(,z)112 IIFD a(( - z,z)IIC(L2(X»

~ const (j) (1 + J( - zI2)-t IIA 6 (w) 91K Fp (w - (, (, z)112

with arbitrary large j.
In view of (3.2.13) our next goal is to evaluate the norm

IIA"(w) F(ßj8z)Kp (w - (, Z + 0(( - z))lb. (3.2.16)

Denoting z +0(( - z) by v and putting s = 2N, N E Z+, we may rewrite A"(w) by
the binomial formula as

Finally, applying inequality (3.2.3) for the operator A2i (V) F(8j8z)Kp (w - (,v) of
order tv - ]( + 2i yields
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provided w - J( + 2i + ~ < 0, with j an arbitrary positive integer. This enables us
to derive a rough estimate of (3.2.16), namely

I[A"(w) F(8/8z)Kp (w - (, z +8(( - z))jb
. i. 'Ct7-K+,+!

~ const (j, s, ,) (1 + Iw - (12)-1 (1 + Iv1 2
) ~ (1 + IwI2)!

where tv - J< + s + ~ is supposed to be negative.
Vve next write w as w = (w - () + (( - z) + z and apply the binomial formula

to arrive at

These rough estimates resu1t in the followi ng es timate for the kernel J( (w, z)

(3.2.17)

where i, j are arbitrary positive integers and k > 0 may be made larger in magnitude
at the expense of J(.

The needed Hilbert-Schmidt norm is

lr dw lr IIK(w, z)ll~ dz.
r-.,-f r_.,

Taking i large enough, we may integrate over wEr_ry_( thus arriving at the follow­
ing estimate of the above integral

up to an unessential constant.
We first consider the region I( - zl < ~. Then

and

f dz 1 1 d( < f jzl dz,
Jr -., (Er-6: 1(-.:1<41 (1 + IzI2)k-" - Jr _-y (1 + IzI2)k-"

which is convergent for k large enough. On the other hand, for I( - zJ ?: ~, we
estimate

1 < 1
(1 + Iz + 8(( - Z)12)k -
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and
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r dz f (1 + IzI
2
)" . d(

Jr --r J(Er-6: I(-zl;::~ (1 + I( - z12)1

:oS 2 { (1+ Iz12)" dz ~: ( ( 1.5)2 t'J2)" dt'JJr --r JIr 1 + I - + 1

22j-1 r 1 d r::o d{J

::; Jr --r (1 + IzI2)i-1-" z J~ 1 + {J2'

which converges if j is Iarge enough. It follows that the Hilbert-Schmidt norm of
RK is finite.

o
To complete the proof, it remains to observe that the functions of the type RK'U

are supported in a finite interval (0, Al C T because po alK vanishes for t elose to
b, independently of z. Thus, Lemma 3.2.4 may be applied implying that RK is of
trace elass.

Gase 4 (p. = a, v = b) Here we have a pseudolocality property similar to Gase 2,
hut the proof runs in a slightly different way. Again we have (ifJaP) 0 (1)ba)lH = 0, so
we need to show that the operator op (rPaP) cPbOP (a) is of trace dass. As the symbol
a (t, z) vanishes for t elose to the endpoint b of T, we mayassurne that cPb has a
compact support in the interval T. Since op (a) is bounded in ']-lo,'Y(XO ), it suffices
to prove that op (ePaP) ePb belongs to the trace dass. But the multiplication operator
U 1---+ rPbU may be regarded as an F-pseudodifferential operator with a holomorphic
symbol, so we are under the assumptions of Gase 3. This proves the theorem.

o

3.3 Regularized trace oi product

Given any two operators A = op (a) and P = op (p) with

a(t,z) E Gt~~(T,.cm(X;f)),

p(t, z) E C~(T, .cro(X; f)),
m ~o,

w ~ 0,

satisfying a(b-, z) = 0 and p(b-, z) = 0, we define the regularized trace of the
product PA by

trI{ PA = tr (PA - op (p 0 alK)) . (3.3.1)

Theorem 3.2.3 shows that the regularized trace of PA does exist if the number
!( is sufficiently large.

Theorem 3.3.1 The regularized trace 0/ the product is independent 0/ the order,
that is

(3.3.2)

Proof. We are going to consider several cases corresponding to those listed in
the proof of Theorem 3.2.3.
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Gase 1 (f-l, v =j:. a) The assertion reduces to the theorem on the regularized trace
of the product of Fourier pseudodifferential operators (cf. Fedosov [5]).

Gase 2 (f-l = b, v = a) or Gase 4 (tl = a, v = b) For P = op (tPJlP) and A =
op (<Pva), we deduce by Theorem 3.2.3 that both PA and AP are of trace dass.
Lidskii's Theorem now shows that the traces of PA and AP coincide.

Gase 3 (f-l, v = a, i) Using (3.2.14) with ß = ,and -8 < ~'W = -ß (cL (3.2.15)),
we get

trK PA = trRK

= (2
1)2lr d( lr tr DlKFp (z - (,(,z)FDKa(( - z,z)dz, (3.3.3)
11" r-6 r_..,

the second equality being a consequence of tr RK = tr F -'YRKF=~. The function

1
PlKFp(z - (,(,z) = --DlKFDp(z - (,(,z)

z-(

has a pole of the first order at (= z (for p(M- 1(logg),z) is smooth up to g = 0).
So, we may move the lines r -"I and r-8 within the strips {z E C: I~z +,I < c}
and {z E C: I~( +,I< c}, provided that -8 remains smaller than -,.

Moreover, we may shift r -8 crossing r -"I' but then we must take into account
the residue at ( = z. It is equal to

1 lr K-2' trDlKFDp(O,z,z)FD a(O,z)dz.
1l'"Z r_..,

By (3.2.13), we have

1 K
9lK F Dp (0, z, z) = ](! F D(ß/ßz) p (0, z),

so the residue is equal to

1 lr 1 K K-2' tf}fIFD(ß/ßz) p(O,z)FD a(O,z)dz.
1rZ r _.., \ .

However, for !( > 1, this integral vanishes because

j, 1 a K-]-;--8 D a(t,z)dt
T 1 t

= ~ (nK-1a(b_, z) - nK-1a(a+, z»)
= O.

Hence it follows that, for ]( > 1, integral (3.3.3) does not depend on the position
of the lines r -"I and r-8 within the strips {z E C: l~z +,I < c} and {z E C :
I~( +,I < e}. A similar assertion holds for the integral

1 lr lr KtrK AP = -(2)2 d( trPlKFa (z - (, (, z) F D p (( - z, z) dz.
1r r-6 r_..,

(3.3.4)
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Dur goal is to prove that (3.3.3) and (3.3.4) are equal. To this end, we consider
the families

a8(t,z) = a(t,z)A8(z),
P8(t, z) = p(t, z) A8(Z),

where s is a complex parameter ranging in the half-strip

{s E C : ~s :::; 0, ISSsi:::; R},

R > O. Let A 8 and P8 be the corresponding operators on the cylinder X O
. The

estimates used in the proof of Theorem 3.2.3 show that both trK P8 A 8 and trK A 8 P8

are holomorphic functions of s belonging to the above half-strip. Thus, it is sufficient
to prove the equality

for ~.s elose to -00.

We are reduced to verifying (3.3.2) for operators A and P of sufficiently large
negative order. For this purpose, we write

1
z - ( ~KFDp(z - (,(,z) r

= (( _-z~K+l (FDP(Z - (,() - %~! FD(8j8z)kp (z - (,z) (( - 4)
and then

trK PA = __1_ r d( r tr F Dp (z - (, () F Da (( - z, z) dz
(21t")2 Jr-6 Jr---r (( - z)2

+ 1=1 ~~ { d( { tr F D(8j8z)kp (z - (, z)((,- zl F Da (( - z, z) dz.
k=O k. (21t") Jr_6 Jr_--r (( - z)

(3.3.5)

Each summand in (3.3.5) makes sense if both a and p have large negative orders.
and -0 < -, are fixed.

Interchanging Z and (in the first integral and using the equality tr F Dp F Da =
tr F Da F Dp for trace dass operators, we obtain

__1_ r d( r trFDa(z-(,()FDp((-z,z)dz.
(21t")2 Jr-"f Jr -6 (( - z)2

(3.3.6)

The remaining summands in the right-hand side of (3.3.5) may be transformed
as folIows. We introduce the new coordinate v = z - ( ranging along the line r -...,+6,
thus obtaining

{ d( { tr F D(8j8z)kp (z - (, z) ((2- z)k F Da (( - z, z) dz
Jr_6 Jr_"f (( - z)

= (_l)k lr dv lr tr(8j8z)kFDp(v,:) v
k

FDa (-v, z) dz.
r -.,.+6 r _.,. v
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Now, integrating by parts with respect to z and permutting FDp and FDp under
the trace sign, we get

r dv r tr (ßjßz)kF Da (-~, z) vk F Dp (v, z) dz
Jr_~+6 Jr_~ v

= lr d( lr tr F D(8(8z)ka (z - (, z)«( - z)k F Dp (( - z, z) dz
r_~+(_~+6) r_~ (( - z)2

= r d( r tr FD(8(8z)ka (z - (, Z)«(2- z)k F Dp (( - z, z) dz, (3.3.7)
Jr_~ Jr_ 6 (( - z)

the last equality being obtained by shifting both the lines of integration towards the
vector iCr - 8).

Summing up (3.3.6) and (3.3.7) for k = 0,1, ... ,!( -1, we arrive at the equality

K
trKPA= __1_ r d( r tr~KFDa(z-(,(,z)FD p((-z,z) dz.

(21r)2 Jr_.., Jr -6 ( - z

This expression coincides with the corresponding expression (3.3.4) for trK AP ex­
cept that the lines r -'1 and r -0 are interchanged. To complete the proof it remains
to note that, as we have seen, we may interchange r -"'I and r -8 not affecting the
value of the integral.

o
It is worth pointing out that Theorem 3.3.1 remains valid for all operators A

and P of zero order, whose symbols are equal to 1 for t E T elose to the endpoint b
of T. Indeed, we can write

A = op (a) + 1,
P = op (p) + 1

with some symbols a(t, z) and p(t, z) vanishing for t E T elose to b. Then, an easy
computation shows that

trK PA = trK op (p) op (a),
trK AP = trK op (a) op (p),

so the desired conclusion follows from Theorem 3.3.1 applied to the operators op (a)
and op (p),

3.4 Aigebraical index

First we introduce an algebra of formal symbols on T, define elliptic symbols and
introduce an algebraical index of elliptic elements. Then, constructing a parametrix
and applying the theorem on a regularized trace of product, we prove that the
analytical and algebraical indices coincide.

A formal sYlnbol is a formal power series

00

a(t, z) = ~ hjaj(t, z),
j;O
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(3.4.1 )

where the coefficients aj(t, z) E Gl~(T, .cm -
j(X j r)), m ~ 0, satisfy the following

conditions:

• (8j8z)k aj(t,z) E G~(T,.cm-j-k(x; f)) for all k = 0,1, ... ;

• aj(t, z) is "sufficiently" smooth up to t = °in the sense that aj(M-1(log e), z)
is Goo up to e= 0;

• for t E (G, b), ao(t, z) is independent of t while aj(t, z) = 0 if j > O.

The powers of a formal parameter h serve to order the series terms. Let us "
define the product 0 of two symbols by

~ i+ "+k 1 k kpo a = .~ h J k! (8j8~) pi(t, z) D aj(t, z).
I,J,k;O

It is easy to check that the formal symbols form an associative algebra with the
unit e(t, z) == 1 consisting of the leading term only. We denote this algebra by A.

Introduce a trace ideal I in this algebra, consisting of those formal symbols
a(t, z) for which m < -n - 1 and all the components aj(t, z) vanish at the point
t = a and for t E (C, b). A trace for a EI is defined by

00 " (1)2tra = E hJ -
1

- rdz r traj(t,z)dm(t).
j=o 27r Jr JT

This is a formal series with constant coefficients and the exponents of h ranging
from -1 to +00.

Lemma 3.4.1 1/one of the formal symbols p and a belongs to the ideal I, then

tr po a = tr a 0 p.

Prüüf. Use integration by parts.
o

A symbol a E A is said to be elliptic if there exists a symbol P such that both
1 - P 0 a and 1 - a 0 p belong to I.

Such a symbol p is called a (formal) parametrix of a. In particular, for leading
terms Po and ao we obtain

1 - Poao E I,
1 - aoPo E I.

The following construction is well-known (see for instance Fedosov [7]).

Lemma 3.4.2 Let there exist a function Po(t, z) satisfying (9.4.1). Then, for J
large enough, the symbol

(3.4.2)

the powers being understood with respect to the product 0, is a parametrix of a.
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Proof. By direct calculation we have

I-poa = (I-Po0a)O(J+l),
I-aop = (l-a0Po)O(J+I),
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where the exponent o( J + 1) means the (J + 1)-th power with respect to the product
o. Clearly, the formal symbols on the right belang to I if J is large enough.

o
Given any elliptic symbol a E A, we define the algebraical index of a by

ind a = tr (1 - po a) - tr (1 - a °p). (3.4.3)

By definition, ind a is a formal power series in h with constant coefficients.
It turns out, however, that all the coefficients, with the possible exception of a
constant term, vanish, so we can treat it as a number. Moreover, the algebraical
index is independent of the particular choice of the formal parametrix p. All these
properties are standard consequences of the stability of the index.

Lemma 3.4.3 Suppose a(A) is a family of elliptic symbols in A and p(A) lS a
family 0/ formal parametrices for a(A). Then,

tr (1 - p(A) 0 a(A)) - tr (1 - a(,\) 0 p(A))

is independent 0/ A.

Proof. An easy computation shows that

(1 - p 0 a)' = (1 - p °a)' ° (p 0 a) + (1 - P 0 a)' 0 (1 - p °a)
= ((1 - P 0 a) 0 (p 0 a))' - (1 - p 0 a) 0 (p 0 a)' - (p 0 a)' 0 (1 - p 0 a),

where "prime" means the derivation in A. Thus,

tr (1 - po a)' = (d/dA) tr (( 1 - po a) 0 (p 0 a)) - 2 tr (( 1 - p 0 a) 0 (p' 0 a +p 0 a')).

Similarly,

tr (1 - a 0 p)' = (d/dA) tr ((1 - a 0 p) 0 (a 0 p)) - 2 tr (( 1 - a 0 p) 0 (a' 0 p + a 0 p')).

Since

tr ((1 - p 0 a) 0 (p 0 a)) = tr (p ° (1 - a 0 p) °a)
tr (( 1 - p 0 a) 0 (p' 0 a)) = tr (a 0 (1 - p 0 a) 0 p')
tr ((1 - p 0 a) 0 (p 0 a')) = tr (p 0 (1 - a 0 p) 0 a')

= tr((l-aop)o(aop)),
= tr ((1 - a 0 p) 0 (a 0 p')),

tr ((1 - a 0 p) 0 (a' 0 p)),

both expressions tr (1 - P 0 a)' and tr (1 - a 0 p)' coineide, and the lemma follows.
o

In particular, given two parametrices PI and P2 of the same elliptie symbol a,
we consider the linear homotopy p(A) = (1 - A)PI + AP2, ,\ E [0,1], which gives a
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family of paralnetrices. Then, Lelnma 3.4.3 implies that the index does not depend
on the choice of a parametrix.

Now, for areal .\ > 0, we define a hOlnomorphism H(.\) : A ~ A by

00

11(.\)a (t, z) = I:.\j hjaj(t, ..\;).
j;O

It is a simple matter to see that H(.\) is in fact a homomorphism of the algebra A,
i.e., H(.\)(p 0 a) = (H(.\)p) 0 (H(.\)a).

Lemma 3.4.4 1f a E I, then

tr H(.\)a = H(.\) tra,

where H(.\) aets on formal seMes with eonstant eoeffieients by replaeing h by .\h.

Proof. The lemma follows hy the change of variables z t---io f. Indeed,

tr H(>.)a = ~ >.i hi- 1 C~rj dz htr ai(t, >.z) dm(t)

= f: >.i-1h
j
- 1 (2~r jdz htraj(t,z)dm(t)

j=O

= H(.\) tr a,

as required.
o

We are now in a position to show that the algebraical index is actually inde­
pendent of the parameter h.

Lemma 3.4.5 The formal senes ind eonsists 0/ the eonstant term only.

Proof. For A > 0, we consider the family a(.\) = H(.\)a of elliptic symbols.
Then p(A) = H(.\)p is a family of parametrices since

Hence

1 - H(A)p 0 H(.\)a
1 - H(.\)a 0 H(.\)p =

H(..\)(l-poa) EI,
H(.\)(l-aop) E I.

ind a(.\) = tr H(.\)(l - po a) - tr H(.\)(l - a 0 p)

H(A) ind a.

On the other hand, ind a(A) is independent of .\, by Lemma 3.4.3, which COID­

pletes the pfoof.
o
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3.5 Analytical index
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The following result has encountered so many often that it can be attributed to the
mathematical folk-lore.

Lemma 3.5.1 A closed densely defined operator A : HO ---+ H 1 in Hilbert spaces
is Fredholm if and only if there exists an operator P : H I ---+ 110 such that both
1 - PA and 1 - AP are operators of trace dass. MoreoverJ

indA = tr(l- PA) - tr(I-- AP). (3.5.1)

Proof. Necessity. The equality dirn eoker A = d means that there are elements
It, .. ., Id such that each element I E BI ean be uniquely written in the form
I = Au + 'L1=1 cjl;, where u is orthogonal to ker A. The operator A : (ker A).l EB
Cd ---+ H I , giyen by

d

(u,Ct, ... ,Cd) 1-+ Au+ LCj/;,
j=1

is densely defined, closed and has the inverse operator defined on the whole space
BI. By the Open Mapping Theorem, the inverse operator A-1 is bounded. Hence
it follows that there is·a constant C > 0 such that IlullHO ~ C JlAullHl for each
u E D(A) n (ker A).L. Therefore, the range im A of A is closed and so we have the
orthogonal decomposition BI = ker A" ffi im A, where A" stands for the adjoint of A.

From the apriori estimate written as (A"Au,U)HO ::; ~ (U,U)HO, we deduce
that the range of A" is dosed. Thus, we have the orthogonal decomposition HO =
ker A EB im A", whence the Fredholm property of A" is obvious.

Now, we introduce an operator R by heing A- I on im A and 0 on ker A". Then,
R : Hl ---+ HO is a bounded operator and a trivial verification shows that 1 - RA
and 1 - AR are orthogonal projeetions onto ker A and ker A* respectively.

Finally, from what has already been proved it follows that the spaces coker A
and ker A* are isomorphie, whenee

ind A = dimker A - dirn ker A*

= tr(l- RA) - tr(l - AR),

as required.
Sufficiency. Suppose P : BI ---+ HO is a bounded operator, such that both

1 - PA and 1 - AP are of traee dass. Then, PA and AP are Fredholm operators,
because they differ from the identity operators by compact operators. Sinee ker A C
ker PA and im A J im AP, the Ffedholm property of A follows.

On the other hand, the equality (3.5.1) is fulfilled for the operator P = Rand is
independent on the particular choice of P, for the operators (P - R)A and A(P - R)
are of trace dass and have the same traees. This completes the PfOOf.

o
The operator P is called a parametrix (Of regularizer) of the operator A. This

notation is sometimes used for the operators P with the weaker property that both
1 - PA and 1 - AP are compaet.
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(3.5.3)

In the sequel, by the analytical index of A we mean the right-hand side of (3.5.1).
We are going to compare the analytical and algebraical indices.

Given an operator A = op(a) of the forn1 (3.1.1), we may treat its symbol a(t, z)
as a formal symbol consisting of the leading term only.

Lemma 3.5.2 1f A = op(a) is an elliptic operator of order 0, then there exists
a formal param,etrix for a.

Proof. The eHipticity conditions listed in Definition 3.1.1 imply that there
exists a symbol Pa(t, z) such that both 1 - Paa and 1 - apo belong to I.

Indeed, for t E T elose to the endpoints of T, a- 1 exists by definition. An
important point to note here is the so-called spectral invariance of the subalgebra of
parameter-dependent elliptic operators on X. This implies that if a(t, z) is invertible
wi thin the (larger) algebra of pseudodifferential operators on X, then it is also
invertible within the subalgebra of parameter-dependent elliptic operators. Thus,
there is a segment [c, Cl ce T such that a-1 (t, z) is a parameter-dependent eHiptic
pseudodifferential operator of order zero on X, for all t E T away from [c, Cl.

For t E [c, Cl, the symbol a(t, z) is parameter-dependent elliptic, with the pa­
rameter zEr. This implies, in particular, that a(t,z) is also invertible for Izl > R,
provided R is large enough.

As for t E [c, Cl and lzl ::::; R, it follows from the parameter-dependent ellipticity
of a(t, z) that this symbol has a parametrix r(t, z) E C~c(T, .c°(X; f)) on X.

Now, we pick a Coo function tP on T X r which is equal to 1 in a neighborhood
of the rectangle [c, C] x [-R, R] and vanishes away from a compact subset of T x f.
For (t, z) E T x f, define

Po(t, z) = tj>(t, z) r(t, z) + (1 - 4>(t, z)) a-1(t, z). (3.5.2)

Then,
l-Paa = 4>(l-ra) E I,
I-aPo = c/>(I-ar) E I,

Le., Pa satisfies (3.4.1). By Lemma 3.4.2, the function Po(t, z) may serve as a leading
term of the formal parametrix given by (3.4.2). This proves the lemma.

D
Thus, for elliptic operators A = op(a) of order zero, the algebraical index is

well-defined.
To compute the analytical index of A, we need an operator parametrix P in­

verting A up to trace dass operators. To this end, given a formal symbol p(t, z) =
L.~o hipi(t, z), we introduce the notation

J-l

plJ = L Pi, J = 1,2, ....
i::;;;O

Theorem 3.5.3 Let A = op(a) be an e/liptic operator of order zero and let p be
a formal parametrix (3.4-2) of the symbol a. Then, for J large enough, the operator
P = op(p]J) is an operator parametrix of A and

ind A = tr (1 - PA) - tr (1 - AP)
= tr (1 - P 0 a) - tr (1 - a 0 p).
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Proof. Denoting plJ by rand taking N sufficiently large, we obtain
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1 - op(r) op(a)

1 - op(a) op(r)

op((1 - r 0 a)lN) - (op(r) op(a) - op(r 0 alN )),

- op((1 - a 0 r)IN) - (op(a) op(r) - op(a 0 rlN )).

po alJ =

By Theoren1s 3.2.3 and 3.3.1, the operators

op(r) op(a) - op(r 0 aIN),
op(a)op(r) - op(a 0 r!N)

are of trace dass and their traces are equal.
On the other hand, an easy computation shows that

N-1 J-1 1
= E E ki (8/8zl Pj Dka,

k=O j=O •

'" 1 k kLJ -kl (8/8z) Pi D a,
i+k~J-1 .

heuce, for N ~ J, the difference op(r 0 alN) - op(p 0 alJ) is a finite SUffi of terms

with j + k ~ N, j ~ J - 1 and k ~ N - 1. If N > n + 1, then this operator is of
trace dass since its order is less then -n - 1 and its symbol vanishes for t E T away
from the segment [c, CJ.

The same is true for op(a 0 rlN) - op(a 0 pIJ), which is the sum of

with j + k ~ N, j ::; J - 1 and k ::; N - 1. .
Moreover, the traces of such operators are equal. Indeed, integrating by parts

yields

lr dz h. tr ((Ö/ÖZ)k pj{t, z) Dka(t, z)) dm(t)

= l dz h. tr ((8/8z)k a(t,z)D kpj(t,z)) dm(t).

Thus,

tr (1 - PA) - tr (1 - AP) trop(1 - r 0 a)IN - trop(1 - a 0 r)IN

= trop(l - po a)IJ - trop(1 - a 0 p)IJ

= tr(l-poa)IJ-tr(l-aop)IJ,

which is precisely the algebraical index.
o
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3.6 Topological index

Following Fedosov [5], we introduce yet another algebra which allows one to simplify
significantly various calculations with non-commutative differential forms.

We will use a real variable r instead of z = r + i,. An element a of our new
algebra A is an operator-valued non-homogeneous differential form of even degrees
on T x R. Thus,

a(t, r) = ao(t, 7") +al(t, 7")dt /\ dr, (3.6.1)

tr a

where ao(t,7") anel adt,7") are pseudodifferential operators on X of non-positive
orders.

A product 0 of two elements p, a E A is defined by

paa = p /\ a + ~ dp /\ da.

Oue immediately checks that this product is associative.
Any function a(t,r) E C[~~(T,L:m(X;r)), m ~ 0, may be considered as an

element of A consisting of O-component only. Thus, for functions a and p we have
three products:

• pa is the usual point-wise operator product of functions;

• p 0 a = pa + h (a/ fJr) p Da +... is a product in Aasformal symbols; and

• poa = pa + ~ dp 1\ da is a product in A.
We mayaiso consider the powers of a function a with respect to any of these

products, using the notations ai , aoj and aOi to distinguish the three possibilities.
One can verify a simple rule to pass from the o-product to the o-product of

functions:

• keep the terms 0/ deg7'ee ~ 1 in h J then alternate the derivations ß / ß7" and D,
and then w1'ite dt /\ dr instead 0/ h M~(t)'

This rule remains true for any number of factors GI 0 ... 0 aj and al a.. .oaj.

Similarly to I we introduce a trace ideal ± in A. It consists of forms (3.6.1)
where ao and al are operators of order m < -n - 1 with regard for a parameter
r E IR, vanishing at the point t = a and for t E (C, b). For a E i, we define a trace
by

= ~ J'[ tra
21r JTxl.

= ~ J' r tral dt /\ dr,
21r JTxl.

the orientation of T x IR being given by the form dt /\ dr.
The trace property tr poa = tr aap is obviously satisfied if either a or p belongs

tot. .
When using this definition of trace, we have the following formula, of which the

right-hand side will be referred to as the topological index.
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Theorenl 3.6.1 For any J 2:: 1, we have

ind A = tr (1 - pooa)o(J+l) - tr (1 - aopo)ö(J+l),

where Po is the leading term 0/ the parametrix 0/ a.

Proof. We begin with the algebraical index formula (3.5.3) taking

J

P = L (1 - Po 0 a)i 0 Po
j=O

J

= Po 0 L(l - a 0 Po)j,
j=O

with J large enough. Then

I-poa = (l-pooa)o(J+1),
1 - a 0 p = (1 - a 0 Po)o(J+l) 1

whence
ind A = tr (1 - Po 0 at(J+l) - tr (1 - a 0 pot(J+l).
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(3.6.2)

(3.6.3)

According to Lemma 3.4.5, we need to extract the constant term in (3.6.3). It
follows that we may calculate both (1 - Po 0 a)o(J+l) and (1 - a 0 Po)O(J+l) keeping
merely the terms of degree ~ 1 in h.

We have
1 - Po 0 a = 1 - Po a - h (f) / f)i )Po Da - ... ,

"dots" meaning the terms of higher degree in h. By induction, one easily arrives at
the equality

(1 - Po 0 at(J+l) = (1 - Poa)J+l

-h (~(1 - Paa); (o/OT)pDa (1 - Poa)J-i

- '+;+~J-l (1 - Poa); (0/oT)(1 - Paa) (1 - Paa)' D(1 - Paa) (1 - Paa)k)

+ . .. . (3.6.4)

The sum Li+i+k=J-l (.) on the right of (3.6.4) may be written as

or

J

L (8/8i)(1 - Poa)i D(l - Poa)J-j
j=O

J

L (1 - Poa)i (8/8r)(1 - Poa) D(1 - Poa)J-j.
j=O

(3.6.5)
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(3.6.6)

Using "integration by parts", we can transform the latter expression to the form

J

D L (1 - poa)i (8/8r)(1 - poa) (1 - Poa)J-j
j=O

J

- L D(1 - poa)i (ß/ßr)(1 - Poa) (1 - Poa)J-i
j=o

J

- L (1 - Paa)) D(ß/ßr)(1 - poa) (1 - poa)J-i.
i=O

If J ~ 1, all the written terms belong to the trace ideal I for they contain a
factor 1 ..:.. Poa E I 01' its derivatives.

Let us now write down the constant term of the trace of (1 - Po 0 a)O(J+l).

We represent the second surn in the right-hand side of (3.6.4) as the half-surn of
expressions (3.6.5) and (3.6.6). We rnay drop the first surn in (3.6.6) for the complete
derivative in t vanish under integration. Then, perrnutting cyclically the factors
under the trace sign, we obtain

1 Jj, ( J (ßPo ßa ß2 )--. tr (J +1) (I-Poa) -- - -(Poa)
2~t TxR Br ßt ßtßr

1~(ß ·ß ß ·ß ) J')- - L- -(I-Poa)1-(1-Poa) - -(I-poa)J-(I-poa) (1 - poa) -J dtdr.
2 j=O ßr Bt Bt ßr .

Since

and

(
ßPo Ba ßPo ßa)-- - -- dt /\ dr
ßT Bi Bi BT

= -dpo /\ da,

(
8 ·8 8 ·B )-(I-Poa)1-(I-poa) - -(I-poa)J-(l-poa) dt /\ dr
Br Bt Bt BT

= -d(I-Poa)i /\ d(I-Poa),

we get, for the constant term of tr (1 - Po 0 a)O(J+l), the expression

2~i JhxK ~
xtr ((J +1)(1-Poa)J dPo /I da - t d(l- Poa)j /I d(1-Poa)(l - Poa )J-j)

1 J' f 1 ( ( ß2Pa B
2
a ))+2~i J

TxR
2tr (J + 1) (I-Paa)J BiBT a +Po ßißr dtdT.

(3.6.7)
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A similar expression can be written for the constant term of tr (1 - a 0 Po)o(J+l)

by interchanging a and Po. Note that

Hence it follows that the last integral in (3.6.7) does not change under permutation
of a and Po. Thus, taking the diffel'ence of (3.6.7) and the corresponding expression
obtained by interchanging a and Po, we find

ind A = _1 J' f ~
27ri Jyxl. 2

x (tr (J + 1)(I-Poa)J dPo !I da - t d(l-Poa)j !I d(l-Poa)(l - Poa)J-j)

- tr ((J + I) (l-apo)J da !I dPo - t d(l- aPo)j !I d(l-aPo) (1 - aPo)J-j)) .

(3.6.8)

Taking into account the rule for passing from the o-product to the o-product,
one easily recognizes formula (3.6.2) in (3.6.8). In particular, we obtain that the
right-hand side of (3.6.8) or (3.6.2) is independent of J, provided J is large enough.

Using the o-product, we prove now that (3.6.2) is valid for J ~ 1. Indeed,

tr (1 - Po0a)O(J+l) - tr (1 - a0Po)Ö(J+l)

= (tl' (1 - Pooa)oJ - tr (i - aOPo)ÖJ)

- (tl' (1 - pooa)öJo(Pooa) - tr (1 - aopo)ÖJo(aoPo)) .

However, by the associativity of the o-product, we have

tr (1 - pooa)oJo(Pooa) = trPoo(1 - aopo/J oa

= tr (1 - aopo)oJ6(a6po)

for J ~ 1. The last equality is due to the fact that (1 - aopo)oJ E i for J ~ 1, and
hence a cyclic permutation of factors under the trace sign is possible. The pfoof is
complete.

D
For J = 1, formula (3.6.8) becomes

iudA = ~ J' f tr((I-Poa)dPo 1\ da) - tr((I-aPo)da 1\ dPo)
211"z JTxl.

for

trd(l-Poa) 1\ d(I-]Joa) - trd(l-aPo) 1\ d(l-aPo)

= o.
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Integrating by parts in the first summand yields

3 Index formula

J'f tr ((l-Poa)dPo A da)
JTxB

- - J' f tr (d(l-poa) APoda)
JTxB

= J' f tr (dpo A apoda +Poda APoda).
JTxl.

On the other hand, the second summand may be transformed as follows:

-tr((1-aPo)da A dpo) = tr(dPo A (l-aPo)da).

So, (3.6.8) for J = 1 gives formula (3.1.3).
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