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This preprint is a survey of some recent results on the structure of
derived categories obtained by the author in collaboration with Vik-
tor Bekkert and Igor Burban [6, 11, 12]. The origin of this research
was the study of Cohen–Macaulay modules and vector bundles by Gert-
Martin Greuel and myself [27, 28, 29, 30] and some ideas from the work
of Huisgen-Zimmermann and Saoŕın [42]. Namely, I understood that
the technique of “matrix problems,” briefly explained below in subsec-
tion 2.3, could be successfully applied to the calculations in derived
categories, almost in the same way as it was used in the representa-
tion theory of finite-dimensional algebras, in study of Cohen–Macaulay
modules, etc. The first step in this direction was the semi-continuity
theorem for derived categories [26] presented in subsection 2.1. Then
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Bekkert and I proved the tame–wild dichotomy for derived categories
over finite dimensional algebras (see subsection 2.2). At the same time,
Burban and I described the indecomposable objects in the derived cat-
egories over nodal rings (see Section 3) and projective configurations of
types A and Ã (see Section 4). Note that it follows from [23, 29] that
these are the only cases, where such a classification is possible; for all
other pure noetherian rings (or projective curves) even the categories
of modules (respectively, of vector bundles) are wild. In both cases the
description reduces to a special class of matrix problems (“bunches of
chains” or “clans”), which also arises in a wide range of questions from
various areas of mathematics.

I tried to explain the backgrounds, but, certainly, only sketched
proofs, referring for the details to the original papers cited above.

1. Generalities

We first recall some definitions. Let S be a commutative ring. A
S-category is a category A such that all morphism sets A (A,B) are
S-modules and the multiplication of morphisms is S-bilinear. We call
A

• local if every object A ∈ A decomposes into a finite direct sum
of objects with local endomorphism rings;
• ω-local if every object A ∈ A decomposes into a finite of

countable direct sum of objects with local endomorphism rings;
• fully additive if any idempotent morphism in A splits, that is

defines a decomposition into a direct sum;
• locally finite (over S) if all morphism spaces A (A,B) are finitely

generated S-modules. If S is a field, a locally finite category
is often called locally finite dimensional. If, moreover, A has
finitely many objects, we call it finite (over S). Especially, if A
is a S-algebra (i.e. a S-category with one object), we call it a
finite S-algebra.
• If A is fully additive and locally finite over S, we shall call it a

falf (S-) category.

Mostly the ring S will be local and complete noetherian ring. Then,
evidently, every falf S-category is local; moreover, an endomorphism
algebra A (A,A) in a falf category is a finite S-algebra. It is known
that any local (or ω-local) category is fully additive; moreover, a de-
composition into a direct sum of objects with local endomorphism rings
is always unique; in other words, any local (or ω-local) category is a
Krull–Schmidt one, cf. [4, Theorem 3.6].
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For a local category A we denote by -radA its radical, that is the
set of all morphisms f : A → B , where A,B ∈ -ObA , such that no
component of the matrix presentation of f with respect to some (hence
any) decomposition of A and B into a direct sum of indecomposable
objects is invertible. Note that if f /∈ -radA , there is a morphism
g : B → A such that fgf = f and gfg = g . Hence both gf
and fg are nonzero idempotents, which define decompositions A '
A1 ⊕ A2 and B ' B1 ⊕ B2 such that the matrix presentation of

f with respect to these decompositions is diagonal:

(
f1 0
0 f2

)
, and

f1 is invertible. Obviously, if A is locally finite dimensional, then
-radA (A,B) coincide with the set of all morphisms f : A → B such
that gf (or fg ) is nilpotent for any morphism g : B → A .

We denote by C (A ) the category of complexes over A , i.e. that of
diagrams

(A•, d•) : . . . −−−→ An+1
dn+1

−−−→ An
dn−−−→ An−1

dn−1

−−−→ . . . ,

where An ∈ -ObA , dn ∈ A (An, An−1, with relations dndn+1 = 0 for all
n. Sometimes we omit d• denoting this complex by A•. Morphisms
between two such complexes, (A•, d•) and (A′

•, d
′
•) are, by definition,

commutative diagrams of the form

φ• :

. . . −−−→ An+1
dn+1

−−−→ An
dn−−−→ An−1

dn−1

−−−→ . . .

. . . φn+1

y φn

y
yφn−1 . . .

. . . −−−→ A′
n+1

d′
n+1

−−−→ A′
n

d′n−−−→ A′
n−1

d′
n−1

−−−→ . . .

Note that we use “homological” notations (with down indices) instead
of more usual “cohomological” ones (with upper indices). Two mor-
phisms, φ• and ψ•, between (A•, d•) and (A′

•, d
′
•) are called homo-

topic if there are morphisms σn : An → An+1 (n ∈ N) such that
φn − ψn = d′n+1σn + σn−1dn for all n. We denote it by φ ∼ ψ. We also
often omit evident indices and write, for instance, φ − ψ = d′σ + σd.
The homotopy category H (A ) is, by definition, the factor category
C (A )/C∼0, where C∼0 is the ideal of morphisms homotopic to zero.

Suppose now that A is an abelian category. Then, for every com-
plex (A•, d•), its homologies H• = H•(A•, d•) are defined, namely
Hn(A•, d•) = -Kerdn/-Imdn+1. Every morphism φ• as above induces
morphisms of homologies Hn(φ•) : Hn(A•, d•)→ Hn(A′

•, d
′
•). It is con-

venient to consider H•(A •, d•) as a complex with zero differential and
we shall usually do so. Then H• becomes an endofunctor inside C (A ).
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If φ• ∼ ψ•, then H•(φ•) = H•(ψ•), so H• can be considered as a func-
tor H (A ) → C (A ). We call φ• a quasi-isomorphism if H•(φ•) is an
isomorphism. Then we write φ• : (A•, d•) ≈ (A′

•, d
′
•) or sometimes

(A•, d•) ≈ (A′
•, d

′
•) if φ• is not essential. The derived category D (A ) is

defined as the category of fractions (in the sense of [34]) H (A )[Q−1],
where Q is the set of quasi-isomorphisms. In particular, the functor of
homologies H• becomes a functor D (A ) → C (A ). Note that a mor-
phism between two complexes with zero differential is homotopic to
zero if and only if it is zero, and is a quasi-isomorphism if and only if it
is an isomorphism. Moreover, any morphism between such complexes
in the derived category is equal (in this category) to the image of a real
morphism between these complexes in C (A ). Thus we can consider the
category C 0(A ) of complexes with zero differential as a full subcate-
gory of H (A ) or of D (A ). In particular, we can (and shall) identify
every object A ∈ A with the complex A• such that A0 = A, An = 0
for n 6= 0. It gives a full embedding of A into H (A ) or D (A ).

We denote by C−(A ) (respectively, C+(A ), C b(A ) ) the categories
of right bonded (respectively, left bounded, (two-side) bounded) com-
plexes, i.e. such that An = 0 for n � 0 (respectively, n � 0 or both).
Correspondingly, we consider the right (left, two-side) bounded ho-
motopy categories H−(A ),H+(A ),H b(A ) and right (left, two-side)
bounded derived categories D−(A ),D+(A ),D b(A ).

The categories C (A ),H (A ),D (A ), as well as their bounded sub-
categories, are triangulated categories [38]. Namely, the shift maps a
complex A• to the complex A•[1], where An[1] = An−1.

1 A triangle is
a sequence isomorphic (as a diagram in the corresponding category) to
a sequence of the form

A•

f•
−−−→ B•

g•
−−−→ Cf•

h•−−−→ A•[1],

where f• is a morphism of complexes, Cf• is the cone of this morphism,
i.e. Cfn = An−1 ⊕ Bn, the differential Cfn → Cfn−1 = An−2 ⊕ Bn−1 is

given by the matrix

(
−dn−1 0
fn−1 dn

)
; g(b) = (0, b) and h(a, b) = a.

If A = R -Mod, the category of modules over a pre-additive category
R (for instance, over a ring), the definition of the right (left) bounded
derived category can be modified. Namely, D−(R -Mod) is equivalent
to the homotopy category H−(R -Proj), where R -Proj is the category
of projective R -modules. Recall that a module over a pre-additive cat-
egory R is a functor M : R → Ab, the category of abelian groups.
Such a module is projective (as an object of the category R -Mod) if

1Note again the homological (down) indices here.



DERIVED CATEGORIES 5

and only if it is isomorphic to a direct summand of a direct sum of
representable modules A A = A (A, ) (A ∈ -ObA ). Just in the same
way, the left bounded category D +(R -Mod) is equivalent to the homo-
topy category H+(R -Inj), where R -Inj is the category of injective R -
modules. If the category R is noetherian, i.e. every submodule of every
representable module is finitely generated, the right bounded derived
category D−(R -mod), where R -mod denotes the category of finitely
generated R -modules, is equivalent to H−(R -proj), where R -proj is
the category of finitely generated projective R -modules.

In general, it is not true that D b(R -Mod) is equivalent to
H b(R -Proj) (or to H b(R -Inj) ). For instance, a projective resolution
of a module M , which is isomorphic toM in D (R -Mod), can be left un-
bounded. Nevertheless, there is a good approximation of the two-side
derived category by finite complexes of projective modules. Namely,
consider the full subcategory C (N) = C (N)(R )subseteqC b(R -proj) con-
sisting of all bounded complexes P• such that Pn = 0 for n > N
(note that we do not fix the right bound). We say that two mor-
phisms, φ•, ψ• : P• → P ′

•, from C (N) are almost homotopic and

write φ
N
∼ ψ if there are morphisms σn : Pn → P ′

n+1 such that
φn − ψn = d′n+1σn + σn−1dn for all n < N (not necessarily for n = N).

We denote by H (N) = H (N)(A ) the factor category C (N)/C
N
∼ 0, where

C N
∼0

is the ideal consisting of all morphisms almost homotopic to zero.

There are natural functors IN : H (N) → H (N+1). Namely, for a com-
plex P• ∈H (N) find a homomorphism dN+1 : PN+1 → PN , where PN+1

is projective and -ImdN+1 = -KerdN . Then the complex

INP•PN+1
dN+1

−−−→ PN
dN−−−→ PN−1 −−−→ . . .

is uniquely defined up to isomorphism in H (N+1). Moreover, any mor-
phism φ• : P• → P ′

• from H (N) induces a morphism INφ• : INP• →
INP

′
•, which coincide with φ• for all places n ≤ N , and this morphism

is also uniquely defined as a morphism from H (N+1). It gives the func-
tor IN . One can easily verify that actually all these functors are full
embeddings and D b(R -Mod) ' lim

−→N
H (N)(R ). If R is noetherian,

the same is true for the category D b(R -mod) if we replace everywhere
R -Proj by R -proj.

One can also consider the projection EN : H (N+1) → H (N), which
just erases the term PN+1 in a complex P• ∈ H (N+1), and show that
D−(R -Mod) ' lim

←−N
H (N)(R ).

Suppose now that A is a falf category over a complete local noe-
therian ring S. Then, evidently, the bounded categories C b(A ) and
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H b(A ) are also falf categories, hence Krull-Schmidt categories. In [11,
Appendix A] it is proved that the same is true for unbounded categories
C (A ) and H (A ). The proof is based on the following analogue of the
Hensel lemma (cf. [11, Corollary A.5]).

Lemma 1.1. Let Λ be a finite algebra over a local noetherian ring S

with maximal ideal m and a ∈ Λ. For every n ∈ N there is a polynomial
g(x) ∈ S[x] such that

• g(a)2 ≡ g(a) mod mn+1;
• g(e) ≡ e mod mn for every element e of an arbitrary finite

S-algebra such that e2 ≡ e mod mn;
• g(a) ≡ 1 mod m if and only if a is invertible;
• g(a) ≡ 0 mod m if and only if a is nilpotent modulo m.

Theorem 1.2. Suppose that S is a complete local noetherian ring with
maximal ideal m. If C is a falf category over S, the categories C(C)
and K(C) are ω-local (in particular, Krull–Schmidt). Moreover, a
morphism f• : A• → B• from one of these categories belongs to the
radical if and only if all components fngn (or gnfn ) are nilpotent mod-
ulo m for any morphism g• : B• → A• .

Proof. Let now a• be an endomorphism of a complex A• from C(C) .
Consider the sets In ⊂ Z defined as follows: I0 = { 0 } , I2k =
{ l ∈ Z | − k ≤ l ≤ k } and I2k−1 = { l ∈ Z | − k < l ≤ k } . Obviously,⋃

n In = Z , In ⊂ In+1 and In+1 \ In consists of a unique element ln.

Using corollary 1.1, we can construct a sequence of endomorphisms a
(n)
•

such that

• (a
(n)
i )2 ≡ a

(n)
i mod mn;

• a
(n+1)
i ≡ a

(n)
i mod mn;

• a
(n)
i is invertible or nilpotent modulo m if and only if so is ai.

Then one easily sees that setting ui = limn→∞ a
(n)
i , we get an idem-

potent endomorphism u• of A•, such that ui ≡ 0 mod m (ui ≡ 1
mod m) if and only if ai is nilpotent modulo m (respectively ai is in-
vertible).

Especially, if either one of al is neither nilpotent nor invertible mod-
ulo m or one of al is nilpotent modulo m while another one is invertible,
then u• is neither zero nor identity. Hence the complex A• decom-
poses. Thus A• is indecomposable if and only if, for any endomorphism
a• of A• , either a• is invertible or all components an are nilpotent
modulo m. Since all algebras EndAn/m EndAn are finite dimensional,
neither product αβ, where α, β ∈ EndAn and one of them is nilpotent
modulo m, can be invertible. Therefore, the set of endomorphisms a•
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of an indecomposable complex A• such that all components an are
nilpotent modulo m form an ideal R of EndA• and EndA•/R is a
skew field. Hence R = -rad(EndA•) and EndA• is local.

Now we want to show that any complex from C(C) has an indecom-
posable direct summand. Consider an arbitrary complex A• and sup-
pose that A0 6= 0. For any idempotent endomorphism e• of A• at least
one of the complexes e(A•) or (1−e)(A•) has a non-zero component at
the zero place. On the set of all endomorphisms of A• we can intro-
duce a partial ordering by writing e• ≥ e′• if and only if e′• = e•e

′
•e• and

both e0 and e′0 are non-zero. Let e• ≥ e′• ≥ e′′• ≥ . . . be a chain of idem-
potent endomorphisms of A•. As all endomorphism algebras EndAl

are finitely generated S-modules, the sequences el, e
′
l, e

′′
l , · · · ∈ EndAl

stabilize for all l, so this chain has a lower bound (formed by the limit
values of components). By Zorn’s lemma, there is a minimal non-zero
idempotent of A•, which defines an indecomposable direct summand.

Again, since all EndAl are finitely generated, for every n there is a

decomposition A• = B
(n)
• ⊕

⊕rn

i=1Bin• where all Bin• are indecom-

posable and B
(n)
l = 0 for l ∈ In . Moreover, one may suppose that

rn ≤ rm for m > n and Bin• = Bim•, for i ≤ rn . Evidently, it implies
that A• =

⊕r

i=1Bi• where r = supn rn and Bi• = Bin• for i ≤ rn ,
which accomplishes the proof of the Theorem 1.2 for C(C) .

Note now that the endomorphism ring of each complex Bi• in the
category K(C) is a factor-ring of its endomorphism ring in C(C) .
Hence it is either local or zero; in the latter case the image of Bi• in
K(C) is a zero object. Therefore, the claim is also valid for K(C) . �

Since the derived category D−(R -mod) is equivalent to
H−(R -proj), we get the following corollary.

Corollary 1.3. Let S be R be a locally finite S-category (e.g. a fi-
nite S-algebra). Then the derived category D−(R -mod) is ω-local, in
particular, Krull–Schmidt.

2. Finite dimensional algebras

2.1. Semi-continuity. In this section we suppose that S = k is an
algebraically closed field and A is a finite dimensional k-algebra with
radical J. In this case one can define, following the pattern of [28],
the number of parameters for objects of the bounded derived category
D b(A-mod). First of all, every object M in the category A-mod has
a projective cover, i.e. an epimorphism f : P → M , where P is a
projective module, such that -KerfsubseteqJP . Moreover, this pro-
jective cover is unique up to an isomorphism. It implies that every
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right bounded complex of A-modules is isomorphic in the homotopy
category H−(A-mod) to a minimal complex, i.e. such a complex of
projective modules

P• : . . . −−−→ Pn+1
dn+1

−−−→ Pn
dn−−−→ Pn−1

dn−1

−−−→ . . . ,

that -ImdnsubseteqJPn−1 for all n. Consider now the full subcate-

gory H (N)
0 = H (N)

0 (A) of H (N)(A) consisting of minimal complexes.

Then again D b(A-mod) ' lim
←−

H (N)
0 . Moreover, two complexes from

H (N)
0 are isomorphic in D b(A-mod) if and only if they are isomorphic

as complexes. Using this approximation, we can prescribe a vector
rank to every object M• ∈ D b(A-mod). Namely, let {A1, A2, . . . , As }
be a set of representatives of isomorphism classes of indecompos-
able projective A-modules. Every finitely generated projective A-
module P uniquely decomposes as P '

⊕s
i=1 riAi. We call the vector

r(P ) = (r1, r2, . . . , rs), the rank of the projective module P and for ev-
ery vector r = (r1, r2, . . . , rs) set rA =

⊕s

i=1 riAi. Given a finite com-
plex P• of projective modules, we define its vector rank as the function
rk(P•) : Z → Ns mapping n ∈ Z to r(Pi). It is a function with finite
support. Let ∆ be the set of all functions Z→ Ns with finite support.
For every function r• ∈ ∆, let C(r•,A) be the set of all minimal com-
plexes P• such that Pn = rnA (we write rn for r•(n) ). This set can be
considered as an affine algebraic variety over k, namely, C(r•) is isomor-
phic to the subvariaty of the affine space H =

∏
n HomA(Pn,JPn−1)

consisting of all sequences (fn) such that fnfn+1 = 0 for all n. Set also
G(r•) =

∏
n AutPn. It is an affine algebraic groups acting on C(r•) and

its orbits are just isomorphism classes of minimal complexes of vector
rank r•. It is convenient to replace affine varieties by projective ones,
using the obvious fact that the sequences (fn) and (λfn), where λ ∈ k

is a nonzero scalar, belong to the same orbit. So we write H(r•) for
the projective space P(H) and D(r•) for the image in H(r•) of C(r•).
Actually, we exclude the complexes with zero differential, but such a
complex is uniquely defined by its vector rank, so they play a negligible
role in classification problems.

We consider now algebraic families of A-complexes, i.e. flat families
over an algebraic variety X. Such a family is a complex F• = (Fn, dn)
of flat coherent A ⊗ OX -modules. We always assume this complex
bounded and minimal ; the latter means that -Imdn ⊆ JFn−1 for all n.
We also assume that X is connected; it implies that the vector rank
rk(F•(x)) is constant, so we can call it the vector rank of the family F
and denote it by rk(F•) Here, as usually, F(x) = Fx/mxFx, where mx is
the maximal ideal of the ring OX,x. We call a family F• non-degenerate
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if, for every x ∈ X, at least one of dn(x) : Fn(x)→ Fn−1(x) is non-zero.
Having a family F• over X and a regular map φ : Y → X, one gets the
inverse image φ∗(F), which is a family of A-complexes over the variety
Y such that φ∗(F)(y) ' F(φ(y)). If F• is non-degenerate, so is φ∗(F).
Given an ideal I ⊆ J, we call a family F• an I-family if -Imdn ⊆ IFn−1

for all n. Then any inverse image φ∗(F) is an I-family as well. Just as
in [29], we construct some “almost versal” non-degenerate I-families.

For each vector r = (r1, r2, . . . , rs) denote I(r, r′) = HomA(rA, I ·
r′A), where I is an ideal contained in J. Fix a vector rank of bounded
complexes r• = (rk) ∈ ∆ and set H(r•, I) =

⊕
k I(rk, rk−1). Con-

sider the projective space P(r•, I) = P(H(r•, I)) and its closed subset
D(r•, I) ⊆ P consisting of all sequences (hk) such that hk+1hk = 0 for all
k. Because of the universal property of projective spaces [40, Theorem
II.7.1], the embedding D(r•, I)→ P(r•, I) gives rise to a non-degenerate
I-family V• = V•(r•, I):

(1) V• : Vn
dn−−−→ Vn−1

dn−1

−−−→ . . . −→ Vm,

where Vk = OD(r•,I)(n− k)⊗ rkA for all m ≤ k ≤ n. We call V•(r•, I)
the canonical I-family of A-complexes over D(r•, I). Moreover, regular
maps φ : X → D(r•, I) correspond to non-degenerate I-families F• with
Fk = 0 for k > n or k < m and Fk = L⊗(n−k)⊗rkA for some invertible
sheaf L over X. Namely, such a family can be obtained as φ∗(V•) for a
uniquely defined regular map φ. Moreover, the following result holds,
which shows the “almost versality” of the families V•(r•, I).

Proposition 2.1. For every non-degenerate family of I-complexes F•

of vector rank r• over an algebraic variety X, there is a finite open
covering X =

⋃
j Uj such that the restriction of F• onto each Uj is

isomorphic to φ∗
jV•(r•, I) for a regular map φj : Uj → D(r•, I).

Proof. For each x ∈ X there is an open neighbourhood U 3 x such that
all restrictions Fk|U are isomorphic to OU⊗rkA; so the restriction F•|U
is obtained from a regular map U → D(r•, I). Evidently it implies the
assertion. �

Note that the maps φj are not canonical, so we cannot glue them
into a “global” map X → D(r•, I).

The group G = G(r•) =
∏

k Aut(rkA) acts on H(r•, I): (gk) · (hk) =
(gk−1hkg

−1
k ). It induces the action of G(r•) on P(R•, I) and on D(r•, I).

The definitions immediately imply that V•(r•, I)(x) ' V•(r•, I)(x
′)

(x, x′ ∈ D) if and only if x and x′ belong to the same orbit of G.
Consider the sets

Di = Di(r•, I) = {x ∈ D | dimGx ≤ i } .
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It is known that they are closed (it follows from the theorem on dimen-
sions of fibres, cf. [40, Exercise II.3.22] or [48, Ch. I, § 6,Theorem 7]).
We set

par(r•, I,A) = max
i
{dim Di(r•, I)− i }

and call this integer the parameter number of I-complexes of vector
rank r•. Obviously, if I ⊆ I′, then par(r•, I,A) ≤ par(r•, I

′,A). Espe-
cially, the number par(r•,A) = par(r•,J,A) is the biggest one.

Proposition 2.1, together with the theorem on the dimensions of
fibres and the Chevalley theorem on the image of a regular map (cf.
[40, Exercise II.3.19] or [48, Ch. I, § 5,Theorem 6]), implies the following
result.

Corollary 2.2. Let F• be an I-family of vector rank r• over a variety
X. For each x ∈ X set Xx = {x′ ∈ X | F•(x

′) ' F•(x) } and denote

Xi = {x ∈ X | dimXx ≤ i } ,

par(F•) = max
i
{dimXi − i } .

Then all subsets Xx and Xi are constructible (i.e. finite unions of
locally closed sets) and par(F•) ≤ par(r•, I,A).

Note that the bases D(r•, I) of our almost versal families are projec-
tive, especially complete varieties. We shall exploit this property while
studying the behaviour of parameter numbers in families of algebras.

A (flat) family of algebras over an algebraic variety X is a sheaf
A of OX -algebras, which is coherent and flat (thus locally free)
as a sheaf of OX-modules. For such a family and every sequence
b = (bm, bm+1, . . . , bn) one can define the function par(b,A, x) =
par(b,A(x)). (Recall that here bk denote the ranks of free modules
in a free complex.) Our main result is the upper semi-continuity of
these functions.

Theorem 2.3. Let A be a flat family of finite dimensional algebras
over an algebraic variety X. For every vector b = (bm, bm+1, . . . , bn)
the function par(b,A, x) is upper semi-continuous, i.e. all sets

Xj = {x ∈ X | par(b,A, x) ≥ j }

are closed.

Proof. We may assume that X is irreducible. Let K be the field of
rational functions on X. We consider it as a constant sheaf on X. Set
J = -rad(A⊗OX

K) and J = R ∩ A. It is a sheaf of nilpotent ideals.
Moreover, if ξ is the generic point of X, the factor algebra A(ξ)/J (ξ)
is semisimple. Hence there is an open set U ⊆ X such that A(x)/J (x)
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is semisimple, thus J (x) = -radA(x) for every x ∈ U . Therefore
par(b,A, x) = par(b,J (x),A(x)) for x ∈ U ; so Xj = Xj(J ) ∪ X ′

j,
where

Xj(J ) = { x ∈ X | par(b,J (x),A(x)) ≥ j }

and X ′ = X \ U is a closed subset in X. Using noetherian induction,
we may suppose that X ′

j is closed, so we only have to prove that Xj(J )
is closed too.

Consider the locally free sheaf H =
⊕n

k=m+1Hom(bkA, bk−1J ) and
the projective space bundle P(H) [40, Section II.7]. Every point h ∈
P(H) defines a set of homomorphisms hk : bkA(x) → bk−1J (x) (up to
a homothety), where x is the image of h in X, and the points h such
that hkhk+1 = 0 form a closed subset D(b,A) ⊆ P(H). We denote
by π the restriction onto D(b,A) of the projection P(H) → X; it is
a projective, hence closed map. Moreover, for every point x ∈ X the
fibre π−1(x) is isomorphic to D(b,A(x),J (x)). Consider also the group
variety G over X: G =

∏n
k=m GLbk

(A). There is a natural action of
G on D(b,A) over X, and the sets Di = { z ∈ D(b,A) | dimGz ≤ i }
are closed in D(b,A). Therefore the sets Zi = π(Di) are closed in X,
as well as Zij = { x ∈ Zi | dim π−1(x) ≥ i+ j }. But Xj(J ) =

⋃
i Zij,

thus it is also a closed set. �

2.2. Derived tame and wild algebras. We are going to define de-
rived tame and derived wild algebras. To do it, we consider families of
complexes with non-commutative bases.

Definition 2.4. (1) Let R be a k-algebra. A family of A-
complexes based on R is a complex of finitely generated projec-
tive A⊗Rop-modules P•. We denote by C (N)(A,R) the cate-
gory of all bounded families with Pn = 0 for n > N (again we
do not prescribe the right bound). For such a family P• and an
R-module L we denote by P•(L) the complex (Pn⊗RL, dn⊗1).
If L is finite dimensional, P•(L) ∈ C (N)(A) = C (N)(A, k).

Obviously, if the algebra R is affine, i.e. commutative,
finitely generated over k and without nilpotents, such families
coincide in fact with families of complexes over the algebraic va-
riety SpecR. Especially, if R is also connected (i.e. contains no
nontrivial idempotents), the vector rank of such a family rk(P•)
is defined as rk(P• ⊗R S), where S is a simple R-module (no
matter which one).

(2) We call a family P• strict if for every finite dimensional R-
modules L, L′

(a) P•(L) ' P•(L
′) if and only if L ' L′;
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(b) P•(L) is indecomposable if and only if so is L.
(3) We call A derived wild if it has a strict family of complexes over

every finitely generated k-algebra R.

The following useful fact is well known.

Proposition 2.5. An algebra A is derived wild if and only if it has a
strict family over one of the following algebras:

• free algebra k〈x, y〉 in two variables;
• polynomial algebra k[x, y] in two variables;
• power series algebra k[[x, y]] in two variables.

Definition 2.6. (1) A rational algebra is a k-algebra k[t, f(t)−1]
for a non-zero polynomial f(t). A rational family of A-
complexes is a family over a rational algebra R.

Equivalently, a rational family is a family over an open sub-
variety of the affine line.

(2) An algebra A is called derived tame if there is a set of rational
families of bounded A-complexes P such that:
(a) for every vector rank r• ∈ ∆ the set P(r•) =
{P• ∈ P | rk(P•) = r• } is finite.

(b) for every r• all indecomposable complexes from C(r•,A),
except finitely many of them (up to isomorphism), are iso-
morphic to a complex P•(L) for some P• ∈ P and some
finite dimensional L.

We call P a parameterizing set of A-complexes.

These definitions do not formally coincide with other definitions of
derived tame and derived wild algebras, for instance, those proposed
in [36, 37], but all of them are evidently equivalent. It is obvious (and
easy to prove, like in [20]) that neither algebra can be both derived
tame and derived wild. The following result (“tame–wild dichotomy
for derived categories”) has recently been proved by V.Bekkert and the
author [6].

Theorem 2.7. Every finite dimensional algebra over an algebraically
closed field is either derived tame or derived wild.

2.3. Sliced boxes. The proof of Theorem 2.7 rests on the technique of
representations of boxes (“matrix problems”). We recall now the main
related notions. A box is a pair A = (A ,V ), where A is a category and
V is an A -coalgebra, i.e. an A -bimodule supplied with comultiplication
µ : V → V ⊗A V and counit ι : V → A , which are homomorphisms of
A -bimodules and satisfy the usual coalgebra conditions

(µ⊗ 1)µ = (1⊗ µ)µ, il(ι⊗ 1)µ = ir(1⊗ ι)µ = Id,
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where il : A ⊗A V ' V and ir : V ⊗A A ' V are the natural iso-
morphisms. The kernel V = -Kerι is called the kernel of the box. A
representation of such a box in a category C is a functor M : A → C .
Given another representation N : A → C , a morphism f : M → N is
defined as a homomorphism of A -modules V ⊗A M → N , The compo-
sition gf of f : M → N and g : N → L is defined as the composition

V ⊗A M
µ⊗1
−−−→ V ⊗A V ⊗A M

1⊗f
−−−→ V ⊗A N

g
−−−→ L,

while the identity morphism IdM of M is the composition

V ⊗A M
ι⊗1
−−−→ A ⊗A M

il−−−→ M.

Thus we obtain the category of representations Rep(A,C ). If C = vec,
the category of finite dimensional vector spaces, we just write Rep(A).
If f is a morphism and γ ∈ V (a, b), we denote by f(γ) the morphism
f(b)(γ ⊗ ) : M(a) → N(a). A box A is called normal (or group-like)
if there is a set of elements ω = {ωa ∈ V (a, a) | a ∈ -ObA } such that
ι(ωa) = 1a and µ(ωa) = ωa⊗ωa for every a ∈ -ObA . In this case, if f is
an isomorphism, all morphisms f(ωa) are isomorphisms M(a) ' N(a).
This set is called a section of A. For a normal box, one defines the
differentials ∂0 : A → V and ∂1 : V → V ⊗A V setting

∂0(α) = αωa − ωbα for α ∈ A (a, b);

∂1(γ) = µ(γ)− γ ⊗ ωa − ωb ⊗ γ for γ ∈ V (a, b).

Usually we omit indices, writing ∂α and ∂γ.
Recall that a free category kΓ, where Γ is an oriented graph, has the

vertices of Γ as its objects and the paths from a to b (a, b being two
vertices) as a basis of the vector space kΓ(a, b).If Γ has no oriented
cycles, such a category is locally finite dimensional. A semi-free cat-
egory is a category of fractions kΓ[S−1], where S = { gα(α) |α ∈ L }
and L is a subset of the set of loops in Γ (called marked loops). The
arrows of Γ are called the free (respectively, semi-free) generators of
the free (semi-free) category. A normal box A = (A ,V ) is called free
(semi-free) if such is the category A , moreover, the kernel V = -Kerι
of the box is a free A -bimodule and ∂α = 0 for each marked loop α. A
set of free (respectively, semi-free) generators of such a box is a union
S = S0 ∪ S1, where S0 is a set of free (semi-free) generators of the
category A and S1 is a set of free generators of the A -bimodule V .

We call a category A trivial if it is a free category generated by a
trivial graph (i.e. one with no arrows); thus A (a, b) = 0 if a 6= b and
A (a, a) = k. We call A minimal, if it is a semi-free category with a
set of semi-free generators consisting of loops only, at most one loop at
each vertex. Thus A (a, b) = 0 again if a 6= b, while A (a, a) is either
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k or a rational algebra. We call a normal box A = (A ,V ) so-trivial
if A is trivial, and so-minimal if A is minimal and all its loops α are
minimal too (i.e. with ∂α = 0).

A layered box [15] is a semi-free box A = (A ,V ) with a section ω,
a set of semi-free generators S = S0 ∪ S1 and a function ρ : S0 → N

satisfying the following conditions:

• A morphism φ from Rep(A) is an isomorphism if all maps φ(ωa)
(a ∈ -ObA )) are isomorphisms.
• There is at most one marked loops at each vertex.
• For each α ∈ S0 the differential ∂α belongs to the Aα-

sub-bimodule of V generated by S1, where Aα is the semi-
free subcategory of A with the set of semi-free generators
{ β ∈ S0 | ρ(β) < rho(α) }.

Obviously, we may suppose, without loss of generality, that ρ(α) = 0
for every marked loop α. The set {ω,S, ρ } is called a layer of the box
A.

In [21] (cf. also [15, 25]) the classification of representations of an
arbitrary finite dimensional algebra was reduced to representations of
a free layered box. To deal with derived categories we have to consider
a wider class of boxes. First, a factor-box of a box A = (A ,V ) modulo
an ideal I ⊆ A is defined as the box A/I = (A/I ,V/(IV + VI )
(with obvious comultiplication and counit). Note that if A is normal,
so is A/I .

Definition 2.8. A sliced box is a factor-box A/I , where A = (A ,V )
is a free layered box such that the set of its objects V = -ObA is a
disjoint union V =

⋃
i∈Z

Vi so that the following conditions hold:

• A (a, a) = k for each object a ∈ A ;
• A (a, b) = 0 if a ∈ Vi, b ∈ Vj with j > i;
• V (a, b) = 0 if a ∈ Vi, b ∈ Vj with i 6= j.

The partition V =
⋃

i Vi is called a slicing.

Certainly, in this definition we may assume that the elements of the
ideal I are linear combinations of paths of length at least 2. Otherwise
we can just eliminate one of the arrows from the underlying graph
without changing the factor A/I .

Note that for every representation M ∈ Rep(A), where A is a
free (semi-free, sliced) box with the set of objects V, one can con-
sider its dimension Dim(M), which is a function V → N, namely
Dim(M)(a) = dimM(a). We call such a representation finite dimen-
sional if its support suppM = { a ∈ V |M(a) 6= 0 } is finite and denote
by rep(A) the category of finite dimensional representations. Having
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these notions, one can easily reproduce the definitions of families of
representations, especially strict families, wild and tame boxes; see
[21, 25] for details. The following procedure, mostly modeling that
of [21], allows to model derived categories by representations of sliced
boxes.

Let A be a finite dimensional algebra, J be its radical. As far as
we are interested in A-modules and complexes, we can replace A by
a Morita equivalent reduced algebra, thus suppose that A/J ' ks

[31]. Let 1 =
∑s

i=1 ei, where ei are primitive orthogonal idempo-
tents; set Aji = ejAei and Jji = ejJei; note that Jji = Aji if
i 6= j. We denote by S the trivial category with the set of objects
{ (i, n) |n ∈ N, i = 1, 2, . . . , s } and consider the S -bimodule J such
that

J
(
(i, n), (j,m)

)
=

{
0 if m 6= n− 1,

J∗
ji if m = n− 1.

Let B = S [J ] be the tensor category of this bimodule; equivalently,
it is the free category having the same set of objects as S and the union
of bases of all J

(
(i, n), (j,m)

)
as a set of free generators. Denote by

U the S -bimodule such that

U
(
(i, n), (j,m)

)
=

{
0 if n 6= m,

A∗
ji if n = m

and set W̃ = B⊗S U⊗S B . Dualizing the multiplication Akj⊗Aji →
Aki, we get homomorphisms

λr :B → B ⊗S W̃ ,

λl :B → W̃ ⊗S B ,

µ̃ :W̃ → W̃ ⊗S W̃ .

In particular, µ̃ defines on W̃ a structure of B -coalgebra. Moreover,

the sub-bimodule W 0 generated by -Im(λr − λl) is a coideal in W̃ , i.e.

µ̃(W 0) ⊆ W 0 ⊗B W̃ ⊕ W̃ ⊗B W 0. Therefore, W = W̃/W 0 is also a
B -coalgebra, so we get a box B = (B ,W ). One easily checks that it
is free and triangular.

Dualizing multiplication also gives a map

(2) ν : J∗
ji →

s⊕

k=1

J∗
jk ⊗ J∗

ki.

Namely, if we choose bases {α } , {β } { γ } in the spaces, respectively,
Jji, Jjk, Jki, and dual bases {α∗ } , {β∗ } , { γ∗ } in their duals, then



16 YURIY A. DROZD

β∗⊗γ∗ occurs in ν(α∗) with the same coefficient as α occurs in βγ. Note
that the right-hand space in (2) coincide with each B

(
(i, n), (j, n−2)

)
.

Let I be the ideal in B generated by the images of ν in all these
spaces and D = B/I = (A ,V ), where A = B/I , V = W/(IW +
WI ). If necessary, we write D(A) to emphasize that this box has been
constructed from a given algebra A. Certainly, D is a sliced box, and
the following result holds.

Theorem 2.9. The category of finite dimensional representations
rep(D(A)) is equivalent to the category C b

min(A) of bounded minimal
projective A-complexes.

Proof. Let Ai = Aei; they form a complete list of non-isomorphic in-
decomposable projective A-modules; set also Ji = -radAi = Jei. Then
HomA(Ai, Jj) ' Jji. A representation M ∈ rep(D) is given by vector
spaces M(i, n) and linear maps

Mji(n) : J∗
ji = A

(
(i, n), (j, n− 1)

)
→ Hom

(
M(i, n),M(j, n − 1)

)

subject to the relations

(3)

s∑

k=1

m
(
Mjk(n)⊗Mki(n+ 1)

)
ν(α) = 0

for all i, j, k, n and all α ∈ Jji, where m denotes the multiplication of
maps

Hom
(
M(k, n),M(j, n− 1)

)
⊗ Hom

(
M(i, n + 1),M(k, n)

)
→

→ Hom
(
M(i, n + 1),M(j, n− 1)

)
.

For such a representation, set Pn =
⊕s

i=1Ai⊗M(i, n). Then -radPn =⊕n
i=1 Ji ⊗M(i, n) and

HomA(Pn, -radPn−1) '
⊕

i,j

HomA

(
Ai ⊗M(i, n), Jj ⊗M(j, n− 1)

)
'

'
⊕

ij

Hom
(
M(i, n),HomA

(
Ai, Jj ⊗M(j, n− 1)

))
'

'
⊕

ij

M(i, n)∗ ⊗ Jji ⊗M(j, n − 1) '

'
⊕

ij

Hom
(
J∗

ji,Hom
(
M(i, n),M(j, n − 1)

))
.

Thus the set {Mji(n) | i, j = 1, 2, . . . , s } defines a homomorphism dn :
Pn → Pn−1 and vice versa. Moreover, one easily verifies that the condi-
tion (3) is equivalent to the relation dndn+1 = 0. Since every projective
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A-module can be given in the form
⊕s

i=1Ai ⊗ Vi for some uniquely
defined vector spaces Vi, we get a one-to-one correspondencebetween
finite dimensional representations of D and bounded minimal com-
plexes of projective A-modules. In the same way one also establishes
one-to-one correspondencebetween morphisms of representations and
of the corresponding complexes, compatible with their multiplication,
which accomplishes the proof. �

Corollary 2.10. An algebra A is derived tame (derived wild) if so is
the box D(A).

2.4. Proof of Dichotomy. Now we are able to prove Theorem 2.7.
Namely, according to Corollary 2.10, it follows from the analogous re-
sult for sliced boxes.

Theorem 2.11. Every sliced box is either tame or wild.

Actually, just as in [21] (see also [15, 25]), we shall prove this theorem
in the following form.

Theorem 2.11a. Suppose that a sliced box A = (A ,V ) is not wild. For
every dimension D of its representations there is a functor FD : A →
M , where M is a minimal category, such that every representation
M : A → vec of A of dimension Dim(M) ≤ D is isomorphic to
the inverse image F ∗N = N ◦ F for some functor N : M → vec.
Moreover, F can be chosen strict, which means that F ∗N ' F ∗N ′

implies N ' N ′ and F ∗N is indecomposable if so is N .

Remark. We can consider the induced box AF = (M ,M ⊗A V ⊗A

M ). It is a so-minimal box, and F ∗ defines a full and faithful functor
rep(AF ) → rep(A). Its image consists of all representations M : A →
vec that factorize through F .

Proof. As we fix the dimension D, we may assume that the set of
objects is finite (namely, supp D). Hence the slicing V =

⋃
i Vi (see

Definition 2.8) is finite too: V =
⋃m

i=1 Vi and we use induction by m.
If m = 1, A is free, and our claim follows from [21, 15]. So we may
suppose that the theorem is true for smaller values of m, especially, it
is true for the restriction A′ = (A ′,V ′) of the box A onto the subset
V′ =

⋃m
i=2 Vi. Thus there is a strict functor F ′ : A ′ →M , where M is

a minimal category, such that every representation of A′ of dimension
smaller than D is of the form F ′∗N for N : M → vec. Consider now

the amalgamation B = A
⊔A ′

M and the box B = (B ,W ), where
W = B ⊗A V ⊗A B . The functor F ′ extends to a functor F : A → B
and induces a homomorphism of A-bimodules V → W ; so it defines a



18 YURIY A. DROZD

functor F ∗ : rep(B) → rep(A), which is full and faithful. Moreover,
every representation of A of dimension smaller than D is isomorphic to
F ∗N for some N , and all possible dimensions of such N are restricted
by some vector b. Therefore, it is enough to prove the claim of the
theorem for the box B.

Note that the category B is generated by the loops from M and the
images of arrows from A (a, b) with b ∈ V1 (we call them new arrows).
It implies that all possible relations between these morphisms are of the
form

∑
β βgβ(α) = 0, where α ∈ B (a, a) is a loop (necessarily minimal,

i.e. with ∂α = 0), gβ are some polynomials, and β runs through the
set of new arrows from a to b for some b ∈ V1. Consider all of these
relations for a fixed b; let them be

∑
β βgβ,k(α) = 0 (k = 1, . . . , r).

Their coefficients form a matrix
(
gβ,k(α)

)
. Using linear transformations

of the set { β } and of the set of relations, we can make this matrix
diagonal, i.e. make all relations being βfβ(α) = 0 for some polynomials
fβ. If one of fβ is zero, the box B has a sub-box

aα 88

β
// b ,

with ∂α = ∂β = 0, which is wild; hence B and A are also wild.
Otherwise, let f(α) 6= 0 be a common multiple of all fβ(α), Λ =
{λ1, λ2, . . . , λr } be the set of roots of f(α). If N ∈ rep(B) is such
that N(α) has no eigenvalues from Λ, then f(N(α)) is invertible; thus
N(β) = 0 for all β : a → b. So we can apply the reduction of the
loop α with respect to the set Λ and the dimension d = b(a), as in
[21, Propositions 3,4] or [25, Theorem 6.4]. It gives a new box that
has the same number of loops as B, but the loop corresponding to α
is “isolated,” i.e. there are no more arrows starting or ending at the
same vertex. In the same way we are able to isolate all loops, obtaining
a semi-free layered box C and a morphism G : B → C such that G∗

is full and faithful and all representations of B of dimensions smaller
than b are of the form G∗L. As the theorem is true for semi-free boxes,
it accomplishes the proof. �

Remark. Applying reduction functors, like in the proof above, we can
also extend to sliced boxes (thus to derived categories) other results
obtained before for free boxes. For instance, we mention the following
theorem, quite analogous to that of Crawley-Boevey [17].

Theorem 2.12. If an algebra A is derived tame, then, for any vector
rank r• ∈ ∆ = (rn |n ∈ Z), there is at most finite set of generic A-
complexes of endolength r•, i.e. such indecomposable minimal bounded
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complexes P• of projective A-modules, not all of which are finitely gen-
erated, that length

E
(Pn) = rn for all n, where E = EndA(P•).

Its proof reproduces again that of [17], with obvious changes neces-
sary to include sliced boxes into consideration.

2.5. Deformations of derived tame algebras. Combining the
semi-continuity properties with tame–wild dichotomy, we can prove the
results on deformations of derived tame algebras, analogous to those of
[28, 35]. Note first the following easy observation.

Proposition 2.13. Let A be a finite dimensional algebra. For every
vector r = (r1, r2, . . . , rs) set |r| =

∑s
i=1 ri. For every vector rank

r• ∈ ∆(A) set |r•| =
∑

n rn.

(1) A is derived tame if and only if par(r•,A) ≤ |r•| for every
r• ∈ ∆.

(2) A is derived wild if and only if there is a vector rank r• such
that par(kr•,A) ≥ k2 for every k ∈ N.

Proof. The necessity of these conditions follows from the definitions
of derived tameness and wildness. Certainly, they exclude each other.
Since every algebra is either derived tame or derived wild, the suffi-
ciency follows. �

This proposition together with Theorem 2.3 immediately implies the
following result.

Corollary 2.14. For a family of algebras A over X denote

Xtame = { x ∈ X | A(x) is derived tame } ,

Xwild = { x ∈ X | A(x) is derived wild } .

Then Xtame is a countable intersection of open subsets and Xwild is a
countable union of closed subsets.

Proof. By Theorem 2.3 the set Z(r•) = {x ∈ X | par(r•,A) ≤ |r•| } is
open. But Xtame =

⋂
r
Z(r) and hence Xwild =

⋃
r
(X \ Z(r)). �

The following conjecture seems very plausible, though even its ana-
logue for usual tame algebras has not yet been proved. (Only for rep-
resentation finite algebras such a result was proved in [33].)

Conjecture 2.15. For any (flat) family of algebras over an algebraic
variety X the set Xtame is open.

Recall that an algebra A is said to be a (flat) degeneration of an
algebra B, and B is said to be a (flat) deformation of A, if there is
a (flat) family of algebras A over an algebraic variety X and a point



20 YURIY A. DROZD

p ∈ X such that A(x) ' B for all x 6= p, while A(p) ' A. One
easily verifies that we can always assume X to be a non-singular curve.
Corollary 2.14 obviously implies

Corollary 2.16. Suppose that an algebra A is a (flat) degeneration of
an algebra B. If B is derived wild, so is A. If A is derived tame, so
is B.

If we consider non-flat families, the situation can completely change.
The reason is that the dimension is no more constant in these families.
That is why it can happen that such a “degeneration” of a derived
wild algebra may become derived tame, as the following example due
to Brüstle [10] shows.

Example 2.17. There is a (non-flat) family of algebras A over an
affine line A1 such that all of them except A(0) are isomorphic to the
derived wild algebra B given by the quiver with relations

•

•
α // •

β1
// •

γ1

OO

γ2

��

•
β2

oo β1α = 0,

•

while A(0) is isomorphic to the derived tame algebra A given by the
quiver with relations

(4)

•

•
α // •

ξ1

@@�������� β1
// •

γ1

OO

γ2

��

•
β2

oo

ξ2����
��

��
��

β1α = γ1β1 = γ2β2 = 0.

•

Namely, one has to define A(λ) as the factor algebra of the path al-
gebra of the quiver as in (4), but with the relations β1α = 0, γ1β1 =
λξ1, γ2β2 = λξ2. Note that dimA = 16 and dimB = 15, which shows
that this family is not flat.

Actually, in such a situation the following result always holds.

Proposition 2.18. Let A be a family (not necessarily flat) of algebras
over a non-singular curve X such that A(x) ' B for all x 6= p, where p
is a fixed point, while A(p) ' A. Then there is a flat family ]mathcalB
over X such that ]mathcalB(x) ' B for all x 6= p and ]mathcalB(p) '
A/I for some ideal I.
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Proof. Note that the restriction of A onto U = X \ { p } is flat, since
dimA(x) is constant there. Let n = dim B, Γ be the quiver of the
algebra B and G = kΓ be the path algebra of Γ. Consider the Grass-
mannian Gr(n,G), i.e. the variety of subspaces of codimension n of
G. The ideals form a closed subset Alg = Alg(n,G) ⊂ Gr(n,G).
The restriction of the canonical vector bundle V over the Grassman-
nian onto Alg is a sheaf of ideals in G = G ⊗ OAlg, and the factor
F = G/V is a universal family of factor algebras of G of dimension n.
Therefore there is a morphism φ : U → Alg such that the restriction
of A onto U is isomorphic to φ∗(F). Since Alg is projective and X is
non-singular, φ can be continued to a morphism ψ : X → Alg. Let
]mathcalB = ψ∗(F); it is a flat family of algebras over X. Moreover,
]mathcalB coincides with A outside p. Since both of them are coher-
ent sheaves on a non-singular curve and ]mathcalB is locally free, it
means that ]mathcalB ' A/T , where T is the torsion part of A, and
]mathcalB(p) ' A(p)/T (p). �

Corollary 2.19. If a degeneration of a derived wild algebra is derived
tame, the latter has a derived wild factor algebra.

In the Brüstle’s example 2.17, to obtain a derived wild factor algebra
of A, one has to add the relation ξ1α = 0, which obviously holds in B.

By the way, as a factor algebra of a tame algebra is obviously tame
(which is no more true for derived tame algebras!), we get the following
corollary (cf. also [18, 29]).

Corollary 2.20. Any deformation (not necessarily flat) of a tame al-
gebra is tame. Any degeneration of a wild algebra is wild.

3. Nodal rings

3.1. Backström rings. We consider a class of rings, which generalizes
in a certain way local rings of ordinary multiple points of algebraic
curves. Following the terminology used in the representations theory
of orders, we call them Backström rings. In this section we suppose
all rings being noetherian and semi-perfect in the sense of [3]; the
latter means that all idempotents can be lifted modulo radical, or,
equivalently, that every finitely generated module M has a projective
cover, i.e. such an epimorphism f : P →M , where P is projective and
-Kerfsubseteq-radP . Hence, just as for finite dimensional algebras, the
derived category D b(A-mod) is equivalent to the homotopy category of
minimal complexes, i.e. such complexes of finitely generated projective
modules

. . . −−−→ Pn+1
dn+1

−−−→ Pn
dn−−−→ Pn−1 −−−→ . . .
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that -Imdnsubseteq-radPn−1 for all n.

Definition 3.1. A ring A (noetherian and semi-perfect) is called a
Backström ring if there is a hereditary ring HsupseteqA (also semi-
perfect and noetherian) and a (two-sided, proper) H-ideal JA such that
both R = H/J and S = A/J are semi-simple.

For Backström rings there is a convenient way to the calculations in
derived categories. Recall that for a hereditary ring H every object C•

from D−(H-mod) is isomorphic to the direct sum of its homologies.
Especially, any indecomposable object from D−(H-mod) is isomorphic
to a shift N [n] for some H-module N , or, the same, to a “short” com-

plex 0 → P ′ α
−→ P → 0, where P and P ′ are projective modules and

α is a monomorphism with -Imαsubseteq-radP (maybe P ′ = 0). Thus
it is natural to study the category D−(A-mod) using this information
about D−(H-mod) and the functor T : D−(A-mod) → D−(H-mod)
mapping C• to H ⊗A C•. (Of course, we mean here the left derived
functor of ⊗, but when we consider complexes of projective modules,
it restricts indeed to the usual tensor product.)

Consider a new category T = T (A) (the category of triples) defined
as follows:

• Objects of T are triples (A•, B•, ι), where
– A• ∈ D−(H-mod);
– B• ∈ D−(S-mod);
– ι is a morphism B• → R ⊗H A• from D−(S-mod) such

that the induced morphism ιR : R⊗SB• → R⊗H A• is an
isomorphism in D−(R-mod).

• A morphism from a triple (A•, B•, ι) to a triple (A′
•, B

′
•, ι

′) is a
pair (Φ, φ), where

– Φ : A• → A′
• is a morphism from D−(H-mod);

– φ : B• → B′
• is a morphism from D−(S-mod);

– the diagram

(5)

B•

ι
−−−→ R⊗H A•

φ

y
y1⊗Φ

B′
•

ι′

−−−→ R⊗H A′
•

commutes in D−(S-mod).

One can define a functor F : D−(A-mod)→ T (A) setting F(C•) =
(H⊗AC•,S⊗AC•, ι), where ι : S⊗AC• → R⊗H (H⊗AC•) ' R⊗AC•

is induced by the embedding S → R. The values of F on morphisms
are defined in an obvious way.
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Theorem 3.2. The functor F is a full representation equivalence, i.e.
it is

• dense, i.e. every object from T is isomorphic to an object of
the form F(C•);
• full, i.e. each morphism F(C•) → F(C ′

•) is of the form F(γ)
for some γ : C• → C ′

•;
• conservative, i.e. F(γ) is an isomorphism if and only if so is γ;

As a consequence, F maps non-isomorphic objects to non-isomorphic
and indecomposable to indecomposable.

Note that in general F is not faithful : it is possible that F(γ) = 0
though γ 6= 0 (cf. Example 3.10.3 below).

Proof (sketched). Consider any triple T = (A•, B•, ι). We may suppose
that A• is a minimal complex from K−(A-proj), while B• is a complex
with zero differential (since S is semi-simple) and the morphism ι is a
usual morphism of complexes. Note that R ⊗H A• is also a complex
with zero differential. We have an exact sequence of complexes:

0 −→ JA• −→ A• −→ R⊗H A• −→ 0.

Together with the morphism ι : B• → R ⊗H A• it gives rise to a
commutative diagram in the category of complexes C−(A-mod)

0 −−−→ JA• −−−→ C• −−−→ B• −−−→ 0∥∥∥ α

y
yι

0 −−−→ JA• −−−→ A• −−−→ R⊗H A• −−−→ 0,

where C• is the preimage in A• of -Imι. The lower row is also an exact
sequence of complexes and α is an embedding. Moreover, since ιR is
an isomorphism, JA• = JC•. It implies that C• consists of projective
A-modules and H⊗A C• ' A•, wherefrom T ' FC•.

Let now (Φ, φ) : FC• → FC ′
•. We suppose again that both C• and C ′

•

are minimal, while Φ : H⊗AC• → H⊗AC
′
• and φ : S⊗AC• → S⊗AC

′
•

are morphisms of complexes. Then the diagram (5) is commutative
in the category of complexes, so Φ(C•)subseteqC

′
• and Φ induces a

morphism γ : C• → C ′
•. It is evident from the construction that

F(γ) = (Φ, φ). Moreover, if (Φ, φ) is an isomorphism, so are Φ and φ
(since our complexes are minimal). Therefore Φ(C•) = C ′

•, i.e. -Imγ =
C ′

•. But ker γ = ker Φ ∩ C• = 0, thus γ is an isomorphism too. �

Evident examples of Backström rings are completions of local rings
of ordinary multiple points of algebraic curves. If A is such a ring, H is
its normalization (i.e. integral closure in the full ring of fractions) and
J is the radical of A (or, the same, of H). If the field k is algebraically
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closed, A is actually isomorphic to a bouquet of power series rings
k[[t]], i.e. to the subring in k[[t]]m, where m is the multiplicity of the
singularity, consisting of all sequences (f1, f2, . . . , fm) such that all fi(t)
have the same constant term. Backström rings also include important
classes of finite dimensional algebras, such that gentle, skew-gentle and
others (cf. [13]). Certainly, most of Backström rings are actually wild
(hence derived wild). Nevertheless, some of them are derived tame and
their derived categories behave very well. An important class of such
rings, called nodal rings, will be considered in the next subsection.

3.2. Nodal rings: strings and bands.

Definition 3.3. A Backström ringA is called a nodal ring if it is pure
noetherian, i.e. has no minimal ideals, while the hereditary ring H and
the ideal J from Definition 3.1 satisfy the following conditions:

(1) J = -radA = -radH.
(2) length

A
(H ⊗A U) ≤ 2 for every simple left A-module U and

length
A

(V ⊗A H) ≤ 2 for every simple right A-module V .

Note that condition 2 must be imposed both on left and on right mod-
ules.

In this situation the hereditary ring H is also pure noetherian. It is
known (cf. e.g. [9]) that such a hereditary ring is Morita equivalent to
a direct product of rings H(D, n), where D is a discrete valuation ring
(maybe non-commutative) and H(D, n) is the subring of Mat(n,D)
consisting of all matrices (aij) with non-invertible entries aij for i < j.
Especially, H and A are semi-prime (i.e. without nilpotent ideals).
For the sake of simplicity we shall only consider the split case, when
the factor H/J is a finite dimensional algebra over a field k and A/J
is its subalgebra.

Remark. In [23] the author showed that if A is pure noetherian, but
not a nodal ring, then the category of A-modules of finite length is
wild. All the more so are the categories A-mod and D b(A-mod).

Examples 3.4. (1) The first example of a nodal ring is the com-
pletion of the local ring of a simple node (or a simple dou-
ble point) of an algebraic curve over a field k. It is iso-
morphic to A = k[[x, y]]/(xy) and can be embedded into
H = k[[x1]] × k[[x2]] as the subring of pairs (f, g) such that
f(0) = g(0): x maps to (x1, 0) and y to (0, x2). Evidently this
embedding satisfies conditions of Definition 3.3.

(2) The dihedral algebra A = k〈〈 x, y 〉〉/(x2, y2) is another example
of a nodal ring. In this case H = H(k[[t]], 2) and the embedding
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A→ H is given by the rule

x 7→

(
0 t
0 0

)
, y 7→

(
0 0
1 0

)
.

(3) The “Gelfand problem,” arising from the study of Harish-
Chandra modules over the Lie group SL (2,R), is that of clas-
sification of diagrams with relations

2

x+

** 1
x−

jj

y−

44 3

y+

tt x+x− = y+y−.

If we consider the case when x+x− is nilpotent (the nontrivial
part of the problem), such diagrams are just modules over the
ring A, which is the subring of Mat(3, k[[t]]) consisting of all
matrices (aij) with a12(0) = a13(0) = a23(0) = a32(0) = 0. The
arrows of the diagram correspond to the following matrices:

x+ 7→ te12, x− 7→ e21, y+ 7→ te13, y− 7→ e31,

where eij are the matrix units. It is also a nodal ring with
H being the subring of Mat(3, k[[t]]) consisting of all matri-
ces (aij) with a12(0) = a13(0) = 0 (it is Morita equivalent to
H(k[[t]], 2) ). More general cases, arising in representation the-
ory of Lie groups SO (1, n), were considered in [41] (cf. also
[11, Section 7], where the corresponding diagrams are treated
as nodal rings).

(4) The classification of quadratic functors, which play an impor-
tant role in algebraic topology (cf. [5]), reduces to the study of
modules over the ring A, which is the subring of Z2

2×Mat(2,Z2)
consisting of all triples

(
a, b,

(
c1 2c2
c3 c4

))
with a ≡ c1 mod 2 and b ≡ c4 mod 2,

where Z2 is the ring of 2-adic integers [24]. It is again a (split)
nodal ring: one can take for H the ring of all triples as above,
but without congruence conditions; then H = Z2

2 ×H(Z2, 2).

Certainly, we shall apply Theorem 3.2 to study the derived categories
of modules over nodal rings. Moreover, in this case the resulting prob-
lem belongs to a well-known type, considered in [7, 8, 16] (for its gen-
eralization to the non-split case, see [19]). We denote by U1, U2, . . . , Us

indecomposable non-isomorphic projective (left) modules over A, by
V1, V2, . . . , Vr those over H and consider the decompositions of H⊗AUi

into direct sums of Vj. Condition 2 from Definition 3.3 implies that
there are three possibilities:
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(1) H ⊗A Ui ' Vj for some j and Vj does not occur as a direct
summand in H⊗A Uk for k 6= i;

(2) H ⊗A Ui ' Vj ⊕ Vj′ (j 6= j ′) and neither Vj nor Vj′ occur in
H⊗A Uk for k 6= i;

(3) There are exactly two indices i 6= i′ such that H ⊗A Ui '
H⊗AUi′ ' Vj and Vj does not occur in H⊗AUk for k /∈ { i, i′ }.

We denote by Hj the indecomposable projective H-module such
that Hj/JHj ' Vj. Since H is a semi-perfect hereditary order, any
indecomposable complex from D−(H-mod) is isomorphic either to

0 → Hk
φ
−→ Hj → 0 or to 0 → Hj → 0 (it follows, for instance,

from [22]). Moreover, the former complex is completely defined by ei-
ther j or k and the length l = lengthH(-Cokφ). We shall denote it both
by C(j,−l, n) and by C(k, l, n + 1), while the latter complex will be
denoted by C(j,∞, n), where n is the number of the place of Hj in the
complex (so the number of the place of Hk is n + 1). We denote by

Z̃ the set (Z \ { 0 }) ∪ {∞} and consider the ordering ≤ on Z̃, which
coincides with the usual ordering separately on positive integers and
on negative integers, but l <∞ < −l for any positive l. Note that for
each j the submodules of Hj form a chain with respect to inclusion. It
immediately implies the following result.

Lemma 3.5. There is a homomorphism C(j, l, n)→ C(j, l′, n), which
is an isomorphism on the n-th components, if and only if l ≤ l′ in

Z̃. Otherwise the n-th component of any homomorphism C(j, l, n) →
C(j, l′, n) is zero modulo J.

We transfer the ordering from Z̃ to the set Ej,n =
{
C(j, l, n) | l ∈ Z̃

}
,

so the latter becomes a chain with respect to this ordering. We
also consider one element sets Fj,n = { (j, n) } and denote F∗

j,n =
{ (i, j, n) |Vj is a direct summand of H⊗A Ui }. There can be at most
two such values of i if j is fixed. It happens when case 3 from page
25 occurs: H ⊗A Ui ' H ⊗A Ui′ ' Vj . Then we write (j, n) ∼ (j, n).
We also write C(j,−l, n) ∼ C(k, l, n + 1) if these symbols denote the

same complex 0→ Hk
φ
−→ Hj → 0, and (j, n) ∼ (j ′, n) (j 6= j ′) if case

2 from page 25 occurs: H ⊗A Ui ' Vj ⊕ Vj′ (if j is fixed, there can
be only one j ′ with this property). Thus a triple (A•, B•, ι) from the
category T (A) is given by homomorphisms φijn

jln : di,j,nUi → rj,l,nVj,
where C(j, l, n) ∈ Ej,n and (i, j, n) ∈ F∗

j,n. Here the left Ui comes from
Bn and the right Vj comes from the direct summands rj,l,nC(j, l, n) of
A• after tensoring by R. Note that if C(j,−l, n) ∼ C(k, l, n + 1), we
have rj,−l,n = rk,l,n+1, and if (j, n) ' (j ′, n), we have di,j,n = di,j′,n
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for the unique possible value of i. We present φijn
jln by its matrix

M ijn
jln ∈ Mat(rj,l,n × di,j,n, k). Then Lemma 3.5 implies the following

Proposition 3.6. Two sets of matrices
{
M ijn

jln

}
and

{
N ijn

jln

}
describe

isomorphic triples if and only if one of them can be transformed to the
other one by a sequence of the following “elementary transformations”:

(1) For any given values of i, n, simultaneously M ijn
jln 7→M ijn

jlnS for
all j, l such that (i, j, n) ∈ F∗

j,n, where S is an invertible matrix
of appropriate size.

(2) For any given values of j, l, n, simultaneously M ijn
jln 7→ S ′M ijn

jln

for all (i, j, n) ∈ F∗
j,n and M i,k,n−sgn l

k,−l,n−sgn l 7→ S ′M i,k,n−sgn l
k,−l,n−sgn l for all

(i, k, n − sgn l) ∈ F∗
k,n−sgn l, where S ′ is an invertible matrix of

appropriate size and C(j, l, n) ∼ C(k,−l, n − sgn l). If l = ∞,
it just means M ijn

j∞n 7→ S ′M ijn
j∞n.

(3) For any given values of j, l′ < l, n, simultaneously M ijn
jln 7→

M ijn
jln +RM ijn

jl′n for all (i, j, n) ∈ F∗
j,n, where R is an arbitrary ma-

trix of appropriate size. (Note that, unlike the preceding trans-

formation, this one does not touch the matrices M i,k,n−sgn l
k,−l,n−sgn l

such that C(j, l, n) ∼ C(k,−l, n− sgn l).)

This sequence can be infinite, but must contain finitely many transfor-
mations for every fixed values of j and n.

Therefore we obtain representations of the bunch of chains
{Ej,n,Fj,n } considered in [7, 8],2 so we can deduce from these papers
a description of indecomposables in D−(A-mod) (for infinite words,
which correspond to infinite strings, see [12]). We arrange it in terms
of strings and bands often used in representation theory.

Definition 3.7. (1) We define the alphabet X as the set
⋃

j,n(Ej,n∪

Fj,n). We define symmetric relations ∼ and − on X by the
following exhaustive rules:
(a) C(j, l, n)− (j, n) for all l ∈ Z;
(b) C(j,−l, n) ∼ C(k, l, n+1) if these both symbols correspond

to the same complex 0→ Hk
φ
−→ Hj → 0;

(c) (j, n) ∼ (j ′, n) (j ′ 6= j) if Vj ⊕ Vj′ ' H⊗A Ui for some i;
(d) (j, n) ∼ (j, n) if Vj ' H⊗A Ui ' H⊗A Ui′ for some i′ 6= i.

(2) We define an X-word as a sequence w = x1r1x2r2x3 . . . rm−1xm,
where xk ∈ X, rk ∈ {−,∼} such that
(a) xkrkxk+1 in X for 1 ≤ k < m;

2Note that in [7, 8] they are called “bunches of semichained sets,” but we prefer
to say “bunches of chains,” as in [29, 11].
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(b) rk 6= rk+1 for 1 ≤ k < m− 1.
We call x1 and xm the ends of the word w.

(3) We call an X-word w full if
(a) r1 = rm−1 = −
(b) x1 6∼ y for each y 6= x1;
(c) xm 6∼ z for each z 6= xm.

Condition (a) reflects the fact that ιR must be an isomorphism,
while conditions (b,c) come from generalities on bunches of
semi-chains [8].

(4) A word w is called symmetric if w = w∗, where w∗ =
xmrm−1xm−1 . . . r1x1 (the inverse word), and quasi-symmetric if
there is a shorter word v such that w = v ∼ v∗ ∼ · · · ∼ v∗ ∼ v.

(5) We call the end x1 (xm) of a word w special if x1 ∼ x1 and
r1 = − (respectively, xm ∼ xm and rm−1 = −). We call a word
w
(a) usual if it has no special ends;
(b) special if it has exactly one special end;
(c) bispecial if it has two special ends.

Note that a special word is never symmetric, a quasi-symmetric
word is always bispecial, and a bispecial word is always full.

(6) We define a cycle as a word w such that r1 = rm−1 =∼ and
xm − x1. Such a cycle is called non-periodic if it cannot be
presented in the form v − v − · · · − v for a shorter cycle v. For
a cycle w we set rm = −, xqm+k = xk and rqm+k = rk for any
q, k ∈ Z.

(7) A (k-th) shift of a cycle w, where k is an even integer, is the cycle
w[k] = xk+1rk+1xk+2 . . . rk−1xk. A cycle w is called symmetric if
w[k] = w∗ for some k.

(8) We also consider infinite words of the sorts w = x1r1x2r2 . . .
(with one end) and w = . . . x0r0x1r1x2r2 . . . (with no ends) with
the following restrictions:
(a) every pair (j, n) occurs in this sequence only finitely many

times;
(b) there is an n0 such that no pair (j, n) with n < n0 occurs.
We extend to such infinite words all above notions in the obvious
manner.

Definition 3.8 (String and band data). (1) String data are de-
fined as follows:
(a) a usual string datum is a full usual non-symmetric X-word

w;
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(b) a special string datum is a pair (w, δ), where w is a full
special word and δ ∈ { 0, 1 };

(c) a bispecial string datum is a quadruple (w,m, δ1, δ2), where
w is a bispecial word that is neither symmetric nor quasi-
symmetric, m ∈ N and δ1, δ2 ∈ { 0, 1 }.

(2) A band datum is a triple (w,m, λ), where w is a non-periodic
cycle, m ∈ N and λ ∈ k∗; if w is symmetric, we also suppose
that λ 6= 1.

The results of [7, 8] (and [13] for infinite words) imply

Theorem 3.9. Every string or band datum D defines an indecompos-
able object C•(D) from D−(A-mod), so that

(1) Every indecomposable object from D−(A-mod) is isomorphic to
C•(D) for some D.

(2) The only isomorphisms between these complexes are the follow-
ing:
(a) C(w) ' C(w∗);
(b) C(w,m, δ1, δ2) ' C(w∗, m, δ2, δ1);
(c) C(w,m, λ) ' C(w[k], m, λ) ' C(w∗[k], m, 1/λ) if k ≡ 0

mod 4;
(d) C(w∗, m, λ) ' C(w[k], m, 1/λ) ' C(w∗[k], m, λ) if k ≡ 2

mod 4.
(3) Every object from D−(A-mod) uniquely decomposes into a di-

rect sum of indecomposable objects.

The construction of complexes C•(D) is rather complicated, espe-
cially in the case, when there are pairs (j, n) with (j, n) ∼ (j, n) (e.g.
special ends are involved). So we only show several examples arising
from simple node, dihedral algebra and Gelfand problem.

3.3. Examples.

3.3.1. Simple node. In this case there is only one indecomposable pro-
jective A-module (A itself) and two indecomposable projective H-
modules H1, H2 corresponding to the first and the second direct factors
of the ring H. We have H⊗A A ' H ' H1 ⊕H2. So the ∼-relation is
given by:

(1) (1, n) ∼ (2, n);
(2) C(j, l, n) ∼ C(j,−l, n− sgn l) for any l ∈ Z \ { 0 }.

Therefore there are no special ends at all. Moreover, any end of a full
string must be of the form C(j,∞, n). Note that the homomorphism
in the complex corresponding to C(j,−l, n) and C(j, l, n + 1) (l ∈ N)
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is just multiplication by xl
j. Consider several examples of strings and

bands.

Examples 3.10. (1) Let w be the cycle

C(2, 1, 1) ∼ C(2,−1, 0)− (2, 0) ∼ (1, 0)− C(1,−2, 0) ∼ C(1, 2, 1)−

− (1, 1) ∼ (2, 1)− C(2, 4, 1) ∼ C(2,−4, 0)− (2, 0) ∼ (1, 0)−

− C(1,−1, 0) ∼ C(1, 1, 1)− (1, 1) ∼ (2, 1)− C(2,−3, 1) ∼ C(2, 3, 2)−

− (2, 2) ∼ (1, 2)− C(1, 2, 2) ∼ C(1,−2, 1)− (1, 1) ∼ (2, 1)

Then the band complex C•(w, 1, λ) is obtained from the com-
plex of H-modules

H2
x2 // H2

�
�
�

H1

x2
1 //

�
�
�

H1

H2

x4
2 // H2

�
�
�

H1
x1 //

�
�
�

H1

H2

x3
2 //

�
�
�

H2

H1

x2
1 // H1

λ

/
-

*
(

&
$
!
�
�
�
�
�
�
�

�

by gluing along the dashed lines (they present the ∼ relations
(1, n) ∼ (2, n)). All gluings are trivial, except the last one
marked with ‘λ’; the latter must be twisted by λ. It gives the
A-complex

(6)

A
y

// A

A

λx2

88ppppppppppppp

y3

&&NNNNNNNNNNNNN A

x2

88ppppppppppppp y4

// A

A

x

88ppppppppppppp

Here each column presents direct summands of a non-zero com-
ponent Cn (in our case n = 2, 1, 0) and the arrows show the
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non-zero components of the differential. According to the em-
bedding A → H, we have to replace x1 by x and x2 by y.
Gathering all data, we can rewrite this complex as

A

0

B

B

@

λx2

0
y3

1

C

C

A

−−−−−→ A⊕A⊕A

0

B

B

@

y 0
x2 y4

0 x

1

C

C

A

−−−−−−−→ A⊕A ,

though the form (6) seems more expressive, so we use it further.
If m > 1, one only has to replace A by mA, each element a ∈ A

by aE, where E is the identity matrix, and λa by aJm(λ), where
Jm(λ) is the Jordan m×m cell with eigenvalue λ. So we obtain
the complex

mA
yE

// mA

mA

x2Jm(λ)
77nnnnnnnnnnnnn

y3E ''PPPPPPPPPPPPP mA

x2E

77nnnnnnnnnnnnn y4E
// mA

mA

xE

77nnnnnnnnnnnnn

or, the same,

mA

0

B

B

@

x2Jm(λ)
0
y3E

1

C

C

A

−−−−−−−−→ mA⊕mA⊕mA

0

B

B

@

yE 0
x2E y4E
0 xE

1

C

C

A

−−−−−−−−−−→ mA⊕mA .

(2) Let w be the word

C(1,∞, 1)− (1, 1) ∼ (2, 1)− C(2, 2, 1) ∼ C(2,−2, 0)− (2, 0) ∼

∼ (1, 0)− C(1,−3, 0) ∼ C(1, 3, 1)− (1, 1) ∼ (2, 1)− C(2,−1, 1) ∼

∼ C(2, 1, 2)− (2, 2) ∼ (1, 2)− C(1, 1, 2) ∼ C(1,−1, 1)− (1, 1) ∼

∼ (2, 1)− C(2, 2, 1) ∼ C(2,−2, 0)− (2, 0) ∼ (1, 0)− C(1,∞, 0)

Then the string complex C•(w) is

A
y2

// A

A
y

//

x
&&NNNNNNNNNNNNN A

x3

88ppppppppppppp

A
y2

// A
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Note that for string complexes (which are always usual in this
case) there are no multiplicities m and all gluings are trivial.

(3) Set a = x + y. Then the factor A/aA is represented by the

complex A
a
−→ A, which is the band complex C•(w, 1, 1), where

w = C(1, 1, 1) ∼ C(1,−1, 0)− (1, 0) ∼ (2, 0)−

− C(2,−1, 0) ∼ C(2, 1, 1)− (2, 1) ∼ (1, 1).

Consider the morphism of this complex to A[1] given on

the 1-component by multiplication A
x
−→ A. It is non-

zero in D−(A-mod) (presenting a non-zero element from
Ext1(A/aA,A) ), but the corresponding morphism of triples
is (Φ, 0), where Φ arises from the morphism of the complex

H
a
−→ H to H[1] given by multiplication with x1. But Φ is ho-

motopic to 0: x1 = e1a, where e1 = (1, 0) ∈ H, thus (Φ, 0) = 0
in the category of triples. So the functor F from Theorem 3.2
is not faithful in this case.

(4) The string complex C•(l, 0), where w is the word

C(1,∞, 0)− (1, 0) ∼ (2, 0)− C(2,−1, 0) ∼ C(2, 1, 1)− (2, 1) ∼

∼ (1, 1)− C(1,−2, 1) ∼ C(1, 1, 2)− (1, 2) ∼ (2, 2)− C(2,−1, 2) ∼

∼ C(2, 1, 3)− (2, 3) ∼ (1, 3)− C(1,−2, 3) ∼ C(1, 2, 4)− . . . ,

is

. . . A
x2

−→ A
y
−→ A

x2

−→ A
y
−→ A −→ 0.

Its homologies are not left bounded, so it does not belong to
Db(A-mod).

3.3.2. Dihedral algebra. This case is very similar to the preceding one.
Again there is only one indecomposable projective A-module (A itself)
and two indecomposable projective H-modules H1, H2, corresponding
to the first and the second columns of matrices from the ring H, and
we have H⊗A A ' H ' H1⊕H2. The main difference is that now the
unique maximal submodule of Hj is isomorphic to Hk, where k 6= j.
So the ∼-relation is given by:

(1) (1, n) ∼ (2, n);
(2) C(j, l, n) ∼ C(j,−l, n − sgn l) if l ∈ Z \ { 0 } is even, and

C(j, l, n) ∼ C(j ′,−l, n − sgn l), where j ′ 6= j, if l ∈ Z \ { 0 }
is odd.
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Again there are no special ends. The embeddings Hk → Hj are given
by right multiplications with the following elements from H:

H1 → H1 − by tre11 (colength 2r),

H1 → H2 − by tre12 (colength 2r − 1),

H2 → H1 − by tre21 (colength 2r + 1),

H2 → H2 − by tre22 (colength 2r).

When gluing H-complexes into A-complexes we have to replace them
respectively

tre11 − by (xy)r,

tre22 − by (yx)r,

tre12 − by (xy)r−1x,

tre21 − by (yx)ry.

The gluings are quite analogous to those for simple node, so we only
present the results, without further comments.

Examples 3.11. (1) Consider the band datum (w, 1, λ), where

w = C(1,−2, 0) ∼ C(1, 2, 1)− (1, 1) ∼ (2, 1)− C(2,−5, 1) ∼

∼ C(1, 5, 2)− (1, 2) ∼ (2, 2)− C(2, 4, 2) ∼ C(2,−4, 1)− (2, 1) ∼

∼ (1, 1)− C(1, 3, 1) ∼ C(2,−3, 0)− (2, 0) ∼ (1, 0).

The corresponding complex C•(w,m, λ) is

mA
xyE

// mA

mA

(xy)2xE
77nnnnnnnnnnnnn

(yx)2E

// mA

xyxJm(λ)

77nnnnnnnnnnnnn

(2) Let w be the word

C(2,∞, 0)− (2, 0) ∼ (1, 0)− C(1,−1, 0) ∼ C(2, 1, 1)−

− (2, 1) ∼ (1, 1)− C(1, 3, 1) ∼ C(2,−3, 0)− (2, 0) ∼ (1, 0)−

− C(1,−3, 0) ∼ C(2, 3, 1)− (2, 1) ∼ (1, 1)− C(1,∞, 1).
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Then the string complex C•(w) is

A
e21 //

t2e12

&&NNNNNNNNNNNNN A

A
te21

// A

(3) The factor A/J is described by the infinite string complex
C•(w):

. . . e21 // A
te12 // A

e21 // A.

. . . te12 // A
e21 // A

te12

88ppppppppppppp

The corresponding word w is

· · · − C(2, 1, 2) ∼ C(1,−1, 1)− (1, 1) ∼ (2, 1)−

− C(2, 1, 1) ∼ C(1,−1, 0)− (1, 0) ∼ (2, 0)− C(2,−1, 0) ∼

∼ C(1, 1, 1)− (1, 1) ∼ (2, 1)− C(2,−1, 1) ∼ C(1, 1, 2)− . . .

3.3.3. Gelfand problem. In this case there are 2 indecomposable pro-
jective H-modules H1 (the first column) and H2 (both the second
and the third columns). There are 3 indecomposable A-projectives
Ai (i = 1, 2, 3); Ai correspond to the i-th column of A. We have
H⊗A A1 ' H1 and H ⊗A A2 ' H ⊗A A3 ' H2. So the relation ∼ is
given by:

(1) (2, n) ∼ (2, n);
(2) C(j, l, n) ∼ C(j,−l, n− sgn l) if l is even;
(3) C(j, l, n) ∼ C(j ′,−l, n− sgn l) (j ′ 6= j) if l is odd.

Hence a special end is always (2, n).

Examples 3.12. (1) Consider the special word w:

(2, 0)− C(2,−2, 0) ∼ C(2, 2, 1)− (2, 1) ∼ (2, 1)− C(2,−4, 1) ∼

∼ C(2, 4, 2)− (2, 2) ∼ (2, 2)− C(2, 2, 2) ∼ C(2,−2, 1)−

− (2, 1) ∼ (2, 1)− C(2,−1, 1) ∼ C(1, 1, 2)− (2, 1)
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The complex C•(w, 0) is obtained by gluing from the complex
of H-modules

H2 2 //

��
�
�
�

H2

H2 4 // H2

H2

OO�
�
�

2 // H2

��
�
�
�

H1 1 // H2

Here the numbers inside arrows show the colengths of the cor-
responding images. We mark dashed lines defining gluings with
arrows going from the bigger complex (with respect to the or-
dering in Ej,n) to the smaller one. When we construct the cor-
responding complex of A-modules, we replace each H2 by A2

and A3 starting with A2 (since δ = 0; if δ = 1 we start from
A3). Each next choice is arbitrary with the only requirement
that every dashed line must touch both A2 and A3. (Different
choices lead to isomorphic complexes: one can see it from the
pictures below.) All horizontal mappings must be duplicated by
slanting ones, carried along the dashed arrow from the starting
point or opposite the dashed arrow with the opposite sign from
the ending point (the latter procedure will be marked by ‘−’
near the duplicated arrow). So we get the A-complex

A2 2 // A2

A3

−

4pppppp

88pppppp

4 //

2
NNNNNN

&&NNNNNN

2

##

A3

2pppppp

88pppppp

A2 2 //

2
**

A2

A1

−
1

44

1 // A3

All mappings are uniquely defined by the colengths in the H-
complex, so we just mark them with ‘l.’
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(2) Let w be the bispecial word

(2, 2)− C(2, 2, 2) ∼ C(2,−2, 1)− (2, 1) ∼ (2, 1)− C(2, 2, 1) ∼

∼ C(2,−2, 0)− (2, 0) ∼ (2, 0)− C(2,−4, 0) ∼ C(2, 4, 1)−

− (2, 1) ∼ (2, 1)− C(2, 6, 1) ∼ C(2,−6, 0)− (2, 0)

The complex C•(w,m, 1, 0) is the following one:

aA3 ⊕ bA2 M1
//

−
−M1

RRRRR

((RRRRRR

mA3

2
RRRRRRRR

((RRRRRRRR

−

2

��

mA2

2
RRRRRRRR

−

((RRRRRRRR

2 // mA3

mA3 4 // mA2

mA2

4llllllll

66llllllll

M2
// aA2 ⊕ bA3

where a = [(m + 1)/2], b = [m/2], so a + b = m. (The change
of δ1, δ2 transpose A2 and A3 at the ends.) All arrows are just
αlE, where αl is defined by the colength l, except of the “end”
matrices Mi. To calculate the latter, write αlE for one of them
(say, M1) and αlJ for another one (say, M2), where J is the
Jordan m×m cell with eigenvalue 1, then put the odd rows or
columns into the first part of Mi and the even ones to its second
part. In our example we get

M1 = α2




1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0



, M2 = α6




1 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 1 1 0 0
0 0 0 1 1



.

(We use columns for M1 and rows for M2 since the left end is
the source and the right end is the sink of the corresponding
mapping.)

(3) The band complex C•(w, 1, λ), where w is the cycle

(2, 1) ∼ (2, 1)− C(2,−2, 1) ∼ C(2, 2, 2)− (2, 2) ∼ (2, 2)−

− C(2, 4, 2) ∼ C(2,−4, 1)− (2, 1) ∼ (2, 1)− C(2, 6, 1) ∼

∼ C(2,−6, 0)− (2, 0) ∼ (2, 0)− C(2,−4, 0) ∼ C(2, 4, 1)
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is
mA2 2 //

−

2

��

mA2

4λ

−
��

4λ

��

mA3

2nnnnnn

77nnnnnn

4 //

−

4
PPPPPP

''PPPPPP

−

2

$$

mA2

6
PPPPPP

''PPPPPP

mA3 6 // mA2

mA3

4λnnnnnn
−

77nnnnnn

4λ // mA3

Superscript ‘λ’ denotes that the corresponding mapping must
be twisted by Jm(λ).

(4) The projective resolution of the simple A-module U1 is

A2 1 // A1

A1

−

1pppppp

88pppppp

1 // A3

1pppppp

88pppppp

It coincides with the usual string complex C•(w), where w is

(1, 0)− C(1,−1, 0) ∼ C(2, 1, 1)− (2, 1) ∼

∼ (2, 1)− C(2,−1, 1) ∼ C(1, 1, 2)− (1, 2).

The projective resolution of U2 (U3) is A1 → A2 (respectively
A1 → A3), which is the special string complex C•(w, 0) (respec-
tively C•(w, 1)), where

w = (2, 0)− C(2,−1, 0) ∼ C(1, 1, 1)− (1, 1).

Note that gl.dimA = 2. It is due to the fact that the case 1 from
page 25 occur: H⊗AA1 ' H1. One can prove the following consequence
of the above calculations.

Corollary 3.13. Let A be a nodal ring. Suppose that there is no
simple A-module U such that H ⊗A U is a simple H-module. Then
gl.dimA =∞; moreover, the finitistic dimension ( in the sense of [3])
of A equals 1, i.e. for every A-module M either proj.dimM ≤ 1 or
proj.dimM =∞.

4. Projective curves

In this section we consider “global” analogues of the results of the
preceding one, namely, the derived categories of the categories CohX
of coherent sheaves over some projective curves X. Again we first
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consider a general framework (“projective configurations,” which are
analogue of Backström rings), when the calculations in CohX can be
reduced to some matrix problems. Then we apply this technique to
those classes of projective configurations, where the resulting matrix
problem is tame. Throughout this section we suppose that the field k

is algebraically closed. Analogous results can also be deduced for non-
closed fields using the technique of [19], though the picture becomes
more complicated.

4.1. Projective configurations.

Definition 4.1. Let X be a projective curve over k, which we sup-
pose reduced but possibly reducible. We denote by π : X̃ → X its
normalization; then X̃ is a disjoint union of smooth curves. We call
X a projective configuration if all components of X̃ are rational curves
(i.e. of genus 0) and all singular points p of X are ordinary, i.e. the
dimension of the tangent cone at p, or, the same, the number of lin-
ear independent tangent directions at this point equals its multiplicity.
Algebraically it means that if π−1(p) = { y1, y2, . . . , ym }, the image of
OX,p in

∏m
i=1OX̃,yi

contains
∏m

i=1 mi, where mi is the maximal ideal of
OX̃,yi

. Geometrically,

We denote by S the set of singular points of X, by S̃π−1(S) its

preimage in X̃ and consider S (S̃) as a closed subvariety of X (resp.
X̃). Let ε : S → X and ε̃ : S̃ → X̃ be there embeddings, and π : S̃ → S

be the restriction of π onto S̃. We also put O = OX , Õ = OX̃ ,

S = OS, R = OS̃, and denote by J the conductor of Õ in O, i.e. the

maximal sheaf of π∗Õ-ideals contained in O. Note that Sp ' Op/Jp

and Ry ' Õy/(π∗J )y. Since S and S̃ are 0-dimensional, hence affine,

the categories CohS and Coh S̃ can be identified with the categories
of modules, respectively, S-mod and R-mod, where S =

∏
p∈S Sp and

R =
∏

y∈S̃Ry. If X is a projective configuration, these algebras are

semisimple, namely Sp ' k(p) and R(y) ' k(y). Moreover, one easily

sees that J ' π∗Õ(−S̃), where Õ(S̃) = Õ(−
∑

y∈S̃ y).

Since X is a projective variety, Serre’s theorem [40, Theorem III.5.17]
shows that for every coherent sheaf F ∈ CohX there is an integer
n0 such that all sheaves F(n) for n ≥ n0 are generated by their
global sections, or, the same, there are epimorphisms mO → F(n).
It easily implies that the derived category D−(CohX) can be identi-
fied with the category of fractions H−(VB X)[Q−1], where VB X is
the category of locally free coherent sheaves (equivalently, the category
of vector bundles [40, Exercise II.5.18]) over X and Q is the set of
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quasi-isomorphisms in H−(VB X). So we always present objects from

D−(CohX) and from D−(Coh X̃) as complexes of vector bundles. We
denote by T : D−(CohX)→ D−(Coh X̃) the left derived functor Lπ∗.
Again if C• is a complex of vector bundles, TC• coincides with π∗C•.

Just as in Subsection 3.1, we define the category of triples T = T (X)
as follows:

• Objects of T are triples (A•, ]mathcalB•, ι), where

– A• ∈ D−(Coh X̃) (we always present it as a complex of
vector bundles);

– ]mathcalB• ∈ D−(CohS) (we always present it as a com-
plex with zero differential);

– ι is a morphism ]mathcalB• → π∗ε̃
∗A• from D−(CohS)

such that the induced morphism ιR : π∗]mathcalB• →
ε̃∗A• is an isomorphism in D−(CohR).

• A morphism from a triple (A•, ]mathcalB•, ι) to a triple
(A′

•, ]mathcalB
′
•, ι

′) is a pair (Φ, φ), where
– Φ : A• → A

′
• is a morphism from D−(Coh X̃);

– φ :]mathcalB• →]mathcalB′
• is a morphism from

D−(CohS);
– the diagram

(7)

]mathcalB•

ι
−−−→ π∗ε̃

∗A•

φ

y
yπ∗ε̃∗Φ

]mathcalB′
•

ι′

−−−→ π∗ε̃
∗A′

•

commutes in D−(CohS).

We define a functor F : D−(CohX) → T (X) setting F(C•) =
(π∗C•, ε

∗C•, ι), where ι : ε∗C• → π∗ε̃
∗(π∗C•) is induced by the natu-

ral isomorphism π∗ε∗F• ' ε̃∗π∗F•.. Just as in Section 1 the following
theorem holds (with almost the same proof, see [12]).

Theorem 4.2. The functor F is a representation equivalence, i.e. it
is dense and conservative.

Remark. We do not now whether it is full, though it seems very plau-
sible.

Just as for Backström rings, most projective configurations are vector
bundle wild. Namely, in [29] it was shown that the only projective
curves, which are not vector bundle wild, are the following:

• Projective line P1.
• Elliptic curves, i.e. smooth projective curves of genus 1, or, the

same, the smooth plane cubics.
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• Projective configurations of types A and Ã (see the following
subsection for their definitions).

Actually, projective line and projective configurations of type A are
vector bundle finite, i.e. only have finitely many indecomposable vector
bundles (up to isomorphism and natural twists), while elliptic curves

and projective configurations of type Ã are vector bundle tame. Since
the derived category D−(CohX) (even D b(CohX) ) contains CohX as
a full subcategory, it can never be representation finite. We always have
one-parameter family of skyscrapers, such as k(x) (x ∈ X). If the curve
X is smooth, the category CohX is hereditary, thus its indecomposable
objects are just shifts of sheaves. Moreover, every coherent sheaf is a
direct sum of a vector bundle and several skyscrapers, i.e. sheaves
supported in one point. The latter are just O/mk

x for some x ∈ X and
some integer k, so they form one-parameter families. Hence, if a smooth
curve is vector bundle tame, it is derived tame as well. It happens,
just as in the case of pure noetherian rings, that all vector bundle
tame projective curves are also derived tame, though for projective
configurations of types A and Ã the structure of skyscrapers is more
complicated (it involve modules over local rings, which are nodal) and,
moreover, there are “mixed” sheaves, which are neither vector bundles
(even not torsion free) nor skyscrapers.

4.2. Configurations of types A and Ã. Now we suppose that X is
a projective configurations and all singular points of X are nodes (or
double points). To such a curve one associates a graph ∆(X) called
its intersection graph or dual graph. The vertices of ∆(X) are the
irreducible components of X and the edges of ∆(X) are the singular
points of X. The ends of an edge p are the components containing this
point. In particular, if p only belongs to one component, it is a loop in
∆(X). Note that the graph ∆(X) does not completely define X. For
instance, consider the case, when ∆(X) is the graph of type D̃4, i.e.

•
TTTTTT •

jjjjjj
•

•
jjjjjj •

TTTTTT

The component corresponding to the central point contains 4 singular
points. Therefore their harmonic ratio is invariant under isomorphisms
of P1 and can be an arbitrary scalar λ ∈ k \ { 0, 1 } (these points can
always be chosen as 0, 1, λ,∞). Thus the configurations with this dual
graph but different values of λ are not isomorphic.

We say that a projective configuration X is
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• of type A if its intersection graph is a chain:

1 2 . . . s

• of type Ã if its intersection graph is a cycle:

1 2 . . . s

(If s = 1, the projective configuration of type A is just a projec-

tive line, while the projective configuration of type Ã is a nodal
cubic.)

In other words, in A case irreducible components X1, X2, . . . , Xs and
singular points p1, p2, . . . , ps−1 can be so arranged that pi ∈ Xi ∩Xi+1,
while in Ã case the components X1, X2, . . . , Xs and the singular points
p1, p2, . . . , ps can be so arranged that pi ∈ Xi ∩ Xi+1 for i < s and
ps ∈ Xs ∩ X1. Note that in A case s > 1, while in Ã case s = 1
is possible: then there is one component with one ordinary double
point (a nodal plane cubic). These projective configurations are global
analogues of nodal rings, and the calculations according Theorem 4.2
are quite similar to those of Section 3. We present here the calculations
for the case Ã and add remarks explaining which changes should be
done for A case.

If s > 1, the normalization of X is just a disjoint union
⊔s

i=1Xi;

for uniformity, we write X1 = X̃ if s = 1. We also denote Xqs+i =
Xi. Certainly, Xi ' P1 for all i. Every singular point pi has two
preimages p′i, p

′′
i in X̃; we suppose that p′i ∈ Xi corresponds to the

point ∞ ∈ P
1 and p′′i ∈ Xi+1 corresponds to the point 0 ∈ P

1. Recall
that any indecomposable vector bundle over P1 is isomorphic to OP1(d)
for some d ∈ Z. So every indecomposable complex from D−(Coh X̃)
is isomorphic either to 0 → Oi(d) → 0 or to 0 → Oi(−lx) → Oi → 0,
where Oi = OXi

, d ∈ Z, l ∈ N and x ∈ Xi. The latter complex
corresponds to the indecomposable sky-scraper sheaf of length l and
support { x }. (It is isomorphic in the derived category to any complex
0 → Oi((k − l)x) → Oi(kx) → 0 with arbitrary k ∈ Z.) We denote
this complex by C(x,−l, n) and by C(x, l, n + 1). The complex 0 →
Oi(d)→ is denoted by C(p′i, dω, n) and by C(p′′i−1, dω, n). As before, n
is the unique place, where the complex has non-zero homologies. We
define the symmetric relation ∼ for these symbols setting C(x,−l, n) ∼
C(x, l, n+ 1) and C(p′i, dω, n) ∼ C(p′′i−1, dω, n).

Let Zω = (Z⊕ { 0 }) ∪ Zω, where Zω = { dω | d ∈ Z }. We introduce
an ordering on Zω, which is natural on N, on −N and on Zω, but
l < dω < −l for each l ∈ N, d ∈ Z. Recall that Hom(Oi(d),Oi(d

′)) can
be considered as the space of homogeneous polynomial of degree d′− d
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in homogeneous coordinates on P1 if d′ ≥ d; otherwise it is zero. Note
also that Cn(x) ' k if C = C(x, l, n) for some l ∈ Zω. It easily implies
the following analogue of Lemma 3.5.

Lemma 4.3. There is a morphism of complexes C• = C(x, z, n) →
C ′• = C(x, z′, n) such that its nth component induces a non-zero map-
ping (actually an isomorphism) Cn(x) → C ′n(x) if and only if z ≤ z′

in Zω. Moreover, if z = dω, z′ = d′ω, d′ > d and x ∈ S, hence also
C• = C(x′, z, n) and C ′• = C(x′, z′, n) for another singular point x′,
there is a morphism φ : C• → C

′
• such that φ(x) 6= 0, but φ(x′) = 0.

We introduce the ordered sets Ex,n = {C(x, z, n) | z ∈ Zω } with the
ordering inherited from Zω, We also put Fx,n = { (x, n) } and (p′i, n) ∼
(p′′i−1, n) for all i, n. Lemma 4.3 shows that the category of triples T (X)
can be again described in terms of the bunch of chains {Ex,n, Fx,n }.
Thus we can describe indecomposable objects in terms of strings and
bands just as for nodal rings. We leave the corresponding definitions
to the reader; they are quite analogous to those from Section 3. If we
consider a configuration of type A, we have to exclude the points p′s, p

′′
s

and the corresponding symbols C(p′s, z, n), C(p′′s , z, n), (p′s, n), (p′′s , n).
Thus in this case C(p′′s−1, dω, n) and C(p′1, dω, n) are not in ∼ relation
with any symbol. It makes possible finite or one-side infinite full strings,
while in Ã case only two-side infinite strings are full. Note that an
infinite word must contain a finite set of symbols (x, n) with any fixed
n; moreover there must be n0 such that n ≥ n0 for all entries (x, n)
that occur in this word.

If x /∈ S̃ (thus z /∈ Zω), the complex C(x, z, n) vanishes under ε̃∗,
so gives no essential input into the category of triples. It gives rise to
the n-th shift of a sky-scraper sheaf with support at the regular point
π(x). In the language of bunches of chains it follows from the fact that
(x, n) 6∼ (x′, n) for any x′ 6= x, hence the only full words containing
(x, n) are (x, n) − C(x, l, n) for some l ∈ Z \ { 0 }. Therefore in the
following examples we only consider complexes C(x, z, n) with x ∈ S̃.
Moreover, we confine most examples to the case s = 1 (so X is a nodal
cubic). If s > 1, one must distribute vector bundles in the pictures
below among the components of X̃.

Examples 4.4. (1) First of all, even a classification of vector bun-
dles is non-trivial in Ã case. They correspond to the bands
concentrated at 0 place, i.e. such that the underlying cycle w
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is of the form

(p′s, 0) ∼ (p′′s , 0)− C(p′′s , d1ω, 0) ∼ C(p′1, d1ω, 0)−

− (p′1, 0) ∼ (p′′1, 0)− C(p′′1, d2ω, 0) ∼ C(p′2, d2ω, 0)−

− (p′2, 0) ∼ (p′′2, 0)− C(p′′2, d3ω, 0) ∼ · · · ∼ C(p′s, drsω, 0)

(obviously, its length must be a multiple of s, and we can start
from any place p′k, p

′′
k). Then C•(w,m, λ) is actually a vector

bundle, which can be schematically described as the following
gluing of vector bundles over X̃.

•
d1

OOOOOOO •
λ�

�
�

�
�

�
�

�
�

�
�

�


�
�

•
d2

OOOOOOO •

•
d3

;
;

;
; •

...

;
;

;
;

•
drs

•

Here horizontal lines symbolize line bundles over Xi of the su-
perscripted degrees, their left (right) ends are basic elements of
these bundles at the point ∞ (respectively 0), and the dashed
lines show which of them must be glued. One must take m
copies of each vector bundle from this picture and make all glu-
ings trivial, except one going from the uppermost right point to
the lowermost left one (marked by ‘λ’), where the gluing must
be performed using the Jordan m × m cell with eigenvalue λ.
In other words, if e1, e2, . . . , em and f1, f2, . . . , fm are bases of
the corresponding spaces, one has to identify f1 with λe1 and
fk with λek +ek−1 for k > 1. We denote this vector bundle over
X by V(D, m, λ), where D = (d1, d2, . . . , drs); it is of rank mr
and of degree m

∑r
i=1 di. If r = s = 1, this picture becomes

•
d

λ
p j _ T N

•

If r = m = 1, we obtain all line bundles: they are
V((d1, d2, . . . , ds) , 1, λ) (of degree

∑s
i=1 di). Thus the Picard

group is Z
s × k

∗.
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In A case there are no bands concentrated at 0 place, but
there are finite strings of this sort:

C(p′′1, d1ω, 0)− (p′1, 0) ∼ (p′′1, 0)− C(p′′1, d2ω, 0) ∼

∼ C(p′2, d2, 0)− (p′2, 0) ∼ (p′′2, 0)− C(p′′2, d3, 0) ∼

· · · ∼ C(p′s−1, ds−1ω, 0)− (p′s−1, 0) ∼ (p′′s−1, 0)− C(p′′s−1, dsω, 0)

So vector bundles over such configurations are in one-to-one
correspondence with integral vectors (d1, d2, . . . , ds); in partic-
ular, all of them are line bundles and the Picard group is Zs.
In the picture above one has to set r = 1 and to omit the last
gluing (marked with ‘λ’).

(2) From now on s = 1, so we write p instead of p1. Let w be the
cycle

(p′′, 1) ∼ (p′, 1)− C(p′,−2, 1) ∼ C(p′, 2, 2)− (p′, 2) ∼ (p′′, 2)−

− C(p′′, 3ω, 2) ∼ C(p′, 3ω, 2)− (p′, 2) ∼ (p′′, 2)− C(p′′, 3, 2) ∼

∼ C(p′′,−3, 1)− (p′′, 1) ∼ (p′, 1)− C(p′, 1, 1) ∼ C(p′,−1, 0)−

− (p′, 0) ∼ (p′′, 0)− C(p′′,−2, 0) ∼ C(p′′, 2, 1).

Then the band complex C•(w,m, λ) can be pictured as follows:

•

NNNNNNN ◦ 2 // •

λ

.
.

.
.

.
.

.
.

.
.

.
.

.
.

. ◦

•
3

NNNNNNN •

◦ • 3 // ◦ •

p p p p p p p

• ◦ 1 // •

NNNNNNN ◦

◦ • 3 // ◦ •

Again horizontal lines describe vector bundles over X̃. Bullets
and circles correspond to the points∞ and 0; circles show those
points, where the corresponding complex gives no input into
π∗ε̃

∗A•. Horizontal arrows show morphisms in A•; the numbers
l inside give the lengths of factors. For instance, the first row in
this picture describes the complex C(p′,−2, 1), the second one
is C(p′, 3ω, 2) (or, the same, C(p′′, 3ω, 2) ) and the last one is
C(p′′,−3, 0). Dashed and dotted lines describe gluings. Dashed
lines (between bullets) correspond to mandatory gluings arising
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from relations (p′, n) ∼ (p′′, n) in the word w, while dotted lines
(between circles) can be drawn arbitrarily; the only conditions
are that each circle must be an end of a dotted line and the
dotted lines between circles sitting at the same level must be
parallel (in our picture they are between the 1st and 3rd levels
and between the 4th and 5th levels). The degrees of line bundles
in complexes C(x, z, n) with z ∈ N ∪ (−N) (they are described
by the levels containing 2 lines) can be chosen as d−l and d with
arbitrary d, otherwise (in the second row) they are superscripted
over the line. We set d = 1 in the last row and d = 0 elsewhere.
Thus the resulting complex is

V((−2, 3,−3), m, 1) −→ V((0, 0,−1,−2), m, λ) −→ V((0, 1), m, 1)

(we do not precise mappings, but they can be easily restored).
Note that our choice of d’s enables to consider the components
of this complex as the “standard” vector bundles V(D, m, λ)
from the preceding example.

(3) If s = 1, the sky-scraper sheaf k(p) is described by the complex

· · · ◦ •

~
~

~
~

◦ •

~
~

~
~

1 // ◦ •

~
~

~
~

· · · • ◦ 1 // • ◦ • ◦ 1 // • ◦

· · · ◦ • 1 // ◦ •

~
~

~
~

◦ •

~
~

~
~

1 // ◦ •

@
@

@
@

· · · •

~
~

~
~

◦ • ◦ 1 // • ◦

which is the string complex corresponding to the word

. . . C(p′,−1, 2)− (p′, 2) ∼ (p′′, 2)− C(p′′, 1, 2) ∼ C(p′′,−1, 1)−

− (p′′, 1) ∼ (p′, 1)− C(p′, 1, 1) ∼ C(p′,−1, 0)− (p′, 0) ∼

∼ (p′′, 0)− C(p′′,−1, 0) ∼ C(p′′, 1, 1)− (p′′, 1) ∼ (p′, 1)−

− C(p′,−1, 1) ∼ C(p′, 1, 2)− (p′, 2) ∼ (p′′, 2)− C(p′′,−1, 2) . . .
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(4) The band complex C(w,m, λ) , where w is the cycle

(p′, 0) ∼ (p′′, 0)− C(p′′,−3ω, 0) ∼ C(p′,−3ω, 0)−

− (p′, 0) ∼ (p′′, 0)− C(p′′, 0ω, 0) ∼ C(p′, 0ω, 0)− (p′, 0) ∼

∼ (p′′, 0)− C(p′′,−1, 0) ∼ C(p′′, 1, 1)− (p′′, 1) ∼ (p′, 1)−

− C(p′′, 2, 1) ∼ C(p′,−2, 0)− (p′, 0) ∼ (p′′, 0)− C(p′′,−4, 0) ∼

∼ C(p′′, 4, 1)− (p′′, 1) ∼ (p′, 1)− C(p′, 5, 1) ∼ C(p′,−5, 0)−

− (p′, 0) ∼ (p′′, 0)− C(p′′, 0ω, 0) ∼ C(p′, 0ω, 0)

describes the complex

•
-3

NNNNNNN •

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� λ

•
0

NNNNNNN •

◦ •

p p p p p p p 1 // ◦ •

• ◦ 2 // •

NNNNNNN ◦

◦ •

p p p p p p p 4 // ◦ •

• ◦ 5 // • ◦

•
0

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

•

N N N N N N N

or

V((0, 0), m, 1)⊕ V((0, 0), m, 1) −→ V((−3, 0, 1, 2, 4, 5, 0), m, λ).

Its homologies are zero except the place 0, so it corresponds to
a coherent sheaf. One can see that this sheaf is a “mixed” one
(neither torsion free nor sky-scraper). Note that this time we
could trace dotted lines another way, joining the first free end
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with the last one and the second with the third:

•
-3

NNNNNNN •

�
�
�
�
�
�
�
�
�
�
�
�
�
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�
�
�
�
�
�
� λ

•
0

NNNNNNN •

◦ •

p p p p p p p 1 // ◦ •

• ◦ 2 // •

NNNNNNN ◦

◦ •

p p p p p p p 4 // ◦ •

• ◦ 5 // • ◦

•
0
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�
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�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

•

N N N N N N N

It gives an isomorphic object in D (CohX) :

V((0, 0, 0, 0), m, 1) −→ V((-3, 0, 1, 5, 0), m, λ)⊕ V((2, 4), m, 1).

Remark. In [12] we used another encoding of strings and bands for
projective configurations, which is equivalent but uses more specifics of
the situation. In this paper we prefer to use a uniform encoding, which
is the same both for nodal rings and for projective configurations.

4.3. Application to Cohen–Macaulay modules. The description
of vector bundles has an important application in the theory of Cohen–
Macaulay modules over surface singularities.

Definition 4.5. (1) By a normal surface singularity over the field
k, which we suppose algebraically closed, we mean a complete
noetherian k-algebra A such that:
• Kr.dimA = 2;
• A/m ' k, where m is the maximal ideal of A;
• A has no zero divisors and is normal, i.e. integrally closed

in its field of fractions;
• A is not regular, i.e. gl.dimA =∞.

We denote by X the scheme Spec A, by p ∈ X the point cor-
responding to the maximal ideal m (the unique closed point of

X) and by X̆ the open subscheme X \ { p }.
(2) A resolution of such a singularity is a morphism of k-schemes

π : X̃ → X such that:
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• X is smooth;
• π is projective (hence closed) and birational;

• the restriction of π onto X̃ \E, where E = π−1(p)red, is an

isomorphism X̃ \ E → X̆; we shall identify X̃ \ E with X̆
using this isomorphism.

We call E the exceptional curve of the resolution π (it is indeed
a projective curve) and denote by E1, E2, . . . , Es its irreducible
components.

(3) A resolution π : X̃ → X is called minimal, if it cannot be

decomposed as X̃ → X ′ → X, where X ′ is also smooth.
Recall that such a resolution, as well as a minimal resolution, always

exists (cf. e.g. [47]).

In [43] Kahn established a one-to-one correspondence between
Cohen–Macaulay modules over a normal surface singularity A and
a class of vector bundles over a reduction cycle ZsubseteqX̃, which
is given by a specially chosen effective divisor

∑s

i=1miEi (mi > 0).
His result becomes especially convenient if this singularity is mini-
mally elliptic in the sense of [46]. It means that A is Gorenstein (i.e.
inj.dimA = 2) and dim H1(X̃,OX̃) = 1. Let π : X̃ → X be the mini-
mal resolution of a minimally elliptic singularity, Z be its fundamental
cycle, i.e. the smallest effective cycle such that all intersection numbers
(Z.Ei) are non-positive. Then Z is a reduction cycle in the sense of
Kahn, and the following result holds.

Theorem 4.6 (Kahn). There is one-to-one correspondence between
Cohen–Macaulay modules over A and vector bundles F over Z such
that F ' G ⊕ nOZ , where

(i) G is generically spanned, i.e. global sections from Γ(E,G) gen-
erate G everywhere, except maybe finitely many closed points;

(ii) H1(E,G) = 0;
(iii) n ≥ dimk H0(E,G(Z)).

Especially, indecomposable Cohen–Macaulay A-modules correspond to
vector bundles F ' G ⊕ nOZ , where either G = 0, n = 1 or
G is indecomposable, satisfies the above conditions (a,b) and n =
dimk H0(E,G(Z)). (The vector bundle OZ corresponds to the regular
A-module, i.e. A itself.)

Kahn himself deduced from this theorem and the results of Atiyah
[1] a description of Cohen–Macaulay modules over simple elliptic sin-
gularities, i.e. such that E is an elliptic curve (smooth curve of genus
1). Using the results of subsection 4.2, one can obtain an analogous
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description for cusp singularities, i.e. such that E is a projective con-
figuration of type Ã. Briefly, one gets the following theorem (for more
details see [30]).

Theorem 4.7. There is a one-to-one correspondence between inde-
composable Cohen–Macaulay modules over a cusp singularity A, ex-
cept the regular module A, and vector bundles V(D, m, λ), where
D = (d1, d2, . . . , drs) satisfies the following conditions:

• D > 0, i.e. di ≥ 0 for all i and D 6= (0, 0, . . . , 0);
• no shift of D, i.e. a sequence (dk+1, . . . , drs, d1, . . . , dk), contains

a subsequence (0, 1, 1, . . . , 1, 0), in particular (0, 0);
• no shift of D is of the form (0, 1, 1, . . . , 1).

Moreover, from Theorem 4.6 and the results of [29] one gets the
following

Theorem 4.8 ([30]). If a minimally elliptic singularity A is neither
simple elliptic nor cusp, it is Cohen–Macaulay wild, i.e. the classi-
fication of Cohen–Macaulay A-modules includes the classification of
representations of all finitely generated k-algebras.

As a consequence of Theorem 4.7 and the Knörrer periodicity theo-
rem [44, 49], one also obtains a description of Cohen–Macaulay modules
over hypersurface singularities of type Tpqr, i.e. factor-rings

k[[x1, x2, . . . , xn]]/(xp
1+x

q
2+x

r
3+λx1x2x3+Q) (n ≥ 3, 1/p+1/q+1/r ≤ 1),

where Q is a non-degenerate quadratic form of x4, . . . , xn, and over
curve singularities of type Tpq, i.e. factor-rings

k[[x, y]]/(xp + yq + λx2y2) (1/p+ 1/q ≤ 1/2).

The latter fills up a flaw in the result of [27], where one has only proved
that the curve singularities of type Tpq are Cohen–Macaulay tame, but
got no explicit description of modules.

Suppose that char k = 0. Then it is known [2, 32] that a normal
surface singularity A is Cohen–Macaulay finite, i.e. has only a finite
number of non-isomorphic indecomposable Cohen–Macaulay modules,
if and only if it is a quotient singularity, i.e. A ' k[[x, y]]G, where G is
a finite group of automorphisms. (I do not know a criterion of finiteness
if char k > 0). Just in the same way one can show that all singularities
of the form A = BG, where B is either simple elliptic or cusp, are
Cohen–Macaulay tame, and obtain a description of Cohen–Macaulay
modules in this case. Actually such singularities coincide with the so
called log-canonical singularities [45]. There is an evidence that all
other singularities are Cohen–Macaulay wild, so Table 1 completely



50 YURIY A. DROZD

describes Cohen–Macaulay types of isolated singularities (for the curve
case see [27]; we mark by ‘?’ the places, where the result is still a
conjecture).

Table 1.

Cohen–Macaulay types of singularities

CM type curves surfaces hypersurfaces

finite dominate quotient simple
A-D-E (A-D-E)

tame dominate log-canonical Tpqr

Tpq (only ?) (only ?)

wild all other all other ? all other ?
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