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SECTIONS OF QUADRICS OVER Aﬂl;q

NASER T. SARDARI AND MASOUD ZARGAR

ABSTRACT. Given finitely many closed points in distinct fibers of a non-degenerate quadric over A%q,
we ask for conditions under which there is a section passing through the closed points, possibly with
higher order (nilpotence) conditions. This could be thought of as a quadratic version of Lagrange
interpolation, and it is equivalent to proving strong approximation for non-degenerate quadrics
over [y [t]. We show that under mild conditions on the quadratic form F over F,[t] in d variables,
f,9 €Fy[t], X € Fy[t]?, if d > 5 then for deg f > (4 4+ ¢) deg g + O(1) we have a solution x € F,[t]*
to F(x) = f such that x = A mod g, where the the big-Oh notation does not depend on f, g, A.
For d = 4, we show the same is true for deg f > (6 + ¢)degg + O(1). This gives us a new proof
(independent of the Ramanujan conjecture over function fields proved by Drinfeld) that the diameter
of any k-regular Morgenstern Ramanujan graphs G is at most (2+¢) log,,_; |G|+ O<(1). In contrast
to the d = 4 case, our result is optimal for d > 5. Along the way, we prove a stationary phase
theorem over function fields that is of independent interest.
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1. INTRODUCTION

1.1. Motivation. We begin by considering a natural geometric problem regarding quadratic forms
over Fy[t]. Suppose F is a quadratic form in d variables over F,[t]. Suppose f is a polynomial in F[¢].
We may then consider the affine variety Xy given by setting F'(x) = f, x € A%q ok We may view
this as a family 7 : Xy — A]}q over AIIFq. Suppose we have a collection of closed points p1,...,pm
in Alqu- Choose, for each i, a point A; := (A1(pi), ..., Aa(pi)) in the fiber Xp, = Xy X, g £(p;)
over p;. Can we find a section s : Alqu — Xy of the structure morphism = : X; — A%Fq that
maps each p; to A; with some prescribed higher order (nilpotence) conditions of order m;? This
problem could be thought of as a quadratic version of the classical Lagrange interpolation. We
show that if F' is non-degenerate in d > 5 variables, then there is such a section provided that
degf > (44 ¢))> ,midegp; + Oc (1), where the implied constant depends only on ¢ and the
quadratic form F' (in fact, we show a stronger result depending on anisotropic cones defined in
definition 1.1). We also show that this condition is optimal. On the other hand, if d = 4, we show
that this is true at least if deg f > (6 +¢) >, m;degp; + O p(1). That being said, we conjecture
that 4 4 ¢ still suffices in the d = 4 case. In fact, as can be found in another paper by the two
authors [TZ19], we have shown that the optimality of 44 ¢ when working with the class of quadratic
forms in the construction of Morgenstern Ramanujan graphs follows from a twisted Linnik-Selberg
conjecture over function fields. That paper relies heavily on the computations and techniques
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developed in this paper. The setup of the problem is pictorially represented by the following figure.

Xpy Xpy - Xpp,
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There is another more algebraic way of formulating the problem; in fact, this other formulation is
more common. By packaging all the closed points p; and all their multiplicities m; > 0 (which can
be viewed as irreducible polynomials p;(t) in F[t] raised to the power of m;) into one polynomial
g(t) == [, pi(t)™, we can use the Chinese remainder theorem to reformulate the problem as an
optimal strong approximation problem for quadratic forms over function fields. More precisely, we
ask for the following. Suppose we have a quadratic form F' in d variable over F,[t], and polynomials

g, [ € Fy[t]. Additionally, we are given polynomials A1,..., s € Fy[t]. We want to know when we
have an integral solution x := (z1,...,74) € Fy[t]¢ to the system

X = A mod g,
where A = (A\1,...,g) and x = A mod g means z; = \; mod g for every 1 < i < d. For a prime

ideal @ of Fy[t], we write Fy[t]  for the completion of F,[t] at . We say all local conditions
for the system (1) are satisfied, if Xf(K) := {x € K& : F(x) = f} # 0 and F(x) = f has a
local solution x, € Fq[t]dw for all prime ideals @ of Fy[t] such that x, = XA mod w®4=(9). In the
following Ko = F,(1/1)), (/—\) = ¢7). K% is equipped with the norm |x| := max; |z;| for any
x = (x1,...,24) € K&. Consider the following definition.

Definition 1.1 (Anisotropic cone). We say  C K% is an anisotropic cone with respect to the
quadratic form F(x) if there exists fixed positive integers w and w’ such that:

(1) If x € Q then fx € Q for every [ € K.

(2) If x € Q and y € K& with |y| < |x|/@, then x +y € Q.

(3) WIF ()| > [

Remark 2. Whenever considering the equation F(x) = f along with an anisotropic cone 2, we
assume that QN X¢(K) # 0.

The main result of this paper is the following theorem.

Theorem 1.2. Suppose q is a power of a fixred odd prime number, and let F' be a non-degenerate
quadratic form over Fy[t] in d > 4 variables and of discriminant A. Let f,g € F4[t] be nonzero
polynomials such that (fA,g) = 1, and let X € F,[t]? be a d-tuple of polynomials at least one
of whose coordinates is relatively prime to g. Finally, suppose that all local conditions for the
system (1) are satisfied and QN X¢(Kx) # 0. If d > 5, then for any anisotropic cone Q0 and for
deg f > (4+¢)degg + O pa(l), there is a solution x € QNF,[t]? to (1). If d = 4, this holds at
least for deg f > (6 + ) deg g + O: pa(1).

As a corollary, we obtain the following strong approximation result.
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Corollary 1.3 (Strong approximation). With the notation as above, if d > 5 and all local conditions
to the system (1) are satisfied, for deg f > (4 + ) deg g+ O r(1), there is a solution x € Fy[t]? to
(1). If d =4, this holds at least for deg f > (6 4+ ¢) deg g + O¢, p(1).

In order to obtain this corollary, the main theorem 1.2 implies that it suffices to show that we can
cover K< by finitely many anisotropic cones such that, for any given f, X #(K o) intersects at least
one of them. See Lemma 5.1 for a proof of this.

Before discussing the optimality our main theorem for d > 5, let us make some remarks regarding
its proof. Though the proof uses the function field analogue of the circle method to prove the
analogue of the theorem over the integers proved in the first author’s paper [T. 19a], there are
differences between the two papers. Though our theorem proves the stronger statement that a
solution exists in an anisotropic cone, restricting to such an anisotropic cone is essential in our
proof. Choosing a weight function centered at the origin will not suffice for isotropic quadratic
forms (which are plentiful in positive characteristic); this would lead to suboptimal results even
for d > 5. In order to obtain optimal results for d > 5, it is essential that we choose appropriate
weighted sum of solutions within anisotropic cones. In order to deduce strong approximation for F',
we show in Lemma 5.1 that for each f we can construct an anisotropic cone depending only on the
class of f in KX /KZ? such that X (K )N # (. This is one technicality that arises when working
over positive characteristics as opposed to over Q. Additionally, most of the proofs of the central
results in the function field case are necessarily different than the ones over the integers. One of
the main differences between the two papers is that in order to compute the oscillatory integrals, a
stationary phase theorem over function fields had to be developed which is of independent interest.
A feature of the function field case is that by using this stationary phase theorem, we can determine
the oscillatory integrals in terms of (a complicated expression involving) Kloosterman sums at the
infinite place. Another difference with the integer case is that we had to use a different method
for the computation of the contribution of the main term. Moreover, due to a lack of literature on
exponential sums over function fields with non-irreducible modulus, we had to work a little harder
to obtain the necessary desired bounds regarding exponential sums. Along the way, we give proofs
of the function-field analogues of the results of Heath-Brown (see [HB96a]) needed for the circle
method in this setting. The tools developed in this paper are used in another paper of the authors
in order to study the diameter of Morgenstern Ramanujan graphs [TZ19].

Remark 3. For F(x) = 2% + ...+ 22, we can take Q0 = {x € K : Vi, degz; > degz;}. Note that
when deg f < 4degg — 3, then the system need not have a solution in F,[t]Y N Q. For instance,
when A = (1,0,...,0) and f = 1 + 2t4°89-1g mod g2, then a solution implies the existence of
(t1,...,tq) € Fy[t]? such that

(14+t19)> + (t29)” + ... + (tag)® = 1 + 2t%89 g mod ¢?,

that is, t; = %89~ mod g. Since the solution is in €2, the degree of f is equal to the degree of
(1+t19)?, and so deg f > 2(2degg — 1) = 4deg g — 2. This shows that the factor 4 + ¢ is optimal
for d > 5, and is the best possible factor for d = 4. In fact, we conjecture that it is also optimal for
d=4.

Conjecture 1.4. Ford =4 in Theorem 1.2, ifdeg f > (4+¢)deg g+O¢ (1), the same conclusion
holds. In other words, the factor 4 + € is optimal for all d > 4.

Let us comment on why there is a difference between the d = 4 case and the d > 5 case, and
argue why proving the optimal result for d = 4 is difficult, even in the case of function fields. In
Proposition 7.1, we show that the error term of the counting function with respect to the main
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contribution satisfies the following bound:

exc exc

- - A3 e 14234, —d=5,4,
Do Do lgr S gr(@ < Y D lgrlSe (O ()] <e Q72 Egl T T (1[g] T2 ),

1<|r|<@Q €#0 1<|r|<Q ¢#0

where Y ¢ denotes summation over exceptional vectors (we do not give the definition of excep-

tional vectors here). When d > 5, we have 1 + \g\_%% = O(1), while when d = 4 this is of order
| g|1/ 2 which forces upon us a weaker bound on the error and so a suboptimal result in this case. See
the proof of the main theorem on the final page for the precise reason. We remark, however, that
by using the triangle inequality in the above sum, we seem to be losing some extra cancellation
that would lead to an improved version of the d = 4 case; we are only using the Weil bound and not
using a possible cancellation in the sums of Kloosterman sums themselves. For example, as can be
found in the paper [TZ19] by the two authors, once we restrict to the Morgenstern quadratic forms
(in 4 variables), we can reduce the optimality to a twisted version of the Linnik-Selberg conjecture
(Conjecture 1.4 of loc.cit) which we suspect is true. Over function fields, the classical Linnik-Selberg
conjecture is true and is equivalent to the Ramanujan conjecture proved by Drinfeld. See the work
of Cogdell and Piatetski-Shapiro [CPS90] for a proof of this. Our twisted Linnik-Selberg conjecture
is a generalization, and does not seem to easily follow from the usual Ramanujan conjecture. As
pointed out in that paper, if we have a more complicated quadratic form in d = 4 variables, then
even the reduction to a natural cancellation similar to the Linnik-Selberg conjecture does not seem
possible. This partially attests to the difficulty of obtaining the optimal result for d = 4. That
being said, since the Ramanujan conjecture over [Fy(¢) is, in contrast to that over Q, proved, there
is greater hope of proving such a result over function fields. This strong approximation for Morgen-
stern quadratic forms is intimately connected with the diameter of Morgenstern quadratic forms.
We now discuss the connection of strong approximation for quadratic forms to Ramanujan graphs.

As mentioned above, another motivation for the consideration of this problem is related to the
construction of Ramanujan graphs with optimal diameters. We begin by defining Ramanujan
graphs. Fix an integer k > 3, and let G be a k-regular connected graph with the adjacency matrix
Ag. It follows that k is an eigenvalue of Ag. Let Ag be the maximum of the absolute value of all
the other eigenvalues of Ag. By the Alon-Boppana Theorem [LPS88], A¢ > 2vk — 1+ 0(1), where
o(1) goes to zero as |G| — oo. We say that G is a Ramanujan graph if \¢ < 2vk — 1.

The first explicit construction of Ramanujan graphs is due to Lubotzky-Phillips-Sarnak [LPS8§],
and independently by Margulis [Mar88]. It is a Cayley graph of PGL9(Z/qZ) or PSLs(Z/qZ) with
p + 1 explicit generators for every prime p and integer q. The optimal spectral gap on the LPS
construction is a consequence of the Ramanujan bound on the Fourier coefficients of the weight 2
holomorphic modular forms, which justifies their naming. We refer the reader to [Sar90, Chapter 3],
where a complete history of the construction of Ramanujan graphs and other extremal properties
of them are recorded. In particular, Lubotzky-Phillips-Sarnak proved that the diameter of every
k-regular Ramanujan graph G is bounded by 2log;_; |G| 4+ O(1). This is still the best known upper
bound on the diameter of a Ramanujan graph. It was conjectured that the diameter is bounded
by (1+¢)log;_; |G| as |G| — oo; see [Sar90, Chapter 3]. However, the first author proved that for
some infinite families of LPS Ramanujan graphs the diameter is bigger than 4/3log;_; |G|+ O(1);
see [T. 18]. The first author has conjectured that the diameter of the LPS Ramanujan graphs is
asymptotically 4/3log;,_; |G| + o(log;_; |G]); the upper bound follows from an optimal strong ap-
proximation conjecture for integral quadratic forms in 4 variables; see [T. 19a, Conjecture 1.3]. The
following theorem of Lubotzky-Phillips-Sarnak links the diameter of the LPS Ramanujan graphs
to the strong approximation on the sphere.
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ayp a2
as
LPS Ramanujan graph associated to p and q. There is a bijection between non-backtracking paths
(vo, . ..,vp) of length h from vy = id to vy, = v in G, and the set of integral solutions to the following
diophantine equation

Theorem 1.5 (Due to Lubotzky-Phillips-Sarnak [LPS88]). Let v := € G, where G is the

3423+ 23423 =N,

(4) T +1ixe T3+ im] -\ [al

a
s —iza Ty — it as a4] mod 2q for some A\ € Z/2q,

where N = pl'. In particular, the distance between id and v in G is the smallest exponent h such
that (4) has an integral solution.

We state a version of the optimal strong approximation conjecture for the sphere, which when
combined with this theorem implies that the diameter of LPS Ramanujan graphs is at most (% +
e)logy_q1 |G| + Oz(1); see [RS17, T. 17] for further numerical evidence regarding this conjecture.

Conjecture 1.6. Suppose that N, m and A1, ..., s are given integers such that

4
N = Z A2 mod m.
i=1

Assuming that N > m3¢ there exists an integral solution (z1,...,x4) to the system

o2+ 242423 =N,

;= N modm for1 <I[<4.
This conjecture is inspired by the conjecture of Sarnak on the distribution of integral points on the
sphere S3. Indeed, given R > 0 such that R? € Z, we let C(R) denote the maximum volume of

any cap on the (d — 1)-dimensional sphere S%~!(R) of radius R which contains no integral points.
Sarnak defined [Sar15] the covering exponent of integral points on the sphere by:

K i log (#S591(R) N Z7)

= s .
1T R Tog (vol ST(R)/C(R))
In his letter [Sarl5] to Aaronson and Pollington, Sarnak showed that 4/3 < Ky < 2. To show
that K4 < 2, he appealed to the Ramanujan bound on the Fourier coefficients of weight & modular
forms, while the lower bound 4/3 < K} is a consequence of an elementary number theory argument.

Furthermore, Sarnak states some open problems [Sarl5, Page 24]. The first one is to show that
K4 < 2 or even that Ky = 4/3.

It follows from Theorem 1.8 and Corollary 1.9 of [T. 19a] that Ky =2 — % for d > 5 and 4/3 <
K, < 2; see also [T. 19b] for bounds on the average covering exponent. Browning-Kumaraswamy-
Steiner [BKS17] showed that K4 = 4/3, subject to the validity of a twisted version of a conjecture
of Linnik about cancellation in sums of Kloosterman sums; see also Remark 6.8 of [T. 19a]. We
have shown, as will appear in a forthcoming paper, that a twisted version of the Linnik-Selberg
conjecture proves the optimal bound for the diameter of Morgenstern Ramanujan graphs. Since
the untwisted version of the Linnik-Selberg conjecture over function fields has already been proved
using the Ramanujan conjecture over function fields (proved by Drinfeld), we are hopeful that we
will be able to prove the desired twisted version of the conjecture. We will discuss this connection
in a future paper.

That being said, our main Theorem 1.2 above can be used to a new proof, independent of the
Ramanujan conjecture over function fields, that the diameter of k-regular Morgenstern Ramanujan
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graphs G are bounded above by (2 + ¢)log;_; |G| + O<(1). Let us first recall the construction of
Ramanujan graphs due to Morgenstern.

Consider the quaternion algebra
A=kl+ki+kj+Fkij, 2=v, 2=2—1, ij = —ji,

where v is not a square in [y, and &k := Fy(t). Let us assume that ¢ is odd. The quaternion algebra
we should take for even ¢ can be found in Section 5 of Morgenstern’s paper [Mor94]. Let

S i= F [t]1 + Fy[t]i + Fytlj + Fy[tlij

be the integral part of A. Given & = a+bi+cj+dij in A, its conjugate is defined as € := a—bi—cj—dij.
Furthermore, we have the norm

N(&) :=¢&€=a® — Vv + (d®v — A)(t - 1).

As can be found in Lemmas 4.2 and 4.4 of Morgenstern’s [Mor94], it is possible to construct elements
&1, ..,&g+1 of norm t (called elements of basic norm t) such that every element = of S such that
N(xz) = t™ has the unique factorization

r=1t"uby...0,,

where 2r +m = n, N(u) =1, 6; are basic norm ¢, and ¢ does not divide 6, ...60,,. Theorem 5.5 of
Morgenstern’s [Mor94| states that such a = a4 bi+ ¢j + dij in S of norm ¢" is a multiple of basic
norms ¢ if and only if @ — 1,b = 0 mod ¢ — 1. Define

a—1,b=0modt—1,
At—1):=qz=a+bi+cj+dijeS: N(z)is a power of t,
t does not divide x

From the above discussion, it follows that A(t — 1) is a free group generated by &1,...,&q+1 (if
2

we reorder the basic norm ¢ elements so that the rest are conjugates of the first half of them).
The construction of the Ramanujan graphs given by Morgenstern is obtained by taking the Cayley
graph of the quotient I'y := A(t — 1)/A(g) with respect to the ¢ + 1 basic norm ¢ elements. Here,
given g € Fy[t] is an irreducible polynomial prime to ¢(t — 1), we have by definition

b,c,d =0 mod g(t), }

((L,g) =1 .
See Theorem 4.10 of [Mor94] for details. This Cayley graph is a Cayley graph of either PGLa(F,a)
or PSLy(F qd), where d is the degree of the polynomial g. This is obtained by constructing a map
p:A(t—1) = PGL2(F ). See Morgenstern’s paper [Mor94] for a detailed discussion of this point.
From the unique factorization of elements in A(t — 1) as products of basic norm t elements, we have
the analogue of the above Theorem 1.5 of Lubotzky, Phillips, and Sarnak. Our main Theorem 1.2
applied to the (anisotropic) quadratic form

F(a,b,c,d) = a® — b*v + (d*v — &2)(t — 1)
gives us that the diameter of this k-regular Ramanujan graph G := I'y (k = g + 1 here) is at

most (6 + ¢)log, ¢* + O<(1). Since PGLy(F,a) and PSLy(F,q) are of orders ¢** — ¢* and qdd;qd,
respectively, this is (24¢) logy,_; |G|+ O:(1), as required. Similarly, we can deal with the case when
q is even. We therefore have the following (known) corollary of our strong approximation result.
However, our proof is independent of the Ramanujan conjecture over function fields (that is now a

well-known deep theorem of Drinfeld).

A(g) := {m:a+bi+cj+dij€A(t—1):

Corollary 1.7. The diameter of k-reqular Morgenstern Ramanujan graphs G is at most

(2+¢)log,_1 |G|+ O:(1).
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Note that the proof that the diameter satisfies this bound is independent of the Ramanujan con-
jecture; however, the fact that the graphs G are indeed Ramanujan graphs still uses the Ra-
manujan conjecture. Since by Conjecture 1.4 we expect the optimal bound of 4 4+ ¢ to hold at
least for anisotropic quadratic forms in 4 variables as well, we expect the stronger upper bound
(3 +¢)logy_1 |G| + O(1) to be true.

Our method is based on a version of the circle method that is developed in the work of Heath-
Brown over the integers [HB96a], and modified by Browning and Vishe for function fields [BV15].
We improve the known upper bounds on some oscillatory integrals that come from the infinite place.
In fact, we give an exact formula for these integrals in terms of the Kloosterman sums and our
optimal upper bound are a consequence of Weil’s bound on Kloosterman’s sums.

2. THE DELTA METHOD FOR SMALL TARGET

In this section, we define a weighted sum N(w, ) counting the number of integral solutions of
our problem. We then use the delta method to give an expression for it in terms of exponential
sums and oscillatory integrals. This is done by giving an expansion of the delta function using the
decomposition of T (that we shall define below) found in the paper [BV15] of Browning and Vishe.
In this section, we also set up the basic notation that we shall use in this paper.

2.1. Notation. Let K = F,(t) and let O = F,[t] be its ring of integers. The prime at infinity
t~!1-which we denote by co-gives us the completion K, of K with respect to the norm

|a/b| dega degb

We often omit the co from the notation |.|o and simply write |.|. For every d, we define the natural
norm on K& by |a| := max; |a;|. This endows K% and 0%, with metric topologies. By considering
the other places as well, we may construct the ring of adeles as Af(. We do not discuss this con-
struction here as it plays a minor role in this paper.

Note that we may identify K., with the field

G(1/1) = Zaz : for a; € F, and some N € Z
i<N

and put

T={a€eKy:|a <1} = Zaiti:foraielﬁ‘q
i<—1

Let 6 € T. Then T/dT is the set of cosets a + T, of which there are |d].

In the function field setting, smooth functions f : F© — C from a non-archimedian local field
F are precisely the locally constant functions. The analogue here of Schwarz functions in real anal-
ysis is the notion of Schwarz-Bruhat functions which are the smooth (locally constant) functions
f: F — C with compact support. We denote the set of Schwarz-Bruhat functions on F' by S(F).
We can then extend this notion to Schwarz-Bruhat functions on F™ by defining such a function to
be one that is a Schwarz-Bruhat function in each coordinate. We could similarly define the space
of Schwarz-Bruhat functions S(A%) on the adeles A%. As mentioned above, adeles do not play an
important role in this paper; our focus will be on the infinite place.
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2.2. Characters. There is a non-trivial additive character e, : F;, — C* defined for each a € F,
by taking eq(a) = exp(2witr(a)/p), where tr : F, — F, denotes the trace map. This character
induces a non-trivial (unitary) additive character ¢ : Koo — C* by defining ¢ (o) = e4(a—1) for
any o = y .y a;t' in Ko. In particular it is clear that v|o is trivial. More generally, given
any v € Ko, the map o — t¥(ay) is an additive character on K.,. We then have the following
orthogonality property.

Lemma 2.1 (Kubota, Lemma 7 of [Kub74]).
]\7 ) ]/\} 1
E ¢( Vb) = { ’ Zf ‘((7))| < ’

b0, 0, otherwise,
|b|<N
for any v € Ko and any integer N > 0, where (7)) is the part of v with all degrees negative.
We also have the following
Lemma 2.2 (Kubota, Lemma 1(f) of [Kub74]). Let Y € Z and v € Ks,. Then
Y, iflyl <Y,
/1 _(ay)da = ol
la|<¥ 0, otherwise.

In particular, if we set Y = 0, then we obtain the following expression for the delta function on O:

5(z) = /T b(az)da,

&@:{1 if # = 0,

0 otherwise.

where

2.3. The delta function. The idea now is to decompose T into a disjoint union of balls (with no
minor arcs) which is the analogue of Kloosterman’s version of the circle method in this function
field setting. This is done via the following lemma of Browning and Vishe [BV15, Lemma 4.2].

Lemma 2.3. For any Q > 1 we have a disjoint union

T = |_| |_| {ae']l‘:\ra—a\<@_1}.
re0_ acO
lr|<@ lal<|r|
r monic (a,r):l

The following follows from Lemma 2.3.

Lemma 2.4. Let Q > 1 and n € O. We have

o) s == > 6 () h ()

Q% €0 |ajir

Ir|<Q
T monic
where we henceforth put
> =)
la|<|r| acO

|af<|r|
(a,r)=1

and h is only defined for x # 0 as:
x| if ly| < |z

0 otherwise.
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Proof. We have

=2 2w ( >/a|<|r| 1G9 plamde

re0_|a|<|r|
r<Q

T monic

It is easy to check that

1 T on
—h (7, 7) - / da.
3"\@22) = fygpg M
The lemma follows by substituting the above formula. O

Proof. Indeed, using Lemma 2.3, we may rewrite the integral expression of the delta function as

o(x) = /w(a:v)d@

= Y(ax)da
/|ra al<@-1

re(’) la|<|r]

7‘ IIlOIllC

= X > ( )/a|<|r| PR

r€0_|a|<|r]
Ir1<Q

T monic

where the last equality follows from a linear change of variables. Note that if we define

Wz, y) = o] /T lya"w)du,

h( ) = Qlrl” 1/¢

- d
v /|a|<7"|1Q1 plaada:

The last statement follows from Lemma 2.2. O

then

2.4. Smooth sum N(w, ). As previously stated, we want to take a weight function w € S(KZ)
and use it to define a weighted sum over all the solutions whose existence we want to show. We
will denote such a sum by N(w, ), and then we will use the circle method to give a lower bound
for this quantity. A positive lower bound would prove existence of the desired solutions.

Let w be a compactly supported (Schwarz-Bruhat) weight function defined on K go. Assume that
x € O% satisfies the conditions F(x) = f and x = A mod g. We uniquely write x = gt + X, where
t € O4and A = (\1,...,\q) for \; of degree strictly less than that of g. Define

f=FN)
g
If F(x) = f, then g?F(t) 4+ 2gAT At = f — F(\) which implies that g[2AT At — k. Then, F(t) +
§(2ATAt — k) = 0. We also define
F(lgt+X)— f
g2

(6) k=

= F(t) + ;(ZATAt —k).

G(t) ==
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Finally, we define
N(w,A) ==Y w(gt + X)5(G(t)),
t
where t € O%. Note that N(w,\) is the weighted number of & € O? satisfying the conditions the
conditions F(x) = f and x = XA mod g. We apply the delta expansion in (5) to 6(G(t)). Note that
(2.4) holds only for values of ©. Moreover, G(t) € O if and only if g[2AT At — k. Using Lemma 2.1,

we have for v € K
Laf ()] < gl
W X v { 1 :

vt 0 otherwise.
[€1<|gl
In particular,

Igl 2 v

(€O
1€1<lgl

(M—W> _ {1 if (22t < g

0 otherwise.

The condition
AT At — k

[ )| <l

is satisfied precisely when
AT At — &
(————) =0,
g
that is, when g[2AT At — k. Consequently, we may rewrite

Z Sy (2)‘ At - W) w(gt + N)(G(t)).

Ot
|€\<\g\

Then, applying (5) and splitting the sum over t as a sum of sums over different congruence classes
modulo gr, we obtain

N(w A)
B 2ATAt — k)0 aG(t) r G(t)
- rgrcz2 IDIS NP I ( g )‘U(gt**)’”‘(t@’ 12
LeO t  re0_|al<|r|
l1<lgl r<Q
B (a4 r0)(2AT At — k) 4 agF(t) r G(t)
= p |Q2 Z Z Z Z < o w(gt + A)h Q20
LeO t  re0_|al<|r|
l¢|<lg] r|<Q

_ Z Z Z Z Z <a+r€ Y(2AT Ab — k)+agF(b)>w(g(b+grs)+)\)

2 r
’91@ teO® €O _|a|<|r| beOd/(gr) scOd g
lel<lgl |r|<@

7 monic

b r G(b+ grs)
QT e '

The Poisson summation formula for f € S(A%) states that

Yorx = fx)

reKd xcKd
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where

fly) = Fx)((x,y))dx.

Ak
From this, one deduces (see Lemma 2.1 of [BV15], for example) that for v € S(K2),

> wt Z wct v(t)dt.

teO? ceOd
Applying this to the s variable in the above expression of N(w, ), we obtain the expression
N (w A)

B IIQ2 > XX X X ( +r0)(2XTAb — k)+agF(b))

r
LeO  re0_|al<|r| be©d/(gr) cecOd g
lel<lgl |r|<@

r monic

- /  Pe)utstb+ort) 30 (5. L) a

= )IED DD IS |gr|—‘%/;<(“+ M>(2X[’A'°—k'>+a9F<b>—<c,b>)

2 T
lg |Q LeO  re0_|al<|r| ccO? beOd/(gr) g
lel<lgl |r|<Q

T monic

S5 o an (.5)

We express this in the condensed form

7 w, A) r )
() NN = s 5 3 i St
<@
where I, (c) and Sy ,(c) are defined by
r G(t) (c,t)
(8) I,.(c) = /Kgo h (tQ’ t?Q> w(gt + )t ( p ) dt,
and
(9) Spr(e) =Y > "Sy.latic)
Le0 |al<|r|
|eI<lg]
with
(a+70)(2AT Ab — k) 4+ agF (b) — (c,b)
(10) Sgrlate):= > ¢<“ ! " 9 c )

beO4/(gr)
In the next two sections, we bound from above S, , and I .
3. BOUNDS ON THE EXPONENTIAL SUMS S, ,(c)
In this section, we bound from above an averaged sum of the Sy, (c). Indeed, we prove the following.

Proposition 3.1. We have the following upper bound

_ _d+1 —~
3" 1glm U [Sg(e)] <a lgl X1,
reO®
Ir|<X
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where X = O(|f|?) for some fized A and A = det A.

Initially, a version of this result was proved by Heath-Brown (Lemma 28 of [HB96b]). This is a
function field analogue of proposition 4.1 of the first author in [T. 19a]. We first prove a lemma
indicating that most Sy ,(a, ¥, c) vanish.

Lemma 3.2. Unless ¢ = 2(ar + ¢)AX mod g, we have Sy ,(a,f,c) = 0. Consequently, Sq,(c) =0
unless ¢ = aAX mod g for some o € O.

Proof. Write b = rb; + bo, where b; is a vector modulo g and by is a vector modulo r. We may
then rewrite

S,(a, £, c) Zw < (a+rl) 2)\TAb2 - Zza—k agF(by) — <c,b2>> Zw (2(a+r€)}\T?b1 - <c,b1>> .

by

From Lemma 2.1, the second sum vanishes unless ¢ = 2(a + r¢)AX mod g, which gives the first
statement in the lemma. Since S, ,(c) is a sum of the S, ,(a, ¢, c), we obtain that it is zero unless
possibly ¢ = aAX mod g for some o € O. O

* a+r0)(2ATAb — k) + agF (b) — (c,b
9= ¥ Zw(H)( 92+g()<>).

(0 lal<Ir| b<O/(gn)

By definition,

Since the sum over £ is zero unless g|2A7 Ab — k, in which case it contributes a factor of |g|, we

haVe
* a(2 TAI)— a — (C b

qr
la[<|r| beO?/(gr)
g|2AT Ab—k

We will give a bound on each of the S, .(c). We do so by first decomposing S, (c) into the product
of two sums and then bounding each of the two sums separately.

Write r = ryry, where r; € O and ged(r1,2Ag) = 1 and such that the prime divisors of ry are
among the prime divisors of 2Ag. In particular, ged(ry, gra) = 1, and so we may write

k= g?“gkl + leg
and

a = roai + 1102
for some ki, ke € O and unique a; € O/(r1), ag € O/(rz). Similarly, we may find vectors by €
O?/(r1) and by € 0¢/(gr2) such that

b = grob; + r1bo.

If we set
(11> Sl — Z ¢ (2r2a1)\TAb1 + al(gr2)2F(b1) — (C,b1> — r2a1k1> 7
1
ai,by
and
* 2T1(I2>\TAb2 + CLQgT2F(b2) - (C, b2> — Tlagkz
(12) =gl > X W o ,

laz|<|r2] bocO?/(grs)
g|2AT Aby — k71

then we see from a simple substitution of the above that
Sgﬂ«(C) = 5152.
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What we proceed to do is bound S; and Ss.

In order to bound S; from above, consider the following situation. Let G(x) := x! Bx, where
B is a symmetric matrix B € My(O) with D := det(B) # 0. Furthermore, let » € O be such that
ged(r, D) = 1, and for each t € O/(r), ¢,c’ € O%/(r), define

Si(Gecty:=5" Y ¢< (b) + <C,’E>+t)—<cab>>'

la|<|r| beO4/(r)

We will prove the following lemma.

Lemma 3.3. With the notation as above,

(13) S (G,e,ct) = <l:> 79K1,(G, c,c, 1),

where T, := ZMKM 0 <$72> is the Gauss sum, (—) is the Jacobi symbol, and Kl1,.(G,c,c/,t) is either
a Kloosterman sum (for even d) or a Salié sum (for odd d). Furthermore, we have
1811 < || % w(ro)lrady(ra)[ ] ged(ry, )],

where 7(.) is the divisor function, and radj(ry) is the product of the primes dividing r1 with an odd
power at least 3.

In order to prove this lemma, we first reduce to the case where r = @ for some irreducible @ € O.
This is done via the following lemma.

Lemma 3.4 (Multiplicativity of S,(G,e¢,c’,t)). Suppose r = uv for coprime u,v € O. Then
S-(G,c,c t) = S, (G, vc, ', 1)S, (G, tic, ¢, t).
Proof. Since u and v are coprime, as by ranges over O%/(u) and by ranges over O%/(v), the vector
b = vb; + uby

ranges over a complete set of vectors modulo uv = r. Similarly, as a; ranges over O/(u) and as
ranges over O/(v),

a = va1 + uaz
ranges over a complete set of polynomials modulo uv = r. Making these substitutions, the sum-
mands in S, (G, c,c,t) become

y (a(G(b) + <c',E) +1t) — <c,b)>
I, < vay + uag)(G(vby + ubg) + <C/;Zb1 + ubg) +t) — (c,vb; + ub2>)
_ ( vay + uaz)(v2G(by) + u?G(bg) + v (c/,b1) +u(c/,bs) +t) — v {(c,by) —uc, b2>>
_ < (v2G(by) + (vc;lb1> +1t) —{c, b1)> y <a2(u2G(b2) + <uc;}, by) +t) — (c, b2>>
_ < 1(G(vby) + (c/,vby) +t) — <vc,vb1>> y <a2(G(ub2) + (c/,ubg) +t) — <uc,ub2>> ‘

Since u and v are coprime, ubs and vb; range over a complete set of residues modulo v and wu,
respectively. As a result,

S.(G,c,c' t) = Sy (G, vec,c 1)S, (G, iic, c, t),

as required. 0
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Since the characteristic of our base field is odd, we can diagonalize our quadratic form G modulo

r, and write
d

G(x) = Z ol
i=1
Therefore,
aib® + ¢ D) — c;b
5 (Grescit) = 3 (“)II 5 ( b+ ) ﬂ).
la|<|r] J=1b€0/(r) r

We complete the square to obtain

2
3 Hd 3 b+ 2aa;(ac — ;) — Zao (ad — ¢;)?
S.(G,c ¢ t) = " (c;t) ’ aoz]( aa(ac; cjr)> aaj(ac; — cj)?)

lal<|r] J=1b€0/(r)

2

. at d —M(ac’» _ c,)2) ac; <b+Taj(ac; — Cj))

- ()T () » T
lal<|r| j=1 beO/(r)

The internal sum is equal to (@) T, and so

2aic;c * — Ao — g A2
S-(G,c,c t) = 7-;1 (?) 0 (W) Z <%>d¢ (a(t Z] 40‘JC]T) aZ] 4()4]03) '

la|<|r|

In light of Lemma 3.4, we proceed to bound S_x(G,c,c’,t) for k > 1 and @ € O irreducible. It
suffices to bound the sums

x/ a a(t = . 4a;cd?) —a . da;c?
Z (zﬂlc)d@b( (t 2j4 ];I)C Z] J]>‘

la|<|az¥|

We will be interested only in the case when r = w”|ry, G = (gr2)%F, ¢’ = 2rAX, and t = —roky.
In this case,

t— ZHJC? = —rky — F(N)G? = (griks — f)3? = — f3% mod w”.
J
Similarly,

J
Making these substitutions and changing a to ag?, we obtain

(e ()

la|<|eo¥|

ZHj 1= Z4g27]jcj2~ mod w”.
J

Case k = 1: If r = w, then the sum is a usual Salié (for d odd) or Kloosterman (for d even) sum
over the finite field O/(w). Consequently, we have the bound

1/2
Sa(Gre,e )] < Jol Al faed | .t = 3 Ty, 3 daed)
J J
1/2

= |w|% ged w,t—ZHjcf,ZHijZ) ,
J J
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where || = |ww|"/? follows from Proposition 2.4 of [Kow18]. In the study of S1, we set G = (gro)%F,
t = —roky, ¢ = 2rp AN, and w|ry. Recall that F(x) = x? Ax, ged(ry, graD) = 1, and G = (grs)?F
is diagonalizable with eigenvalues {a;}. If r; = w, then

ZH]-C;? =2gry dTA = >F(X\) mod w,
J

and so

ged | w,t — ZHjC;'Q = ged (7‘1 =, gry +§2F()\)) = ged(ry, f).
J

Consequently, if r; = w, we have
d+1
[51] < [w] = | ged(w, ]2,

Case k > 2: By the computations, it suffices to show that

_ —a A2
> (;)dzw( &l “%JA‘%) < 2/ 21 ged (2, )1

w
a|<|wk|

Write a = a; + asw!*/2], where a; is chosen modulo w/*/2! and is relatively prime to w, and as is
chosen modulo w!*/2). Furthermore, note that

a1 + asw*/2] = a7 — ar2asw */?! mod w!#/21.

Making these substitutions, we obtain

w wk

" <_“f —ay, Iy ) v <_<a1 + ay@ ) f — (a1 + @ P ¥, T )
k _

wk

- <—(a1 + agw*/2) f — (a1 — a2y ¥/?) > 47790?)

—arf —ar ;e + a2 (f 4 S, Tl

ok

) w<—alf—alzj4njc;)¢ @ (f + 3 T, )

wk wlk/2]

Summation over as mod w!#/2) gives us zero unless

f+a71224777jc§ =0 mod w!#/?,
J
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in which case it contributes a factor of |w|*/2/. There are at most 2|ww|[*/21=1k/2) choices of
a1 mod w!#/21 such that the above congruence is true modulo w!#/2). Therefore,

3 () ()

al<|w"|

- 3 " (““f_“lzj‘l"?ﬁ?)

k
w
|a|<|e| /2]
/2l ftan® 3 A

< 20w|*2) ged (o, £)|12

Hence,
dk_ Tk
[51] < 2le| 2] ged(w”, )]/,
Combining these cases and using lemma 3.4, we obtain for every r;
d+1
[S1] < 7 (r1)[rad) (r)| ] |72 | ged(r1, £,

where radj(r1) is the product of the prime powers in the prime decomposition of r1 dividing r; with
odd powers at least 3. This concludes the proof of Lemma 13. From this, we obtain the desired
bound on |S;] for each 7.

We now bound S2 from above via the following lemma. The proof uses the Cauchy-Schwarz
inequality.
Lemma 3.5. For Sy as above,
Sal < lglfraf2*L.
Proof. Recall that

* 2r1a2}\TAb2+a2gr2F bg - C,bg -Tr CLQ,ICQ
=l Y Y v L) = fena) Znaly ),
laz|<[r2| baeO?/(gr2)
g|2AT Aby — k71

Applying the Cauchy-Schwarz inequality to the as variable, we obtain

S22
2
< |g|2go(7"2) Z* Z " 27“1&2)\TAb2 + ang%F(bQ) — <C, b2> — r1a2k2>
laz|<|r2| | bocO?/(grs) g
912AT Ab—kiT
— oPotr) Z* 3 " (2r1a2)\TA(b2 — b)) + asgri(F(bs) — F(b)) — (¢, by — b’2>>
laz|<|r2| by, by,e0?/(gr2) "
92T Abo—k77,g|2AT Ab, — k71
Making the substitution u = bg — b}, we obtain
* 2r1asAT Au + azgr? (2bY Au + F(u)) — (c,u)
S. 2 < 2 r < 1 2 ) ]
15)? < |glPe(r2) > > (0 s

|ag|<|rz| ba,uc0/(gr)
g|2AT Abgy — k77,9227 Au
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The sum over by is zero unless r2|A ged(u), which implies that the summation is non-zero only if
u € (r20/(ged(A, 72)gr2))? = (O/ (ged(A, r2)g))”.
Hence,

2P < lgPel) S0 2. 1

laz[<|r2| baeO4/(gr2) ue(O/(ged(A,r2)g))?
g|22T Aby — k77 g|22T Au

<a  gl%e(r2)?|ra|?
<a g2
Taking square roots, we obtain
Se] <a lglral? ™,
as required. O

We now put together the above results to prove Proposition 3.1.

Proof of Proposition 3.1. As before, write r = 179, where ged(r1, gA) = 1 and the prime divisors
of o are among those of gA. By construction, we know that |5, ,(c)| = |S1||S2|. Therefore, from
Lemmas 3.3 and 3.5, we have

— _dtl
> gl = Sy (0)]

re0_
[r|<X
<a Y 7(r)[rads(ry)]?|ra V2] ged(ry, £
re0_
[r|<X
< X7 frof P prady(rn) [V ged(r, )]
re0_
[r|<X
= X® Y frady(r) V2 ged(ry, A1V DT [l
7"16(’)A TQEAO
[r|<X [ro| <X /|r1]

The second (internal) sum can be bounded using

/\ ~

X A
DD S S VTR DRSNS
ol e Al (92) Jd|<X /I dl(gA),|d|<X /|7
2 1
Hence,
. R d’ 1/2) ged 1/2
S frady(r) V2 ged(r 12D [l < Rlgapge Y ) ||g|c A
ri€0_ r2€0 neo 71
[r|<X [ro|<X /|r1] |ri]<X

rads (r1)|'/?| ged(r1,f)|*/?
[71]

from which the conclusion would follow if we show that > ,, co < X°. First,
|r1|<)?

note that for each T', we have

radj(ry)|/? 1 1 1 1 1
LERRRANETA NS U 1 _— R
L m s "t e e e

|7’1’|€<0T\ wi|w|<T
r1
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On the other hand, a simple computation of geometric series gives us
1+ ! + ! + ! + ! + = +...=1+ ! + !
@ =l @ et et T @] w2 (jw (V2 = 1) (jw] + 1)

The product of such terms over all monic irreducible w is less than

1 1 1
- < 2 -
| 2 <|w|+|w\1/2<|w|1/2—1><w|+1>> (22

|w|<T lw|<T

The number of monic irreducible polynomials of degree d over Fy is less than 22- . Consequently,

|l

1
exp | 2 Z — | <exp (42 )wexp 47+4logT)<<TE
|w|<T

where v is the Euler-Mascheroni constant. Therefore, we have

ad’ vz
Z |r 3(T1)| < Te.
re0 |T1|
Ir1]|<T

Qs

% is the prime factorization of f. It then follows that

Now, suppose f = wj'...w

Z |radg(7“1)|l/2| gcd(m,f)|1/2 < Z ; Z M < fs
= i is(1/2 ’
€0 |T1‘ 0<i;<a; ‘wll e wés| / re0_ |7"1|
<X 1<j<s [r1]<X
w;jmej
as required. -

4. ANALYTIC FUNCTIONS ON T¢

In order to prove our main theorem, it turns out that we need to do analysis not just using
polynomials over K, but also using convergent Taylor series. We begin by defining a space of
analytic functions defined on T¢ that extends the space of polynomials. Let Ou := {z € K4
|a| < 1}. Define

C“’(']I'd) = Z Uy, ng) 1 - xht Any,...ng) € Ooo

(n1,--nq)€NL

It is easy to see that the above Taylor expansions are convergent for (ug, ..., uy) € T¢. When d = 1,
aside from polynomials in Oy [z], examples of analytic functions on T are

1 L

and
et 3 ()

This square root function is defined since the base characteristic is odd. We define the partial
derivatives % for 1 < i < don C*(T%) to be the formal derivation operator which acts on the
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: .0 ndg __ o M1 n;—1 nq
monomials as: I R M (T AR C Ty

It is easy to check that it sends C%(T9) to itself. Let
CO(T™, T") = {® = (¢1,...,bn) : ¢; € C*(T™) and ¢;(0) € T}.

and extend them by linearity to power series.

For ® € C¥(T™, T™) define the Jacobi matrix J® := [gfﬂ , where 1 <i<mnand1<j<m.For

m = n define the Jacobi determinant to be det(J®). We also have the following change of variables
formula, which readily follows from Igusa [Igu00, Lemma 7.4.2].

Lemma 4.1. Let I' C K2 be a box defined by the inequalities |x;| < ﬁi, for some real numbers
Ri,...,Ry. Let f: T — C be a continuous function. Then for any M € GL, (K ) we have

/ f(u)du = |det M| f(Mv)dv.

r MveTl

4.1. The analytic automorphism of T¢. In this section, we define the group of the analytic
automorphism of T¢. We use this group in order to simplify and reduce the computations of our
oscillatory integrals into Gaussian integrals. Recall that by Schwarz’s Lemma the analytic auto-
morphisms of the disk in the complex plane which fixes the origin are just rotations. Unlike the
disk in the complex plane the analytic group of automorphisms of the disk T¢ is enormous. Define

Ao (T?) == {®@ € C¥(T%, T%) : |det(J®(0))| = 1, and ®(0) = 0}.

Proposition 4.2. A (T%) is a group under the composition of functions and it preserve the Haar
measure on T¢.

First, we prove a lemma on diagonalizing symmetric matrices over K that we use in the proof of
the preceding proposition. It is easy to see that G Lq(Oy) C C*(T?, T9).

Lemma 4.3. Suppose that A € Myxq(K~) and AT = A. Then there exists v € GL4g(Os) such
that

fYTAfY = D[TIl? A 777d:|7

where Dlny,...,ng] is the diagonal matriz with some n1,...,ng € K on its diagonal.

Proof. We proceed by induction on d. The lemma is trivial for d = 1. Without loss of generality,
we assume that A € My, q(Os) and A # 0 mod ¢~ . Let A denote A mod ¢~! which is a matrix
with [, coefficients. Since q # 2, there exists a matrix g € GL4(F,) which diagonalizes A, and we
have gTAg = DIiji, ..., 7). Suppose that 71 # 0. Let Ay := gTAg = [a1,...,aq] = [a;;], where a;
is the ith column vector of Ay, and a; ; is the 7th and jth coordinate of A;. Let

ai,2 ai.d
1 “ar: a1
0
H:= |
: Ta-1xa—1
0

Note that a1 1 € O is invertible. Hence H € GL4(O). Moreover, it is easy to check that
ail 0 ... 0
0
HTAH=| . :
. A2
0

where A} = Ay € Mg-1)x(d—1)(Oc). The lemma follows from the induction hypothesis on Ay. [
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Proof of Proposition 4.2. By the product rule of the Jacobian it is easy to see that A (T?) is closed
under the composition of functions. The identity function is the identity element of Ay (T%). It is
enough to construct the inverse of ® € A (T?%). We prove the existence of the inverse by solving
a recursive system of linear equations. First, we explain it when d = 1. We have ® = 3 22, a;xt,
where |a]e = 1. We wish to find ¥ = 32, b;z* € C¥(T?) such that ¥ o ®(z) = z. This implies
that b = afl and the following system of equations hold for each n > 2

n—1
0=bpal + Z b;(some polynomial in aj,...,an—it1).

i=1
The above system of recursive linear equations have a unique solution where b,, € Oy . For general
d, suppose that ® := (¢1(1,...24),...,04(x1,...,749)) € As(T%). By the definition of A (T9),
we have det(J®(0)) € GLy(Ox). Let ¥ := J®(0)™! € GL3(Os). We note that J(¥ o ®(0)) =
Iixq. Without loss of the generality, we assume that J(®(0)) = Ijxq. We wish to find ¥ :=
(WV1(z1,. .. 240), -y Ya(x1, .., 24)) € Aso(T?) such that

@bi(gbl(xla S 7$d)7 .. -ad)d(l'b s 7$d)) =T
for every 1 <4 < d. Suppose that

sz‘ = Z ai,(nh,..,nd)x?l“ N xsd,
(nl""’nd)ENdZO
Qpi = Z bi,(nl,...,nd)ljlll .o :Bgd,
(nl,...,nd)GN‘éO
where 1 <i < d. Let |(n1,...,nq)| := fo:l n;. For (ni,...,ng) € N‘éo, with [(n1,...,nq)| > 2, we
have
(14) 0= 0; (ny,..n0) + Z bi7(m17_”7md)(sorne polynomial in a; x, . k,));

(m1,....mq)<(n1,...,nq)
where (k1,...,kq) < |(n1,...,nq)|. Similarly, the above system of recursive linear equations have a

1. This implies | det(J®(x))|oo = 1 for every x € T¢. This completes the proof of our lemma. [

Next, we prove a version of the Morse lemma for functions in C*(T4).

Proposition 4.4 (Morse lemma over K.). Assume that ¢(u) is an analytic function on T with
a single critical point at 0 and the Hessian Hy, where |det(Hg(0))|ooc = 1. Then there exists ¥ €
Aoo (T with JU(0) = Igxq such that

P(¥) = ¢(0) + UTHy(0)W.

Proof. By Lemma 4.3 there exists a matrix g € GLg(Ox) such that gTHy(0)g = D[A1,. .., Ag). Since
Hy(0) € GLi(Ox) then A\; € O and |Aj|oe = 1. By changing the variables with g, we assume that
H,(0) is a diagonal matrix. First, we explain it for d = 1. We have ¢(z) = ¢(0)+Az?+2> > 00 anz™,
where |\j|oo = 1. Let

P(x) = a:(l + :L‘io)\_lanx") 12 _ x(ki <lé2> (x io)\_lana:”)k> € A (T),
n= -0 n=

where we used the taylor expansion (1 + z)1/2 = Y% (1{22)90’“. It is easy to check that ¢ =
#(0) 4+ A%, This completes the proof of the lemma for d = 1. For general d, we proceed by
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induction on d. We explain our induction hypothesis next. Assume that
(15(33‘1, e .Z'd) = ¢(0) + Z xixj(éi,j)\,- + hi,j(ﬂj‘l, To, ... ,.I‘d)),
i,j>2
for some h; j(z1,...,24) € C¥(T%) and \; € Ouo, where h; ;(0) = 0 and |A;|oo = 1. Then
¢ =6(0) + > _ N3,
Jj>1

where ¢; = x; + hj(z1,...,24) such that hj(z1,...,24) has a critical point at 0. The induction
hypothesis holds for d = 1. We assume that it holds for d — 1, and we prove it for d. We write

¢(:C1, - ,a:d) = (;5(0) + CC%()\l + h171(1:1, - ,xd)) + Z 2x1xjh17j(a:1,x2, e :Ed)
Jj=>2
+ Z JJZ'ZIJ]'((SZ‘,]')\Z' + hi7j(331, Loy vny xd)),
ij>2

for some h; j(z1,...,24) € C*(T?), where h; j(0) = 0. Define

P1 =11 (1 + )\Ithl)l/Q + ()\Il Z xjhl,j(xl, o, ... ,:Ed)) (1 + Afl¢1)_1/2.
Jj>2
We have
(15) ¢ = d(0) + Myt + D wiwj(Sihi + hij(z1, 32, -, 7a)),
0,7>2

for some A ;(z1,...,24) € C¥(T?), where h; ;(0) = 0. By the induction induction hypothesis for
d — 1, we have

¢ =¢(0) + \vi + Y \us,
j>2
where ¢; = z; + hj(x1,...,2q) such that hj(x1,...,24) has a critical point at 0. This concludes
our lemma. 0

4.2. Stationary phase theorem over function fields. In this section, we prove a version of the
stationary phase theorem in the function fields setting that we use for computing the oscillatory
integrals I, »(c).
Let f € Ko and define

min(|f|o_ol/2, 1) if ord(f) is even,
(16) g(f) = ]f];ol/zsf if ord(f) > 1 and is odd,

1 otherwise,

where € := ‘g%' and G(f) =} e, eq(apx?) is the gauss sum associated to af the top degree

coefficient of f. Suppose that ¢ € C*(T?) has a single critical point at 0 with the Hessian Hy, where
| det(Ho(0))]o = L.

Proposition 4.5. Suppose the above assumptions on ¢ and f. We have

d
/T b(fot))du = v(f9(0) [T G050
=1

where \; € Oy for 1 < i < d are diagonal element of gTHg(0)g for some g € GLq(Ox) obtained
i Lemma 4.5.
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We begin the proof of the above proposition by proving some spacial cases of the proposition for
the quadratic polynomials.

4.2.1. Gaussian integrals over function field. We define the analogue of the Gaussian integrals over
the function field K and give an explicit formula for them.

Lemma 4.6. For every f € K, we have
[ etrydu= ().
T
Proof. First, suppose that ord(f) = 2k, where k > 0. We partition T into the cosets of t *T. Let

a+t FT c T. We show that
[ wttau=o
a+t—FkT

for o ¢ t=FT. We have
/ G(fuddu= | (fla+vD)dv=u(fa?) [ o(fCav+v))dv
a+t=kT t=kT

t=FT
= ¥(fa?) P(f2av)dv =0,
t=FT
where we used Lemma 2.2, ord(fv?) < —2 and ord(af) > k. Therefore,

/ Y(fu?)du = Y(fu?)du = / du = |f|"* = G(f).
T t=FT t=+T
On the other hand, if ord(f) = 2k — 1, where k& > 1. Similarly, for a ¢ t=*+1T

/ B(fu?)du = / S(f(a+0)2)du=p(fo?) | B(f (o +v?))do
a+t—kT

vet—kT t=kT
=y(fo?) | w(f20v)dv =0,
t—kT
where we used Lemma 2.2, ord(fv?) < —3 and ord(af) > k. Hence

/ ( fu?)du = / B(fu?)du = ¢ FG(f) = G(f).
T t—k+1T

The last equality follows from the following. Indeed, by the definition of the integral, we have
/ Y(fud)du = lim ¢ R > Y((amt ™™ 4t as TR )
t—k+1T

m——+00
At~ k14 a1t~k €F,

= lim ¢ ™kt E eq(ara’
m_H_OOQ q( f —1)
afm,...,a_1EFq

= ¢F Z eqarz?).
z€lF,

It is well-known, that G(f) = q1/26f. Consequently, ¢ *G(f) = |f|;ol/2€f. We have therefore

proved the result for ord(f) =2k — 1, k > 1.

Finally, if ord(f) < —1, then ord(fu?) < —1 for u € T. Consequently,

/Tq/z(fuz)du = /Tdu =1.

This concludes the proof. O
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Next, we give a formula for the Gaussian integral associate to any symmetric matrix A € My q(Ko).
Define

G(A) := | ¢Y(uTAu).

Td
Lemma 4.7. We have

where \; € Ko for 1 < i < d are diagonal element of gTAg for some g € GL4(Os) obtained in
Lemma 4.5.

Proof. By Lemma 4.3, there exists g € GLy(Ox) such that gTAg = D[A1,...,\q]. By the change
of the variable formula in Lemma 4.1, we have

9(a) = [ vl awdn = [ b (67 w7 gl w) du
d d
T \iz1 i=1

1

where [vl e vd] = v = g~ u. This completes the proof of the lemma. ([l

Finally, we give a proof of the Proposition 4.5.

Proof of Proposition 4.5 . By Proposition 4.4, there exists ¥ € Ay (T%) such that ¢(¥) = ¢(0) +
UTH4(0)W. By Proposition 4.2, ¥ is a measure preserving automorphism of T?. Hence,

/¢(f¢(u))du=/ Y(f(B(0) + UTHL(0)W))dP.
Td Td

By Lemma 4.7,
d

| VU (6(0) + UTH,(0)2)d¥ = 4(/¢(0) [T6(7N),

=1

where \; € O for 1 < i < d are diagonal element of gTH,(0)g for some g € GLy(O) obtained in
Lemma 4.3. This concludes the proof of our proposition. ]

5. BOUNDS ON THE OSCILLATORY INTEGRALS I, (c)

In this section, we give explicit formulas for the oscillatory integrals I, ,(c) in terms of the Klooster-
man sums (Salié sums). By Lemma 4.3, we suppose that F'(yu) =3, niu?, where v € GLg(Oxo).
Recall the additive character ¢ : Ko, — C* from §2.2, and

z|7t i fy| < |xf
h(z,y) =
(@,y) {O otherwise.

5.1. Test function. In this section, we define the test function w that we use for estimating the
oscillatory integrals I, ,(c) at the end of this section. Recall the definition 1.1 of an anisotropic
cone.

Lemma 5.1. Let F(x) be a non-degenerate quadratic form in d > 4 variables. We may then cover
Kgo with four anisotropic cones such that for any given f, X¢(K) intersects at least one of them.
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Proof. We show that each class in KX /KZX2 which consists of representative 1,v,t,vt, where
v E ]F; is a quadratic non-residue, gives us an anisotropic cone, at least one of which intersects
X¢(Kw) for any given f. Indeed, since being an anisotropic cone is preserved by linear change of
coordinates, we may assume without loss of generality that F' is diagonal and the coefficients of
F are also among these representatives. Furthermore, we may assume without loss of generality
that f is one of the representatives 1,v,t, vt by uniformly scaling the coordinates (note that, by
definition, anisotropic cones are invariant under scaling). After these reduction, by taking the set

of x € K& such that |F(x)| > q%]xP, we obtain an anisotropic cone. Showing that the class of

fin KX /KX? is represented by an element of this anisotropic cone follows from a simple case-
by-case analysis. Suppose the class of f is vt. If one of the coeflicients of F' is vt, then we have
a solution in the anisotropic cone. Otherwise, the coefficients are among 1,v,¢ and at least two
of the coefficients are equal since d > 4. If —1 is a square, then every element of K., can be
written as the sum of two squares. Since at least one coefficient repeats, this implies that we can
represent any element. On the other hand, —1 may be a quadratic non-residue, in which case we
may assume v = —1. If both 1 and —1 show up as coefficients, we may represent any element
of K. Therefore, let us assume otherwise. We are reduced to showing that there is a solution
in the anisotropic cone to the equations t(z? + x3 + 23 + 1) = 42, t(2? + 23 + 1) = +(2% + 23),
t(x?+1) = (23 +23+23), and 23 +.. .+ 23 = £t for any choice of signs. 23 +123+1 = 0 is solvable
modulo any odd prime, and so the first and second equations have a solution in the anisotropic
cone. Take a,b € F such that a® +b% = —1 (since —1 is a quadratic non-residue, ab # 0). For the

third equation, let (x1, x2, x3,x4) = (1, at (1 F %)1/2 , bt (1 F %)1/2
exist in Ko, because ¢ is odd (see the beginning of Section 4 for the formula). For the final equation
+t =2 + ...+ 27 let (z1,72,23,74) = (at (1 4 %)1/271715 (1 + %)1/2
be dealt with similarly; at the beginning, you can multiply the quadratic form by v or ¢ and scale

the coordinates to reduce it to the above case that f has class vt. Note that the construction of
the anisotropic cone associated to f depends only on the class of f in KX /KX O

,t). Note that such squareroots

, 1, O). The other classes can

Remark 17. This lemma shows that given any f, we can find an anisotropic cone intersecting
X¢(Ko). This fact combined with our main theorem implies strong approximation for F' (Corol-
lary 1.3).

Fix an anisotropic cone Q with respect to F(x) (such that QN X;(Kx) # 0).
Lemma 5.2. Suppose that x € Q and'y ¢ Q. Then
x +y| > max ([x], [y])/@.
Proof. Tt follows from property (2). O

For non-degenerate quadratic form F(x) = xTAx, we say F*(x) = xTA7!x is the dual of F(x).
Note that F(x) = F*(Ax). Let Q* := AQ.

Lemma 5.3. Q* is an anisotropic cone with respect to F™*.
Proof. It follows from the definition of *, F* and anisotropic cones. O

Let w be the characteristic function of a ball centered at xg € Vy N2 :

( ) Lif ’X - XO’ < |tiaof’1/27
w(x) =
0 otherwise,

where ap > maxdeg(n;) + w is any large enough fixed integer such that

{y e K¢ |y — Axo| < |t_o‘°f|1/2} C Q.
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Note that if w(x) # 0, then x € Q. Moreover,

1if [t — to| < R,
0 otherwise,

w(gt+ ) = {
where xg = gto + A, and R := [deg(f)/2 — deg(g) — ap/2].

5.2. Bounding I;,(c). Recall that
F(gt+A) — 1
Glt) = (922)f = F(t) + (2ATAt - F),

where k = f_%(’\). In this section, we assume that @Q := [deg(f)/2 — deg(g)] + max;(deg(n;)) + w'.

We have
18 Lorle) :/Kgoh<tg’f2(3> wigh+ Ay <<g ) = [ i-uien ﬁw <<gr>)dt'

G()|<Qlr|

Let x := max; [Z/.

\/

Lemma 5.4. Suppose that k < %, then Iy, (c) =1 ( > 1,,-(0).

gr
) (<C :to) ) . Hence, we have

note) = () [ 9y (0 1000

gr B | gr
G (t)|<Qlr]

This completes the proof of our lemma. O

Proof. Since max;(|¢;|) < ‘gr‘ and |t — to| < R, ¥ (

Lemma 5.5. Let Q, R and to_be as above, and suppose that [t — to| < R. Then |G(t)| < Q|r| is
equivalent to |[F(t) — k/g| < Q|r| Moreover, if |G(t)| < Q|r|, then |G(t 4+ €)| < Q|r| for every
¢ € K, where [¢| < min(|r|, R).

~1/2
Proof. Since tg € Q, by property (3) in Lemma 5.1, |to] < |f]'/2w! / /lg]. Recall that Q@ =

[deg(f)/2—deg(g)]-+max;(deg(n)) +. Since A < 1, and Jto] < |£[1/2"" /|| then | L (227 Aty)] <

Q. Hence, for |t — to| < R, |G(t)| < Q|r| is equivalent to |F(t) — k/g| < Q|r|. Moreover, suppose
that |¢| < min(|r|, R), and |t — to| < R, then

(G(t+¢) — G(t)] < max (|F(C)], [CTA(t + N/ g)]) < max(|¢TAC], QI¢I) < Qlrl,
where we used A < 1, || = max;(deg(n;)). Hence, if |G(t)| < Q|r], then
(19) |G(t+ Q)| < max(|G(8)], |Gt +¢) = G(b)]) < Qlrl.
This concludes the proof of our lemma. ]
We say c is an ordinary vector if
(20) k> Q/R.
Lemma 5.6. Suppose that ¢ is an ordinary vector and |r| < @ Then,

(21) Iy, (c)=0.
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Proof. By (18) and (19), we have

_ o Q <c,t>> _Q o <<t+<>>
L@ = [ ()= [ e min(lr,ﬁ)d/d<min(|r|ﬁ)w g )

IG(t)|<Qlr] 1G()|<Qlr]

Since |c| > |g|Q/R, and |r| < Q then [

|¢|<min

(X9 _ | ]
(Irl,R) P <27> d¢ = 0. This concludes the lemma. [

We say ¢ # 0 is an exceptional vector if k < @ / R. For the exceptional vectors ¢, we represent I, ,.(c)
in terms of the Kloosterman sums (Salié sums) at co. For a € K with |a|ec = 12, define

T

Kloo(a, 1) := /|r :le (g + :1:) dz,

and
Sace (e, 1) 1= / _Eg (% + x) dz,

where £, were defined in (16). By Weil’s estimate on the Kloosterman sums and the Salié sums,
we show that Kl (1, a) < |a|'4, and Sas (1), a) < |a|'/4.

||

Proposition 5.7. Suppose that c is an exceptional vector and k > U~ and d > 4, where n > @ is

a fized large enough constant integer. For ¢ € Q*, we have
A d—1
~ C - 5
(2) 1,0 < @719y 7

lgr]
where the implied constant in < only depends on F and Q0 . Otherwise, ¢ ¢ Q* and I,,(c) = 0.

We give the proof of the above proposition after proving some auxiliary lemmas. For o € K and
l € Z, define

By (¥, 1, a) = / Aw(g + z)dx,

jeloo=l ¥

B (Y, 1, a) == / Az—:xz/)(g + z)dx.
|z|co=l x
We write o = t2+ka/(1 + &) and = = #'2/(1 + Z) for unique &,% € T and o/,2’ € F,. Note that
for k = 0, we have Boo (1,1, ) = Kloo (1, @) and Bao (1,1, &) = Sans (1, ). In the following lemma,
we give an explicit formula for B (1,1, @) in terms of the Kloosterman sums; see [CPS90, Lemma
3.4] for a similar calculation.

Lemma 5.8. We have

~

(¢q—1)1 if max(l+k,l) < —1, and k # 0,

By (Y, 1, a) :== < —I if max(l+ k,l) =—1, and k # 0,
0 if max(l+ k,l) > —1, and k # 0.
(q— 1)1 ifl < —1,
IKl(c/,F,) ifl=—1,

Kloo ) = n ~ . . . .
W) Iy 2 w(Ztlx’(l + a)1/2>g(2x’tl) if & is a quadratic residue,

0 if o is not a quadratic residue.



SECTIONS OF QUADRICS OVER A]}q 27

Similarly,
(¢q—1) if max(l+k,l) < -1, and k # 0,
=) fl+k=—1, and k>0
Boo(wv L Od) =Nt lf * » an -0
I1y(e) ifl=—1, and k <0,
0 if max(l+ k,l) > —1, and k # 0.
where Ty, := Zaeﬂ?q eq(a)x(a), where x is the quadratic character in F,. Finally,
(q— 1)1 ifl < —1,
1Sa(a’,F,) ifl=—1,
Saco (¢, 1, @) := { 1. ~\1/2 141 YV : -
IY e (2602 (1+ &)/ )G(22't")  if & is a quadratic residue,
0 if o is not a quadratic residue.

Proof. Suppose that k£ > 0. We have
tlJrk / 1+Q ~ ~
BWWJa%=/ w(4ﬂ> = E:/ A—————l+#’ﬂ+$0m.
feloo=T siem )
Fix @ € T and o/, 2’ € Fy, and define the analytic function u(Z) as

o1+ @) o/ (1+ @)

B) = o R (14 E) - thg!
u(@) = gy D) 2 ],
where Z € T. We note that «(0) = 0, and \%(Oﬂ =|- (01‘1?)”2, +t7%2'| = 1. Hence u € A (T). By

changing the variable to u(Z), we have

(4 (q— D ifl+k<-—1,
() =1 (—O‘ert /wt”’f =) ifl+k=—1,

x'€Fy 0 otherwise.

On the other hand, suppose that k£ < 0. Fix & € T and o/, 2’ € Fy, and define the analytic function

v(Z) as

/ ~ / ~
. ka(1+a) . Lo (14 @)
where € T. We note that |g 0)] =1 - Tl)ga + /| = 1. Hence v € Ay (T). By changing the

variable to v(Z), we have

— 1 ifl< -1
(1 Atk (‘IA ’
Boo(¥,l,a) =13 ¢ (+—0‘)+mt /wtl O 1= 1,

x'€Fg 0 otherwise.

Finally suppose that k = 0. Fix @ € T and o/, 2’ € F;. Suppose that z’ 4o in F,, and define the
analytic function w(Z) as

_ o1+ a) - o1+ a)
where & € T. We note that [22(0)] = | — a:(r?)rf;), 2| =1- O‘,(Ha)ﬂﬁ()l;x il | =1and w € Ax(T).
Otherwise /> = o in F,. Define 2o := (1 +@&)"? —1 € T and
/ 1 ~
n@) = CUED g gy - [22/(1 4+ &@)'/2].

z'(1+ )



28 NASER T. SARDARI AND MASOUD ZARGAR

2z’

It is easy to see that h(zg) = 0, %(wo) = 0 and g;’f(xo) =1 Hence zy is a critical point

(14a)t7z:
with | (:po)| = 1. By the stationary phase theorem, we have
e, la) =13 ¢( /w w)dw + 1 Z ¢(2tl '(1+04)1/2>g(2x'tl)
z'2 %o 2=

Suppose that o/ is a quadratic non-residue in F,. Then, from above it follows that

(-1 ifl<—1,
Boo(¥,1,0) = { IKI(o/,F,) if | =—
0 otherwise.

Finally, assume that o/ is a quadratic residue in F,. We have

(q— DI if | < —1,
Boo(1h,1, ) = { IKl(/, TFy) ifl=—1,

IS o) <2tl:z’(1 @)l 2) G(22/t) otherwise.

This concludes the proof of the first part of the lemma. The argument for Eoo(i/), [, ) is similar.
Recall that €, = 1 unless [ is odd, which is the quadratic character evaluated at the top coefficient
of t2z. The second part of the lemma follows from the same lines, and we skip the details. O

Proof of Proposition 5.7. By Lemma 5.5, |G(t)| < @M is equivalent to |F(t) — k/g| < @M for
|t — to| < R. By Lemma 2.2, we have

a L [F(t) ~ k/g] < Qlrl.
L o(G5a ) = k/a))da = { |

0, otherwise.

We replace the above integral for detecting |F(t) — k/g| < Q|r|. Hence, by (18)

I,.(c) !rl//t o (g:>+7jQ(F(t)—k/g)> dtda.

Y1
Recall that F(vy) = ny? for some v € GLy(Os). We change variables toy = | : | =y~ It,
i 7 .
Yd
and obtain
(c, t) —ak 1 dyi | omy?
) kg = 2k L (30 G o
gr +7“tQ((> /9) rth+r§i:g+ tQ)
c
where | : | = 7Tc. Let yo := 7 'tg. Then ~ is a bijection between {t e KL : |t —to| < ﬁ} and
/
€4

{y c KL : |y —yol < ﬁ} Hence, I, (c) = Qf (Tth) (@, ¢)da, where

(0
d
Ipe(a,e) =] ( (C e amyz )) dyi,

yz yzo|<R
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Yio
where | : | =yo. We write z; := y; — yig. We have

Ydo

d
1 (ci(zi+yig)  ami(zi + yig)?
Ipr(a,c) =] |/ P (( d + dzi,
’ i Jlmi<k 7 g 9

The phase function has

— ¥ip- This critical point is inside the domain of

the integral, if |x;| < R, where k; :=
partition the indices into:

;j}_a io- Note that k; is a function of a. Given o € T, we

CR::{lgigd:|ﬁi|<}A3},
NCR::{lgigd:]nilzﬁ}.

For i € NCR, we change the variables to v; = z; + Kk, 122-2. It is easy to check that this change of
variables belongs to A (t < R). For i € CR, we change the variables to w; = z; + x;/2. Hence,

dyio . omiyig an;
() [

i€ENCR
. H /2 )/ w(anl )dw
47’9 771 lwi| <R rtQ "

icCR

(23)

By Lemma 2.2 and Lemma 4.6, we have

; R, if |%%k;| < 1/R
[ o nyan B T v
loi|<R rt 0, otherw1se,
2R
an; )d ﬁ an;t
/|wi|<fi1/} <TtQ e g( 7t .

Suppose that ¢/ ¢ Q*. By Lemma 5.2, maxj<;<q |ki| > |yo|/&@ > R. On the other hand, recall that
/
1

K :=max; |Z[. Since | 1 | =7Tcand v € GL4(Ox), £ = max; || = max; \%;\ By Lemma 5.2,
/
Ca

max
1<i<d

/
o | _ ¢, 20myig 5
Ki o ‘—112?§Xd<g + 1Q > > kW

By our assumption, k > n%‘. Since n > @, max<i<q | g Kil > l/ﬁ By equations (23) and (24), we
have Iy, (c) =0 for ¢’ ¢ Q*.

Next, we suppose that ¢’ € Q* and prove inequality (22). By equations (23) and (24), I;,(c) =0
unless |«| =1, where | := Ii%. Note that |a| = 1> k. By equations (23) and (24), we have

(25)

d / 2 Q2 2R
34 CYio . aNiYip R t~c an;t
I (ac) = R H(aﬁ<m<m w(( o 21 >)+5M<Rw<—4r92ma>g< e ))

Rlan;|
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The contribution of the first term on the right hand side is zero unless R< MQ which implies

Rlam;|’
ol < m( ) Ir|
R‘nz| R

By comparing the preceding inequality with a > k, we have kK < %. By choosing 7 large enough,

this contradicts with our assumption x > s i . Therefore, for large enough 7

QR ot
Ig,r(c) = |7“|/|a| rth H v(= 47“9 771 )g< rt@ >da'

ri<lal

By (16), we have

— ~1/2
amt2R B v . ZRQMH
Hg< —ro )-:I:sanmln 1,< - ,

r|Q

where v = 0,1 depending on parity of the degrees of 1; and a and quadratic residue of their top
coefficients. Hence,

ORd , w2\ ok 1QF
Tyr(e) = S 3 &[] min 17< '?') [ 1) v 4o,

= . drg-a
Kk<I<1 ¢

/2
where F*(c) = 3, % - By Lemma 5.8, we have

rgt? *
R LG :{I%ﬁl ool dea(i), BymP)  for v =0
|al=t

rgt@ drg?a 1792 B (49,1 + deg (- ), M)

i@ forv=1,

rgtQ s e
1292 (Ko (1, 558) if 21 = deg(2E(9)

)
rot@ c 2Q (e
| g;: |Sace (¢, k4Fz 3) if 20 = deg(* fg( )), and v =1

,and v =20

0 otherwise.

Therefore, by using the Weil bound on the Kloosterman sums (Salie sums), we have

N N\ —d/2 1/4 LmA. 4
QR! (|F*(c)|'/2R? rth' ‘fF* Aa ([ (©)[2Q\ 5"
I, r(c)] < L —"7 )
R T T )
where we used |f|/2 > Q|g|. Since |c| < |F*(c)|/2 for ¢ € Q*, this concludes Proposition 5.7.

O

6. MAIN CONTRIBUTION TO COUNTING FUNCTION

In this section, we study the main contribution to the counting function N(w,A). We first begin
by estimating the contribution in N(w,\) from the terms where ¢ = 0. In order to do so, we
first prove the following lemma which gives an estimate on the the norm of I,,.(0) for |r| not too
large. We then show that the contribution from the other terms is small. Finally, we show that
contribution from 0 can be written in terms of local densities.

Lemma 6.1. Suppose ¢ > 0. With the notation as before and for 1 < |r| < @1_5, we have
15,+(0)| = CrQ*(1+0(Q ™))

for some constant Cr as ¢ — 0F.
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Proof. Tt follows from equation 18 that

_Q _Q
Ly (0) = |r| J le—tol<R dt = |r| Jlgt+x—xol<|t=20 f[1/2 dt.
|G(t)|<Qlr| |F (gt+X)— f|<Qlrllgl?

Making the substitution x = gt + X gives us the equality
Q

% dx.
I7]lgl? /IXXO<It“0fI1/2:IF(X)f|<@|r||92

Ig,r(o) =

Furthermore, by Lemma 2.2 and Fubini, we may rewrite this as

2 Lo (Foe)
1,,(0) = —<_ 2 =T ) dadx
or(0) T St S\ g0
- d// < Fletxo) - 1 >dxda
I7||g] x|<D rg*t

_ Qpe y Flx+1""x0) — f/2P \ .
= ellgl? Jp S rg2t@-2D @) e

where D := [1(—ag + deg f 4+ 1)] and the last equality follows from scaling the x coordinate by a

factor of D. Making the substitution § = 7"9215%’ we obtain the equality

@2@1
I 0) = /-\/

Note that the integral is equal to

2D o) 2
———vol xer:\F(x—i—t_on)—f/tzD\SM > 0.
Qlrllgl 2D

Consequently, the first integral is a non-negative real number and can be viewed as a density.
Note that x = 0 is a zero of F(x + ¢t Pxg) — f/t?P. Consequently, by Lemma 6.2 proved next,
we can choose @ large enough (depending on ¢ and the F') such that the integral corresponds to
taking integrals for |3| larger than the threshhold after which it is positive (see next lemma). The
conclusion follows.

/d ¥ ((F(x+tPxo) — f/1*P)B) dxdp.

AI H 12

0

We prove the following lemma that was used in the proof of the previous lemma.

Lemma 6.2. Let L be an integer, and let Q be a polynomial over Ko, such that Q(0) = f/t?P,

and consider
/ / — f/£P)B) dBdx.
Td J|8|<L

The limit as L — oo exists and is a strictly positive number oo > 0.

Proof. As in the computation in the proof of the previous lemma, we have the equality
/ / f/tQD) )dﬂdx = Lvol ({x cTe. 1Q(x) — f/t2D| < 5_1}) ‘
Td J|8|<L

Note that Vol(t_L']I‘) L. Each x € T such that |Q(x) — /2P| < L~ gives us a coset x+ ¢~ LT
of solutions in Q! (¢~ET). Hence, using vol(t~=T?) = L%, we have

vol(@ 1 (t7T)) = T{x + ¢t 2T? e T/t 71T 1 |Q(x) — /2P| < L7},
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Therefore,

Lvol ({x € T Q(x) - f/1?P| < I7'})
— (kb T e TR Q(x) — £/12P] < B

[+ LT € T4/ LT 1 |Q(x) — £/2P] < LYY
7d-1 '

By Hensel’s Lemma, for large enough L, this latter quantity stabilizes. Since there is a solution
in T to the equation Q(x) = f/t?>", namely 0, the above quantity is strictly positive as well. The
conclusion follows. O

We now show that when Q¢ < |r| < @, then the contribution of the terms in N(w, A) when ¢ = 0
and corresponding to such r is small. This follows from the following more general statement for
all c.

Lemma 6.3.

- ~d+3
> gl S (@)l ()] <en lgfQ7E F
Ql—=<|r|<@

Proof. Suppose @1—5 <|r| < @ It is easy to see from the definition of I, (c) that for such 7,

I, (c)] < QFF.

Using this, we obtain

_ _d=1 _d+1
Yo gl USg (@)l gi(e)l = DR e i (e C A (O P ARICO]
Ql—=<Irl<Q Qi-=<Ir[<Q
d—1
~ -5 gyl
< QY (&) T X 1e U IS
(1-e)Q<k<Q |r|=qg*
By Proposition 3.1,
_ _d+1 1+4¢
> gl Sy (e)] < lgl* (a")
|r|=q"
Therefore,
Ad+e k _% —dy,. -4t eAd+e k _%J’_E e AL ¢
QM 3 (df) T X e S0 < gFQE Y (o) < |gIFQ e,
(1-e)Q<k<Q [r|=gk (1-e)Q<k<Q
as required. ]

In order to put this lemma into greater perspective, we use the next two lemmas to estimate

Z |97"’7ng,7“(0)-

r:l§\r|§f

Lemma 6.4. For d > 4 and every c, the sum
> IS (c)
=

is absolutely convergent.
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Proof. Using Lemmas 3.3 and 3.5, we obtain
- _ dt1
P~ Sg (@) €a Tl e 2 rads () [V 2|72 ged(ry, £

ed(ry, f)[1/?
= T(Tl),rrd/ﬂl,radg(rl)‘l/ZM

|T‘1|1/2
/ 1/2
< |T‘—d/2+1+e|f’1/2|rad3(rl)| /
|’I“1‘1/2
Hence,
Z ‘T’_d‘sgr (©) <ag.f Z Nt Z |r ‘1/2 <Lag.f Z N azsfeze
mg)? 1<KNLX ‘T1‘<ﬁ 1 1<NLZX

The last summation is a partial sum of a geometric series, and so the associated infinite sum is
convergent since d > 4. O

Lemma 6.5. For any € > 0, we have

Z r|™ dsgr ZW ngr +Oa,A(T\3/2_%+E)-

r:1§\7‘|§T

DTS (0) = D IS (0) + D Ir[7Sy(0)

r1<lr|<T |r|>T

Proof. Write

The triangle inequality gives us

Z ’T|7dsg7r(0) < Z N~ Z |S9,-(0)

[r|>T N=T |r|=N
From S ,(0) = 5152 and Lemmas 3.3 and 3.5, we have
|Sg.r(0)] g 7(r1) P42 [re| 2 rady (ry)[V2|ro] | ged(r1, £)[*/2,
using which we obtain

YTNTED T 18,.(0)] <a Z N2 Z 7(r1) | V2 rady (r) V2 e | ged(r1, £)[1/?

r|=N Ir|=

> NTE YT w(ro)lea T P rady ()2 ged(ry, )12
N=T

ri|<N

IN

c 3 gty lsdnH i)

r
Ir1|<N | 1|
> d d
_ Z N3/275+2€ — OE,A(T3/27§+6)7
N=T

where we have used that d > 4. Using this, we obtain that
Do IS (0) =Y Ir[ TSy (0) + O- A (T3 5),
1<|r|<T r

From Lemma 6.4, the infinite sum is absolutely convergent. The conclusion follows. O
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We now want to show that the infinite sum

> 17784, (0)

can be entirely written in terms of number theoretic information.

Z‘T” ng?‘ ‘g‘dHUW7

where w ranges over the monic zrreduczble polynomials in Fq[ |, and

. | {x mod @"*=(9) : F(x) = f mod "=, x = XA mod w=9)} |
0w = lim

k00 |oo|(@—Dk

Lemma 6.6.

I

and is strictly positive.

Proof. We know that the infinite sum is absolutely convergent. Define for each N > 0 the analogue
of the factorial
II 7

IfISN
f monic
Write
> Ir17%Sy,(0)
r|(N)!
B » a(2ATAb — k + gF(b))
NS ; w( -
r|(N)! amo)d gr beO4/(gr)
a(2ATAb — k + gF(b))
= 11d Z Z Z ¢<
( M N)la(mo)dgr b0/ (gr) 7
B a(2ATAb — k + gF(b))>
-l T3 e(Rd
a;nr _ngbE(') /(g(N)")
_ 1 Z Z Z ( a(2AT Ab — k+gF(b))>
1d '
N o a0 i mod gr g
(a,r)=1
Since

2> = 2

r|(N)!amod gr  amod g(N)!
(a,r)=1

_ 1 a(2ATAb — k + gF (b))
! amod g(N)! beO?/(g(N)!)

Furthermore, this latter quantity is equal to
ol [{b € O/ (g(N)) : 2ATAb — k + gF(b) = 0 mod g(N)1}
! [ |

Let us write (N)! = w{* ... @,*. Then
2ATAb — k + gF(b) mod g(N)!
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is the same as having
F(gb+\) — f = mode T2

for each i = 1,...,£. We conclude that

> I 7S,(0)

r|(N)!
_ [{b € 0/ (wV=((N+v=(9)) ;: F("=9b + X) = f mod w”= (V) +2=(9)}]
= |9l ll(_][V)' (oo (V) +ve(9)[d—1
B d {x e O/ (w=(N)1v=(9)) : P(x) = f mod w=(M)Hv=(9) x = X\ mod w”w(g)}‘
=W Il(_][\,), |V (N))+ve(g) |d-1 :

Letting N — oo gives us
Z ‘r|_ng,r(0) = ‘g‘d H 0w,
T w

where o, are as in the statement of the lemma. By Hensel’s lemma and the fact that our system

satisfies all local conditions, the local densities are strictly positive.
O

7. PROOF OF THE MAIN THEOREM

In this section, we prove our main theorem. Though we obtain a theorem for d > 4, it is only
optimal when d > 5. We assume that we have a non-degenerate quadratic form over Fg[t] in
d > 4 variables. We would like to show that under good conditions, we have strong approximation.
Though the conclusion will be optimal in d > 5 variables, it will not be so for d = 4 variables. We
first give a bound on the contributions of the nonzero exceptional vectors to our counting function.

Proposition 7.1. For any non-degenerate quadratic form F over Fyt] in d > 4 variables, and for
any € > 0, we have

exc

S D g Ser (@)l p(e)] < QF F|gl T (1 + g7,

1<|r|<Q €70
where > ¢ denotes summation over exceptional vectors.

We prove this proposition by rewriting

exc

> > lgrl S (e)Igr(c) = By + By,

1<|r|<@ €#0
where
exc
Br=> Y |gr| Sgr(c)Igr(c)
0 a<iri<
and

exc

Esy = Z Z g7 748y 1(€) I, (cC).

c£A0 R
70 Mt <irl<@

This division of the sum into two parts is suggested by Proposition 5.7.
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Lemma 7.2.
~d+3 d—3 _d=5
B < Q= gl T (14 g7 2 te),

where the constant depends only on €, the quadratic form, and 2, and then showing that E1 and
Es satisfy the above bound.

Proof. By Proposition 5.7, we know that for |r| < %
N _d-1
Aa [ Qlel)
I (c) < Q= ,
| 97""( )| |g7‘|

where the implied constant depends only on the quadratic form and €. Using this, we obtain
d—1

Bl < @Y. Y |gr|—d|sg,r<c>|(Q'°’)

lgr|

a1 exc e\~ T - i
- g% Z(") S gl S, ()

70 1<|r|< Bl
nlgl

By Proposition 3.1,

~ 1+ ~ 1+

gy s (Rl o (Qlel\

Sl ISl < gl | S | < el (B ]
nlg| 9]

1<|r|< Elel

nlgl

where the implied constant depends only on the quadratic form, ¢, and €. Here, we are also using
the fact that R and @ are of the same order up to a constant depending on the quadratic form and
Q). Consequently,

Al e c| -5 @\c| e d+3 d-3 | ol d—3
Bl < Q7 ) () g () =Q"2 g Ty e[

o \ldl 9l =

Note that the exceptional vectors c are all congruent to a.AX modulo g for some varying polynomial
«. By assumption, at least one coordinate of A is relatively prime to g, say the first one. Since
every exceptional c¢ is congruent to aAX mod g for some « depending on c, the first coordinate
varies through all polynomials modulo g as ¢ and so as « varies. Consequently,

exc

D e D R R T
o0 0lal<lg

from which we obtain
B < Qe |g| T (1 + g ),

where the constant depends only on ¢, the quadratic form F', and €. U

Similarly, we have the same bound on Ej.

Lemma 7.3.
-5

|Ba| < Q5 Fe|g| T (1 + g~ 2" F9),

where the constant depends only on €, the quadratic form, and €.
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Proof. In this case, |r| > 1;||gc|| for which we have the trivial bound

yr(c)] < @d+57

where the implied constant depends only on ¢, the quadratic form, and ). Using this, we obtain

exc

Baf < QMY D> lgrl S (e)]

c#0 Rlc|

n\9\<|T|<Q
_  (d+e — -l gy -4t
= QN X T gl 1Sy (0)]
70 2 <lrls@
exc _d—1
= QY 2 () 3l Sy ()l
70 k=111og, 2 |r|=q*

By Proposition 3.1, for each k,

_ _d+l
D gl Sy (e)] < lgl*(6") .

|r|=¢*
Hence
exc 7%%?
Byl < QHelglYy Z ()
c#0 k=1+log, n\;l
_d=3 .
exc 2
Qlc|
< Qd—i-s‘ ‘ Z( | |
Z0\ Y
A3 e 1434 o —d=8 1
= Q2 MglT =Y e[
c#0
As before,
exc a4, aa,, i,
SNle"F < 30 Jal T <14 g7 T
c#0 0¢\a|<\gl
from which the conclusion follows. O

We are now ready to prove our main theorem. Note that from remark 3 this is optimal for d > 5.

Proof of the main theorem 1.2. Recall that

(26) N(w,X) Z > fgr|™ g.r(C)-
\:|€<OQ ee0"

T monic
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By Lemma 5.6, Lemma 6.3, and Proposition 7.1, we have

~d+3 d—3 d—>5
1 _ QT+Eg T+€ 1+ g*T+€
Nw,A) = | @2 Z lgr| ng,r(O)Ig,r(O)"‘OE,RQ( 4 | |é§2 4 )
g g
\rlg%?‘s
7 monic
1 _ ~d—1 d—5 _d=5
= X TS0 0) + O (QF T )
g reQ
r|<Q'—e
7 monic

By Lemma 6.1, I, ,(0) = CQ%1 4 0.(Q %)) for some constant C > 0. Hence,

Ad—2 A—e
LS lr 48, (0T, (0) = CLIT O 5 eig (o)

91Q% 15 gl =
Ir|<Q'~e Ir|<Q'~*
T monic T monic

On the other hand, by Lemma 6.5 and Lemma 6.6,

g B @—%—Fs
> grl ™8 (0) = [[ow + O )

re0
r|<Qt~e
r monic

As a result, we finally obtain

Q421 O; )¢ O—F+e ~d—1 d-5
M) = SR (HUHO(QigW))*08,F,Q(Q2+f\g\2+f<1+rgr

CcQi2 ~d—1 d—5 _d=s
= STl + 0apa (@5 416l 5" (0 4+ 1o 5749))
w

~ ~d=1_ . d=3_ _d=5_,
_ e, (1+OFQ<Q2+|Q|2+<1+191 2*)))
- w &1

@d—z

Ad—2 d—3+¢(1 —4354¢
_ @ H%<H0&m<|g| (1+ g~ >>>

9] Vi

Ad—2 s dten T
= Ccfg| Haw (1 + OE,F,Q <(1 + |g|—?+a) <|g”f’+ ) )) .

Therefore, if d > 5, we can take |f| > |g|**¢, while if d = 4, we can take |f| > |g|¢T¢. O
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