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YAMABE FLOWS AND EXTREMAL ENTROPY

ON COMPLETE MANIFOLDS

PABLO SUÁREZ-SERRATO AND SAMUEL TAPIE

Abstract. We introduce curvature-normalized versions of the Yamabe flow on complete manifolds
with negative scalar curvature, for which we show long time existence of solutions and convergence
of these flows to complete Yamabe metrics. We apply them to study the extrema of the topological
entropy in conformal classes and offer an entropy-rigidity theorem for convex-cocompact surfaces:
extrema of the entropy are the metrics whose closed geodesics coincide with those of the unique
hyperbolic metric conformally equivalent to the initial one. On convex-cocompact manifolds of
higher dimension, we show that local extrema of the entropy have constant scalar curvature on
their non-wandering set.

1. Introduction

Geometric flows have been extensively used during the last twenty years to deform a given
Riemannian manifold into one with some more symmetries, such as constant curvatures.

In this article, we focus on the case of manifolds with negative scalar curvature and infinite
volume. On these, we introduce Curvature-normalized versions of the Yamabe flow, which converge
smoothly to a Yamabe metric as soon as the Riemannian curvature tensor of the original metric
is uniformly bounded. We then use these flows to study the extrema of the topological entropy on
convex-cocompact manifolds. A similar study was carried out for compact manifolds in [SST11].
Some technical computations are identical in the compact case and in the complete case: for these
we will refer to [SST11], and here we will focus on the specifics of non-compact manifolds.

Let (M, g) be a complete Riemannian manifold whose scalar curvature Rg satisfies Rmin ≤ Rg ≤
Rmax < 0. We will say that a family of complete metrics (gt)t∈[0,T ) is an increasing Curvature-
normalized Yamabe flow if it is a solution of the PDE

∂gt
∂t

= (Rmax −Rgt)gt with initial condition g0 = g.

We will denote such a solution by CYF+. Similarly, we will say a family of metrics (gt)t∈[0,T ) is a
decreasing Curvature-normalized Yamabe flow if it is a solution of the PDE

∂gt
∂t

= (Rmin −Rgt)gt with initial condition g0 = g.

It will be denoted by CYF−. Recall that a metric with constant scalar curvature is called a Yamabe
metric. Section 2 is dedicated to the study of these flows.

The Yamabe flow was introduced by Hamilton in [Ham89], and its first properties on com-
pact manifolds were published by Ye in [Ye94]. Long time existence and convergence of the
Volume-normalized Yamabe flow have been established for most compact manifolds, see the work
by Schwetlick-Struwe [SchS03] and by Brendle [Bre05], [Bre07] and references given there. On com-
plete manifolds, our work only considers the case of negative scalar curvature, which is analytically
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simpler. Indeed, as we will see in Section 3, our approach to study the extrema of topological
entropy is only relevant for negatively curved manifolds.

Theorem 1.1. Let (M, g) be a complete Riemannian manifold whose scalar curvature satisfies
Rmin ≤ Rg ≤ Rmax < 0.

(1) The increasing Curvature-normalized Yamabe flow CYF+ (with initial condition g0 = g)
has a solution defined for all t ≥ 0, which we will denote by (g+

t )t≥0.
Similarly, the CYF− has a solution defined for all t ≥ 0, which we will denote by (g−t )t≥0.

(2) For all t ≥ 0, the scalar curvature bounds are preserved along these flows:

Rmin ≤ Rg+t ≤ Rmax,

Rmin ≤ Rg−t ≤ Rmax.

(3) For all x ∈M , the application t 7→ g+
t (x) is increasing and t 7→ g−t (x) is decreasing.

(4) For all x ∈M , the flows’ solutions g+
t and g−t are uniformly bounded:

g0 ≤ g+
t ≤

∣∣∣∣RminRmax

∣∣∣∣ g0 and g0 ≥ g−t ≥
∣∣∣∣RmaxRmin

∣∣∣∣ g0.

(5) Assume moreover that the Riemannian curvature tensor of g0 is uniformly bounded, and
let gY be the unique Yamabe metric in the conformal class of g0 with scalar curvature
RgY ≡ −1. Then on all compact sets and for all k ≥ 0, the CYF+ converges exponentially

fast in the Ck topology to

gmax =
gY
|Rmax|

.

Similarly, for all k ≥ 0 the CYF− converges exponentially fast in the Ck topology on compact
sets to

gmin =
gY
|Rmin|

.

Remark 1. In general, CYF could have many solutions, as has been shown by Giesen and Topping
in [GT09] for surfaces. However, it seems likely that there is a unique solution with uniformly
bounded conformal factor with respect to the initial metric.

The monotonicity of these Curvature-normalized Yamabe flows implies, in particular, the follow-
ing Schwarz Lemma, whose first proof is due to Yau in [Yau73].

Corollary 1.2 (Conformal Schwarz Lemma). Let (M, g) be a complete Riemannian manifold with
bounded sectional curvatures whose scalar curvature satisfies Rmin ≤ Rg ≤ Rmax < 0. Let gY be
the Yamabe metric in the conformal class of g with constant scalar curvature −1. Then

gY
|Rmin|

≤ g ≤ gY
|Rmax|

.

We conclude our study of the Curvature-normalized Yamabe flows by showing that for a short
time they preserve negative sectional curvatures (this is an issue since our manifolds are not com-
pact).

Theorem 1.3. Let (M, g) be a complete Riemannian n-manifold, n ≥ 3, with pinched negative
sectional curvatures Kg:

−b2 ≤ Kg ≤ −a2 < 0.

Assume moreover that ||∇gRg|| and |∆gRg| are uniformly bounded. Let (g+
t )t≥0 and (g−t )t≥0 be the

solutions of the CYF+ and the CYF− with initial metric g. Then for all ε > 0, there exists Tε > 0
such that for all t ∈ [0, Tε],

−b2 − ε ≤ Kg+t
≤ −a2 + ε and − b2 − ε ≤ Kg−t

≤ −a2 + ε.
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We will actually prove in Theorem 2.9 a stronger statement, showing that Tε ≥ Cεβ for some
positive constant C and β ∈ (0, 1).

Extrema of the entropy have been shown to be very symmetric metrics in many situations. This
study was initiated by Katok in [Kat82] showing that on compact surfaces, the hyperbolic metrics
are the entropy minimizers. It was then shown by Hamenstaedt in [Ham90] that, if (M, gS) is a
locally symmetric compact Riemannian manifold such that supKgS = −1, then it is the unique
minimum for the topological entropy among all metrics in M with sectional curvatures less than or
equal to −1. This is called entropy-rigidity of symmetric spaces. A stronger version of this
result was shown by Besson, Courtois and Gallot in [BCG95], showing that when the volume is fixed,
a compact locally symmetric manifold with negative sectional curvatures is the unique minimum of
the topological entropy. An extension of this result to the case of non-compact locally symmetric
manifolds with finite volume, as well as product of such spaces, was published by Connell and
Farb in [ConFar03]. On the other hand, Ledrappier and Wang have shown in [LW09] that given
a lower bound on the Ricci curvature of a compact Riemannian manifold, a hyperbolic metric
strictly maximizes the topological entropy among all metrics. They have also extended their result
to complex-hyperbolic and quaternionic-hyperbolic manifolds. On compact manifolds with negative
sectional curvatures which do not admit any locally symmetric metric, not much else seems to be
known about the extrema of the entropy. We have shown in [SST11] that in each conformal class,
given bounds on the scalar curvature, the extrema of the entropy are exactly the Yamabe metrics.

When the manifold has infinite volume, even if it admits a locally symmetric metric, barycenter
methods as well as Hamenstaedt’s rank-rigidity methods may not work. This is usually the case
when the limit set of the fundamental group of the manifold is not the full boundary at infinity of
the universal cover. Even for a simple complete pair of pants (i.e. a complete metric on a thrice
punctured S2 with infinite volume ends), no characterization of the extrema of the entropy was
previously known. When the hyperbolic metrics on a pair of pants run over the Teichmueller space,
results due to Patterson imply that the topological entropy goes over exactly the interval (0, 1) (see
Theorem 4.2). However, in each conformal class, there is a unique hyperbolic metric. We will show
in Section 4 that in each conformal class, the hyperbolic metric characterizes the extrema of the
entropy. A full entropy-rigidity statement in the conformal class will be shown in this context. For
higher dimensional manifolds, we get interesting properties of entropy extrema in Section 3.

Recall that a manifold with negative sectional curvature and bounded scalar curvature has a
uniformly bounded Riemannian curvature tensor. A manifold with negative sectional curvatures
is said to be convex-cocompact if there is a compact set containing all its closed geodesics. This
terminology was introduced by Sullivan for hyperbolic manifolds in [Sul79]. In Section 3, we apply
this flow to study extrema of the topological entropy on such manifolds. For any Riemannian
manifold (M, g), we will denote by πΩg ⊂ M the closure of the set of closed geodesics for g, this
notation will be explained in Section 3.

The key fact which allow us to relate our study of Curvature-normalized Yamabe flows to the
topological entropy is the following, which will be shown in Proposition 3.3. Assume (M, g) is
a convex-cocompact Riemannian manifold with negative scalar curvature, which satisfies Rmin ≤
Rg ≤ Rmax < 0. Then the topological entropy decreases along CYF+ and increases along CYF−

as long as the sectional curvatures remain negative on both flows. Moreover, this change is strictly
monotonic along both flows when the scalar curvature is not extremal on some closed geodesics.
This implies:

Theorem 1.4. Let (M, g) be a convex-cocompact Riemannian manifold with negative sectional
curvatures whose scalar curvature satisfies Rmin ≤ Rg ≤ Rmax < 0 and such that ||∇gRg|| and
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Convex-core

Figure 1. On convex-cocompact manifolds, closed geodesics are contained but not
dense in the convex-core.

|∆gRg| are uniformly bounded. Let MRmin,Rmax be the class of all complete metrics g̃ with Rmin ≤
Rg̃ ≤ Rmax < 0. We have the following.

(1) If (M, g) is a local minimum for the entropy in MRmin,Rmax then Rg = Rmax on the set of
closed geodesics πΩg.

(2) If (M, g) is a local maximum for the entropy MRmin,Rmax then Rg = Rmin on πΩg.

If the Yamabe metric gY has negative sectional curvatures or if the flows CYF± preserve negative
sectional curvature, we obtain stronger results:

Theorem 1.5. Let (M, g) be a convex-cocompact Riemannian manifold with negative sectional
curvatures whose scalar curvature satisfies Rmin ≤ Rg ≤ Rmax < 0. Let gY be the Yamabe metric
conformally equivalent to g with RgY ≡ −1, and (g+

t )t≥0 and (g−t )t≥0 be the solutions of CYF+ and
CYF− given by Theorem 1.1.

(1) If the sectional curvatures of gY are strictly negative, then the topological entropy of g
satisfies√

|Rmax|htop(gY ) = htop(gmax) ≤ htop(g) ≤ htop(gmin) =
√
|Rmin|htop(gY ).

(2) Assume that the sectional curvatures Kg+t
remain negative along the CYF+.

If htop(g) =
√
|Rmax|htop(gY ) then on the set of closed geodesics πΩgY , we have

g = gmax =
gY
|Rmax|

and Rg = Rmax;

(3) Assume that the sectional curvatures Kg−t
remain negative along the CYF−.

If htop(g) =
√
|Rmin|htop(gY ) then on the set of closed geodesics πΩgY , we have

g = gmin =
gY
|Rmin|

and Rg = Rmin.

In general it is very difficult to know whether the sectional curvatures remain negative along
the flow. Therefore, for manifolds of dimension n ≥ 3, Theorem 1.4 is much more interesting
than Theorem 1.5. In Section 4, we deal with the case of surfaces, on which CYF automatically
preserve negative sectional curvature. We get a full characterization of entropy extrema on convex-
cocompact surfaces, which generalizes the results of Katok [Kat82] to the convex-cocompact setting.

4



Recall that the Yamabe metrics (with negative curvature) on surfaces are proportional to hyperbolic
metrics. Our result is the following.

Theorem 1.6 (Conformal entropy-rigidity on convex-cocompact surfaces). Let (S, g) be a complete
convex-cocompact Riemannian surface whose Gauss curvature satisfies Kmin ≤ Kg ≤ Kmax < 0.
Let gH be the unique hyperbolic metric conformally equivalent to g.

(1) The entropy of g satisfies√
|Kmax|htop(gH) ≤ htop(g) ≤

√
|Kmin|htop(gH);

(2) htop(g) =
√
|Kmax|htop(gH) if and only if the closed geodesics of g and gH coincide, with

g = gH
|Kmax| and Kg = Kmax on πΩg = πΩgH ;

(3) htop(g) =
√
|Kmin|htop(gH) if and only if the closed geodesics of g and gH coincide, with

g = gH
|Kmin| and Kg = Rmax on πΩg = πΩgH .

On convex-cocompact surfaces with infinite volume, the closed geodesics are contained in the
compact convex-core, also called Nielsen core (cf. Figure 1). However, they are not necessarily
dense in this convex set, see for instance the study of the Hausdorff dimension of the closure of the
set of closed geodesics made by Ledrappier and Lindenstrauss in [LL03]. Theorem 1.6 shows that
the convex-cocompact surfaces with extremal entropy are exactly those whose closed geodesics
coincide with the closed geodesics of hyperbolic metrics, and the metrics itself coincide (up to
scaling) on these geodesics. Combined with Yau’s Schwarz Lemma, this can be reformulated as
follows.

Theorem 1.7 (Conformal entropy-rigidity of hyperbolic convex-cocompact surfaces). Let (S, gH)
be a convex-cocompact hyperbolic surface. Let M(−∞,−1] be the set of complete metrics on S with
Gauss curvature in (−A,−1] for some A > 0 and M[−1,0) be the set of complete metrics on S with
Gauss curvature in [−1,−ε] for some ε > 0.

(1) gH minimizes the topological entropy on M(−∞,−1]. Moreover, any other metric gm ∈
M(−∞,−1] is a minimizer for the entropy if and only if it has the same set of closed geodesics
as gH , and on this set, the metrics coincide.

(2) gH maximizes the topological entropy onM[−1,0). Moreover, any other metric gM ∈M[−1,0)

is a maximizer for the entropy if and only if has the same set of closed geodesics as gH ,
and on this set, the metrics coincide.

This is the analogous result for infinite volume surfaces of the results by Hamenstädt and by
Ledrappier and Wang mentioned above, restricted to a conformal class. As explained previously,
due to classical results of Patterson, it is not possible to get a global entropy-rigidity result gathering
all conformal classes.

Our line of attack is inspired by the paper of Manning [Man04], which shows that on compact sur-
faces with negative curvature, Volume-normalized Ricci-Yamabe flow decreases topological entropy.
Nevertheless, the proof we develop is quite different as Manning’s arguments do not generalize to
infinite volume surfaces.

Acknowledgements. We want to thank Gilles Carron for important remarks and crucial help in
the proof of Theorem 2.9. We thankfully acknowledge the support of of the CNRS-CONACYT pro-
gram LAISLA, and of the Fédération de Recherche Mathématique des Pays de la Loire for its sup-
port through its program GeAnPyL. ST also acknowledges the support of ANR grant GEODE, and
PSS was partially supported by project IACOD: IB100111 from Universidad Nacional Autónoma
de México.
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2. Curvature-normalized Yamabe Flows on complete manifolds

Let (M, g) be a Riemannian n-manifold, n ≥ 3 such that Rmin ≤ Rg ≤ Rmax < 0. It has
been shown by Aviles and Mc Owen in [AMc88] that there exists a Yamabe metric gmax = vmaxg
conformally equivalent to g with constant scalar curvature Rgmax ≡ Rmax. It follows from Corollary
1.2 of [Yau73] that, as soon as the Riemannian curvature tensor is bounded, this Yamabe metric
is unique. We now introduce our Curvature-normalized Yamabe flows, which will converge to the
Yamabe metric when the curvature is bounded.

Definition 2.1. Let (M, g) be a Riemannian manifold such that Rmin ≤ Rg ≤ Rmax < 0. We will
call Curvature-normalized increasing Yamabe Flow (in short, CYF+) a family of Riemann-
ian metrics (gt)t≥0 on M satisfying the following equations:

∂gt
∂t

= (Rmax −Rgt)gt
g0 = g

Let us first show the existence of a global solution to this Yamabe flow.

Theorem 2.1. Let (M, g) be a Riemannian manifold such that Rmin ≤ Rg ≤ Rmax < 0. Then
there exists a solution gt = vtg to the CYF+, with v0 = 1, defined for all time t ≥ 0. Moreover, it
satisfies for all t ≥ 0,

Rmin ≤ Rgt ≤ Rmax and vt ≤
∣∣∣∣RminRmax

∣∣∣∣ .
Proof. Let (M, g) be a Riemannian manifold such that Rmin ≤ Rg ≤max< 0. Let (Kα)α∈N be
an increasing family of compact subset of M , with smooth boundary, such that M = ∪α∈NKα.

We assume that whenever α < β, then Kα ⊂
◦
Kβ. For all α ∈ N, we set Uα :=

◦
Kα. We will first

find a solution for this Curvature-normalized Yamabe flow on compact sets with fixed boundary
conditions. Let α ∈ N be fixed for a while.

Lemma 2.2. There exists εα > 0 and a unique family of metrics (gα,t)t∈[0,εα] on M satisfying the
following conditions: for all t ∈ [0, εα],

gα,t = g on M\Uα,
∂gα,t
∂t

= (Rmax −Rgt)gα,t on Uα,

gα,0 = g on M.

We will call this (gα,t)t∈[0,εα] the CYF+ on Kα with fixed boundary.

Proof. It has been shown by Yamabe in [Yam60] that, writing gα,t = u
4

n−2

α,t g, we have

(1) Rgα,t = u
−n+2
n−2

α,t

(
4(n− 1)

n− 2
∆gut +Rguα,t

)
.

Therefore
∂gα,t
∂t = (Rmax −Rgα,t)gt is equivalent to the following equation:

(2)
∂

∂t

(
uNα,t

)
=
n+ 2

4

(
Rmaxu

N
α,t −Rguα,t

)
− (n+ 2)(n− 1)

n− 2
∆guα,t,

where N = n+2
n−2 > 1. This is a strictly parabolic equation as long as uα,t stays bounded. Since

we solve it on an open set with compact closure, with boundary condition uα,t = 1 on ∂Uα, it has
a unique solution on t ∈ [0, εα], for some εα > 0. �
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It follows from Lemma 9 in [SST11] that for all t ∈ [0, εα) and all x ∈ Uα, the scalar curvature
of gα,t satisfies:

(3)
∂Rgα,t
∂t

= −(n− 1)∆gα,tRgα,t +Rgα,t(Rgα,t −Rmax).

Using the Maximum Principle given in Proposition A.1, this implies that for all time t ∈ [0, εα), we
have

Rmin ≤ Rgα,t ≤ Rmax.
Now, it follows from Lemma 12 in [SST11] (using the relevant form of the Maximum Principle)

that uα,t is well defined and satisfies for all t ∈ (0, εα),

(4) 1 ≤ u
4

n−2

α,t ≤
∣∣∣∣RminRmax

∣∣∣∣ .
This implies the global existence of the solution gα,t for all t ≥ 0.

If α < β ∈ N, the Maximum principle given in Proposition A.2 implies that for all t ≥ 0 and at
all x ∈M , we have uα,t ≤ uβ,t. Let us define

ut := sup
α∈N

uα,t and gt := u
4

n−2

t g.

Lemma 2.3. For all k ∈ N, all t ∈ [0,∞) and every compact set K ⊂ M , the functions (uα,t)

converge when α → ∞ to ut uniformly in the Ck topology. Similarly,
∂uα,t
∂t converges to ∂ut

∂t . In

particular, ut is smooth, the metric gt = u
4

n−2

t g is a smooth solution to CYF+ defined for all t ≥ 0,
and it satisfies

Rmin ≤ Rgt ≤ Rmax.

Proof. Let α < β ∈ N, and let (gα,t = u
4

n−2

α,t )t≥0 and (gβ,t = u
4

n−2

β,t )t≥0 be the solutions of the CYF+

with fixed boundary conditions on Kα and Kβ respectively.
It follows from equation (2) that, for all t ≥ 0:

(5)
∂

∂t

(
uNβ,t − uNα,t

)
=
n+ 2

4

(
Rmax(uNβ,t − uNα,t)−Rg(uβ,t − uα,t)

)
− (n+ 2)(n− 1)

n− 2
∆g(uβ,t−uα,t).

Moreover, let us define

vα,β,t =
uNβ,t − uNα,t
uβ,t − uα,t

whenever uα,t 6= uβ,t and

vα,β,t = NuN−1
α,t

whenever uα,t = uβ,t. The map vα,β,t is smooth on M × (0,∞) and for all (x, t) ∈M ×∞, we have

(6) N ≤ vα,β,t ≤ N
∣∣∣∣RminRmax

∣∣∣∣n+2
4
−1

,

because we have seen in (4) that

1 ≤ uα,t ≤ uβ,t ≤
∣∣∣∣RminRmax

∣∣∣∣n−2
4

.

Since uNβ − uNα = (uβ,t − uα,t)vα,β,t, equation (5) becomes

vα,β,t
∂

∂t
(uβ,t − uα,t) = n+2

4

(
Rmax(uNβ,t − uNα,t)−Rg(uβ,t − uα,t)

)
− (n+2)(n−1)

n−2 ∆g(uβ,t − uα,t)− (uβ,t − uα,t)
∂vα,β,t
∂t ,(7)
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since we have

(uβ,t − uα,t)
∂vα,β,t
∂t

=
∂

∂t

(
uNβ,t − uNα,t

)
− ∂

∂t
(uβ,t − uα,t) vα,β,t.

Therefore, just as was done in [SST11], because of the bounds given by equation (6), Schauder
estimates applied to equation (2) imply that for any compact set K ⊂ M , and any r > 0, there
exists a constant BK,r such that for all t ∈M and x ∈ K,∣∣∣∣(uβ,t − uα,t) ∂vα,β,t∂t

∣∣∣∣ (x) ≤ BK,r sup
t−r≤s≤t

(|uβ,s|+ |uα,s|) ≤ B′K .

Note that this B′K only depends on the initial metric g and the compact set K, and not on t ∈ (0,∞)
nor on α, β ∈ N. This implies that equation (7) is a parabolic equation for uβ,t − uα,t, uniformly
parabolic on any compact set. The constant of parabolicity of this equation is independent of the
values of α and β. Therefore, Schauder estimates for equation (7) imply that for all k ∈ N, r > 0,
and all compact sets K ⊂ M , there exists CK,k,r > 0 such that for all α, β ∈ N and for all
(x, t) ∈M × [0,∞),

sup
x∈K

∣∣∣∣∣∣∇kuα+β,t −∇kuα,t
∣∣∣∣∣∣
K

(x) ≤ CK,k sup
t−r≤s≤t

sup
x∈K
|uα+β,s − uα,s| (x).

Now, we have seen that uα,t converges increasingly when α→∞ to a positive limit ut. This implies
that for all (x, t) ∈M × [0,∞),∣∣∣∣∣∣∇kuα+β,t −∇kuα,t

∣∣∣∣∣∣
K

(x) ≤ C ′K,k sup
t−r≤s≤t

|us − uα,s|

for some C ′K,k > 0. Therefore, (∇kuα,t)α∈N is a Cauchy sequence and hence (uα,t)α∈N converges in

the Ck topology. Then the map ut : M → R is Ck. Since this is valid for all k ≥ 0, equation (2)

implies that
∂uα,t
∂t also converges smoothly to ∂ut

∂t and that ut is a solution to the CYF+ on M . �

This concludes the proof of Theorem 2.1. �

As Rgt ≤ Rmax, and by definition of the CYF+ we have ∂gt
∂t = (Rmax − Rgt)gt, we obtain the

following.

Corollary 2.4. The Curvature-normalized increasing Yamabe flow is pointwise increasing:

∀x ∈M, ∀ t ≥ s ≥ 0, gt ≥ gs.

Provided that the Riemannian curvature tensor of the initial metric is uniformly bounded, the
CYF+ converges to a smooth metric:

Theorem 2.5. Let (M, g) be a complete Riemannian manifold, such that Rmin ≤ Rg ≤ Rmax.
We assume moreover that the norm of the Riemannian curvature tensor is uniformly bounded. Let
(gt)t≥0 be the solution of the CYF+ constructed in Theorem 2.1. Then on any compact set K ⊂M
and for all k ∈ N, the metric gt converges uniformly exponentially fast in the Ck topology to the
unique metric gmax in the conformal class of g with constant scalar curvature Rgmax = Rmax.

Proof. Let (M, g) be a complete Riemannian manifold, such thatRmin ≤ Rg ≤ Rmax with uniformly
bounded Riemannian curvature tensor. We have seen that there exists a unique metric gmax
conformally equivalent to g with Rgmax = Rmax.

Lemma 2.6. The scalar curvature Rgt of gt converges uniformly exponentially fast on M to
Rgmax ≤ Rmax when t→∞.
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Proof. From Theorem (2.1) we know that Rgt ≤ Rmax for all t ≥ 0. Therefore, the evolution
equation of the scalar curvature gives for all (x, t) ∈M × [0,∞),

∂(Rgt −Rmax(gt))

∂t
= −(n− 1)∆gt(Rgt −Rmax) +Rgt(Rgt −Rmax)

≥ −(n− 1)∆gt(Rgt −Rmax) +Rmax(Rgt −Rmax).

Using the variable form of the Maximum Principle (Proposition A.3) given in the Appendix, we
get for all (x, t) ∈M × [0,∞):

(8) 0 ≥ Rgt −Rmax ≥ (Rmin −Rmax)eRmaxt

Since Rmax < 0, the curvature converges exponentially fast to Rmax at all points of M . �

Now, let K ⊂M be a fixed compact set. Repeating the proof of Theorem 10 of [SST11], Schauder
estimates show that on the compact set K, the flow converges uniformly exponentially fast to a
smooth metric gmax with constant scalar curvature Rgmax = Rmax. More precisely, for all integers
k ≥ 0, there exists a positive CK,k > 0 such that

||gt − gmax||Ck(K) ≤ CK,ke
Rmaxt.

Since this is valid for any compact set K, it concludes the proof of Theorem 2.5. �

Remark 2. In Theorem 1.1, we assume that the Riemannian curvature tensor is uniformly bounded
to get the convergence of the flow (gt)t≥0. This hypothesis is not optimal since we only need a global
maximum principle as stated in Proposition A.3. Some exponential lower bounds on Ricg0 may be
sufficient to get it. We did not focus on this technical issue to limit the size of our exposition.

Let (M, g) be a complete Riemannian manifold satisfying Rmin ≤ Rg ≤ Rmax < 0. We will call
Curvature-normalized decreasing Yamabe Flow (in short, CYF−) a family of Riemannian
metrics (g−t )t≥0 on M satisfying the following equations:

∂gt
∂t

= (Rmin −Rgt)gt
g0 = g

A proof similar to the one we have just presented above gives the following result.

Theorem 2.7. Let (M, g) be a Riemannian manifold such that Rmin ≤ Rg ≤ Rmax < 0. Then
there exists a solution g−t = vtg to the CYF−, with v0 = 1, defined for all time t ≥ 0. Moreover,
for all t ≥ 0, it satisfies

Rmin ≤ Rg−t ≤ Rmax and vt ≤
∣∣∣∣RminRmax

∣∣∣∣ ,
and t 7→ g−t (x) is decreasing in time for all x ∈M .

When the Riemannian curvature tensor of g is uniformly bounded, then g−t converges uniformly
exponentially fast on every compact set to the unique metric gmin in the conformal class of g which
satisfies Rgmin = Rmin.

Theorems 2.5 and 2.7 imply the following result, originally due to Yau.

Corollary 2.8 (Conformal Schwarz Lemma). Let (M, g) be a Riemannian manifold with Rmin ≤
Rg ≤ Rmax < 0 and with bounded Riemann curvature tensor. Then there exists a Yamabe metric
gY conformally equivalent to g, with uniformly bounded conformal factor, such that

gmin =
gY
|Rmin|

≤ g ≤ gmax =
gY
|Rmax|

.
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The proof presented above is independent of the arguments in [Yau73], from which we had only
deduced uniqueness of the Yamabe metric.

We now turn to the proof of Theorem 1.3, showing that the CYF preserve pinched negative
sectional curvatures for a small time, provided the gradient of the scalar curvature of the initial
metric and its Laplacian are bounded. We are going to prove the more precise following result.

Theorem 2.9. Let (M, g) be a complete Riemannian n-manifold, n ≥ 3, with pinched negative
sectional curvatures Kg:

Rmin
n(n− 1)

= −b2 ≤ Kg ≤ −a2 =
Rmax

n(n− 1)
< 0.

Assume moreover that ||∇gRg|| and |∆gRg| are uniformly bounded. Let (g+
t )t≥0 (resp. (g−t )t≥0) be

the solution of the CYF+ (resp. the CYF−) with initial metric g. Then there exist C > 0 and
β ∈ (0, 1

2) such that forall t ∈ [0, ε], we get∣∣∣Kg+t
−Kg

∣∣∣ ≤ Ctβ and
∣∣∣Kg−t

−Kg

∣∣∣ ≤ Ctβ.
Theorem 2.9 can be restated as follows: starting at a metric satisfying the hypotheses of Theorem

2.9, the sectional curvatures of g+
t and g−t are uniformly continuous in time around t = 0, and their

modulus of uniform continuity is at most Ctβ for some β ∈ (0, 1
2) and some constant C > 0.

Proof of Theorem 2.9. We will show this theorem for the CYF+, the proof for the CYF− is similar.
Let (M, g) be a smooth Riemannian n-manifold, n ≥ 3, pinched negative sectional curvatures
−b2 ≤ Kg ≤ −a2 < 0, and such that ||∇gRg||g and ∆gRg are uniformly bounded. We set Rmin =

−n(n−1)b2, Rmax = −n(n−1)a2 and denote by (gt)t≥0 the solution of the CYF+ given by Theorem

2.1. Therefore, we have gt = u
4

n−2

t g, here ut is a uniformly bounded solution to equation (2) with
initial condition u0 = 1.

Consider the lifts of the metrics (gt)t≥0 to the universal cover M̃ of M . We will still denote them

by (gt)t≥0. This family of metrics on M̃ is by construction equivariant with respect to the action of
the fundamental group of M . We also lift the family (ut)t≥0 of conformal factors to an equivariant

family of conformal factors on M̃ , which we will still write (ut)t≥0. Since (M̃, g0) = (M̃, g) is a
simply connected manifold with negative sectional curvatures, it has infinite injectivity radius. For
the rest of the proof, our argument will implicitly take place in M̃ .

The curvatures of gt can be obtained from the curvature of g and the derivatives of ut, see
Theorem 1.159 p. 58 of [Bes08]. Therefore, it is enough to show that there exists C > 0 and
β ∈ (0, 1

2) such that for all t ≥ 0,

(9) ||ut(.)− 1||C2(M,g) := sup
M
|ut − 1|+ sup

M
||∇gut||g + sup

M
||∇g∇gut||g ≤ Ct

β.

Since we only deal with maps on M̃ which are lifts from maps on M , there is no difference in
taking these norms on M or on M̃ .

From equation (1), we have for all t > 0,

(10)
4(n− 1)

n− 2
∆gut = Rgtu

n+2
n−2

t −Rgut.

The sectional curvatures of g are pinched and its injectivity radius is positive (here infinite), so it

follows from the work of Anderson and Cheeger [AC92] that in each point x ∈ M̃ , there exists a
chart of harmonic coordinates (for the fixed metric g) centered in x with radius ρ > 0 depending

only on Rmin and Rmax. Therefore, equation (10) is uniformly elliptic on M̃ , with ellipticity
constants depending only on Rmin and Rmax.
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We will need the following Hölder norms on functions on M (extended to equivariant maps on

M̃). For any smooth map f : M → R and any α ∈ (0, 1), we write

||f ||Cα := sup
x∈M
|f(x)|+ sup

x 6=y

|f(x)− f(y)|
dg(x, y)α

where dg(x, y) is the Riemannian distance induced by g between x and y, and

||f ||C2,α := sup
x∈M
|f(x)|+ sup

x∈M
||df(x)||g +

∣∣∣∣∣∣||∇gdf ||g∣∣∣∣∣∣Cα .
By Schauder estimates applied to Equation (10), see e.g. Theorem 6.2 p. 90 of [GT01], for any
α ∈ (0, 1), there exists a constant C > 0 depending only on n, α and the curvature bounds such
that

(11) ||ut − 1||C2,α ≤ C
(

sup
x∈M
|ut − 1|+

∣∣∣∣∣∣∣∣Rgtun+2
n−2

t −Rgut
∣∣∣∣∣∣∣∣
Cα

)
.

To estimate the right-hand side of (11), we will use the following lemma which is an immediate
consequence of the variable form of Maximum Principle given in Proposition A.3.

Lemma 2.10. Let v : M × [0, T )→ R be a smooth solution to the following PDE:

∂v

∂t
(x, t) = −h(x, t)∆gv(x, t) + f(x, t),

where ∆g is the Laplacian induced by the metric g, and the functions f and h satisfy the following:
there exist C1, C2, C3 > 0 such that C1 ≤ h ≤ C2 and |f | ≤ C3. Assume that at t = 0, v(., 0) ≡ 0
and that v is uniformly bounded on M × (0, T ). Then for all x, t ∈M × [0, T ), we have

sup
x∈M
|v(x, t)− v(x, 0)| ≤ C3t.

Let us go back to the study of the conformal factor ut. It follows from the bounds established
in Theorem 2.1 that equation (2) which gives the evolution of ut is precisely of the form

(12)
∂ut
∂t

(x) = −h(x, t)∆ut + f(x, t),

where h and f satisfy the hypotheses of Lemma 2.10. Therefore, there exists C > 0 such that for
all t > 0 small enough,

(13) |ut(x)− 1| ≤ Ct.
Therefore, because of equation (11), to conclude the proof of Theorem 2.9 it is enough to control∣∣∣∣∣∣∣∣Rgtun+2

n−2

t −Rgut
∣∣∣∣∣∣∣∣
Cα

for some α > 0. We have

Rgtu
n+2
n−2

t −Rgut = u
4

n−2

t (Rgtut −Rg) +Rg(u
4

n−2

t − ut),
which can be restated as

Rgtu
n+2
n−2

t −Rgut = u
4

n−2

t (Rgtut −Rg) +Rgu
4

n−2

t (1− ut)
u

1− 4
n−2

t − 1

ut − 1
.

The bounds established in Theorem 2.1 together with the previous equation imply that there exists
a constant CR > 0 such that for all α ∈ (0, 1), we get

(14)

∣∣∣∣∣∣∣∣Rgtun+2
n−2

t −Rgut
∣∣∣∣∣∣∣∣
Cα
≤ CR

(
||Rgtut −Rg||Cα + ||ut − 1||Cα

)
.
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Equation (13) controls the C0 norm of ut − 1. To control its Cα norm, we will use the following
lemma.

Lemma 2.11. Let v : M̃ × [0, T )→ R be a smooth solution to the following PDE:

∂v

∂t
(x, t) = −h(x, t)∆gv(x, t) + f(x, t),

where ∆g is the Laplacian induced by the metric g, and the functions f and h satisfy the following:
there exist C1, C2, C3 > 0 such that C1 ≤ h ≤ C2 and |f | ≤ C3. Assume moreover that at t = 0,
|v(., 0)| and ||∇v(., 0)||g are bounded by C4, and that for all t > 0, |v(., t)| ≤ C5. Then there exists

θ ∈ (1
2 , 1) and Cθ > 0 depending on the Ci such that for all (x, t) ∈ M̃ × (0, T ), we have

||∇v(x, t)||g ≤
Cθ
tθ
.

This is merely an adaptation to our context of Theorem 11.3 p. 269 of [Lie96].
We have already seen that v(x, t) = ut(x)− 1 satisfies the hypothesis of Lemma 2.11. Therefore,

we have for all (x, t) ∈ M̃ × (0, T ),

||∇ut(x)||g ≤
Cθ
tθ

for some fixed θ ∈ (1
2 , 1) and Cθ > 0. Moreover, for all α ∈ (0, 1), all t > 0 and all x, y ∈ M̃ such

that x 6= y, we have

|ut(x)− ut(y)|
dg(x, y)α

=
|ut(x)− ut(y)|

dg(x, y)
dg(x, y)1−α ≤ ||∇ut||g dg(x, y)1−α.

Let us now fix α ∈ (0, 1
2) small enough so that 1−α > θ. Due to Lemma 2.10, we have for all t > 0,

||ut − 1||Cα = sup
x∈M
|ut(x)− 1|+ sup

x 6=y

|ut(x)− ut(y)|
dg(x, y)α

≤ Ct+ sup
x 6=y,dg(x,y)≤t

|ut(x)− ut(y)|
dg(x, y)α

+ sup
x 6=y,dg(x,y)>t

|ut(x)− ut(y)|
dg(x, y)α

≤ Ct+ sup
dg(x,y)≤t

||∇ut||g dg(x, y)1−α + 2
supx∈M |ut(x)− 1|

tα

≤ Ct+ Cθt
1−α−θ + 2Ct1−α.

Eventually, for some C ′ > 0, we have for all t > 0,

(15) ||ut − 1||Cα ≤ C
′tβ1 ,

where

β1 = 1− α− θ.

We will now show an analogous estimate for ||Rgtut −Rg||Cα . From equation (3), we get that for
all t ≥ 0,

(16)
∂Rgt
∂t

= −(n− 1)∆gtRgt +Rgt(Rgt −Rmax).

Moreover, it follows from equation (1) that for every smooth map f : M → R and all t ≥ 0, we
have

(17)
4(n− 1)

n− 2
∆gtf +Rgtf = u

−n+2
4

t

(
4(n− 1)

n− 2
∆g(utf) +Rgutf

)
.
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Due to this invariance, the operator ∆g+ n−2
4(n−1)Rg is known as the conformal Laplacian. Equations

(16) and (17) imply that for all t ≥ 0,

∂Rgt
∂t

= −n− 2

4

(
4(n− 1)

n− 2
∆gtRgt +R2

gt

)
+
n− 2

4
R2
gt +Rgt(Rgt −Rmax)

= −n− 2

4
u
−n+2

4
t

(
4(n− 1)

n− 2
∆g(utRgt) +RgutRgt

)
+
n− 2

4
R2
gt +Rgt(Rgt −Rmax),

which yields

∂(utRgt)

∂t
−Rgt

∂ut
∂t

= −n− 2

4
u

1−n+2
4

t

(
4(n− 1)

n− 2
∆g(utRgt) +Rg0utRgt

)
+ut

(
n− 2

4
R2
gt +Rgt(Rgt −Rmax)

)
.(18)

Moreover, by definition of CYF+ and gt = u
4

n−2

t g0, we have

∂ut
∂t

=

∂

(
u

4
n−2

t

)
∂t

u
1− 4

n−2

t = (Rmax −Rgt)u
4

n−2

t u
1− 4

n−2

t = (Rmax −Rgt)ut.

Therefore, equation (18) becomes

∂(utRgt)

∂t
= −n− 2

4
u

1−n+2
4

t

(
4(n− 1)

n− 2
∆(utRgt) +RgutRgt

)
+ut

(
n− 2

4
R2
gt +Rgt(Rgt −Rmax)

)
+Rgt(Rmax −Rgt)ut,

where, as before, we have written ∆ = ∆g.
Since |∆gRg| is uniformly bounded, this can be restated as the following :

(19)
∂(utRgt −Rg)

∂t
= −h(x, t)∆(utRgt −Rg) + f(x, t),

where h and f satisfy the hypotheses of Lemmas 2.10 and 2.11. Therefore, repeating the proof of
the estimate (15) for ut − 1, there exists C ′′ > 0, and α, β2 ∈ (0, 1

2) such that for all t > 0,

(20) ||Rgtut −Rg||Cα ≤ C
′′tβ2 .

The bounds (15) and (20) together with the estimates (14) and (11) conclude the proof of
Theorem 2.9.

�

Remark 3. G. Carron has pointed out to us that, adapting the techniques of Grigor’yan in [Gri94]
to our context, it might be possible to suppress the hypothesis that |∆gRg| is uniformly bounded
from Theorem 2.9 (and its application in Theorem 1.4).

3. Extremal entropy and Yamabe flows on convex-cocompact manifolds

Let us first recall some basic facts about the topological entropy and convex-cocompact manifolds.
Let (M, g) be a complete Riemannian n-manifold, n ≥ 2, let T 1

gM its unit tangent bundle, and

(φgt )t∈R its geodesic flow. We denote by π : TM →M the canonical projection. For any T > 0 and
v, w ∈ T 1

gM , we write

dgT (v, w) := sup
t∈[0,T ]

d (φgt (v), φgt (w)) .
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If Ω ⊂ T 1M is a compact subset invariant by the flow (φgt ), let N (Ω, ε, T ) be the cardinality of a
maximal ε-separated set in Ω for the distance dgT .

Definition 3.1. The topological entropy of the geodesic flow restricted to Ω is defined by

htop(φ
g|Ω) := lim sup

ε→0
lim
T→∞

logN (Ω, ε, T )

T
.

In this section, we will focus on the following case.

Definition 3.2. We will say that a complete Riemannian manifold with strictly negative sectional
curvatures is convex-cocompact if all its closed geodesics are contained in a compact set.

This notion is also known in the case of pinched negative sectional curvature as geometrically
finite manifolds without cusps, cf [Bow95] for more details on this terminology and other equivalent
definitions.

Let (M, g) be a convex-cocompact manifold with negative sectional curvatures. We will identify
each closed geodesic in M with the unique closed orbit for the geodesic flow in T 1

gM to which it

corresponds. Let Ωg ⊂ T 1
gM be the closure of the set of closed geodesics, which is invariant by the

geodesic flow. Since (M, g) is convex-cocompact, Ωg is compact. It is called the non-wandering
set of the geodesic flow, see [Eb73] for a justification of this terminology. We will call the topological
entropy of the geodesic flow restricted to Ωg the topological entropy of (M, g).

Let (M, g) be a complete manifold with uniformly pinched negative sectional curvatures. It is
well known that the geodesic flow on T 1

gM is uniformly hyperbolic, as shown for instance in the
classical book of Klingenberg [Kl82], Chap. 9. It was shown by Eberlein in [Eb73] that there is
an orbit for the geodesic flow which is dense in the non-wandering set Ωg. Assume that (M, g) is
convex-cocompact: together with the previous facts, it implies that Ωg is a basic hyperbolic set in
the sense of [Bow72]. Let us write for all R > 0,

Pg(R) := {γ closed geodesics for g : `g(γ) ≤ R},

where `g(γ) denotes the length of γ with respect to the metric g. It follows from Theorem 4.11
of [Bow72] that the topological entropy of the geodesic flow restricted to Ωg is determined by the
counting functions #Pg(R) on the set of closed geodesics:

(21) htop(g) = lim
R→∞

log(#Pg(R))

R
.

Proposition 3.1. Let M be a complete manifold of dimension n ≥ 2, and g1, g2 be two Riemannian
metrics on M with pinched negative sectional curvatures such that (M, g1) and (M, g2) are convex-
cocompact.

(1) If the closures of the sets of all closed geodesics πΩg1 and πΩg2 coincide, and if

g1|πΩg1
= g2|πΩg2

then htop(g1) = htop(g2).

(2) If g1 ≤ g2 at all points, then

htop(g1) ≥ htop(g2).

Proof. Let M be a complete manifold, and g1, g2 be two Riemannian metrics on M with pinched
negative sectional curvatures such that (M, g1) and (M, g2) are convex-cocompact. Let us prove
item (1). Assume that πΩg1 and πΩg2 coincide and g1|πΩg1

= g2|πΩg1
. Let γ1 be a closed geodesic

for g1, and γ2 be the unique closed geodesic of g2 in the same free homotopy class as γ1. Assume
that γ1 and γ2 are disjoint. By uniqueness of the geodesic, we have

`g1(γ1) < `g1(γ2) and `g2(γ2) < `g2(γ1).
14



This is a contradiction since g1 and g2 coincide on their non-wandering set. Therefore, the closed
geodesics of g1 and g2 coincide and have same length, which implies (1) due to equation (21).

Let us now prove (2), assuming that g1 ≤ g2. It follows from Theorem 3.9.5 of [Kl82] that, in
each free homotopy class of M , there is exactly one closed geodesic. Let γ1 be a closed geodesic
for g1. There exists a unique closed geodesic γ2 for g2 in the same free homotopy class. Moreover,
since the geodesic minimizes the length in this homotopy class, and since g1 ≤ g2, we have

`g1(γ1) ≤ `g1(γ2) ≤ `g2(γ2).

Each closed geodesic γ1 for g1 will correspond to a different free homotopy class, therefore to a
different geodesic γ2 for g2. Therefore, for all R > 0,

#Pg1(R) ≥ #Pg2(R),

which implies item (2). �

Remark 4. Let us point out that, in general, when the sectional curvatures are not negative, the
inequality g1 ≤ g2 does not imply that htop(g1) ≥ htop(g2), even for compact manifolds. Indeed, it
was shown by G. Contreras and G. Paternain in [CP02] that on S2, a smooth metric generically
has positive topological entropy. Let gh be such a metric with positive topological entropy. There
exists a standard round metric gR on the two sphere, with radius R > 0 big enough so that gR ≤ gh
at every point. However,

htop(gh) > 0 = htop(gR).

Together with the study of the Curvature-Normalized Yamabe flows carried in Section 2, Propo-
sition 3.1 implies the following result.

Corollary 3.2. Let (M, g) be a complete manifold such that Rmin ≤ Rg ≤ Rmax < 0, and let gY
be the unique Yamabe metric in the conformal class of g with scalar curvature RgY ≡ −1. Assume
that the sectional curvatures of g and gY are negative. Then (M, g) is convex-cocompact if and only
if (M, gY ) is. If this is the case,√

|Rmax|htop(gY ) ≤ htop(g) ≤
√
|Rmin|htop(gY ).

Moreover, if πΩg = πΩgY and g = gY
|Rmax| (resp. g = gY

|Rmin|) on πΩgY , then

htop(g) =
√
|Rmax|htop(gY )

(
resp. htop(g) =

√
|Rmin|htop(gY )

)
.

Proof. Let (M, g) satisfy the hypotheses of the Theorem. It follows from Theorems 2.1 and 2.7
that we have

(22)
Rmax
Rmin

g ≤ gY
|Rmin|

≤ g ≤ gY
|Rmax|

≤ Rmin
Rmax

g.

Therefore, Theorem 1.7 p.401 of [Br-H99] implies that g is convex-cocompact if and only gY is
convex-cocompact. The rest of our statement follows from Proposition 3.1 and the bounds (22). �

We now study the local behaviour of the topological entropy for convex-cocompact manifolds
along CYF.

Proposition 3.3. Let (M, g) be a convex-cocompact manifold of dimension n ≥ 3, with Kg ≤
−a2 < 0, and Rmin ≤ Rg ≤ Rmax < 0, and such that ||∇gRg|| and |∆gRg| are uniformly bounded.
Let (g+

t )t≥0 and (g−t )t≥0 be the solutions of CYF+ and CYF− respectively. Then at t = 0, the maps
t 7→ htop(g

+
t ) and t 7→ htop(g

−
t ) are C1, and satisfy the following:

(1) At t = 0, we have

dhtop(g
+
t )

dt

∣∣∣∣
t=0

≤ 0 and
dhtop(g

−
t )

dt

∣∣∣∣
t=0

≥ 0;
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(2) unless Rg = Rmax on πΩg, we have

dhtop(g
+
t )

dt

∣∣∣∣
t=0

< 0;

(3) unless Rg = Rmin on πΩg, we have

dhtop(g
−
t )

dt

∣∣∣∣
t=0

> 0.

Proof. Let (M, g) satisfy the hypotheses of the proposition, and let (g+
t )t≥0 and (g−t )t≥0 be the

solutions of CYF+ and CYF− respectively. It follows from Theorem 2.9 that for some ε > 0, the
sectional curvatures g+

t and g−t are strictly negative for t ∈ [0, ε). Moreover, since g, g+
t and g−t are

quasi-isometric, it follows again from Theorem 1.7 p.401 of [Br-H99] that the CYF solutions are
convex-cocompact as long as their sectional curvature remain negative. Therefore, since these flows
are smooth, Theorem 1 of [Tap10] implies that t 7→ htop(g

+
t ) is C1 on t ∈ [0, ε), and its derivative

in t = 0 is given by

∂htop(g
+
t )

∂t

∣∣∣∣
t=0

= −htop(g)

2

∫
Ωg

∂gt(v, v)

∂t

∣∣∣∣
t=0

dµg(v),

where µg0 is the Bowen-Margulis probability measure for the geodesic flow of (M, g) restricted to
Ωg. This formula can also be derived from Proposition 2.5.2 of the paper by Flaminio [Fla95]. By
definition of the CYF+, for every g-unit vector, we have

∂gt(v, v)

∂t

∣∣∣∣
t=0

= (Rmax −Rg)g(v, v) = (Rmax −Rg).

Therefore,

∂htop(g
+
t )

∂t

∣∣∣∣
t=0

= −htop(g)

2

∫
Ωg

(Rmax −Rg)dµg(v) ≤ 0.

Similarly, t 7→ htop(g
−
t ) is C1 on [0, ε), and

∂htop(g
−
t )

∂t

∣∣∣∣
t=0

= −htop(g)

2

∫
Ωg

(Rmin −Rg)dµg(v) ≥ 0.

Moreover, it follows from Corollary 4.6 of [BR75] that µg gives positive weight to any open set
which intersect Ωg. This implies item (2) and (3) of Proposition 3.3. �

Proposition 3.3 implies the monotonicity of the entropy along the CYF, as stated in Theorem
1.4. We now study the extrema of the topological entropy for manifolds assuming that the sectional
curvatures remain negative along the flow. Due to Proposition 3.1, prescribing the entropy can at
most impose the locus of closed geodesics (the non-wandering set) and determine the metric on
this non-wandering set. For manifolds of dimension n ≥ 3, we get the following result.

Theorem 3.4 (Minimal entropy and maximal curvature). Let (M, g) be a convex-cocompact man-
ifold of dimension n ≥ 3 such that Rmin ≤ Rg ≤ Rmax < 0, and (gt)t≥0 be the solution of CYF+

with initial metric g. Assume that there exists ε > 0 such that for all t ≥ 0, the sectional curvatures
of (M, gt) satisfy Kgt ≤ −ε and let gY be the unique Yamabe metric in the conformal class of g
with scalar curvature RgY ≡ −1. Then we have the following.

(1) The entropy of g satisfies

htop(g) ≥
√
|Rmax|htop(gY ) = htop(gmax).
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(2) If htop(g) = htop(gmax), then

g =
gY
|Rmax|

and Rg = Rmax on πΩgY = πΩgmax .

Proof. Let (M, g) be a complete convex-cocompact manifold such that Rmin ≤ Rg ≤ Rmax < 0,
and (gt)t≥0 be the solution of CYF+ with initial metric g. Assume that there exists ε > 0 such
that for all t ≥ 0, the sectional curvatures of (M, gt) satisfy Kgt ≤ −ε. It follows from Corollary
2.4 that the CYF+ is increasing. Therefore, Proposition 3.1 implies that the map t 7→ htop(gt) is
decreasing. So we have established point (1).

We assume now that htop(g) = htop(gmax). Let us show that g = gmax along the non-wandering
set Ωgmax ⊂ T 1

gmaxM of (M, gmax). It follows from Proposition 3.2 of [Tap10] that

htop(gmax) ≤ htop(g)

∫
Ωgmax

||v||g dµgmax(v),

where µgmax is the Bowen-Margulis probability measure for the geodesic flow of (M, gmax) restricted
to Ωgmax , cf Section 5 of [Bow72] for a detailed construction of this measure. Since htop(g) =
htop(gmax), this inequality becomes

htop(gmax) ≤ htop(g)

∫
Ωgmax

||v||g dµgmax(v) ≤ htop(g)

∫
Ωgmax

||v||gmax dµgmax(v) = htop(g),

which gives eventually

(23)

∫
Ωgmax

||v||g dµgmax(v) = 1.

Since for every gmax-unit tangent vector v ∈ T 1
gmaxM , ||v||g ≤ 1, equation (23) implies that ||v||g = 1

µgmax-almost everywhere. on Ωgmax ⊂ T 1
gmax . Moreover, it follows from Corollary 4.6 of [BR75]

that µgmax gives positive weight to any open set which intersects Ωgmax . Therefore, ||v||g = 1 on a

dense set in Ωgmax . Since g is smooth, this implies that ||v||g = 1 on Ωgmax ⊂ T 1
gmaxM . �

Theorem 3.4 is not a complete reciprocal to Proposition 3.1. Indeed, we do not know whether,
when the entropy of g is minimal, the sets of closed geodesics πΩg and πΩgmax coincide. We will
see in Section 4 that such a complete entropy-rigidity theorem can be obtained from CYF on
convex-cocompact surfaces, but the proof does not adapt to higher dimensions. It is in general very
hard to check whether sectional curvatures remain negative along the Yamabe flow for manifolds
of dimension n ≥ 3.

We also get the analogous result for maximal entropy, whose proof from the CYF− is similar to
the proof of Theorem 3.4.

Theorem 3.5 (Maximal entropy and minimal curvature). Let (M, g) be a complete convex-cocompact
manifold of dimension n ≥ 3 such that Rmin ≤ Rg ≤ Rmax < 0, and (g−t )t≥0 be the solution of
CYF− with initial metric g. Assume that there exists ε > 0 such that for all t ≥ 0, the sectional
curvatures of (M, g−t ) satisfy Kg−t

≤ −ε and let gY be the unique Yamabe metric in the conformal

class of g with scalar curvature RgY ≡ −1.

(1) The entropy of g satisfies

htop(g) ≤
√
|Rmin|htop(gY ) = htop(gmin).

(2) If htop(g) = htop(gmin), then

g =
gY
|Rmin|

and Rg = Rmin on πΩgY .
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4. Entropy-rigidity through Yamabe flows on convex-cocompact surfaces

We now focus on the case of convex-cocompact surfaces, where we will establish a full entropy-
rigidity statement, analogous to the result of Katok in [Kat82]. Let us first give the analogue of
Theorem 2.1 and Theorem 2.5 for surfaces, since the proofs we developped in the Section 2 are
no longer valid in dimension 2. Recall that for surfaces all notions of curvatures coincide, since
Rgg = 2Ricg = 2Kgg. Therefore, on surfaces, Yamabe metrics are multiples of hyperbolic metrics.

Theorem 4.1. Let (S, g) be a complete convex-cocompact Riemannian surface whose scalar cur-
vature satisfies Rmin ≤ Rg ≤ Rmax < 0. Then there is a unique solution (gt)t≥0 to the equation

∂gt
∂t

= (Rmax −Rgt)gt
g0 = g

We call this solution CYF+. For all t ∈ [0, T ), the scalar curvature of gt satisfies :

∂Rgt
∂t

= −∆gtRgt +Rgt(Rgt −Rmax) and Rmin ≤ Rgt ≤ Rmax,

and g+
t converges uniformly exponentially fast on every compact set to the unique metric gmax

conformally equivalent to g with Rgmax ≡ Rmax.

Sketch of proof. On surfaces, the Yamabe flow and the Ricci flow coincide. The short-time existence
for the Ricci flow on complete manifolds has been established by Shi in [Shi89]. However, for
surfaces with bounded curvature, the heavy machinery of Shi is not needed. This has been shown
by Ji, Mazzeo and Sesum for finite volume surfaces in [JMS09] Let us sketch the argument for
completeness.

Let (S, g) be a complete surface with Rmin ≤ Rg ≤ Rmax < 0, and gmax the Yamabe metric
conformally equivalent to g with scalar curvature Rmax. A smooth family gt = evtg is solution to
CYF+ for t ∈ (0, ε) if and only if

(24)
∂vt
∂t

= (Rmax −Rgt).

By a well known computation (see [Bes08] p 59), the scalar curvature of gt = evtg is given by

(25) Rgt = e−vt(Rg + ∆gvt).

Therefore, the evolution equation (24) becomes

(26)
∂vt
∂t

= Rmax − e−vt(Rg + ∆gvt).

This is a uniformly parabolic equation as long as vt is finite and uniformly bounded, which gives
short time existence. The proof of the variational formula for the scalar curvature given in equation
(3) is still valid for surfaces, which establishes our second claim. For the smooth convergence to
the Yamabe metric, the reader can either repeat the Schauder Theory argument given in Section
1 to analyze equation (26), or refer to the manuscript of Albin, Aldana and Rochon [AAR] where
this is shown in full detail. �

Of course, the analogous theorem holds for the decreasing Yamabe Flow CYF−, as in Theorem
2.7.

For any Riemannian surface (S, g), we write

πΩg := {γ closed geodesic for g}.
By definition, if the curvature of g is negative, then πΩg is compact if and only if (S, g) is convex-
cocompact. Given a complete surface, searching for an absolute minimum of the topological entropy
among all convex-cocompact metrics gives no information, as shown by the following classical result.
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Theorem 4.2 (Patterson). Let (S, g) be a convex-cocompact surface with infinite volume, and
GH(S) be the set of hyperbolic metrics on S. Then

{htop(gh); gh ∈ GH(S)} = (0, 1).

This follows from Theorem 5 p.312 of [Pat76] and the continuity of the entropy with respect to
the Teichmueller metric topology, see [McM99] and references given there. The idea of the proof is
the following. A convex-cocompact surface is made of a compact convex-core, bounded by closed
geodesics, on which funnels are attached. Deform a given hyperbolic metric in the Teichmueller
space by changing the length of these closed geodesics. When all the lengths go to infinity, entropy
goes to 0. When these lengths go to 0, entropy goes to 1. The global infimum of the topological
entropies is always 0 for such surfaces. However, in each conformal class, there is a unique hyperbolic
metric. Theorem 1.6 will show that this hyperbolic metric minimizes the entropy in its conformal
class as soon as an upper bound for the curvature is given. It also gives a complete entropy-rigidity
result for convex-cocompact surfaces.

The rest of this section is devoted to the proof of Theorem 1.6. On surfaces, the curvatures
remain automatically negative along the Curvature-normalized Yamabe flows. When the entropy
is extremal, Theorem 1.6 gives two pieces of information: the set of closed geodesics of the metric
g coincides with the set of closed geodesics of the hyperbolic metric, and on these, the metrics
coincide.

Proof of Theorem 1.6. We will prove (1) using the increasing flow CYF+; the proof of (2) is similar
using the decreasing flow CYF−.

Let (S, g) be a complete convex-cocompact Riemannian surface whose scalar curvature satisfies
Rmin ≤ Rg ≤ Rmax < 0 and gY be the unique Yamabe metric conformally equivalent to g with
RgY ≡ −1. The metric gY = 2gH , where gH is the hyperbolic metric conformally equivalent to g.
However, considering gY instead of gH will lighten the notation.

We have already shown in Proposition 3.1 that htop(g) ≥
√
|Rmax|htop(gY ). Let us assume that

htop(g) =
√
|Rmax|htop(gY ). It follows from Theorem 3.4 that g = gY

|Rmax| and Rg = Rmax on ΩgY .

Therefore, we are only left with showing that πΩg = πΩgY , i.e. that the closed geodesics of (S, g)
coincide with those of (S, gY ).

Let (gt)t≥0 be the solution to the CYF+ with initial metric g. It follows from Proposition 3.1

that t 7→ htop(gt) is decreasing. Since htop(g) =
√
|Rmax|htop(gY ) = htop(gmax), we have for all

t ≥ 0,

htop(gt) = htop(g).

A key step is given by the following lemma.

Lemma 4.3. The scalar curvature of g satisfies Rg = Rmax on πΩgt for all t ≥ 0.

Proof. By contradiction, assume that there exists t ≥ 0 and x ∈ Ωgt such that Rgt(x) < Rmax. In
some open neighbourhood Ox ⊂M , we have Rgt < Rmax. Moreover, since (M, gs)s≥0 is a smooth
path of convex-cocompact metrics, it follows from Theorem 1 of [Tap10] (or from [Fla95]) that the
topological entropy htop(gt) is C1, and its derivative is given by

∂htop(gs)

∂s

∣∣∣∣
s=t

= −htop(gt)
2

∫
Ωgt

∂gs(v, v)

∂s

∣∣∣∣
s=t

dµgt(v),

where µgt is the Bowen-Margulis probability measure for the geodesic flow of (M, gt) restricted to
Ωgt . By definition of the CYF+, for every gt-unit vector, we have

∂gs(v, v)

∂s

∣∣∣∣
s=t

= (Rmax −Rgt)gt(v, v) = (Rmax −Rgt).
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Figure 2. Lifts of γ and γmax in the universal cover.

Moreover, it follows from Corollary 4.6 of [BR75] that µgt gives positive weight to Ox. Therefore,

since Rgt ≤ Rmax on M and Rgt < Rmax on Ox, we have
dhtop(gs)

ds

∣∣∣
s=t

< 0. This contradicts the

fact that htop(gt) = htop(gmax) for all t ≥ 0. �

Let γ be a closed geodesic of (S, g), and γt (resp. γmax) be the unique closed geodesic of (S, gt)

(resp. (S, gmax)) isotopic to γ. We will show that γ and γmax coincide. Choose a lift γ̃ ⊂ S̃ of γ

in the universal cover S̃, and let γ̃t (resp. γ̃max) be the lift of γt (resp. γmax) whose endpoints at
infinity coincide with those of γ̃ (see Figure 2). If γ and γmax do not intersect, then γ̃ and γ̃max
bound a contractible open set. Otherwise, they bound a countable number of open sets whose
boundary are made of two smooth curves and have two singular points. The geodesics γ and γmax
coincide if and only if there is no such non-empty open region.

By contradiction, assume that there exists such an open region D, bounded by two segments of
γ̃ and γ̃max. We call the common endpoints of these segments x− and x+: they are either on the
geodesic or on the boundary at infinity. Let us write g = efgmax. Up to normalization, we can
choose gmax to have curvature Rgmax = −1. We know by Corollary 2.4 that f ≤ 0 on D, and it
follows from Theorem 3.4 that f = 0 on γ̃max. The domain D is contained in ∪{γ̃t, t ≥ 0} : the
curves sweep D as t runs from 0 to ∞. Therefore, it follows from Lemma 4.3 that Rg = −1 on D.
By equation (25), this implies that f satisfies on D the following PDE :

(27) e−f (Rmax + ∆gmaxf) = −1⇔ ∆gmaxf = 1− ef .
By Proposition 1.7 p. 95 of [Tay III], there is a unique solution f to (27) as soon as the value

of f is fixed on γ̃ and γ̃max. Let us assume that f < 0 at some point of γ̃ ∪ ∂D. It follows from
the Strong Maximum Principle (see Lemma 3.4 p. 34 of [GT01]) that at each point of γ̃max ∪ ∂D
(except the singular points of ∂D), the normal derivative of f is non-zero. Since f ≤ 0 on D and
f = 0 on γ̃max ∪ ∂D, this implies that in a half-neighbourhood of γ̃max ∪ ∂D outside D, we have
f > 0. So there is a point x ∈ S such that g(x) > gmax(x), which is a contradiction. Therefore,
f = 0 on the whole ∂D. As the solution of (27) is unique, we obtain that f = 0 on D, i.e. g = gmax
on D. Since γ̃ is a geodesic for g, and γ̃max is a geodesic for gmax, this implies that there are two
geodesic rays for g connecting x− and x+. This cannot happen because the curvature of g is strictly
negative, therefore γ̃ = γ̃max and γ = γmax.

The reciprocal implication in point (1) of Theorem 1.6 is given by Proposition 3.1. Point (2) of
Theorem 1.6 can be shown by a proof similar to the one we have just presented, using CYF−. �
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t = 0

t>0

Figure 3. A solution to the porous-medium diffusion PDE concentrated in a grow-
ing compact set

5. Concluding remarks

A complete entropy-rigidity theorem analogous to Theorem 1.6 for convex-cocompact manifolds
of higher dimension would be implied by a positive answer to the two following questions.

Question 5.1. Let (M, g) be a convex-cocompact manifold with pinched negative curvature, and
(gt) the solution of the increasing (resp. decreasing) Curvature-normalised Yamabe flow. Do the
sectional curvatures remain negative along the flow ? Or, at least, does the entropy decrease (resp.
increase) along the flow ?

Preservation of negative sectional curvature by Yamabe flows is an open question even for com-
pact manifolds (see, for example [SST11]).

Question 5.2. Let (M, g) be a convex-cocompact manifold with Rg ≤ −1, and gY be the unique
metric in the conformal class of g with RgY = −1. We assume that gY has negative sectional
curvatures, and that htop(g) = htop(gY ). Do the sets of closed geodesics of (M, g) and the set of
closed geodesics of (M, gY ) coincide ?

In the case of surfaces, the answer to the first question follows automatically from Theorem 1.1.
The PDE argument which we have used in Theorem 1.6 to answer the second question is specific
to surfaces. In higher dimensions, the difficulty of this second question comes from the fact that
the equation (2), which gives the evolution of the conformal factor along the CYF, is a porous-
medium diffusion type PDE. Such kind of equations admit solutions which are concentrated inside
a compact domain which grows as time flows, see Figure 3. This rules out most Strong Maximum
Principle arguments.

One can also wonder whether our results for convex-cocompact manifolds extend to more general
complete manifolds with negative sectional curvatures, such as geometrically finite manifolds. Since
the Curvature-normalized Yamabe flow construction is valid on any complete manifold, it only
remains to study the variations of the entropy. When the non-wandering set is non-compact,
many difficulties arise. However, one might reasonably hope to extend our results to all manifolds
with negative sectional curvatures whose geodesic flow has a finite Bowen-Margulis measure, which
include geometrically finite hyperbolic manifolds.

The case of manifolds with some non-negative sectional curvatures seems much more mysterious.
It is not clear whether the topological entropy is monotone along the Curvature-normalized Yamabe
flow. For example, topological entropy is not monotone under the Volume-normalized Ricci-Yamabe
flow for certain compact surfaces found by Jane in [Jan07]. In [SST11], we had avoided this difficulty
by considering the volume entropy, which always decreases when the volume increases. Nevertheless,
when the volume of the manifold is infinite, volume entropy loses its interest since it is no longer a
dynamical invariant, it only depends on the universal cover.
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Appendix A. Maximum principles for complete manifolds

We have used in Section 2 the two following forms of the Maximum Principle.

Proposition A.1 (Weak Maximum Principle on a compact set with boundary). Let M be a
smooth manifold, (gt)t∈I a smooth time-dependent family of metrics on M defined on I = [0, T ),
and O ⊂ M be an open set with compact closure. Let b, η > 0 and C ∈ R be three constants. Let
f : M × I → R be a smooth map.

(1) Assume that for all (x, t) with C < f(x, t) ≤ C + η, we have

∂f

∂t
(x, t) ≤ −b∆gtf(x, t),

that for all (x, t) ∈ ∂O × (0, T ) we have f(x, t) ≤ C and that f(., 0) ≤ C. Then for all
(x, t) ∈ O × I we have f(x, t) ≤ C.

(2) Assume that for all (x, t) with C − η ≤ f(x, t) < C, we have

∂f

∂t
(x, t) ≥ −b∆gtf(x, t)

that for all (x, t) ∈ ∂O × (0, T ) we have f(x, t) ≥ C and that f(., 0) ≥ C. Then for all
(x, t) ∈ O × I we have f(x, t) ≥ C.

Proof. We shall prove the first item, the case of an upper bound (the other proof is analogous).
Under the assumption of item (1), let 0 < ε < η

1+T be fixed, we set for all (x, t) ∈ O × I:

vε(x, t) = f(x, t)− C − ε(1 + t).

We want to prove that vε is always non-positive on O × I. We have vε(., 0) = f(., 0) − C − ε < 0
and for all (x, t) ∈ ∂O × (0, T ) we have

(28) v(x, t) ≤ −ε(1 + t) < 0.

Assume there exists t ∈ I and x ∈ O such that vε(x, t) = 0, which implies that C < f(x, t) =
C + ε(1 + t) ≤ C + η by construction of ε. Since the closure Ō is compact, there exists t0 ∈ I
and x0 ∈ Ō such that vε(x0, t0) = 0 and t0 is minimal for this property. It follows from (28) that
x0 /∈ ∂O. The function vε must be increasing in time at (x0, t0) to reach 0, so we have

0 ≤ ∂vε
∂t

(x0, t0) =
∂f

∂t
(x0, t0)− ε ≤ −b∆gt0

f(x0, t0)− ε.

Moreover, by construction vε(., t0) is maximal in x0. Hence f(., t0) is also maximal in x0 and
∆gt0

f(x0, t0) ≥ 0 (because the Hessian of f is non-positive at an interior point where f is maximum).
The previous equality becomes 0 ≤ −ε, a contradiction. Hence, for all (x, t) ∈ O × I we obtain

vε(x, t) = f(x, t)− C − ε(1 + t) ≤ 0.

As this is valid for all ε ∈ (0, η/(1 + T )), it implies that f ≤ C on O × I. �

A slight variation of the previous proof provides the following non-linear version of the Weak
Maximum Principle.

Proposition A.2 (Non linear Weak Maximum Principle on a compact set with boundary). Let
(M, g) be a smooth manifold with Rg ≤ Rmax, and O ⊂ M be an open set with compact closure.
Let u, v : O × [0, T ) be two positive maps satisfying

∂uN

∂t
= −C1∆gtu+ C2(Rmaxu

N −Rgu) and
∂vN

∂t
= −C1∆gtv + C2(Rmaxv

N −Rgv)

for some fixed C1, C2, N > 0. Assume that u(., 0) ≤ v(., 0) and for all (x, t) ∈ ∂O × (0, T ) we have
u(x, t) ≤ v(x, t). Then for all (x, t) ∈ O × (0, T ), we have u(x, t) ≤ v(x, t).
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Proof. Let u, v satisfy the hypotheses of the proposition, and ε > 0 be fixed. We consider the
map f(x, t) = u(x, t)− v(x, t)− ε(1 + t) defined on Ō × [0, T ). The same proof as for Proposition
A.1 shows that for all (x, t) ∈ Ō × [0, T ), we have f(x, t) < 0. This concludes the proof of our
proposition. �

The following variable form of the Maximum Principle on complete manifolds is also a key tool
in the study of the Curvature-normalized Yamabe flow.

Proposition A.3 (Variable Maximum Principle on complete manifolds). Let g0 be a complete
metric on M whose Riemannian curvature tensor satisfies ||Rmg0 || ≤ k0 for some k0 > 0, and let
gt, t ∈ [0, T ] be a family of complete metrics on M such that gt ≥ δg for some fixed δ > 0. Let
F : R × [0, T ] → R be a locally Lipschitz map in the R factor and continuous in the [0, T ] factor.
Let h : M × [0, T ]→ R be a smooth bounded map : 0 < C1 ≤ h ≤ C2 on M × [0, T ].

Let c ∈ R be fixed, and U : [0, T ]→ R be the solution of

dU

dt
= F (U, t) with U(0) = c.

Let u : M × [0, T ] be a C2 bounded.

(1) If ∀x ∈M,u(x, 0) ≤ c and satisfies on M × [0, T ]

∂u

∂t
(x, t) ≤ −h(x, t)∆g(t)u+ F (u, t),

then ∀(x, t) ∈M × [0, T ], u(x, t) ≤ U(t) as long as the solution U to the ODE exists.
(2) If ∀x ∈M,u(x, 0) ≥ c and satisfies on M × [0, T ]

∂u

∂t
(x, t) ≥ −h(x, t)∆g(t)u+ F (u, t),

then ∀(x, t) ∈M × [0, T ], u(x, t) ≥ U(t) as long as the solution U to the ODE exists.

Proof. Let (M, g0) and (gt)t∈[0,T ] satisfy the hypotheses of the proposition. Let h : M × [0, T ]→ R
be a smooth map such that 0 < C1 ≤ h ≤ C2. We first need to show the existence of a so-called
barrier function adapted to our problem. This is given by the following lemma which follows from
an adaptation of the proof of Lemma 12.9 p. 146 of [CLN06].

Lemma A.4. Let O ∈ M be a fixed point. For all a,A > 0, there exists a positive map φ :
M × [0, T ]→ R and b < 0 such that ∀(x, t) ∈M × [0, T ],(

∂φ

∂t
− h(x, t)∆gt

)
φ(x, t) ≥ Aφ(x, t),

and

exp(adgt(O, x)) ≤ φ(x, t) ≤ exp(bdgt(O, x) + 1).

Using this barrier function φ, the end of the proof of Proposition A.3 is now a repetition of the
proof of Theorem 12.14 p. 148 of [CLN06]. �

Note that in Proposition A.3 we have asked u to be a priori bounded, since we do not need a
more general result in this paper. However, as follows from the proofs of [CLN06], it would be
enough that u grows at most exponentially.
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