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Abstract

The ahn of this paper l is to give a short and clear presentation of the new
notion of aresurgent function based on the asYlllptotic approach.

Introduction

The resurgent funetion theory introduced in the beginning of eightees by Jean Ecalle
is at present used in many fields of lnathematics, such as funetion theory, asymptotic
theory of differential equations, dynanlies systems theory and others. Up to the mo­
ment, there exits two quite different approaches to the construction of the resurgent
functions theory which differ {fmn each other, mainly, by the object of investigation.
In the first approach, one deals with the resumnlation problem for divergent senes,
and, in the second, with the investigation of asymptotic behavio.r ollunclions (say, of
exponential growth at infinity).

The first approach cau be found in the 'classical works by J. Ecalle [1] (see also
[2], [3]), and the second was worked out by the authors (see (4) - (6)). The aim of
the present paper is to give a clear and transparent presentation of the asymptotic

·Supported by Max-Planck Arbeitsgruppe "Partielle Differentialgleichungen und Komplexe Anal­
ysis" and RFBR, grant No 95-01-01306a

IThe text below is a presentation of the talk given by the authors on the seminar of Professor
Werner BaIser, Ulm University, in thc summer of 1995. We use the opportunity to thank W. Baiser
for the possibility of providing a talk on his seminar.
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approach to the resurgent function theory2. The detailed presentation of our approach
the reader can find in the main part of the paper. Here we only empbasize one principal
point lying in the basis of the asymptotic theory of resurgent functions.

From tbe viewpoint of the asynlptotie approach, resurgent functions are, in essenee,
functions with diserete asymptoties. This means that we consider functions repre­
sentable in the form of the (infinite) surn of "WKB-elements", that is, asymptotic
expansions of the form

00

eS(z) L ajx-j .

j=O

The equivalent fonnulation of this requirelnent is that the function f(x) can be repre­
sented as

f (x) = Je-.F (s, x) ds,

"f

where the function F( s, x) is a function with a discrete set of simple singularities in
s for eaeh fixed x, and f is some eontour in the eomplex plane C". The latter means
that the following representatiol1

aO(x) ~ (8 - S(x))k
F(s,x) = s _ S(x) + In(8 - S(x))~ k! ak+t(X) + Ft(s,x)

wi th regular Ft (8, x) takes place at any point s = S (x) of singulari ty of F(8, x).

1 Asymptotic expansion of functions of exponen­
tial growth

In this sectiol1, we consider the question what the asynl0totic expansions of functions of
exponential growth can look like. Hefe we restriet ourselves by the case of functions of
one complex variable having exponential growth of degree 1. Possible generalizations
will be discussed below.

So, let f(x) be a function of exponential growth of degree 1 (a function of expO­
nential growth in the sequel) detefll1ined in the sector

So (R, e) = {x E Cl () - e < arg x < () + e, lxi> R}

2We emphasize that, in this context, we mean the construction of the resurgent functions theory
itself. The app/ication of the "classicaP' Ecalle's theory was done by many authors (see, for example,
[2L [3L [7), and the bibliography therein).
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Figure 1.

of the camplex plane C (for suffieiently large values of Xj see Figure 1). This means
that:

1) f(x) is hololTIorphie in So (R,e)j
2) f( x) satisfies the inequality

in eaeh proper subsector So (R', c') of So (R, e) (here R' > R, c' < cj the constant C
can depend on numbers R' and c').

Now the question arises: how one ean investigate the asyn1ptotic behavior of a
funetion f( x) as lxI --+ 00 inside the seetor So (R, c)? We shall use here the well-known
eonnection between the behavior of a. funetion at infinity and the singulatiries of its
Laplaee image. Clearly, since functions under eonsideration are defined in the eomplex
domain, one have to use the e0111plex-analytie analogue of the Laplace transform ­
the sO-called Borel-Laplaee transfonTI. For the reader's eonvenience we reeall here the
main definitions and statements concerning the theory of this transform. The detailed
presentation the reader ean find, for exanlple, in the book (6).

Suppose that the function f(x) possesses properties 1) and 2) above. Then the
integra.l

F(O = ß [J(x)J = 2~i Jee"'f(x)dx,

"YA
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Figure 2.

is holomorphic in the region

~ . 3~ }
Oo(R,e)={cECI-8+2"-e<argc<-8+2+e, Icl>R .

This integral is taken over the contour ')'A cOIning from an arbitrary point A of the sector
So (R, e) to infinity along this sector (oue can suppose that this contour coincides with
some ray for sufficiently large values of Xj such a contour is shown on Figure 1).3 The
convergence of integral (1) in the above mentioned domain (this domain is shown on
Figure 2) for sufficiently large Rand sufficiently sInall e can be proved with the help
of standard estimates of integrals, and we leave this proof to the reader.

Definition 1 The function F (e), given by (1), is called the Borel trans/orm of the
function f(x).

Remark 1 The function F (cl, in general, depends on the choice of the point A in (1).
However, two functions corresponding to different values of A differ from each other
by an entire function of the variable Csatisfying the inequality

3Here and below Rand! are some positive numbers which are not nesessarily the same in different
formulas.
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with some constants C and a. So, the Borel transfonn is, in essense, not a function
but a hyperfunction, that is, a quotient dass modulo entire functions of exponential
type. (We shall not use this tenninology here.)

The inversion of the Borel transform is given by

f(x) = .qFWJ = Je-exF(O d~,
"'Y.

where the contour ,. is shown on Figure 2.
More precisely, the following affirmation is valid.

Theorem 1 T1'ansfonns (1) and (2) are inverses Lo each other.

(2)

Definition 2 The function f(x), given by (2), is called a Lap/ace trans/orm of the
function F (~).

So, what is the connection between the behavior of a function f(x) at infinity and
the singularities of its Borel transfofln? \Ve shall illustrate this connection on the
following two exanlples.

Example 1 Suppose that a function F (~) can be continued up to a meromorphic
function on the ent.ire plane Ce with the Laurent expansions at each its pole ~ = Wj,

j=1,2, ... givenby
mj j

F(O = L (~_a
k

.r ,+ Fo(O,
k=O W J

where Fa (~) is a holol11orphic function near the point ~ = Wj. Then, moving the
contour ,. in the direction arg ~ = -8 anel using the residue theorem we obtain the
asymptotic expansion of the fllI1ction f(x) as x ~ 00 inside the sector 59 (R, e):

up to functions with arbitrary exponential decrease at infinity.

Example 2 Suppose that the Borel transfonn F (~) of the function f (x) can be con­
tinued up to a ra1nifying function detennined over the entire plane Ce with a discrete
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Figure 3.

(on its Riemannian surface) set of singularities {( = wj, j = 1,2, ...}, and that at any
point of singularity ~ = Wj of this function the representation

(3)

takes place modulo holomorphic function Fo (() (the series on the right in the latter
formula is supposed to be convergent in son1e neighborhood of the point ~ = Wj). For
such a function, the above describecl defofluation of the integration contour will lead
to the following decomposition of the function f(x) in the sum of integrals

f(x) ~ L Je-{rF (0 d(,

J rj

taken over the contours f j , drawn on Figure 3. \Vith the help of the theory of c1assical
Laplace transform, it is easy to show that each of these integrals admits the asymptotic
expansion of the type

(4)

6



as k -+ 00. The elenlents
00 .

I

l.oI"X L ake J -
k'x

k:::::O

which have arised in the latter asymptotic expansion have the form of the well-known
WKB-expansions (after the variable change x = l/(ih)). They will be called WKB­
elements. In these elements the functions w i play the role of aphase function (action),
and the coefficients ai - the role of an amplitude function of WKB-expansion.

So, one can expect that the asynlptotic expansion of the function f(x) has the form

(5)

However, the interpretation of the obtained fonTIula meats certain difficulties. The
matter is that the definition of expansion (5) itself needs a refinement. Actually, let
us suppose that the numbers Wj are enulnerated in accordance with increasing of their
real parts (to be defini te, \\'e carry out our considerations for real values of x):

Rewi < Rew2 < ....

Then expansion (5) is graded in accordance with the order of its terms as x -+ 00.

Using the classical step-by step procedure of defillillg the asymptotic expansion, we
write down the following relations:

which encounter orders included into the first sum on the right in (5). Later on, similar
relations encountering orders includecl in the second sum must have the form

00 I N ~

f(x) - e-l.oIJx L :~ - e-~x L :~ = 0 (x-{N+1)e-~x) .

k:::::o k:::::o

(6)

The latter relation, however, Inakes sense only in the case when the series on the left
converges. Unfortunately, this fact, as a rule, is not valid for an asymptotic series, and
we arrive at the nesessity of resum1nation 0/ divergent power series. Actually, if we
have some resummation procedure which assigns a function

7



to a divergent series
00 1

e-"'lX' " ak
LJ x k
k:::O

such that this series occurs to be an asymptotic expansion of the above function (such
a function will be called a presum of the series), relation (6) can be rewritten in the
form

which makes sense.
Using the above scheme of definit.ion of an asymptotic expansion one has to take

into account that the. values of coefficients az involved in the second (recessive) part of
the asymptotic expansion (and even the existence of this recessive part) depends on the

choice 0/ the concrete reSUl117Hation l1wthod (J'. We remark that the integral on the right
in (4) determines a preSUlll of the series on the right in this relation since the integrand
on the left in (4) is llniquely deternlined by the series. The resummation procedure
based on relation (4) is callecl Bore! resu1nmation procedure. This procedure possesses
a number of "good" properties, for exalnple, the correspondence between formal series
and their presums occurs to be an algebra homomorphism which commutes with the
differentiation. This is exactly the procedure which will be used in the sequel for the
definition of asYlnptotic expansions of the fOrIll (5). Below we denote this procedure
by u.

So, one can see that i/ the B01'e/ translonH 0/ the lunction / (x) is an endlessly
continuable function 0/ the variable ~ (lhis means that it has not more than a discrete

set 01 singularities on its Riemannian sur/ace), and all singularities 0/ lhis trans/arm
have the form (3), then this function has the asymptotic expansion 01 the form (5). The
requrement of enclless continllability of the Borel image of a function is exactly the
simplest definition of resurgent function with si1nple singularities. We remark also that
the actions for resllrgent functions with sitnple singularities are uniquely determined
by Borel images of these functions as points of singularity of these images. However,
as we shall see in the next section, this definition requires a serious generalization.

2 Counterexamples

This section contains examples of functions which appear in the real problems but are
not included formally to the dass of sinlplest resurgent functions defined above.
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1. Consider the function
I(x)=e../X. (7)

It is not hard to see that the Borel image of this functioD is an endlessly-continuable
function with the only singularity at ~ = O. So, the Borel transform theory prescribes
the value of action for this function to be equal to zero. However, the computation of
the amplitude function shows that the singularity at the origin has more complicated
structure than (3) and, hence, the function in question is not aresurgent function with
simple singularities (it does not determine a WKB-element with zero action). From
the other hand, function (7) is evidently a WKB-element with the action -IX. Thus,
one can see that the classical Borel transfoflll is accustomed to the consideration of
WKB-elements with actions linear in x.

This difficulty can be overCOIlle by lIsing the so-called k-Borel trans/orm [8]. It is
defined as a COillposition

Bk = O'l/k 0 B 0 Q'k,

where B is the classical Borel transfoflll, anel l1'k is the substitution x 1-+ x k • This
transform takes into account functions (\VKB-elements) with the action proportional
to x k •

2. As the next example we consider the function

(8)

It is easy to see that the Borel tranSfOflTI of the first summand on the right is an
endlessly-continuable function with sitllple singularities (corresponding to tbe phase
function x and tbe amplitude function ]). On the opposite, the Borel transform of
the second sUITImand, though endlessly-continuable with the only singularity at ~ = 0,
bas at this point a complicated (non-sinlple) singularity which does not correspond to
a WKB-expansion. As it was already mentioned above, to investigate this summand
one has to use the k-Borel transform (for k = 1/2). So, there arises a nesessity of
generalization of tbe res urgent functions theory to the case when different components
olone and the same lunciion have different orders 0/ exponential growth. We remark
tbat such functions arise while considering differential equations. For example, the
differential equation

y" +xy' +xy = 0

possesses solutions involving cOillponents with orders 2 and 1.

3. As the third example consider tbe function

I (x) = eX+v'X.
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This function is a "VKB-element with the action x +..jX. Clearly, the k-Borel tra.ns­
form is not applicable for investigatioD of such functions for any choice of k since the
application of such a transform gives one WKB-eleInents with the action homogeneous
in x. This is the main difference between this exaluple and the previous oue, where
one has, at least in principle, the possibility of decomposing the function in question
into two components and applying to these components the k-Borel transforms with
different k.

4. Last, it is nesessary to work out the theory of asymptotic expansions for the
investigation of functions of several variables as these variables increase simultaneously.
The first guess is a possibility of applying the multiple Borel transform4. However, this way leads to the

representation of functions in question in the form of integrals over a multidimensional homology dass

in the multidimensional complex space. The investigation of such integrals can hardly be considered

as more easy problem than the initial problem of illvestigation of asymptotic expansions.

Later on, while working out the multidimensional resurgent functions theory oue
should take ioto account (apart from the one-diolentional effects listed above) the
possibility of appearance of different orders of exponential growth in different directions.
The simplest exanlple of a function with such a behavior is

In the next section, we shall show how one can construct the multidimensional
resurgent functions theory encountering all the above listed effects.

3 Resurgent representation and resurgent
functions

In this section, we deal with the definition of aresurgent function based on the resurgent
representation introduced by the authors. To luotivate the mentioned definition as
weH as to cIarify the presentation, we shall use the inductive Dlethod of exposition.
Namely, we begin with the generalization of the Borel-Laplaee theory to functions of
several variables and, using t.his generalization as a starting point, construet the general
resurgent representation.

4Clearly, the not ion of multiple Borel transform requires rigorous description
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Figure 4.

3.1 Multidimensional Borel-Laplace transform

1. Let us consider the function f (x), detennined on the set

J(R = {x E J( I IxI > R} c C",

where x = (Xl, ... ,x") are coordinates in Co, and J( is some conical (that is, R+­
invariant) set in C" (see Figure 4). Suppose thaL:

1) f (x) is holomorphic in the domain J(R;
2) f (x) satisfies the inequality

If(x)l ::; Cea1xl (9)

in each proper subset [(~" [(' ce [(, R' > R. We say that f (x) is a function of
exponential growth 0/ order 1 in [(R.

Let us introduce a function

Clearly, the function Ix (A) considered as a function in variable A E C is determined in
some sector So (R, e), R > 0, € > 0 for each fixed x as a fuuction of exponential growth
of order 1. Hence, one cau consider its Borel in1age,

11



It is easy to see t hat F (s, x) is a homogeneous funetion in (s, x) of degree 1:

The inverse (Laplaee) transforul of the funetion F (s, Xl, • •• , Xn) ean be written down
in the form

/r(>') =/(>.x1, ... ,>.xn) = Je'\'F(s,xt, ... ,xn) ds,
"Y

and, hence,

/ (x I , ... , X n) = J: [F (s, x\ ... , xn
)] = Je' F (s, x\ ... , xn

) ds. (10)
ry

The function F (s, xl, .. . ,xn
) will be called a (rnultidimensional) Borel transfonn of

the function I (x). Fornlula (10) is an inversion fonllula for the transform B.

2. Suppose oow that the function f (x), holomorphic in the domain [(n satisfies
the inequality

1I (x)1 ~ Cealx1k

for some k > 0 (instead of (9)). Then the above cOllsiderations can be modified in the
following way: the function

is again a function of exponential growth of order 1, and we define its Borel image by
the formula

F (s, Xl, ••• , Xn) = Bko [I (x)] = ß)._" [Ix (A)],

where ß is the classical Borel transfoflll. In doing so, the function

occurs to be a weighted hOlTIogeneous function in variables (s, Xl, • •• , Xn):

F ( ' \ Ijk I \Ijk n) 'F(I n)AS, " X, ... , " x = " S, x , ... , x ,

and the inversion formula reads

/ (Xl, ... ,xn
) = J: [F (S, Xl, ... ,Xn

)] = Je'F (S, Xl, ... ,Xn
) ds. (11)

"Y
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3. At last, let us consider the function f (x) in J<n satisfying the inequality

1I (x)1 ~ Ceadxlkl+...+anlxjlrn.

Then we put
Ix (A) = f (AI/ k1 X l , ••• , AI/kn X n) ,

and the corresponding fonnula for the k- Borel transform becomes

(here k = (k1 , ••• , kn )), and the inversion fOrInula reads

J(xl, ... ,x") =t:.[F(s,x\ ... ,x")] = J e'F(s,x\ ... ,x") ds. (12)

"Y

One can see that the functioll F (s, Xl, • •• , xn
) possesses the following homogeneity

properties:
F ( \ \ 1/k1 1 \ I/kn n) _ \F(I n)AS,A X , ... ,A X -A S,X , .•. ,X •

The three situations considered above lead us to the cOllclusion that the inversion
/ormulas (10), (11), and (12) in all thl'ce cases are identical, and the growth properties
0/ the /unction f (x) al'e detennined just by honwgeneity properties 0/ the integrand
F (s, xl, . .. , xn). This observation is exactly the starting point for the resurgent rep~

resentation introduced in the next section.

3.2 Resurgent representation

Let us introduce the following definition:

Definition 3 The function f (x), detennined in tbe dOlnain I<R C Cn is called to be
resurgent if it can be represented in the fornl

J (x) = t:.[F (s, x)J = Je' F (s, x) ds

"Y

with an endlessly-continllolls function F (s, Xl, ... , xn
).

(13)

Remark 2 Clearly, each concrete problem requires exact deternlination of the dass
of functions F (s, x). At the salne titne, we do not require that the function F is
homogeneous in any reasonable sense.
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Figure 5.

Clearly, integral (13) can be represented as the sunl of integrals of the same type
over standard contours r j (see Figure 5). Each iutegral over a staucl ard contour we
shall call a component of the function f (x).

Suppose now that the function F (s, x) has silnple singularities, that is, it is repre­
sentable in the form

Uo (x) ~ (8 - S (x))i
F(s,x)= -S() +ln(s-S(x))L. "' aj+l(x)

s x J.
j=O

near each its point of singularity. Then the corresponding function f (x) has the asymp­
totic expansion

00

f (x) ~ eS(x) L Gj (x).
j=O

\Ve present here the resIIrgent relHesentation of functions of one variable included into the above
considered (counter)exampies:

er + e-.fi = Je-' {-21.[_I + l,;x]} ds ,
1r1 S + X S + X

l'
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We remark that the above defined functioDB

1
F2 (x) = 21ri (s + z + JX)

are not homogeneous (and even weighted-homogeneous) ones in (s, z).

Let us formulate here one more important affinllation on the introduced representa­
tion used in the applications ta investigation of differential equations by the resurgent
analysis method. Nanlely, the following theorem describes the cOlllmutation between
the introduced representatian and the differentiation operation.

Theorem 2 The /ollowi1lg C017I112utation Jorrnulas

are valid.

As we sha11 see below, the COl1lIllutation formulas of the above form transform differ­
ential equations for functions of x iuto equations quantized with respect to smoothness
for functions of (s, x). This fact is of extreme i111 portance si nce in t he representation
of functions of (s, x) asY111ptotics in variables x become asymptotics in smoothness.

4 Applications

Here we sha11 consider the two applications of the above introduced notion of resurgent
function. The first application deals with the investigation of fundamental systems
of solutions to ordinary differential equations, and the second with classification of
functions of exponential growth by the type of their asynlptotic expansion at infinity.
Clearly, a lot of applications of this theory are out of the fraslnework of this paper
(such as the investigation of behavior at infinity of solutions to partial differential
equations, see [9]). The reader can find these applications (as weil as the more detailed
presentation of the theory) in the book [6] by the authors.
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4.1 Investigation of ordinary differential equations

Consider the differential equation

y(n) + Pn- I (x) y(n-l) + ... + PI (x) y' + Po (x) y = 0

with the polynomial coefficients Pj (x), and denote by

( d) er er-I d
H x, dx = dxn + Pn- I (x) dxn- I +... + PI (x) dx + Po (x)

the corresponding differential operator.
The following affinnation takes place.

(14)

Theorem 3 Eq'Uation (14) has a juli system, oj res'Ul'gent solutions with simple singu­
larities.

We remark that since any solution of equation (14) is a linear combination of
solutions fronl the fundalnental systeln, it occurs that all solutions to this equation are
resurgent functions with silnple singularities.

The idea of the proofS of Theorenl 3 is as folIows. Using the resurgent representation

y(x) = .c[Y(s,x)],

we transform equation (14) for y into the equation

for Y which is quantized with respect to slnoothness. In doing so, one can not only
prove the existence of resurgent solutions to the initial equation but also investigate
the asymptotic behavior of solutions as x -+ 00 (see the book [6]).

Let us illustrate this scheine on the exaluple of the above mentioned equation

11' 0y - xy + xy = .

The corresponding equation for the "resurgent itnage" Y (s, x) reads

(
a) -2 a2y ( a) -1 ay

- ---x - --+xY=Oas ax2 as 8x

5The proof of this theorem was carried Dill in collaooration with E. Delabaere , H. Dillinger , and
F. Pham.
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or
82y 82y 82 y
8x 2 - x 8s8x + x 8s 2 = O.

The singularities of solutions to this equation can be found from the corresponding
Hamilton-Jacobi equation6

(S')2 - xS' + x = O.

We obtain

p(x)=S'(x)=i±v:
2

-x.

Choosing the branch of tbe square foot in accordance ta the fornlula

V -x = :'Vl - '!:. v'f = 1
4 2 x'

for large values of x, we obtain

xxR 1 (1)P+ (x) = - +- 1 - - =x-I - - +0 - ,
2 2 x 4x x 2

and xxR 1 (1)p_ (x) = - - - 1 - - = 1 +- +0 - .
2 2 x 4x x 2

The values of action can be now fouod sinlply by integrating:

S+ (x) = ~ - x - !-ln x +0 (~) ,

S_ (x) = x +! In x +0 (~) .

Hence, the asymptotic expansion of solutions to thc initial problem nlust have the form

y (x) = e5t (x) L x-iaj + e5 -(x) L x-iai

j i

{
X2 1 ( 1) } " . += exp 2-x-4'lnx+O -; ~x-Jaj

J

+ exp {x + ~lnx + 0 G)}Lx-iaj.
J

6With respect to the \VKB-representation

y (s, x) = eS (z)8{8'a (s, x) .

(see [IO})
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Remark 3 There ia another method of investigating equations of the type (14) based on the S<rcalled
multisummabi/ity nation (see (11], [12], [13], [14], (15], [16], [8], and athere). Namely, one constructs a
formal solution of the differential equation in question (that is, a solution in formal power series), and
then resummate the obtained solution. ]n doing so, due to the presence of different components with
different order of expollential growth, the simplest resummation procedure with BOrne fixed value of k
occurs to be inapplicable. The reason far this phenomenon is that, if one tries ta resummate a formal
serles

which splits into the sum of the two series

00 00 00

Lx-jaj = Lx-ja) + Lx-ja;
j=O j=O j=O

(15)

being asymptotic expansions of two fu nctions ft (x) and h. (x) of different orders of exponential growth
(k 1 and k2 , k1 > J.~2, respectively), then:

1) Ir we apply the formal k-Borel trallsform with largest value of k =k l , to the right-hand part
of (15), then the second sum will be t ransformed to the series wi th zero radius of convergence, and,
hence, the formal k-Borel transform of the series in question does not determine an analytic function
even in a very small neighborhood 0/ lhe origin. So, only the formal k-Borel transform with the
minimal value of k = k2 is applicable.

2) Later on, the result of the application the formal k2-Borel transform to series (15) is a sum
of the two functiolls F1() and F2(). It occurs that the first 0/ these two functions is a funetion of
exponential growth with order more thau k2 , so that the k2·Laplace transform occurs to be inapp/icable
to this funetion.

Thus, the resummation procedure fails botlt for k =k1 alld k =k2 (as weil as for any other value
of k). Hence, On the first step one has to apply the formal k2-Borel transform for minimal order k = k2

obtaining, as a result a convergent series in the dual variable~. Then, on the second step, one has to
use the acceleration operator taking Borel images of functions of exponential order k2 to functions of
exponential order k1 (this operator is none more than the operator of a power variable change written
in the dual representation; it occurs to be an integral operator over some contour in the complex
plane). As a result one obtains a function for which the Laplace transform is well-defined. The final
step is the application of the corresponding Laplace transform to the funetion obtained with the help
of theacceleration procedIIre. On this step one obtains the solution to equation in question.

Clearly, this procedure (which allows to prove the existence of resurgent solutions) cannot give
any information about the asymptotic behavior of these solutions at infinity, since the result of the
application of the acceleration procedure is not c1eqarly a function with simple singularities.

4.2 Classification of functions of exponential growth

In this concluding section, we present a classification of functions of exponential growth
in several variables based on the aSYlnptotic expansions oE these functions as x -+ 00.

Due to the discussion above, it is clear that this classification must be based on the
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s~~.(x)

Figure 6.

description of singularities of the corresponding functions in the space of variables
(s, x).

1. Polar singularities (see Figure 6).
In this case, the expansion of the function F (s, x) at its points of singulari ty s =

Sj (x) has the form

m a(j) (x)
F (s, xl, ... , Xn) = F (s, x) = L k k + Fo (s, x) ,

k= 1 [s - Sj (X)]

where the function Fo(S, X) is regular at the point s = Sj (x). Accordingly, the asymp­
totics of the corresponding function f (x) is

2. Ramifying discrete singula1'ities (see Figure 7).
In the case of silnple singularities (this case is the most interesting one for appli­

cations) the asymptotic expansion of the function F (s, x) at points of its singularity
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s = Sj (x) bas the form

Figure 7.

~.
o

a~) (x) ~ [s - Si (x)]k (j)
F (s 1 x) = s _ S. (x) + In (s - Si (x)) LJ k! a k+1 (x) ,

J k=O

and, correspondingly, thc asynlptotic expansion of the initial function f (x) as x --+ 00

IS

(17)

The two types of functions of exponential growth considered above correspond to
tbe case of /unclions with discrete aSY111ptotics. This terminology is inspired by the fact
that asymptotic expansions (16) anel (17) include exponentials e-Sj(x), corresponding to
a discrete set of values of action s = Si (x) (th is is a direct consequence of the discrete
type of singularities of the function F (s, x)). However, it is also possible that the
singulari ties of t he fu nct ion F (s, x) fonn dOInaius of non-zero measure (the so-called
continuous asymptotics). In this latter case aue can also distiuguish two cases.

3. Compact singularities 0/ a 7l0nzero 1neaSU1'e (see Figure 8).
In this case the singulari ties of the function F (s, x) are contained in some compa.ct

set !( of the complex plane C.. In the case when F (s, x) has a univalent character

20



o

Figure 8.

while encircling tbe set I<, tbe asymptotics of the initial function f (x) can be written
down in the form

f (x) ~ Je-6F (s, x) ds

r

of application of an analytic functional deternlined by the function F (s, x), to the
exponential e-$.

In the general case when the function F (s, x) rarnifies around the compact set [(
this asymptotics can be represented as the application of the hyperfunction determined
by F (s, x) to the sarne exponent.ial e-·:

f (x) ~ Je-6F (s, x) ds.

f'

Hoth last cases are characterized by the fact that the asymptotic expansion of the
function f (x) involves continually nlany exponents of the form e-$.

4. General case.
In this case no additional restrictious are posed on the set of singularities of the

function F (s, x). However, oue can show that in this case tbe function f (x) can be
represented as an (infinite) SUln of results of application of different analytic functionals
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to the exponential e-" (see also [17], where the case of functions of power growth is
considered) .
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