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Abstract

The aim of this paper! is to give a short and clear presentation of the new
notion of a resurgent function based on the asymptotic approach.

Introduction

The resurgent function theory introduced in the beginning of eightees by Jean Ecalle
is at present used in many fields of mathematics, such as function theory, asymptotic
theory of differential equations, dynamics systems theory and others. Up to the mo-
ment, there exits two quite different approaches to the construction of the resurgent
functions theory which differ from each other, mainly, by the object of investigation.
In the first approach, one deals with the resummation problem for divergent series,
and, in the second, with the investigation of asymptotic behavior of functions (say, of
exponential growth at infinity). '

The first approach can be found in the classical works by J. Ecalle [1] (see also
[2], [3]), and the second was worked out by the authors (see [4] — [6]). The aim of
the present paper is to give a clear and transparent presentation of the asymptotic

*Supported by Max-Planck Arbeitsgruppe “Partielle Differentialgleichungen und Komplexe Anal-
ysis” and RFBR, grant No 95-01-01306a

!The text below is a presentation of the talk given by the authors on the seminar of Professor
Werner Balser, Ulm University, in the summer of 1995. We use the opportunity to thank W. Balser
for the possibility of providing a talk on his seminar.



approach to the resurgent function theory?. The detailed presentation of our approach
the reader can find in the main part of the paper. Here we only emphasize one principal
point lying in the basis of the asymptotic theory of resurgent functions.

From the viewpoint of the asymptotic approach, resurgent functions are, in essence,
functions with discrete asymptotics. This means that we consider functions repre-
sentable in the form of the (infinite) sum of “WIKB-elements”, that is, asymptotic

expansions of the form
o
5@ Z a;z0.

=0

The equivalent formulation of this requirement is that the function f(z) can be repre-
sented as

f(z) = /e"F(s,:r) ds,
Y
where the function F(s,z) is a function with a discrete set of simple singularities in

s for each fixed z, and v is some contour in the complex plane C,. The latter means
that the following representation

ao(z = (s — S(z))*
F(s,z) = s+5€ﬂ + In(s — S(z)) ; L—f!(—))—akﬂ(a:) + Fi(s,z)

with regular Fi(s, z) takes place at any point s = S(z) of singularity of F(s,z).

1 Asymptotic expansion of functions of exponen-
tial growth

In this section, we consider the question what the asymototic expansions of functions of
exponential growth can look like. Here we restrict ourselves by the case of functions of
one complex variable having exponential growth of degree 1. Possible generalizations
will be discussed below.

So, let f(z) be a function of exponential growth of degree 1 (a function of expo-
nential growth in the sequel) determined in the sector

Se(Re)={z€Cll-ec<argz <0 +e¢, |z| > R}

2We emphasize that, in this context, we mean the construction of the resurgent functions theory
itself. The application of the “classical” Ecalle’s theory was done by many authors (see, for example,
[2], [3], [7], and the bibliography therein).
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Figure 1.

of the complex plane C (for sufficiently large values of z; see Figure 1). This means
that:

1) f(z) is holomorphic in S5 (R, €);

2) f(z) satisfies the inequality

/()] < Cel,

in each proper subsector S5 (R',€’) of Sp(R,¢) (here R’ > R, €' < ¢; the constant C
can depend on numbers R’ and ¢’).

Now the question arises: how one can investigate the asymptotic behavior of a
function f(z) as |z| — co inside the sector Sp (R,€)? We shall use here the well-known
connection between the behavior of a function at infinity and the singulatiries of its
Laplace image. Clearly, since functions under consideration are defined in the complex
domain, one have to use the complex-analytic analogue of the Laplace transform —
the so-called Borel-Laplace transform. For the reader’s convenience we recall here the
main definitions and statements concerning the theory of this transform. The detailed
presentation the reader can find, for example, in the book [6].

Suppose that the function f(z) possesses properties 1) and 2) above. Then the
integral

F(©) = BUe) = 5 [ /(@) s (1)
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Qo (R,e)={¢ € C]| —9+%—€ <argf < —9+3§+5, €] > R}.
This integral is taken over the contour 4 coming from an arbitrary point A of the sector
Ss (R, €) to infinity along this sector (one can suppose that this contour coincides with
some ray for sufficiently large values of z; such a contour is shown on Figure 1).3 The
convergence of integral (1) in the above mentioned domain (this domain is shown on
Figure 2) for sufficiently large R and sufficiently small € can be proved with the help
of standard estimates of integrals, and we leave this proof to the reader.

Definition 1 The function F (£), given by (1), is called the Borel transform of the
function f(z).

Remark 1 The function F (£), in general, depends on the choice of the point A in (1).
However, two functions corresponding to different values of A differ from each other
by an entire function of the variable ¢ satisfying the inequality

|F(€)] < Ce

3Here and below R and £ are some positive numbers which are not nesessarily the same in different
formulas.




with some constants C and a. So, the Borel transform is, in essense, not a function
but a hyperfunction, that is, a quotient class modulo entire functions of exponential
type. (We shall not use this terminology here.)

The inversion of the Borel transform is given by

f(z) = LIF (&) = j e F (¢) de, @)

where the contour 4* is shown on Figure 2.
More precisely, the following affirmation is valid.

Theorem 1 Transforms (1) and (2) are inverses to each other.

Definition 2 The function f(z), given by (2), is called a Laplace transform of the
function F (£).

So, what is the connection between the behavior of a function f(x) at infinity and
the singularities of its Borel transform? We shall illustrate this connection on the
following two examples.

Example 1 Suppose that a function F(£) can be continued up to a meromorphic
function on the entire plane C; with the Laurent expansions at each its pole { = wj,
7 =1,2,... given by

ﬂ]J' J'
a
F(&)=) —Ftaeg+ F(0)
+1 )
kX::o (£ —w;)
where Fy(£) is a holomorphic function near the point £ = w;. Then, moving the
contour ¥* in the direction arg{ = —# and using the residue theorem we obtain the

asymptotic expansion of the function f(z) as z — oo inside the sector Sy (R, €):
we o= (=) @
flz) ~ Ze i Z—-;c!—-wk
i k=0
up to functions with arbitrary exponential decrease at infinity.

Example 2 Suppose that the Borel transform F (£) of the function f(z) can be con-
tinued up to a ramifying function determined over the entire plane C; with a discrete
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(on its Riemannian surface) set of singularities {{ = w;, 7 =1,2,...}, and that at any
point of singularity £ = w; of this function the representation

% e - v)i(f—ﬂa” + Fo(6) (3)
£ —w LT e TR

H

F(¢) =

takes place modulo holomorphic function Fp(€) (the series on the right in the latter
formula is supposed to be convergent in some neighborhood of the point § = w;). For
such a function, the above described deformation of the integration contour will lead
to the following decomposition of the function f(z) in the sum of integrals

f@)= 3 [er (@ d,

Jrj

taken over the contours I';, drawn on Figure 3. With the help of the theory of classical
Laplace transform, it is easy to show that each of these integrals admits the asymptotic
expansion of the type

[e ]

[eer@de=eae s % @)

k
T
r; k=0



as k — 00. The elements -

e“’” z %,
k=0
which have arised in the latter asymptotic expansion have the form of the well-known
WKB-expansions (after the variable change z = 1/(ik)). They will be called WKB-
elements. In these elements the functions w' play the role of a phase function (action),
and the coefficients a} — the role of an amplitude function of WKB-expansion.
So, one can expect that the asymptotic expansion of the function f(z) has the form

(x)~e'“’"2-—~+e'“” Yokl (5)

However, the interpretation of the obtained formula meats certain difficulties. The
matter is that the definition of expansion (5) itself needs a refinement. Actually, let
us suppose that the numbers w; are enumerated in accordance with increasing of their
real parts (to be definite, we carry out our considerations for real values of z):

Rew; < Rew;p <.

Then expansion (5) is graded in accordance with the order of its terms as z — oo.
Using the classical step-by step procedure of defining the asymptotic expansion, we
write down the following relations:

N

1

— a - -

o) - e 3 = 0 (Ve man)
k=0

which encounter orders included into the first sum on the right in (5). Later on, similar

relations encountering orders included in the second sum must have the form

00 N

2
o e G —{(N+41) —
) = e e Y B 0 (). (6)
k=0 k=0
The latter relation, however, makes sense only in the case when the series on the left
converges. Unfortunately, this fact, as a rule, is not valid for an asymptotic series, and
we arrive at the nesessity of resummation of divergent power series. Actually, if we

have some resummation procedure which assigns a function

[= =) al
o |e “1* E —:—
z

k=0



to a divergent series

|5~

o
e-—wlz § a
I

k=0

n

such that this series occurs to be an asymptotic expansion of the above function (such
a function will be called a presum of the series), relation (6) can be rewritten in the

form
f(:r:) _ —w1 T i _‘i — w27 ZN: ﬁ =0 ( —(N+1) —-wn)
ole 2 ok 2 =0 e
which makes sense.

Using the above scheme of definition of an asymptotic expansion one has to take
into account that the values of coefficients a? involved in the second (recessive) part of
the asymptotic expansion (and even the existence of this recessive part) depends on the
choice of the concrete resummation method o. We remark that the integral on the right
in (4) determines a presum of the series on the right in this relation since the integrand
on the left in (4) is uniquely determined by the series. The resummation procedure
based on relation (4) is called Borel resummation procedure. This procedure possesses
a number of “good” properties, for example, the correspondence between formal series
and their presums occurs to be an algebra homomorphism which commutes with the
differentiation. This is exactly the procedure which will be used in the sequel for the
definition of asymptotic expansions of the form (5). Below we denote this procedure
by o.

So, one can see that if the Borel transform of the function f(z) is an endlessly
continuable function of the variable £ (this means that it has not more than a discrete
set of singularities on its Riemannian surface), and all singularities of this transform
have the form (3), then this function has the asymptotic ezpansion of the form (5). The
requrement of endless continuability of the Borel image of a function is exactly the
simplest definition of resurgent function with simple singularities. We remark also that
the actions for resurgent functions with simple singularities are uniquely determined
by Borel images of these functions as points of singularity of these images. However,
as we shall see in the next section, this definition requires a serious generalization.

2 Counterexamples

This section contains examples of functions which appear in the real problems but are
not included formally to the class of simplest resurgent functions defined above.



1. Consider the function

fz)y=e" (7

It is not hard to see that the Borel image of this function is an endlessly-continuable
function with the only singularity at ¢ = 0. So, the Borel transform theory prescribes
the value of action for this function to be equal to zero. However, the computation of
the amplitude function shows that the singularity at the origin has more complicated
structure than (3) and, hence, the function in question is not a resurgent function with
simple singularities (it does not determine a WKB-element with zero action). From
the other hand, function (7) is evidently a WKB-element with the action y/z. Thus,
one can see that the classical Borel transform is accustomed to the consideration of
WKB-elements with actions linear in z.

This difficulty can be overcome by using the so-called k-Borel transform [8]. It is
defined as a composition

By = a0 Boay,

where B is the classical Borel transform, and o is the substitution z — z*. This
transform takes into account functions (WKB-elements) with the action proportional

to z*.

2. As the next example we consider the function
f(z)=e+e” (8)

It is easy to see that the Borel transform of the first summand on the right is an
endlessly-continuable function with simple singularities (corresponding to the phase
function z and the amplitude function 1). On the opposite, the Borel transform of
the second summand, though endlessly-continuable with the only singularity at £ = 0,
has at this point a complicated (non-simple) singularity which does not correspond to
a WKB-expansion. As it was already mentioned above, to investigate this summand
one has to use the k-Borel transform (for k = 1/2). So, there arises a nesessity of
generalization of the resurgent functions theory to the case when different components
of one and the same function have different orders of exponential growth. We remark
that such functions arise while considering differential equations. For example, the
differential equation
y"+:t:y'+:cy=0
possesses solutions involving components with orders 2 and 1.

3. As the third example consider the function

[ (z) = e¥*V=.

9



This function is a WKB-element with the action z + \/z. Clearly, the k-Borel trans-
form is not applicable for investigation of such functions for any choice of k since the
application of such a transform gives one WKB-elements with the action homogeneous
in z. This is the main difference between this example and the previous one, where
one has, at least in principle, the possibility of decomposing the function in question
into two components and applying to these components the k-Borel transforms with

different k.

4. Last, it is nesessary to work out the theory of asymptotic expansions for the
investigation of functions of several variables as these variables increase simultaneously.
The first guess is a possibility of applying the multiple Borel transform®. However, this way leads to the
representation of functions in question in the form of integrals over a multidimensional homology class
in the multidimensional complex space. The investigation of such integrals can hardly be considered
as more easy problem than the initial problem of investigation of asymptotic expansions.

Later on, while working out the multidimensional resurgent functions theory one
should take into account (apart from the one-dimentional effects listed above) the
possibility of appearance of different orders of exponential growth in different directions.
The simplest example of a function with such a behavior is

2
flz,y) =€ ty

In the next section, we shall show how one can construct the multidimensional
resurgent functions theory encountering all the above listed effects.

3 Resurgent representation and resurgent
functions

In this section, we deal with the definition of a resurgent function based on the resurgent
representation introduced by the authors. To motivate the mentioned definition as
well as to clarify the presentation, we shall use the inductive method of exposition.
Namely, we begin with the generalization of the Borel-Laplace theory to functions of
several variables and, using this generalization as a starting point, construct the general
resurgent representation.

4Clearly, the notion of multiple Borel transform requires rigorous description

10



Figure 4.

3.1 Multidimensional Borel-Laplace transform

1. Let us consider the function f(z), determined on the set

Kr={z€e K| |z| > R} Cc C",
where = (z',...,z") are coordinates in C", and K is some conical (that is, R4-
invariant) set in C™ (see Figure 4). Suppose that:
1) f(z) is holomorphic in the domain Kg;
2) f (=) satisfies the inequality

|f (2)] < CeF! (9)

in each proper subset Ky, X' CC K, R > R. We say that f(z) is a function of
exponential growth of order 1 in Kg.
Let us introduce a function

(N =f ()\:1:1,...,)\:1:").

Clearly, the function f; (A) considered as a function in variable A € C is determined in
some sector Sp (R, €), R > 0, € > 0 for each fixed = as a function of exponential growth
of order 1. Hence, one can consider its Borel image.

F(s,z',...,2") = Bao, [fo (V)]

11



It is easy to see that F'(s,z) is a homogeneous function in (s, z) of degree 1:
F()\s,/\a:’,...,)u:") = AF (s,:c',...,:c") .

The inverse (Laplace) transform of the function F (s,z',...,z") can be written down
in the form

f,(A):f(AIl,...,A.’.E") =/e’\’F(3,:z:',...,:c") ds,

and, hence,
f(ah,. . 2") = L[F (s,2,...,2")] = /e’F(s,zl,...,z") ds. (10)
¥

The function F (s,z!,...,z") will be called a (multidimensional) Borel transform of
the function f(x). Formula (10) is an inversion formula for the transform B. '

2. Suppose now that the function f(z), holomorphic in the domain Kz satisfies
the inequality
k
| (2)] < CeH!

for some k& > 0 (instead of (9)). Then the above considerations can be modified in the
following way: the function

fo (X)) = £ (A2t A k)

is again a function of exponential growth of order 1, and we define its Borel image by
the formula

F (s,xl,. cya3") = B [f ()] = Bas [f- (V)]

where B is the classical Borel transform. In doing so, the function
F'(s,:rl,...,::")
occurs to be a weighted homogeneous function in variables (s,z!,...,z"):
F (As, ezt AYEgm) = AF (s,z',...,2"),
and the inversion formula reads

f(='...,a")=L[F(s,2',...,a")] = /e"F (s,2',...,2") ds. (11)

~

12



3. At last, let us consider the function f(z) in K satisfying the inequality
|F (2)] < Gl orbontelt™

Then we put
o) = F(Whgh, L Wz,

and the corresponding formula for the k-Borel transform becomes

F (ssIla vee 1Iﬂ) = By [f (I)] = By, [fx (A)]

(here k = (k1,...,ks)), and the inversion formula reads

f(...,2") = E[F(s,:rl,...,:c“)] = /e’F(s,ml,...,I“) ds. (12)

5

One can see that the function F(s,z',...,z") possesses the following homogeneity
properties:
F(/\s,)\llk‘ml,...,)\”k":c") = /\F(s,xl,...,m") .

The three situations considered above lead us to the conclusion that the inversion
formulas (10), (11), and (12) in all three cases are identical, and the growth properties
of the function f(z) are determined just by homogeneily properties of the integrand
F(s,z',...,z"). This observation is exactly the starting point for the resurgent rep-
resentation introduced in the next section.

3.2 Resurgent representation

Let us introduce the following definition:

Definition 3 The function f(z), determined in the domain Kr C C” is called to be
resurgent if it can be represented in the form

f@) = ClF(s,2) = [P (s,2) ds (13)

5

with an endlessly-continuous function F (s,z!,...,z").

Remark 2 Clearly, each concrete problem requires exact determination of the class
of functions F (s,z). At the same time, we do not require that the function F' is
homogeneous in any reasonable sense.

13



Figure 5.

Clearly, integral (13) can be represented as the sum of integrals of the same type
over standard contours I'; (see Figure 5). Each integral over a standard contour we
shall call a component of the function f(z).

Suppose now that the function F (s, z) has simple singularities, that is, it is repre-
sentable in the form

F(s,z)—q_;())+ln s—S8 Z(S_J' a_,~+1(a:)

near each its point of singularity. Then the corresponding function f (z) has the asymp-

totic expansion
o0
f(z) = %@ 3" a;(z)
=0

We present here the resurgent representation of functions of one variable included into the above
considered (counter)examples:

1 1 1
F ﬁ: - )
©re /" {2wf[s+z+s+ﬁ]}ds'

= ./ {2ms+z+\/_)}

14




We remark that the above defined functions

1 1 1
FI(B’I) m[s+z+s+\/:_:]'
1
ri(s+z+ /)

Fa(z) =

are not homogeneous (and even weighted-homogeneous) ones in (8, z).

Let us formulate here one more important affirmation on the introduced representa-
tion used in the applications to investigation of differential equations by the resurgent
analysis method. Namely, the following theorem describes the commutation between
the introduced representation and the differentiation operation.

Theorem 2 The following commutation formulas

d a\"' a
ﬁ““”[(a) a—'}

are valid.

As we shall see below, the commutation formulas of the above form transform differ-
ential equations for functions of z into equations quantized with respect to smoothness
for functions of (s,z). This fact is of extreme importance since in the representation
of functions of (s, z) asymptotics in variables z become asymptotics in smoothness.

4 Applications

Here we shall consider the two applications of the above introduced notion of resurgent
function. The first application deals with the investigation of fundamental systems
of solutions to ordinary differential equations, and the second with classification of
functions of exponential growth by the type of their asymptotic expansion at infinity.
Clearly, a lot of applications of this theory are out of the frasmework of this paper
(such as the investigation of behavior at infinity of solutions to partial differential
equations, see [9]). The reader can find these applications (as well as the more detailed
presentation of the theory) in the book [6] by the authors.

15



4.1 Investigation of ordinary differential equations

Consider the differential equation
g™ 4 P @)y V4 + P (2)y + Po(z)y =0 (14)

with the polynomial coefficients P; (z), and denote by

d d" dr-t d
H(I,E)——dIn‘*'P_l(I)dxn_l+...+P1(I)E+Pg($)

the corresponding differential operator.
The following affirmation takes place.

Theorem 3 Fguation (14) has a full system of resurgent solutions with simple singu-
larities.

We remark that since any solution of equation (14) is a linear combination of
solutions from the fundamental system, it occurs that all solutions to this equation are
resurgent functions with simple singularities.

The idea of the proof® of Theorem 3 is as follows. Using the resurgent representation

y(z) = LY (s,2)],

we transform equation (14) for y into the equation

H (a:, (%)_1 a%) Y (s,z) =0

for Y which is quantized with respect to smoothness. In doing so, one can not only
prove the existence of resurgent solutions to the initial equation but also investigate
the asymptotic behavior of solutions as £ — oo (see the book [6]).

Let us illustrate this scheme on the example of the above mentioned equation
vy~ zy' + zy = 0.

The corresponding equation for the “resurgent image” Y (s, z) reads

8\’ oY a "3Y+Y 0
—_— —— e P — _ xr =
ds Jz? Js dz
5The proof of this theorem was carried out in collaboration with E. Delabaere, H. Dillinger, and
F. Pham.

16
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The singularities of solutions to this equation can be found from the corresponding
Hamilton-Jacobi equation®

= 0.

(8 —z8 4z =0,
We obtain
2

p(:c)=5"(:1:)=§:}: a2

Choosing the branch of the square root in accordance to the formula

2
\/I—— ‘—; 1—— Vi=1

for large values of z, we obtain

z T |/ 4 1 1
p+($) 5 '2- 1—;""27—1'——'{"0(2:2)
r z 4 1 1
P-($)=5‘5\/1-;=1+—4x+0(:2)'

The values of action can be now found simply by integrating:
2
S, (z)= ‘—%——z—i—lnz+0(%),
S_(@@)=z+}mz+0(L).

and

Hence, the asymptotic expansion of solutions to the initial problem must have the form

y@) = DY i '«"—I—es'(”)z:r—ja-'
j
72
= exp{?——z—-—lnx+0( }Zm”-’ t

:)
+ exp{:c+—lna:+0( )}EJ:x iaj.

6With respect to the WKB-representation
Y (s,z) = 558/8q (5 &)

(see [10])

17



Remark 3 There is another method of investigating equations of the type (14) based on the so-called
multisummability notion (see [11], {12], [13], [14], [15], [16], [8], and others). Namely, one constructs a
formal solution of the differential equation in question (that is, a solution in formal power series), and
then resummate the obtained solution. In doing so, due to the presence of different components with
different order of exponential growth, the simplest resummation procedure with some fixed value of &
occurs to be inapplicable. The reason for this phenomenon is that, if one tries to resummate a formal

series
(o w]
—Ja.
E z 7 a;

j=0
which splits into the sum of the two series
e ] [+ =] o0 .
S e = S zial 43 aial (15)
j=0 j=0 j=0

being asymptotic expansions of two functions fi(z) and f;(z) of different orders of exponential growth
(k1 and k3, k) > ka, respectively), then:

1) If we apply the formal k-Borel transform with largest value of k = k, to the right-hand part
of (15), then the second sum will be transformed to the series with zero radius of convergence, and,
hence, the formal k-Borel transform of the series in question does not determine an analytic function
even in a very small neighborhood of the origin. So, only the formal k-Borel transform with the
minimal value of £ = &y is applicable.

2) Later on, the result of the application the formal kq-Borel transform to series (15) is a sum
of the two functions F\(£) and Fq(€). It occurs that the first of these two functions is a function of
exponential growth with order more than kq, so that the ky-Laplace transform occurs 1o be inapplicable
to this function.

Thus, the resummation procedure fails both for k& = & and k = k; (as well as for any other value
of k). Hence, on the first step one has to apply the formal k,-Borel transform for minimal order k = k-
obtaining, as a result a convergent series in the dual variable £. Then, on the second step, one has to
use the acceleration operator taking Borel images of functions of exponential order k5 to functions of
exponential order &; (this operator is none more than the operator of a power variable change written
in the dual representation; it occurs to be an integral operator over some contour in the complex
plane). As a result one obtains a function for which the Laplace transform is well-defined. The final
step is the application of the corresponding Laplace transform to the function obtained with the help
of the acceleration procedure. On this step one obtains the solution to equation in question.

Clearly, this procedure (which allows to prove the existence of resurgent solutions) cannot give
any information about the asymptotic behavior of these solutions at infinity, since the result of the
application of the acceleration procedure is not cleqarly a function with simple singularities.

4.2 Classification of functions of exponential growth

In this concluding section, we present a classification of functions of exponential growth
in several variables based on the asymptotic expansions of these functions as z — oo.
Due to the discussion above, it is clear that this classification must be based on the

18



5=8(%)

Figure 6.

description of singularities of the corresponding functions in the space of variables
(s,z).

1. Polar singularities (see Figure 6).
In this case, the expansion of the function F'(s,z) at its points of singularity s =
S; (z) has the form

m a9 (2
F(s,:z:l,...,:c") = F(s,z)= ZES——:&%T]-;-{-FO(S,-T):
k=1 J

where the function Fp (s, z) is regular at the point s = §; (). Accordingly, the asymp-
totics of the corresponding function f(z) is

m

f(z)= Z/ T F(s,z) ds NZ "S-‘(’)kzl (’) (z). (16)

.JFJ

2. Ramifying discrete singularities (see Figure 7).
In the case of simple singularities (this case is the most interesting one for appli-
cations) the asymptotic expansion of the function F(s,z) at points of its singularity

19
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8 = S5;(z) has the form

W9 © (s — 5 (2)]F ..
F(s,z)= %0 (2)_ +In(s-S; (:c))z[sk—’!()]a(’) (z),

s — S_.,' (.’J:) ot k+1

and, correspondingly, the asymptotic expansion of the initial function f(z) as z — o0

J@=3 / R (s,2) ds = Y050 Y o) (2). (17)

3 r; k=0

The two types of functions of exponential growth considered above correspond to
the case of functions with discrete asymptotics. This terminology is inspired by the fact
that asymptotic expansions (16) and (17) include exponentials e~5/%), corresponding to
a discrete set of values of action s = S5 (z) (this is a direct consequence of the discrete
type of singularities of the function F'(s,z)). However, it is also possible that the
singularities of the function F'(s,z) form domains of non-zero measure (the so-called
continuous asymptotics). In this latter case one can also distinguish two cases.

3. Compact singularities of a nonzero measure (see Figure 8).

In this case the singularities of the function F (s, z) are contained in some compact
set K of the complex plane C,. In the case when F (s,z) has a univalent character
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Figure 8.

while encircling the set K, the asymptotics of the initial function f{z) can be written
down in the form

f

——

T) ~ /e"F(s,z) ds

of application of an analytic functional determined by the function F(s,z), to the
exponential e”*.

In the general case when the function F (s,z) ramifies around the compact set K
this asymptotics can be represented as the application of the hyperfunction determined

by F'(s,z) to the same exponential e™*:

f(z) :[[e"F(s,:r) ds.

Both last cases are characterized by the fact that the asymptotic expansion of the
function f (z) involves continually many exponents of the form e=*.

4. General case.

In this case no additional restrictions are posed on the set of singularities of the
function F (s,z). However, one can show that in this case the function f(z) can be
represented as an (infinite) sum of results of application of different analytic functionals
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to the exponential e~

* (see also [17], where the case of functions of power growth is

considered).
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