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Hausaufgaben

1.

Sei L die Menge aller Punkte (z,y) € RZ, fiir die das Produkt der Entfernungen von
den Punkten (1,0) und (-1, 0) gleich 1 ist. Finden Sie die Punkte (z,y) € L, fiir die

|z| oder |y| maximal ist.

Fiir a,b € R sei 8(a,b) = inf{\/(:n —a)+(y->b)?lz,yeR, zy= 1} . Bestimmen
Sie die maximale offene Teilmenge U C R?, fiir die §|y glatt ist.

Zeigen Sie: Zu jedem A € SL,(R) existiert eine offene Teilmenge V € R™ ™ mit
A € V und eine glatte und bijektive Abbildung f:U — V NSLL(R), wo U eine offene
Teilmenge des R™' =1 ist. Hierbei bezeichnet R®*™ den Vektorraum der n X n—-Matrizen
mit Koeflizienten in R und SL,(R) die Teilmenge aller Matrizen mit Determinante 1.

Sei f € C'(R®) und 4 = {z € R*|f(z) =0}. Gegeben seien ein @ € A und ein
Vektor 79 € R™, sodafl grad f(a) 0 und grad f(a) - 7o = 0. Zeigen Sie: Es existiert
eine stetig differenzierbare Abbildung w:I — A4, wo I ein offenes, den Nullpunkt
enthaltenes Intervall bezeichnet, soda8 w(0) = a und w'(0)(1) = =4 gilt.

Anwesenheitsaufgaben

1.

2.

3.

Seien by, b linear unabhingige Vektoren im R?; bezeichne §(a) den Abstand des Punk-
tes a € R® zur Geraden g = {z € R*|b) -z = by - 2 = 0}, d.h. es sei

&(a) = inf{\/(:r: —a)|z e g} .
Berechnen Sie §(a).
Verallgemeinern Sie die vorstehende Aufgabe von 3 auf den Fall von n Dimensionen.
Finden Sie alle Abbildungen w:I — R? (I eine offenes, die 0 enthaltenes Intervall in
R), sodafl w(0) = 0 und p(w(t),t) = 0 fiir alle ¢+ € I gilt. Hierbei bezeichnet p das
Polynom p = (32% — %)y — (2% + y*)%
Es seien a, b, ¢ reelle Zahlen mit abe # 0, und es sei E die Menge der reellen Tripel

(z,y, z) mit, ar? + by2 + ¢2? = 1. Bestimmen Sie die lokalen Extrema der Abbildung
fiE—R, (z,y,z) 2% +y7 + 22



Explicit growth estimates for solutions
of p—adic differential systems in a regular
singular disk

Yves André

1 Introduction
1.1 Let k be an algebraically closed field of characteristic 0, complete under an absolute

value | | normalized by |p| = p! at some prime p.
We consider the solution of the differential system

(*) xd/ 4,2 = GZ

C

given in the form Z =Y x | where

a) G and Y are ux u matrices whose entries are analytic functions on the unit disk
(without boundary),

b) Y(0) is the unit matrix,

¢) C is a nilpotent matrix.

The couple (Y,C) is uniquely determined by these conditions; in fact C = G(0), and Y
is invertible.

1.2. In this paper, we shall estimate the Taylor coefficients of Y = 2 Y nxn, or what
n20

amounts to the same, the growth of ]|Y||0(r) = |STp |Y(x)|| as r becomes close to 1.
x| <rI
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Let us put,onceforall, v=pu—1+ ordp(p —1)! Our main result is:

Theorem 1. Aggume that ||G|(1) is finite, say [|G|((1) < p®, g € N. Then for every
n € N, one hag the bound:

< p8?. t(n) = 1 <
Yyl < 8% t()*, 4(n) lsgzim_n

When p 2 u, this estimate is essentially best possible.
rollary 1. For any r s close enough {0 1, one has the bound
1 —
) Max([[Y1]g(), 1Y) < p(v/e)Max(1,||Gllo(s)) (108 8/1) -

In particylar, if G ig bounded and if p2 4, then Y and Y have logarithmic growth
of rate #—1 at the boundary.

In fact, it is possible to exhibit a bound similar to (**) (theorem 2) if, instead of assuming

G(0) to be nilpotent, we merely assume that its eigenvalues belong to @ N Ilp.

1.3. A logarithmic behaviour of rate u —1 was first recognized by B. Dwork [6] in his ear-
ly studies of Picard—Fuchs differential systems, as a consequence of the existence of a
gtrong Frobenius structure, and was then expected in much more general situations. With-
out any Frobenius structure assumption, he and P. Robba succeeded in giving explicit
growth estimates of the same kind in the case C = 0, using the very ingenious technique of
"Frobenius factorization" {8]. Similar arguments allowed further A. Adolphson, Dwork and
S. Sperber {1] to handle the extreme opposite case k1 #0.
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Since however this technique seemed to have reached its limits, the present author sug-
gested to turn back to Dwork’s earlier proof, using the existence of a weak Frobenius struc-
ture on every "reasonable" p—adic differential system, as established by C. Christol (cf. e.g.
[5]); this idea provided a new proof in the case C"__1 # 0 [3]. The only difficulty in extend-
ing this argument was the lack of an effective version of the so—called cyclic vector lemma,
i.e. the reduction of a differential system to a differential equation. This gap was fortunate-
ly filled in by Dwork [7], and a suitable refinement of his technique using again Frobenius
transforms, (cf. proposition 2) allows to carry over the proof in the general case. Note how-
ever that in the special cases considered by Adolphson, Dwork, Robba and Sperber, their

results are slightly more precise than ours.

1.4 One motivation in looking for explicit bounds lies in the global theory, i.e. when k is

replaced by a number field K [4] [2]. Recall that for any Taylor series M = 2 Mnxn,
. n20
where Mn are matrices with entries in K, one introduces the following basic invariants
[2]:
p(M) = T 3 log Max([[Mg|....IM[l,)
v
o(M) = T )  log Max([[Mq |l - [[M,]l)

v
where the sum ranges over all places v of k,and ||  is normalized by

Ixly = Ixlg"

v:Qp]/[K:Q] if v|p (p primeor m), for every x € Q.

Thus exp(—p(M)) is just the product of those of the radii of convergence of the v—adic
Taylor series defined by M, which are smaller than one; while ¢{M) — p(M) measures the
growth of a common denominator of MO""'M p 8 01— o In general there is no connec-

tion between p(M) and o(M) (which may be infinite).



15.Let Z=Y x° be a solution of the differential system

(*) xd/ 4, Z =GZ,

and let us now simply assume that the entries of the x x x matrix Y (resp. G) are for-
mal power series with coefficients in K (resp. in a subring of K finitely generated over

7), that det Y(0) # 0, and that C is a nilpotent constant matrix.
Corollary 2. With M = (Y,Y '), one has the inequality
o(M) < p(M) + p—1.
This result was already obtained via more global methods in [2] (erratum), cf. section 7

below.

Concerning the relation between p and o, one may risk the following

Conjecture. Let y € K[[x]] be a G-function (i.e. o(y)<w and y gatisfies a linear

differential equation of order 4 2 1, #y =0 with coefficients in K[x]). Then

i) p(y) £ o(y) L o(y) + -1,

ii) o(y) — p(y) €Q,

iit) if 0 ig an ordinary point for %, and if o(y) = p(y), then y is algebraic over
K(x).

1.6. I thank B. Dwork and G. Christol for their interest in the present work, which has
benefitted very much from the influence of Christol’s article [5] and Dwork’s letter [7]

(which contains a weaker form of lemma 4 below).
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2. Preliminary remarks
2.1 Until section 5, we shall relax condition ¢) into

d) the eigenvalues of C belong to llp, and distinct eigenvalues remain distinct modulo Z.

2.2. Since k is algebraically closed, one can find a sequence of elements a € k,
|a] —'17, and assume, after changing the variable x —— ax, that the entries of G ex-

tend to analytic functions on the unit disk with boundary. Note also that YEI = th , 80
L7e}

that it is enough to deal with Y = Y- Let E0 denote the completion of the ring of ratio-
nal functions without pole in D(0,17) with respect to the Gauss norm, and let E6 be the
quotient field of EO' We assume henceforth that G € M ,u(EO)' For any matrix F in

M (E{), we shall set IF|| = l\lla.:Jt |51 Gauser %0 thet IFll = |IFll (1) if Fe M (Eg).

The map x— xP extends to an isometry of M#(E(’)) (not surjective), which we denote
by ¢. In order to avoid multiple superscripts, we put ¢q = ¢a if q=p? (so that
4, = id).

2.3. Because the eigenvalues of G(0) belong to ﬂp, Dwork—Robba’s theorem applies: the
differential system (*) admits an invertible analytic solution in the generic unit disk [8] (if
GEM ”(k(x)), a completely elementary proof of this fact is given in [2] V 6.1). If in
addition (*) is the differential system associated to a differential equation, the usual
Dwork—Frobenius lemma (cf. e.g. [2] IV 2.1) implies that ||G]| < 1.
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Lemma 1. If G(0) ig nilpotent and ||GJ| < 1, then ||¥,[| <1 for n <p.

Proof: this follows immediately from the general explicit formula for Yn:

Y, = (imp (6= ¢+ n)™1). (Adj U (G(0) + nI,G(O)))(mzn G, . Y_),

where U(D,C) denotes the linear endomorphism B +—— DB —BC of M#(k) (cf. [5] or

2] 1 (13)), and €,... denote the eigenvalues of G(0).

y€ p—1
2.4 The proof of our main results uses a cycle of transformations of the differential system
(*). Let us remind the formalism associated with such transformations (loc.cit.).

We write & for the derivation xd/dx. Let H € GL”(E(’)), and define Z’ by Z=HZ’.
Then Z’ satisfies the differential system

92’ = B[G]Z’ where H[G] := H 'GH — H 1 4H.

Let us assume that H[G] has no pole at 0, and that H[G](0) satisfies condition d) (this
is certainly the case if H(0) is defined and invertible). Let also Y’ denote the uniform
part of Z’, normalized by Y’(0) =I. Then (HY’)_IY € GLp(k[x,l/x]).

Assume next that H(0) is defined and invertible; then Y = HY’ H(O)—l. Furthermore H
is invertible in Mp(EO) if and only if H[G] € Mp(EO)'

2.5. The proof will rely on the existence of a weak Frobenius structure, which we now
recall.



—7-

Proposition 1 (Christol). In_addition to a) b) d), agsume that |[|G|| <1 and that the
eigenvalues of G(0) belong to pZ P Then there exists A € GL ,u(EO) such that

1) A[G] = pF¢, where (F,Yp,F(0)) satisfies conditions a),b),d),
2) Yo = AYS
3) flall = a7l =1

cf. [5], or [2]V.

3. Cydlic vectors
%q N o
3.1. Let V q be a free E, —module with basis €grei€y 1 We use this basis to identify

p—1
the dual V: of Vq with A V ¢ This is an isometric identification if we put the

obvious norms on V q and V;. There is a k—linear action of 8 on Vq via coordinates.

Lemma 2. Let 7> 0 and let (WT);:-:% € V;. Assume that for every v € V guch that
I¥ll = 1, one has || § (1)~ wiev]| < . Then [Iwill € ma'(u— 1)

L
Proof: indeed, fix m and let v = x9 €m for £=0,...,u—1 successively. We get a linear

L . é
system 2(—1)” 1_I(W:;'Eem)qltl =ay £=0,.,p-1,with a,€ qu, |a£| <

By Cramer’s rule, we find
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whose norm is obviously bounded from above by

nMax |(u=1-0! 2 2] n((u-1)) 7L
<y '

¢
Lemma 3. Let F € M (Eq%); we write 8= 0+ 'F and, forany w €V, let
m(w)=w A Bw A..A 81w 4 8w 4 .. A 8¥ 71w, Then for any v E V |I¥]] 1, one
can write J(-1)¥ " m¥(w)B'y = J(-1)# 174t dv, where

boo i - i
= ¥ Abin *AI’JEM(E 4 Ald =1 AV =
i2]

and ||AM]] < Max(y,||F[) .

Proof: by induction, it is clear that one may write B'v in the form

Fv + 2 (—l)i"j(tAi’j) &iv, where the matrices A enjoy all the properties being listed in
isi
the lemma Next, one has
p—=1 i
2 ) niwEv= ¥ ¥ - 1)“‘J‘1(A‘=Jm*(w))a‘, which provides the
i=1 i=0j=0
desired expression for ,u’ik.

¢
3.2. For any w EVq, we denote by B_ the element of M#(qu) defined by
* 1
(B = e, _(Bw).

Lemma 4. For every € > 0, there exists w € Vq such that

i) lIwll < 1
ii) det B_#0



i) | (Bl € Max([IFI™)
iv) (B 51 € () (1)) o Max(, 7|4,

Remark: the last norm is the norm of an element of E6 q

Proof: let r)=| Sgp |det B_|. The existence of w satisfying i) ii) iii) is obvious;
w|<1
wéVq

moreover 7 > 0, and one may choose w 80 that

V) n < (1+¢€)|det B_I.

For every v in the unit ball of Vq, the map x—— det B is analytic on D(0,17)

w+xqv
and bounded by #; therefore

149 —1—i_ ko e
e (det B +xqv) | x=0 = 2(—1)'“ _lmi(w)Blv = z(—l)‘u “u ; &'v is also bounded
by n.
By lemma 2 |,uT| < 17((,:;:—1)!)_1 and by lemma 3 m?(w) = p? - z A]’Jm}((w), which
j<i
gives .
. * -1 i—1
vi) (|3 ()| < m((u—2)t) ™" Max(L,[|F|[#77).

*
| = |mj_1(w)ei_1|
ijl -
| det Bwl

Because | (B;l) , iv) now follows from v) and vi).

Let wé€ \£) be as in the previous lemma, and let Z be a complete solution of 4Z = FZ.
It is readily checked that the rows of BWZ are obtained by successive applications of &.
In other words, the differential system &Z’ = B;I[F]Z’ is associated to a differential
equation. On the other hand, this system may acquire apparent singularities, and the be-

haviour at 0 is no longer clear. But applying Christol’s decomposition into singular factors
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to the matrix B_ € M p(EO)’ one finds that there exists I"' € GL ”(k(x)) such that

i) I[B, [F]] = (B, 'T) {F] € M,(E,)
i) B,,'T € GL,(E,) .
i IT|l = It} = 1. of. [5] or [2)V.

In applications, the quantity of importance is ||Bw|| . ||B;1||; direct application of lemma
4 would give the upper bound (1+6)((p—1)!)_1 Max(l,”F"z‘“_z). As we shall next show,

this bound can be substantially improved on by using ¢l

¢
3.4. Let q be some power of p not less than Max(1,||F|]), and let ¥’ = qF 9, 50 that
|F/|| <1 Let w’ € V, and By, be as in the previous lemma, with respect to F’.

Write w’ =w 3 for some wEVl.

Lemma §. If Bw denotes the matrix constructed in 3.2, one has the relation:

1
-1 ¢
B=[q'. ]B’,B’q=B/.
w .ql— w

Proof: Write Z for a complete solution of the differential system &Z = FZ, so that

h

7’ = %(x%) is a complete solution of 82’ =F’Z’. The i*" row of B Z is g1 ap-

. H
plied to the first row, i.e. 0'—1( 2 e’}‘_l(w)z j). Therefore the i*® row of
=1

¢ g1, Tk Py 1ol bk
B2 =BL2" is p 8T} € (W) N=pTIT() ej_y(w)z)),
=1 j=1
that is the i*® row of Bw/Z’ . Using lemma 4 (with |[|F’|| 1) and lemma 5, one finds
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the bounds ”Bw" < q“_l, ”B;l" < (1+e)((,u—1)!)_1. Note that one may choose
q < p Max(1,||F|]).

Summarizing, and unwinding our definitions, one finds:

Proposition 2. Let F € M (Ey), and let p* > Max(L,|[Fl]). Eor every ¢ > 0, there exists
BE M”(EO) guch that:

1) detB#0

2) (1Bl Bl € (o eppRltHrordylui)

3) the matrix B_l[F] has the form

01,

. , a.EE..
1 aj € 0
ala.2...a.p

4 Jterated weak Frobenius structure
The next result extends proposition 1 to higher powers of ¢, and may be of independent
interest. Recall that v = u-1 + ordp(,u—l)!

Propogition 3. In addition to conditions a)b)d), assume that ||G||<1 and that the

eigenvalues of G(0) belong to qﬂp. Then for every ¢ > 0, there exists A € GL ,u(EO)
such that

1) A[G])= qF¢q, where (F,Yp,F(0)) satisfies conditions a),b),d),
29 Yg= AYﬁq A0y

3)  llAll-IA7 € (1+e)a”

9 [IFf <.
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Proof: Applying proposition 1 to G, we get ApF; € M (Eq) with A,[G] = pF?,

-1
||F1|| <p; to F, we apply proposition 2 (with 1+ € replaced by (1 + €)® ); we next
get rid of the (apparent) singularities of BII[FI] according to 3.3. The resulting
. s a-lénd
transformation matrixis A := A;B, ¢sl"l € GLp(EO)'
-1
If weset G, := B, T,[F,], we have

G, € M (Ey),
1G4l €1 (by the Dwork—Frobenius lemma),
cf = a[q),
—Ay? -1
Yg=av§ 207,

-1
lall- a1 < 1Al a7 < (1+e)* p*.

The proposition follows after a—fold iteration.

5. Growth estimates (nilpotent case)

5.1. We now prove theorem 1.
Remind that G(0) is assumed to be nilpotent, and that we have made the reduction 2.2.
We first apply proposition 2 to G, a =g, and then decompose the resulting matrix B

into singular factors (3.3). We obtain Y = Bl @Ine?, |IB7ire)| <1

-1

B~ T[G]
(Dwork Frobenius) and [[B™T|- [(B™"1) )]l < [IB™'T]-[B™') 7! < (14 €)p8”. A
fortiori [|Y_ || < (1+€)p8” Max ||(Y
oton [l € s Dege
G by B_lF[G] we are reduced to the case [|G]| < 1.

)m" , and by letting € — 0 and replacing
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The conditions of proposition 3 are then fullfilled for any choice of q = p®. We fix n > 0,

and choose a = ordpn, so that q = t(n) with the notation of theorem 1.
Let us write, according to the latter proposition:

Y = AYF(x‘l)A(o)‘l,
with (111 €2, ] AT € (4 xa)”

Equating the o'l Taylor coefficient in both sides, one sees immediately that only the p—1
first Taylor coefficients of Y areinvolved.

Using lemma 1, one deduces that “Yn" < (14+¢€)t(n)”, and it only remains to let € — 0.
5.2. Let us deduce corollary 1 from this. At a first step, assume that G is bounded. Then

the inequality similar to (**) but with ||G||,(1) instead of ||G||4(+) in the right hand

side is a consequence of the following elementary lemma (whose proof is left to the reader):

Lemma 6. For any matrix U with eniries analytic on D(0,17), and any positive congtant
« the following are equivalent:

a) forevery r€[e ™/P1[, ||Ullo(r) < K¥(log 1/)7¥
b) forevery n > vpx, |[U_|| < (£5)*n”.

The general case follows after a change of variable x —— fx, | 8] — s.
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6. Growth estimates (case of rational exponents)

6.1. We now assume that (G,Y,G(0)) satisfies conditions a) b) d), and that the
eigenvalues of G(0) are rational numbers.

We assume moreover that G(0) is in Jordan normal form and that ||Gl|o(1) < 1.

6.2 By the same reduction as in 2.2., one may assume moreover that G €M p(EO)' In
order to apply proposition 3, one has to use shearing transforms to reduce to the case where

the diagonal elements of G(0) are divisible by q.

Explicitly, let D be a diagonal matrix with integer entries 0 < A;; < q, such that D acts
as a homothety on the Jordan blocks of G(0), and such that

7= (D+ G(0)); € qup N[0,q[ for i=1,.. 4, and distinct #,’s remain distinct mod Z.
Because D and G(0) commute, D + G(0) = H[G](0), where H = xD. Moreover
Y= x_DYH[G]xD, H[G]EM p(EO)' ||H[G]|| € 1. However reasoning coefficientwise as
before is not allowed because the letter formula involves negative powers of x; but note

that
i) ||Y||0(r) < r_q"YH[G]"O(r) for 0<r<1.

6.3. One may now apply proposition 3 to H[G]:

¢ _ -
Yiq) = AYpAQ) LRl <1, Fo) =%A(0) LH[G](0)A(0),

i) ¥ ggglloe) € 0+ a1Vl



—15—

On the other hand, the explicit formula for YF being stated in the proof of lemma 1,

B

_ —1)
together with the formula |<| (¢+4n) 1=le 2 (1:11) +111 , shows that
nim )
= n{m

iii) ||YF||0(rq)< Sl>1p( Max ]_E |e—e A4n| )(rqp‘“ /p—l) where ¢;,

n€m, i,y
i=0,..,4-1 denote the eigenvalues of F(0).

Note that € = ni/q, and let N denote a positive common denominator for the ;-

Because of our choice of D, one has the bound:

) | e

iv) Max €. —€.+n SN (1+m)™ .

ndm 1! 97
2

6.4. Let us fix n € ]0 1[; assuming that r> n* | let q be the minimal (integral) power of

p such that 1< r/‘ p H /p—l Weset 7= 1(9) = Sl>lp (14+m) 5271,

Combining iii and iv, we find

2
V) ||YF||0(1'q) < (N’?T)# )

and putting i) ii) v) together, and letting ¢ — 0:

2 2
i) [ Ylly0) < %Y - (Ngr)¥ < (pP/PL ) oY

At least, notice that q < (p2/p)(log 1/n + log p)(log 1/r)_1. Therefore, we have proved
p-1

the following result.

Theorem 2. Let G,Y beasin 6.1, and let N be as before a positive common denominator

2
for the exponents. We fix # € ]0,1]. Then for every r € ]7* ,1[, one has the bound:
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(err)  Max(||Y]] @Yl ) < s(log 1/1)", \

2
k= (5% "L(log 1/n + (p—1) "og p))*(pP/PL- (m)-NY¥".

Remark: a simple application of corollary 1, after the preliminary change of variable

x—— x™, would give a logarithmic growth Ny instead of .

7 Remarks on the global case.

We indicate how to deduce corollary 2 from theorem 1. First of all, we have the inequality
of convergence radii: R _(G) < RV(Y,Y_I). On the other hand, because the entries of G
are "globally bounded", one has R (G) =1, [|G[|;(1) <1, for almost every place v. For
each of these places, one may apply theorem 1 after some change of variable x+—— ax,

la] — R (Y,Y ).

v
One gets a(Y,Y_l) < p(Y,Y_l) + lim E -llilog t(n) ¥ = p(Y,Y_l) + p—1.
n

p(:)Sn

(among the places for which ||G|,(1) £ 1, only those whose residual characteristic is less

than n + 1 can provide a positive summand log |Y_|_).

Note that this corollary was already obtained in [2]V (erratum). In fact, the term
(,u-l)(p2+1) which the main text gives in place of u—1 can be reduced to u — 1, just by
replacing the lines 8-22 on p.108 by: "{(HIMV*)IgCoresé € . (Equv); it follows that
6.4.3.):h (Yo ) <El1ogp| ™ +Lh , (Y -

( ) n( Fv) - n oglplv + P [n/p]( chorm[Ev])
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