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Abstract

Sy a recent result of Viehweg, projective manifolds with arnpie canon~

ical dass have a coarse moduli space, which is a union of quasiprojective
varieties. In trus paper, we prove that there are manifolds with ample
canonical dass that lie on arbitrarily mauy irreducible components of
the moduli; moreover, for any finite abelian group G there exist infinitely
many component8 A1 of the moduli of varieties with ample canonical class
such that the generic automorprusm group GM is equal to G.

In order to construct the examples, we use abelian covers. Let Y be
a smooth complex projective variety of dimension 2:: 2. A Galois cover
f : X ~ Y whose Galois group is finite and abelian is called an abelian
cover of Y; by [Pa1L it is determined by its building data! i.e. by the
branch divisors and by some line bundles on Y, satisfying appropriate
compatibility conditions. Natural deformations of an abelian cover are
also introduced in [Pal].

In this paper we prove two results about abelian covers: first , that if
the .buiIding data are sufficiently ample, then the natural deformations
surject on the Kuranishi family of X; second, ~hat if the building data are
sufficiently ample and generic, then Aut(X) = G.

These results, although in same sense uexpected", are in fact rather
powerful and enable us to coustruct the required examples. Finally, note
that it is essential for our applieations to be able to deal with general
abelian covers and not only with cyclie ones.

1 Introduction

Coverings of algebraic varieties are a classical theme in algebraic geometry,
since Riemann's description of curves as branched covers of the projective line.
Double covers were used by the Italian school to construct examples that shed

-80th autho~ are members of GNSAGA of CNR.



light on the theory of surfaces and to describe special classes of surfaces 1 as in
the case of Enriques surfaces.

More recently, cyclic coverings have been extensively applied by several au­
thors to the study of surfaces of general type; it will be enough to recall the
work of Horikawa, Persson and Xiao Gang. Abelian covers have been used by
Hirzebruch to give examples of surfaces of general type on and near the Hne
ci = 3C2; Catanese and Manetti have used bidouble and iterated double covers,
respectively, of pI x pI to construct explicitly connected components of the
moduli space of surfaces of general type.

In [PaIL the second author has given a complete description of abelian covers
of algebraic varieties in terms of the so-called building data, namely of certain
line bundles and divisors on the base of the covering, satisfying suitable compat­
ibility relations. Natural deformations of an abelian cover f : X -t Y are also
introduced there and it is shown that they are complete, if Y is rigid, regular
and of dimension? 2, and if the building data are sufficiently ample. (Natural
deformations are obtained by modifying the equations defining X inside the
total space of the bundle f. ()x).

In this paper we study natural deformations of an abelian cover f : X -t Y
and prove that they are complete for varieties of dimension at least two if the
branch divisors are sufficiently ample. The result requires no assumption on Y,
and in particular also holds when the cover has obstructed deformations; this is
a key technical step towards the moduli space constructions described below.

We then turn to the study of the automorphism group of the cover. Since
the automorphism group of a variety of general type is finite, one would expect
that in the case of a Galois cover it coincides with the Galois group, at least if
the cover is generic. Our main theorem 4.6 shows that this is indeed the case
for an abelian cover, if the branch divisors are generic aod sufficiently ample.

We construct explicitly coarse moduli spaces of abelian covers and complete
families of natural deformations for a fixed base of the cover Y; this is useful
if ODe wants to investigate the birational structure of the components of the
moduli obtained by the methods of this paper.

The main application of the results described so far is the study of moduli of
varieties with ample canonical dass. Recently Viehweg proved the existence of a
coarse moduli space for varieties with ample canonical dass of arbitrary dimen­
sion, generalizing Gieseker's result for surfaces. Given an irreducible component
1'4 of the moduli space of varieties wi th ampie canonical dass, the automorphism
group GM of a generic variety in 1\1 is well-defined. In cont rast with the case of
curves (where this group is trivial for 9 ~ 3L it was already known in the case
of surfaces that there exist infinitely many components lvf of the modul i with
nontrivial automorphism group GM; it is easy to construct examples such that
GM contains an involution, and Catanese gave examples where GM contains a
subgroup isomorphie to Z2 x Z2' There are also, of course 1 easy examples of
components M where GM is trivial (for instance the hypersurfaces of degree
d ~ 5 in p3).
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As a first application of theorem 4.6 we prove that for any finite abelian
group G there are infinitely many irreducible components M of the moduli of
varieties with ample canonical dass such that GM = G; notice that we precise1y
determine GM instead of just bounding it from below.

We also prove that there are varieties with ample canonical dass lying on
arbitrarily many irreducible components of the moduli. \Ve distinguish these
components by means of their generic automorphism group; there are examples
both in the equidimensional and in the non-equidimensional case. In the surface
case, this answers a question raised by Catanese in [CaI].

Let S be a surface of general type; Xiao has given explicit upper bounds
both for the cardinality of Aut(S) and of an abe1ian subgroup of Aut(SL in
terms of the invariants of S ([XiI], [Xi2]). Some upper bounds are also known
for a higher-dimensional variety X with ample canonical dass, although sharp
bounds are still lacking. It seems interesting to ask whether these bounds can
be improved by considering instead of Aut(X) the group Autgen(XL namely the
intersection in Aut (X) of the images of the generic automorphism graups GM
of all irreducib1e components M of the modu1i space containg X (in particular,
if X lies in a unique cornponent M, then A utgen (.X) = GM).

As a first step towards the computation of a sharp bound for #Autgen ,
we show that such abound cannot be too smalI; for example, we construct
a sequence of surfaces of general type X such that /(1 tends to infinity and
#Autgen(X) grows asymptotically as K1(10g2 /(1 )-2.

The paper goes as folIows: in section 2 we collect same results from the liter­
ature and set up the notation. In seetion 3 we prove that, if the branch divisors
are sufficiently ample, then infinitesimal natural deformations are complete. In
section 4 we prove (theorem 4.6) that the automorphism group of an abelian
cover coincides with the Galois group if the building data are sufficiently ample
and generic. Ta do this, we prove same results on extensions of automorphisms,
which we believe should be of independent interest. The proof of 4.6 is based
on a degeneration argument and requires an explicit partial desingularization,
contained in section 7. Section 5 contains the ccmstruction of a coarse moduli
space for abelian covers of a given variety Y and of a complete family of natural
deformations. Finally, in section 6 we apply the results of seetions 3 and 4 to
the study of moduli spaces of varieties with ample canonical dass, as stated
above.

Acknowledgements. This work was supported by the italian MURST 60% funds.
The first author would also like to thank the Max-Planck-Institut für Mathe­
matik (Bonn) for hospitality and the italian CNR for support.

2 Notation and conventions

All varieties will be complex, and smooth and projective unless the contrary is
explieitly stated.

3



For a projective morphism of schemes Y -+ 5, Hilbs (Y) will be the relative
Hilbert scheme (see [FGA], expose 221). \Vhen Y is srnooth over 5, Hilb~iv(y)

will be the (open and closed) subscherne of Hilbs(Y) parametrizing divisors
(see [Fa] for a praof of this). \Vhen 5 is a point, it will be ornitted fram the
notation.

For Y a smooth projective variety, let N S(Y) be the image in H 2 (Y, Z) of
Pic(Y), and Pi~(Y) the inverse image of ~ E N 5(Y); let q(Y) = dirn H 1 (Y, Oy)
be the dimension of PicO(y).

Let X -+ B be any ftat famiIy, with integral fibres. Then there are open
subschemes Aut,r / Band Bir,r /B of the relative Hilbert scheme HilbB (X X B X)
pararnetrizing fibrewise the (graphs of) automorphisms and birational automor­
phisms of the fibre ([FGA], [Ha]).

We denote the cardinality of a (finite) set 5 by #5; for each integer m 2: 2,
let (m = e27fijm.

Notation for abelian covers. The following notation will be used freely through­
out the paper: we eollect it here for the reader's eonvenienee.

G will be a finite abelian group, C· its dual; the order of an element 9 will
be denoted by o(g). Let 1G be the set of a11 pairs (H,1/J) where H is a eyclic
subgroup of G' with at least two elements and VJ is a generator of H·. There is
a bijection between 1G and C \ 0 given by (H,VJ) t-t 9 where gEH is such that
t/J(g) =(#H. For X E C·, i = (Hi, VJj) E 1G, let a~ be the unique integer such

. (]i

that 0 :5 a~ < ffij (where m; = #Hd and X1H; = t/Ji:r: (cfr. [PaI], remark 1.1 on

p. 195, where a~ is denoted by JH,IjJ(X)). Let C~,XI = [(a~ +a~I)/md, where [rl
is the integral part of areal number r; note that c~, ' ia either 0 or 1.

A basis of C will be a sequenee of elements of 6, (e1'" '1 e,,), such that G
is the direet surn of the (eydic) subgroups generated by the ej's, and such that
o(ej) divides o(ej+d for each j = 1, .. " s - 1. Given a basis (eI, .. " e,) of C,
we will eall dual basis of C· the s-tuple (Xl, ' .. , X,), where Xj (ed = 1 if i #; j
and X;{ed = (o(e;) , \Ve will write a~ instead of a~j' für all j = 1,.,., s; for
X =Xfl ... X~·, let

q~= [t~].
j:;;;;;l I

Note that, unlike a.~, q.~ dependa on the choice of the basis and not onIy on X
and i.

Lemma 2.1 Let G be as above, and let 1 C 10 be a subset with k elements
(which we denote by 1, ... , k) such that the natuml map H1 $ ... $ Hk -+ G is
surjective, Then the k x s matrix (a~) has rank S Dver Q.

PROOF. Let gj be the element corresponding to (Hi • t/Jd via the bijection 1G H

C \ 0 deseribed above. Then, for any i = 1, ... , k and for any j = 1, ... , s, one
has a)/mi =Ajj/nj, where nj =o(ej) and gj = L Aijej, with 0 ::; ).ij < nj and
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Aij E Z . So the matrix (a;) has the same rank aver Q as the matrix Aij. On the
other hand Aij is the matrix associated to the natural map HIEB . .. EB Hk -+ G,
which is surjective. Let p be a prime factor of nI, hence of aH of the nj 'so Then
the map Z; -+ Z; represented by the matrix (Aij) mod p is also surjective,
hence the matrix (Aij) has an s x s minor whose determinant is nonzero modulo
p. This implies that the determinant is nonzero, hence the result. 0

Let X be any projective variety. Adeformation of X aver a pointed analytic
space (T,o) will be a Bat, proper map .-1' -+ T, together with an i50morphisffi
of the special fibre Xv with X.

Deformations modulo isomorphism are a contravariant funetor Defx from
the category Anspo of pointed analytic spaces to the category Sets, where the
funetoriality is given by pullback.

More generally, given a contravariant functor F : Anspo -t Sets, we will use
the same letter F to denote the induced funetor on the categories Germs of
germs of analytic spaces and Art" of finite length spaces supported in a point
(i.e. Spec's of loeal Artinian C-algebras). For the properties of funetors on
Art·, we refer the reader to [Schi].

Let A1 be an irreducible eomponent ofthe moduli spaee of (projeetive) mani­
folds with ample eanonieal dass. As the automorphism group ia semieontinuous
(see eorollary 4.5), it makes sense to speak of the automorphism group of a
generic manifold in AI; we will denote it by GM. Note that for any X such that
[X] E M, there is a natural identification of GM with a subgroup of Aut (X). If
X is a minimal surface of general type, we denote the interseetion in Aut(X) of
GM for all eomponents AI eontaining [X] by Autgen(X); it is the largest sub­
group H of Aut(X) such that the action of Hextends to any small deformation
of X.

3 Deformations of abelian covers

In this section we introduee natural deformations of a smooth abelian cover
and prove that infinitesimal natural deformations are complete, if the branch
divisors are suffieiently ample and the dimension is at least two.

\Ve start by recalling from [Pal] some fundamental results on abelian covers;
the reader will find there a more detailed exposition and proofs of the following
statements.

Let G be a finite abelian graup and let I be a subset of IG: we will use
freely throughaut the paper the notation introduced in section 2. Let Y be
a smooth projective variety: a (G,1)-cover of Y is anormal variety X and a
Galois cover f : X -t Y with Galois group G and braneh divisors Di (for i E 1)
having (Hi ,1/Jd as inertia group and induced eharacter (see [Pal] for details).
X is smooth if and only if the Di 's are smooth, their union is anormal crassing
divisor, and, whenever Di), ... , Di lt have a common point, the natural map
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Hit E!1 ... E!1 Hi k -+ C is injective. The cover is said to be totally romified if the
natural map EBiEI H i -+ G is surjective. Note that each abelian cover can be
factored as composition of a totally ramified with an unramified cover.

Let Mi =Oy (Dd. The vector bundle 1.0x on Y splits naturally as sum
of eigensheaves L.~l for X E C·! and multiplication in the Ol'-algebra f.Ox
induces isomorphisms

for aB x, X' E C· \ 1. (3.0.1)

Denote LXi by Lj! and let n j = 0 (Xj ). The isomorphisms above induce
isomorphisms

for aH j = 1, ... ,8. (3.0.2)

The (Di, Lx) are the building data of the cover; the (Di , Lj) are the reduced
building data. The sheaves Lx ean be recovered from the reduced building data
by setting, for X = Xr 1

••• X~',

8 i

Lx. = ® Lji 0 @Mi-qo.:.
j;;:l iEI

(3.0.3)

Conversely, for each choice of (Di, Lx) (resp. (Di , Lj)) satisfying equation (3.0.1)
(resp. (3.0.2)), there exists a unique cover having these as (reduced) building
data. Note that equations (3.0.2) have a solution in Pic(Y) (viewing the line
bundles Mi 's as parameters and the Lj 'g as variables) if and only if their images
via Cl have a solution in NS(Y).

Assumption 3.1 In this paper all (C, I)-covers will be totally romified. Unless
otherwise stated, f : X -+ }F will be a (G, I) -cover, with reduced building data
(Di, Lj). ~Ve will also assume that X and Y are smooth, 0/ dimension 2: 2, and
that X has ample canonical dass.

\Ve say that a property holds whenever a line bundle L (or a divisor D) is
sufficiently ample if it holds whenever cl(L) (or cdD)) belongs to a (given)
suitable translate of the ample cone. lt is easy to see that assumption 3.1
implies the following: if all of the Di 's are sufficiently ample then so is Lx for
any X '# 1. Moreover, if V is a veetor bundle, V 0 L is ample for any sufficiently
ample L.

Let S = {(i!X) E [ X C·IXIHi #; Will. Given a (C, I)-cover X -+ Y as
above, together with sections Si,x of HO(Mi 0 LXI) for aB (i, X) E S, a natural
deformation of X was defined in [Pal], §5. We now give a functorial (and
more general) version of that definition in order to be able to apply standard
techniques from deformation theory.
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Definition 3.2 A natuml deformation of the reduced building data of f : X ~

Y over (T,o) E .4.nspo is (Y,A1j,.cj,Si,x, 'Pi) where:

1. i EI, j = 1", "r, and (i,X) ES;

2, y ~ T is adeformation of Y over T;

3, .cj and Mi are line bundles on Y such that .cj restricts to Lj and ;\I1j to
Mi over 0;

4 .cGlnj iOI M0(nja~)/mj , . h' h . ,. 'Pi: j ~ \QI i IS an lsomorp Ism w ose restnctIOn to Yo
"d 'h h . h' L0nj iOI u0(nja i.)!m;, b I .COInCI es Wlt t e lsomorp 15m j -+ \QI Mi J glven y mu tl-

plication;

J i

5. Si,X is a section of .c; 1 (9 Mi, where .ex = ® .ej j 0 ® M;qx;
j:;;;:l iEl

6. Si ,x restricts over Yo to s~,x' where s~,x =0 if X '# 1, and S?,l is a section
of l\fi defining Di ,

We will say that adeformation is Galois if Bi ,x = 0 for X '# 1.

Natural deformations modulo isomorphism define a contravariant functor
Dnatx : Anspo -+ Sets, and Galois deformations are a subfunctor Dgalx' Note
that the indusion Dga1x '-+ Dnatx is naturally split, We now extend formulas
in §5 of [Pal] to define a natural transformation of functors Dnatx ~ Defx,

Definition 3.3 Let T be a germ of an analytic space, and let

(Y,.ci, J\I1i,'Pi, Si,x) E Dnatx(T).

Let V be the totalspace of the vector bundles E!1xECo .cXI and let 1r : V ~ Y
be the mitural projection. For a line bundle .c on Y I denote its pullback to V
by .c, and analogously for sections and isomorphisms. Each of the line bundles
[,X has a tautological section ux '

For each pair (X, X') E C* x C*, the isomorphisms 'Pi induce isomorphisms

t i
,

'Px,x' ; Lx es> Lx' -+ Lxx' es> @ ;\11 i X,X •

Let Ti E HO(V, J\1d be defined by

Ti = L 5i,x(1'x'

{XI(i,X)ES}

Define a section Px,x' of [,X (9 [,x' by

7



Then the zero loeus of all the Px,x l is naturally a deformation X -+ T of X over
T (in partieular X ean be naturally identified with the fibre of .l' -+ T over the
closed point). This is proven in [Pa1] in the ease where the deformation of Y, L j

ancl Mi is the trivial one, but it is easy to see that the same proof works in our
generalized setting. The deformation .l' -+ T so obtained is ealled the natural
deformation of X assoeiated to the given natural deformation of the redueed
building data.

It is now clear why Galois deformations were ealled that way:

Remark 3.4 Let X -+ T be adeformation of X induced by a Galois defor­
mation (Y, ...) of the reduced building data; ,-1' has a eanonical strueture 0/
(G, 1) -cover of Y I induced by the action of G on the total space of the line
bundle Lx given by the chamcter X.

The restrietions to the eategory Art- of the functors Dnatx and Dgalx satisfy
Sehlessinger's eonditions for the existenee of a projective huB (see [Schi]); in
fact, they ean be described (as usual in deformation theory) in terms of tangent
and obstruction spaces. Ir F : Art- ----t Sets is a contravariant fundor, then we
denote its tangent (resp. obstruetion) spaee by T1(F) (resp. T 2(F)), when this
makes sense.

Lemma -3.5 There is a natural action of G on Dnatx I whose invariant {ocus
is Dgalx; the deeomposition ofT (Dnatx) according to chameters, for I = 1,2,
is the Jollowing:

T'(Dgalx) =T(Dnatx)inv =H1(Y,Tl'(-logLDdL (3.5.1)

T (Dnatx)X = .e H l
- I (Y, Oy (Dd 0 LXI) for X i- 1; (3.5.2)

IES"

where 5x = {i E II(i,;d E 5}.

PROOF. An element 9 E G acts by

It is clear that Dgalx is eontained in the invariant loeus. It is not diffieult to
show the other inclusion using the faet that the cover is totally ramified.

\Ve now study separately tangent and obstruetions spaees eorresponding to
the different eharacters. For the trivial character I i .e. Dgalx, the functor is
isomorphie to the deformation functor of the data (Y, l\1j, sd; (3.5.1) is then
weil known (see [We]).

Fix a nontrivial character X. Then the problem reduces to studying the
deformations of the zero section of a line bundle, given a deformation cf the
base and cf the bundle. The statement can then be proven by applying the
following lemma. 0
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Lemma 3.6 Let 0 E B' C B E Art- be schemes of length 1, n, n + 1 respectively
for some n.: for schemesJ ete. over B denote the restn'clion to B' by a prime and
the restriction to 0 by ". Let y -r B be a smooth projective morphismJ {, a line
bundle on Y; let s' be a section of {,' ~ such that s~ =O. Then the obstruction
to lifting s' to a section s 0/ {, lies in H 1 (Yo, L o), and two liftings differ by an
element 0/ HO(yo, (,o),

PROOF. Let Uo: be an affine open eover of Y = Yo such that L is trivial on
each Uo:. Let Uoß be Uo n Uß C UO ' As Y is smooth, we have that Y is
eovered by open subsets l/~ isomorphie to Uo x B, glued via B-isomorphisms
'Poß : Uoß x 8 -r Ußo x 8 satisfying the cocyde condition and restricting to
the identity over o. Let goß be transition functions for t:. with respect to the
open cover Vo .

The section s' can be described by functions s~ on Uo x 8' such that, on
Uoß x B',

I '( , )So = goß sß 0 'Po:ß .

Extend s~ arbitrarily to a function So on Uo x B; any other extension is of the
form So + c(J'o, where c = 0 is an equation of 8 ' in 8 and (J'o is a function on
Uo (as cf = 0 for any function f in the ideal of 0 in B). Ir an extension S of s'
exists. there m ust be fu nctions (J'0 on U0 such that, on Uoß x B,

Let uaß = Sa - goß (sß 0 'Paß)' The restriction of uoß to Uoß X 8' is zero, hence
uaß is divisible by e: let uoß = €Voß. One ean verify, using the fact that So = 0,
that Voß is a cocyde in H 1 (Y, (,,,): it is enough to check that

tl.aß + gaß (Uß1 0 'Paß) = U 01

on UOß1'- for all tripIes a ,ß, f of indices of the cover. It is then immediate to
verify that voß is the obstruction to lifting s' to -Y, and the statement about the
difference of two liftings can be proven in a similar way. 0

We now recall same properties of Defx . Let DetX : Anspo -r Sets be the
functor of deformations of X together with the G action.

Lemma 3.7 There is a natural action 0/ G on Defx I whose invariant locus is
Det1.

PROOF. Let X -r T be adeformation of X over (T, 0); there is a given isomor­
phism i : X -r X". The action of an element g E G is given by replacing i with
i 0 'P(gL where r.p : G -r Aut(X) is the natural action.

It is dear that if G acts on adeformation .r -r T, then this belongs to De~.

The other implication follows from [Cal], §7 or directly from the fact that the
automorphisms of X and of its deformations are rigid. 0
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Note that, as X is of general type, the G-aetion on Defx induees an action
on the Kuranishi family ,1:' --+ B of X; the restrietion of the Kuranishi family to
the fixed loeus BG is universal [ar the fundor Detf (eompare ([Pi], (2.8) p. 19,
[Cai), §7).

Recall the fallowing result from [Pal].

Lemma 3.8 Let X be a smooth (C, 1) -cover 0/ Y with building data (Di , LxJ .
Then the decomposition according to chamcters oJ H l (X, Tx) is as follows:

H1(X, Tx)inv =H1(Ty(-log L Dd)
iEl

H 1(X, Tx)X =H 1(Tl' (-logLDi ) 0 L;l)
.iES...

where S,X is the same as in lemma 3.5.

(3.8.1)

ij X # 1 (3.8.2)

PROOF. This follows immediately from proposition 4.1. in [Pai]. 0

Corollary 3.9 Assume that .. Jor all X E C· \ 1, the bund/es Lx. and n~ 0 Lx
are ample. Then there are natuml exact sequences, for all X E C· \ 1:

o --+ EB HO(y, O(Dd 0 L.~l) --+ H1(X, Tx)X --+ O.
iESx

o-+ EI? H 1(Y, O(Dd <9 L;l) --+ H2(X, Tx )x.
iES,< '

(3.9.1)

(3.9.2)

PRO 0 F. Fix X # 1, let D =LiESx Di! and eonsider the following diagram of
sheaves with exaet rows and columns:

0 0

+ +
EB Oy = EB CJy

iESx iESx

.t. .t.

0 ---+ Tl'(-logD) ---+ p. ---+ EB Oy(Dd ---+ 0
iESx

I1 .t. .t.

0 ---+ Tl' (-log D) ---+ Tl' ---+ EB ODi(Dd ---+ 0
iESx

.t. .t.
0 0

where P is the prolongation bundle associated to the normal crossing divisor
D. By the previous lemma, it is enough to prove that the first two cohomology
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graups of P- <9 Lx 1 vanish; this follows from the corresponding vanishing for
L.~ 1 and Ty <9 L.~ 1, aod the latter is just Kodaira vanishing (it is here that one
needs the assumption dirn Y ~ 2). 0

The natural transformation of fundors Dnatx ~ Defx defined in 3.3 is
equivariant with respect to the natural actions of C on these functors. Therefore,
there is a eommutative diagram

Dga1x
.J.

Dnatx

-+ Detf
.J.

--+ Defx

where the vertieat arrows are injections. The following theorem shows that the
horizontal arrOW8 are smooth morphisms of funetors when the braneh divisors
are suffieiently ample.

This was proven in [Pa!] under the hypothesis that Y be rigid and regular;
in this ease natural deformations are unobstrueted , and it is enough to eheck
the surjectivity of the Kodaira-Speneer map. In the general ease one has to take
into aceount the obstruetions a.s weil.

Theorem 3.10 Let f : X ~ Y be a totally ramified (C, I)-cover with building
data Di, Lx I such that X and Y are smooth of dimension;::: 2 and that X is of
general type. Assume that for all X E G'" \ 1 the bundles Lx and O~ 0 Lx are
ample. Then the natural map of functors rfrom Art- to Sets) Dnatx ~ Defx
is smooth, and so is the induced map Dgalx und Det1.

PROOF. By a well-known eriterion, smoothness of a natural transformation of
fundors is implied by surjeetivity of the indueed map on tangent spaees, and
injectivity on obstruetion spaces.

This is immediate by lemma 3.5 and corollary 3.9 , and by the fact that the
map between tangent (obstruction) spaces indueed by the map of functors is
the natural one. 0

4 Main theorem

In this section we will prove that the automorphism group of an abelian cover
is precisely the Galois group, provided that the branch divisors are suffieiently
ample alld generie. The proof depends on the construction of an explieit partial
resolution of same singular covers, whieh will be given in section 7.

Although the result is in same sense expected. the proof is rather involved
and the techniques applied are, we believe, of independent interest.

The following lemma is inspired by a similar result of McKernan ([Md(]).

Lemma 4.1 Let ~ be the unit disc in C, ß- = ~ \ {O}. Let p : ,l' ~ ~ be 0

fiot mop, smooth ouer ~. ~ whose /ibres ore integml proJective varieties of non
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negative J(odairo dimension. Assume we are given a section (7 of Aut x /6..' If
there exists aresolution of singularities E : ..f --+ ,Y such that each divisorial
component of the exceptional locus has Kodaira dimension -co.. then (7 ean be
(uniqtJely) extended to a section of Bir,\, /6'

PROOF. The section (7 induces abirational map lf' ; ,Y--~ X over .6..; the
uniqueness of the extension follows from this. Let cp : .1'- -» X be the indueed
birational map, and let r be a resolution of the c10sure of the graph of ;P; let

PI, P2 be the natural projections of r on ..f (such that P2 = cp 0 PI Land let

qi=EOPi·

The strict transform X~ of Xo in r via qi'" I has positive Kodaira dimension,
henee it eannot be eontracted by P2, whieh is abirational morphism with smooth
image. Therefore the restrietion of P2 to ,Y~ is birational (because ,Y~ is not
contained in the exeeptionallocus of P2) onto some irredueible divisor Xü' in X.

As X~' is birational to Xo it eannot be of Kodaira dimension -co; hence
it is not contained in the exceptional loeus of E. Therefore E(X~') is a divisor
contained in Xo, henee it is X~ by irreducibility, and the map E : Xo' --+ Xo is

birational.
So the birational map lf' ean be extended to Xo by the birational map 92 0

(qIIX~)-I. 0

Lemma 4.2 In the same hypotheses of lemma 4.1, assume moreover that there
is a line bundle L on X .. flat over.6.. .. whose restrietion to Xt is very ample JOT
oll t .. and such that hO('Yt1 Llxj ) is eonstant in t. If the action 0/ (7 ean be lijted
to an action on L, then (7 can be uniquely extended to a section of Aut x /6.

PROO F. Let N be the rank of the vector bundle p. L on ß; choosing a trivializing
basis yields an embedding X y pN-l X ß. The automorphisms 'Pt of X t are
restrietions to Xt of nondegenerate projectivities of pN-l; their limit , as t --+ 0,
is a well-defined, possibly degenerate projectivity lf'o. This gives an extension

of 'P to an open set of Xo; this must DOW be birational by the previous lemma,

which in turn implies that !Po is nondegenerate (as 'Ya is not contained in a
hyperplane), and therefore that rpo is amorphism. Applying the same argument
to !p-l concludes the proof. 0

Remark 4.3 The hypothesis that (7 acts on L is obviously verified i/ LI,tl is a
plurieanonical bundle for all t i= 0.

Proposition 4.4 Let P: X --+ 0. be a flat family 01 integml projective varieties
of geneml type, smooth over 0. •. Assume that there is a line bundle L on X,
flat over ß .. with L, := Llx t ample on Xt ! and Aut(oYd aels on L t for t i= 0.
Assume moreover that for any m·th root base change Pm : ~ -+ ß the pullback
p~X admits aresolution having only divisors 0/ negative Kodaim dimension in
the exceptional locus. Th en Aut X/6 is proper over .6.. .. and the ca rdinality 01 the
/ibre is an upper semi·continuous /unction.

12



PROOF. After replacing L with a suitable multiple and maybe shrinking ß ,
we ean assume that L t is very ample on .ttl and timt hO(.ttl Ld is constant
in t. The map Autx/~ -7 ~ is obviously quasi-finite (because the fibres are
of general type) and the fibres are reduced (because automorphism groups are
always reduced in ehar. 0). It is enough to prove that given a map of a pointed
eurve (C, P) to ~ and a lifting of the map to Aut,r / B out of P, the lifting ean
be extended to P.

Via restrietion to an open set we ean assume that C is the unit disc ~, P
is the origin aod ~ -7 ~ is the map z --+ zm; we ean then apply lemma 4.2 to
eonclude the proof. 0

Corollary 4.5 Let X --+ B be a smooth family of van'eties having ample canon­
ical bundle. Then the scheme AutX/B is proper over B, and the cardinality of
the fibre is an upper semi-continuous function.

PROO F. \Ve ean apply the previous proposition wi th L = f{x /~ . 0

Theorem 4.6 Let Y be a smooth projeciive variety, and X a smooth (C,I)­
cover with ample canonical bundle, with covering data Lx., D i . Let H =Oy (1)
for some embedding of Y in pN-2; assume that the linear system

is base-point-free (where H is the line bundle giving the embedding). Assume
also that the Q-divisor

. L: (mi -1)M = J'i Y - (m 1 - 1) N H + Di
m·

iEl I

is ample .on Y. Then, for a generic choice of D 1 in its linear system, X has
automorphism group isomorphie to G.

PROOF. Let d be the number of automorphisms of a generic cover with the giveo
covering data (cfr. corollary 4.5). It is enough to show that d :$ #G, the other
inequality being obvious.

Let H be as in the statement of the theorem, and let 1i C IBI be the (not
necessarily complete) linear system giving the embedding; let H 1, ... 1 HN be N
projectively independent divisors in 1i. Assurne that the Hi's are generic, in
partieular that they are smooth and that their union with aH of the Dj 's has
normal erossings. Let m = m1, D = D1.

The strategy of the proof is the following: start from a generie cover X of
Y, and construct a sequenee of manifolds Xl, ... , X N aod of subgroups Gk of
Aut(Xk) such that

aod

13



In fact, Xk will be a (G,I)-cover of Y with covering data DOe), D2 ,. ", L.~k),

where L~k) =Lx - ka.~ Hand D(k) is a generie divisor in ID - kmH I (recaU that

a~ was defined as the unique integer a satisfying 0 :S a ::5 mi - 1 and XjH; = tPf).
We let Gk be the group of automorphisms of X/c preserving the inverse images
of the eurves H I, ... , Hk in Y.

We therefore want to prove the following:

1. #Aut(X) :S #Gt;

2. #Gk :S #Gk +1 ;

3. GN =G.

FIRST STEP: #Aut(X) :5 #G1 . Let D(I) be a generie divisor in ID - mHI, aod
choose equations /I, 9 aod h1 for H I, D and D(l) respectively. Define divisors
Vi on Y x C by Vi = Di X C for i i:- 1, VI = {(I - t)Pfh l + tg = O}; let ,tl
be the corresponding abelian cover. ,tJ is a singular variety (singular along the
inverse image of the eurve H 1 in Y), with smooth normalization Xl (see [Pa1),
step 1 of normalization algori thm of p. 203). Note that Xl is of general type by
the ampleness assumption on 1\1.

By proposition 7.3, the family Xl and each n-th root base change of ,tl
admit a resolution with only divisors of Kodaira dimension -00 in the exeep­
tional loeus. Moreover, the pull- back of M restricts to the g-canonieal bundle
on the smooth fibres of Xl (cfr the proof of prop. 4.2 in [Pai], p. 208). Ap­
plying proposition 4.4 gives that Aut ,\'1/ C is proper over C, and henee that

#Aut(X) ::5 Aut(Xol ) (as we assumed X to be generic). On the other hand it is
elear that each automorphism of .tJ lifts to the normalization Xl, yielding an
automorphism whieh maps to itself the inverse image of the singular loeus, i.e.,
the inverse image of the eurve H1 •

SECOND STEP: #Gk-l :S #Gk • We use a similar eonstruction; let X k - l be
as above, let h/C-l be an equation of D(le-1), Ik an equation of Hk, and hk an
equation of D(k). Define a (G, I)-eover X k of Y x C branched over Di x C

for i i:- 1, and over V~k) = {(1 - t)I'k hk + thk - 1 = O}; .l·~ is singular along
the inverse image Ck of HJe, and its normalization is Xk; again Xk is of general
type.

Again by proposition 7.3 the family .t(k) and aH its n-th root base ehanges
have a resolution with only uniruled components in the exeeptional locus; the
same argument as befare proves the result.

FINAL STEP: GN =G. Let 1T' : XN ~ Y be the covering map: GN is the group
of automorphisms of Y fixing the inverse images of the eurves H 1, .. " HN. Ev­
ery element of GN preserves 1T''" (1l), henee induces an automorphism of Y; this
automorphism must be the identity as it induees the identity on 1l. Therefore
G N must coincide with G. 0

14



Remark 4.7 In theorem 4.6 we can replace the assumption that the linear sys­
tem 1D 1 - ml N H 1 be base point free by asking that for each i E 1

be base point free, with Ni non negative integers with sum N; we then get that,
for a generic choice of the Di 's such that Ni :f:. 0, Aut(X) = G.

Example 4.8 One might wonder whether it is always true that a generie abe­
lian cover of general type has no "extra automorphisms". Here ia an easy ex­
ample where this is not the ease. Consider a Z3-cover of pi, branched over
two pairs of distinct points, with opposite characters. A generic such cover is a
smooth genus 2 curve, hence its automorphism group cannot be Z3.

EXanIple 4.9 Here is a slightly more complieated example of extra automor­
phisms, whieh works in any dimension. Let Y be a prineipally polarized abelian
variety, and let L be a prineipal polarization; assume that L is symmetrie, i.e.
invariant under the natural involution O'(y) = -y on Y. The sections of L02 are
all symmetrie, and the assoeiated linear system has no base points. Let G = Z;,
with the eanonieal basis el, ... I e". Choose [ = {1, ... , s}, and let Hi be the
subgroup generated by ei, for i = 1, ... , s.

The equations for the reduced building data beeome L12 = Oy (Dj ); we
ehoose the solution Lj =L, A1i = L0'1 for aIl i, j. 'Ne are in fact constructing
a fibred product of double covers. Choose the D i 's to be generic divisors in the
linear system IL02 1. Each of them must be symmetrie; this implies that the
involution 0' can be lifted to an involution of X, which is an automorphism not
eontained in the Galois group of the cover.

Note that in this case the total brauch divisor can become arbitrarily large,
still all (G, I)-eovers have an automorphism group bigger than C.

5 Moduli spaces of abelian- covers and global
constructions

In this section we will explieitly construct a coarse moduli space for abelian
covers of a smooth variety Y and a complete space of natural deformations.
Although some of the material in this section is implicit in [Pa1), we find it
important to state it in a precise and explicit way. In particular we will apply
theorem 3.10 to construct (under suitable ampleness assumptions) a family of
natural deformations whieh maps dominantly to the moduli (theorem 5.12).

Let Y be a smooth, projective variety, C an abelian group, 1 a subset of
[c. A family of smooth (C, l)-covers of Y over a base scheme T is a smooth,
proper map .l.' --+ T aod an action of C on .l.' compatible with the projection on
T, together with a T-isomorphism of the quotient .l' jG with Y x T, such that
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for each t E T the induced cover .l't -+ Y is a (C, I)-cover. Two families over
T are (strictly) isomorphie if there is a G-equivariant isomorphism inducing on
the quotient Y x T the identity map.

A (coarse) moduli space Z for smooth (G 1 I)-covers of Y is a scheme structure
on the set of smooth (C, I)-covers modulo isomorphisms, such that for any
family of (G, I)-covers of Y with base T the induced map T -+ Z is amorphism.

Theorem 5.1 There is a coarse moduli space of (C I 1) -covers of Y, which is q
Zariski open set Z = Z(Y, C, I) in the closed subvariety of

II Pic(Y) xII HilbdiV(Y)
xEGO\l iE!

of all the (Lx, Dd satifying the relations (3.0.1). The open set Z is the set of
(Lx, Di ) 's which satisfy the additional eonditions:

1. each Di is smooth and the union of the Di 's is a divisor with normal
erossmgs;

fl. whenever Dill" ., Dil< meet, the natural map Hil EB ... EB Hil< -+ G ~s

injective.

PROOF. The set Z parametrizes the smooth abelian covers of Y by (Pa1L the­
orem 2.1. The fact that the induced maps from a family of abelian covers to Z
are morphisms follows from the corresponding property of the Hilbert schemes
and Picarcl groups. 0

Proposition 2.1 of [Pa1] implies:

Remark 5.2 For any basis Xl, ... , X, of C- I the natural map

~

Z -+ II Pic(Y) xII H ilbdiv (Y)
j:::l iE!

induced by projection is an isomorphism with its image.

Z decomposes as the disjoint union of infinitely many quasiprojective vari­
eties Z (~i , 1]x) = Z (~i, 1]x) (Y, G! I) 1 W here 77x 1 ~i are the ehern classes of Lx and
CJ(Dd, respectively. \Ve now give an explicit description of Z(~i! 1]x) under the
assumption that the ei '5 are sufficiently ample.

Proposition 5.3 Let ei, 1]x be cohomology classes satisfying the following re­

lations (compare (3.0.1)):

1]x + 'lxi = T/xx ' + L €~,x'~i
iel
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Assume moreover that €i - cd Ky) is the dass of an ample line bundle for oll
i EI. Then Z (€i 1 1]x) is on open set in a smooth /ibmtion (with /ibre 0 product
of projective spaces) ouer an abelion uoriety A(€il1]X) isogenous to PicO(y)#/.
Z(ei,1]x) is nonempty iffthere are smooth effectiue divisors Di , with cdDd =ei,
such that their union has normal crossings.

PROOF. Let A =A(ei 1 T]x) c niEl PiC~i (Y) x nXEG.\l PicX(Y) be the image

of Z(~i,1]X); by equations (3.0.2) the natural map A ~ DiEI PiC{i(Y) is a finite
etale cover of degree (2q)#G 1 where q is the irregularity of Y. So each connected
component of A is an abelian variety, isogenous to PicO(y)#H. The fact that
A is connected is a consequence of the covering being totally ramified. In fact,
choose a basis Xl, ... ,X. of C" , and consider the diagram

A

t
rr;=l Pic'7i(Y)

with maps given by

(l\1i)
4-

1-7 (LJn i =Q9Nftia~)/m;).

(Afi 1 Li) 1-7

4­
(Lj)

The diagram is a fibre product of (connected) abelian varieties; to prove that A
is connected is equivalent to proving that 1rdDi E1 Pic{ i (Y)) surjects on

8 8

rrdil Pico(Xi)!'fi)/rrdil Pic!'fi(Y));
j=l j=l

this is in~ turn equivalent to proving that C* injects in EBiEIHt, which follows
by dualizing from assumption 3.1.

Let Pi on A x Y be the pullback of the Poincare line bundles from PicE; (Y) x
Y; the pushforward of Pi to A is a vector bundle Ei because of the ampleness
condition (the rank of Ei can be computed by Riemann-Roch). The moduli
space Z(ei 111x) is an open set of the fibred product cf the P(Ed. 0

Remark 5.4 If q(Y) is not zero, then the ccmponents Z(ei, 11x ) are uniruled,
but not unirational.

Remark 5.5 In general Z(ei,1]x) is a coarse but not a fine moduli space , i.e" it
does not carry a universal family. Keeping the notation of proposition 5.3 , let V
be the total space of the fibred product of the Ei 's, and let VO the inverse image
cf Z(ei 1 T]x); we have a natural abelian cover of Y x vo, which is a complete
family of smooth covers of Y with the given data.
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There is a natural action of Aut(Y) on the moduli space of (C, I)-covers Z,
given by

tp(Di, Lx) = (tp(Dd, (tp-l)* Lx) for tp E Aut(Y).

The automorphism group of G aets naturally on C* (by <Jl (X) =X0 <Jl-l) and on
IG (by <f?(H, 1/J) =(~(H), 1/J 0 <f?-l)); given a subset I of IG, let AutdG) be the
set of automorphisms of G preserving I. There ia a natural action of Aut/(G)
on Z I indueed by the natural action of this group on the indexing sets C* \ 1
and I.

Proposition 5.6 I/ the dasses ~j '8 are ample enough (so that theorem 4.6 ap­
plies to some cover in Z(€i, 1]j)), then the quotient 0/ Z (~i, ru) by the natural
action 0/ Aut(Y) x AutdG) maps birntionally to its image in the moduli 0/
mani/olds with ample canonical dass.

PROOF. That the natural map to the moduli factors via this action is clear.
Vieeversa, given a generie cover X in Z(€i, 17j), by theorem 4.6 its automorphism
group is isomorphie to C; so it ean be identified uniquely as a (G, l)-eover up
to isomorphisms of C and of Y. 0

Definition 5.7 Let Y --+ T be adeformation of Y over a simply conneeted
pointed analytic space (T, 0). As T is simply eonneeted, the eohomology of
every fibre Yt is eanonieaBy isomorphie with that of Y. Then the varieties
Z(~j, 1]x)(Yt, G, I) (resp. A(€i,1]X)(Yt, G,l)) for t E T glue to aglobai variety
2T«i,1]X) = ZT(~i, 1]x)(Y, C, I) (resp. AT(~i,1]:d), surjecting on the loeus on
T where the classes ~i (and henee also the 1]x) stay of type (1,1). The global
varieties are eonstructed by replacing the Hilbert and Pieard sehemes in the
construction of Z(~i, 1]x) and A(~i, 1]x) with their relative versions. The previous
results ean aB be extended to this relative setting.

For each smooth (C,I)-eover f : X --+ Y, the natural deformations of the
redueed building data such that the indueed deformations of (Y, L j 1 Mi) is trivial
are parametrized naturally by n(i,xlES HO(y, A1i 0 LXI), as in §5 of [Pal].

Theorem 5.8 Let Y --+ T be adeformation 0/ Y over a germ (T,o), and
assume that the ~i 's stay 0/ type (1,1) on T. Then there is a quasiprojective
morphism WT(€i, 1]x) --+ AT{';i, .,.,x) whose fibre over a point parametrizing line
bundles (Lj, lHd on Yt is eanonically isomorphie to n(i,X)ES HO(y, ,1\1j ® L<~ 1).

PROOF. The theorem folIows, by taking suitable fibre products, from the fol­
lowing two lemmas. 0

Lemma 5.9 Let Y be Cl smooth projective varietYI and< E N S(Y). Then there
erists a morphism 0/ schemes 1T : W€ (Y) --+ Pic€ (Y) sueh that the fibre over a
point [L] is natumlly isomorphie to the veetor spaee HO(y, L). For any choice
01 the PoineClre line bundle P on Y x Pic€ (Y), there exists such a W€ (Y) with
the property that the line bundle 1T- P on Y x W€ (Y) has a tautological section.
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Let P be the Poincare line bundle on Y x Pi~ (Y), and let p : jl" X Pic' (Y) ~
Pid- (Y) and q : Y x Pi~ (Y) ~ Y be the projections; if p. (1') is a vector
bundle, it is enough to take vV to be the total space of this vector bundle.

It is also dear that if e- Cl ([{}') is an ampie dass, then p* (1') is indeed
a vector bundle. For the general case, let A be a line bundle on Y such that
Cl (A) +e- cd J(y ) is ample, and such that there exists an s E HO (Y, A) defining
an effective, smooth cl ivisor D. Let 1r : V ~ Pice (Y) be the total spaee of the
veetor bundle p* (P ®q* A), and let U' : Oy x v -+ 1r* (P ®q* A) be the tau tological
section. For every y E D, let U'y be the induced section of 1f'*(P<8;q* A)I{y}xv; let

vVy C V be the divisor defined by U'y' Let W =vV' (Y) be the intersection of aU
Wy's for y E D: then d / s is regular on vV, and defines the required tautologieal
section. 0

Lemma 5.10 Let y ~ T be adeformation of Y over a germ 0/ analytic space
T, and assume that estays of type (1, 1) over T. Then, after maybe replacing T
with a Zariski-open subset, the spaces vV' (Yd glue together to a quasiprojective

morphism vV~(Y) ~ Pi4(Y).

PROOF. After eventually restricting T, we ean extend A to a line bundle A over
Y, and s to a section of A. The rest of the proof remains the same, using the
ract that the relative Picard scheme exists and carries a Poineare line bundle.
o

We now want to deseribe explicitly W~ (Y) in the case e=0, whieh we will
use repeatedly later.

Remark 5.11 For any deformation Y ~ T over a germ of analytie space,
W~(Y) is naturally isomorphie to the union in Pi4(Y) x C of j(T) x C and
Pic~(Y) x {O}, where j : T ~ Pic~(Y) is the zero seetion.

In particular vVO(Y) is redueible when q(Y) "# 0; this reftects the fact that the
deformations, as pair (line bundle, seetion), of (Oy, 0) are obstrueted; one ean
either deform the line bundle or the section, but not both at the same time.
This remark will be used to construet examples of manifolds lying in several
eomponents of the moduli in section 6.

Theorem 5.12 (i) Let Y be a smooth projective variety, and let X ~ Y be a
smooth (G, I)-cover such that theorem 3.10 holds. Then there exists a pointed
analytic space (W, w) and a natuml deformation of the reduced building data of
X over W such that the induced map of germs lrom (W, w) to the Kuranishi
family of X (defined as in 3.3) is surjective.
(ii) One can choose W to be a quasi.projeetive scheme, and then the induced
rational map from W to the moduli 01 manifoids with ample canonicai dass is
dominant onto each component of the moduli containing {Xl.
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PROOF. (i) Let Y -+ T be the restriction of the Kuranishi family of Y to the
loeus where a11 the ~i'S stay of type (1,1). Let W = WT(Xi, 1]x), Yw = Y XT W.
Over Yw there are tautologiealline bundles Lj, A/1 i aod tautologieal sections
si,x of Mi 0 L~l (where LX is defined as in 3.2); moreover LJn j is isomorphie

101. (njajl(m; W . d ( ) h hto "CI;\.1 i . parametnzes ata Y" Lj, Mi, Si ,x sue t at t E T, Lj

aod Mi are line bundles on Yt satisfying (3.0.2) and having Chern classes 1]j, €i,
and Sj ,x are sections of Lx 0 Mi-I. Let w E W be a point eorresponding to
the redueed building data of X: that ia, assume that w eorresponds to the data
(Yo, Lj ,l\1i,Si,X), where Si,x = 0 for all X 1= 1,0 is the chosen point in T, and
the sections Si,O define divisors Di such that (Lj, D;) are the redueed building
d~a~X. .

Ch b"I' h' '" r0n j 101. ,.,I0(njaj)/m; d'oose ar Itran y ISOmOrp 15mS 'i'j : J...j -+ 'CI ",Vii 1 exten mg
the isomorphism over w indueed by multiplieation in 0 x.

By theorem 3.10, together with Artin's results on approximation of analytie
mappings (see [Ar]), it is enough to show that every natural deformation of the
redueed building data of X over a germ of analytie space ean be obtained as

pullba.ck from (W, w).
It is eIear that aB small deformations of the data (Y, L j , A1j , Si ,x) ean be

obtained as pullback from W. So it is enough to prove that, up to isomorphism
of natural deformations, we ean ehoose the 'Pj'S arbitrarily. This ja proven in
lemma 5.13.
(ii) Start by noting that one ean eonstruet adeformation Y -+ B of Y over
a pointed quasi-projective variety (B,o), such that the germ of B at 0 maps
surj ectively to the loeus in the Kuranishi family of Y where the classes €i'S
stay of type (1, 1). In fact, ehoose any X E C- \ 1, and let L be a sufficiently
big multiple of Lx; assurne in partieular that L is very ample and that aH its
higher eohomology groups vanish. Let N = dirn HO(y, L) - 1; ehoosing a basis
of HO (Y, L) gives an embedding of Y in pN. Take the union of the irredueible
eomponents of the Hilbert scheme of pN eontaining b= (Y], and eonsider inside
it the open loeus B' of points eorresponding to smooth subvarieties. Then the
natural map from the germ of B' at b to the Kuranishi family of X 5urjects on
the loeus where 1]x stays of type (1, 1). Let B be the closed subseherne of B'
where also the classes €i stay of type (1, 1).

Let Y ~ B be the universal family; by replacing B with an HaIe open subset
we ean assurne that y -+ B has a section. Then (eompare for instanee [M-F],
p. 20) there exists aglobai projective morphism A -+ Band line bundles Mi,
Lj on Y x B A, such that Ab parametrizes line bundles (Mi, Lj) on Yb such
that firstly, they satisfy the usual eompatibility eonditions, and secondly, the
Chern classes of (Mi, L j) lie in the orbit of (€i, 1]j) via the monodromy action
Of1l"1(B,b).

Mimieking the proof in the germ ease, and replaeing B by an etale open
subset if necessary, one ean find a quasi-projeetive morphism W --+ A whose
fibre over a point eorresponding to line bundles (l\1i, Lj) on Yb is isomorphie to
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TI HO(Yb, Mi (9 L,X 1) for (i, X) E S via tautological sections Ui,x of the puBbaeks
to Y x B W of Mi (9 .cx1 .

Let w E W be a point corresponding to the building data of X as before.
Again one ean extend the multiplicati.ons isomorphisms !.pj to isomorphisms
A. .• r,?,nj tO.' A~(nja~)/mi
~J . L..J --+ '0' JVl, .

Putting everything together , we have a natural deformation of the building
data of X over (W, w); this induees by (3.3) a rational map to the moduli of
manifolds with ample canonical c1ass, which is a morphism on the open subset of
W where the natural deformation of X is smooth. Applying the same methods
as in (i) implies that the map from W to the moduli is dominant on each
irreducible component containing (Xl. 0

Lemma 5.13 Let T be a germ 0/ anaLytic space. For any (Y, A-1 i, .cj, Si,X' cPj) E
Dnatx (TL and /or any other admi.ssibLe choice 0/ isomorphisms 'Pi : .cTn j --+

® Mi0a~ I there erist sections si,x such that (Y, Mi,.cj, Si,x' 'Pj) is isomorphie
to (Y,Mi,.cj,si,x,'Pi).

PROOF. lt is enough to show that there are automorphisms 1/;i of Mi such that

h .. (tO. ~/.0(nja~)/m;) I I • f . h't e composltlOn '0' 'f'i 0 'Pj equa 8 !.pj; In act 10 t 18 case one can
choose si.x = tJ1i (Si ,xL for aB (i, X) E S.

A8 both 'Pj and 'Pi are isomorphisms, 'Pj = li'Pi, where fj is an invertible
function on Y restricting to 1 on the eentral fibre. Finding the tPi 's is equivalent
to finding functions 9j 's on Y such that 9j restricts to 1 on the central fibre and

f TI (nja~)/mi" 11' 1 Th' f h J" 11 fj = 9i , lor a J = 1"" S. e eXl8tence 0 suc 9i S 10 ows rom
the fact that the matrix a~ has rank equal to s, which in turn is implied by the
cover being totally ramified (see lemma 2.1). 0

Remark.5.14 There is a natural action of (C·)#l on the funetor of natural
deformations, which is the identi ty on (Y,.c j , ..Vij, 'Pj) and aets on (Tj ,x by

(A) ( ) II o,jm; -a~
i jEl (Tj,x = Aj . (Tj,x;

iEl

(5.14.1)

This action has the property that the induced fiat maps X --+ T are invariant
under it; in particular the natural map from W(~i J TJj) to the moduli factors
through the corresponding action.

6 Applications to moduli

[n this chapter we want to apply the results on deformation theory together with
theorem 4.6 to study the generic automorphism group of some components of the
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moduli spaces of manifolds with ample canonical dass, components containing
suitable abeliall covers with sufficiently ample branch divisors.

To begin with, we study the case of simple cydic covers (i.e., those for which
the Galois group G is cydic and there is ollly one irreducible branch divisor).

Proposition 6.1 Let f : X -+ Y be a smooth simple cyclic cover, with Galois
group Zm, and reduced building data D and L (where D is a smooth divisor and
L is a line bundle satis/ying mL == D). Assume that D is sufficiently ample.
Let M be an irreducible component 0/ the moduli space of sur/aces 0/ general
type containing X. Then GM is trivial i/ m ~ 3, and GM =Gi/rn =2.

PROOF. In case m =2, it is easy to check that H i (X, Tx) is G-invariant for i =
1,2; hence the natural map Dgalx -+ Dnatx is surjective, and all deformations
are Galois. By theorem 4.6, Aut(X) =G for a gelleric choice of D in its linear
system.

If m ~ 3, assurne without loss of generality that D is generic in its linear
system. Let (G, X) be the element of JG corresponding to the only nonempty
brauch divisor. Then the natural deformations of X such that Y and O(D) are
fixed are parametrized by

m-2 m-2
EB HO(y, L-i(D)) = EB HO(y, Lm - i );
i::::O i=O

in particular they are unobstructed. Moreover, given any nontrivial element gof
the Galois group G, it acts on the (necessarily nonzero) summand HO (Y, L m - I )

as multiplication by X(g), hence nontrivially; therefore 9 does not extend to the
generic deformation. Sy genericity however Aut(X) =C, hence by semiconti­
nuity of the automorphism group the proof is complete. 0

Hence, to get nontrivial examples, and to prove the results on the moduli
claimed in the introduction, it is necessary to study more general abelian covers.

Construction 6.2 Let s be an integer ~ 2. Let dI , ... , d, be integers ~ 2;
denote their least common multiple by do, and define integers bi by requiring
that bidj =do, for aH i = 1, ... ,8. Let G =Zd1 X ... X Zd., and let eI, ... ,e,
be the canonical basis of G; let Xl, .. " X, be the dual basis of C-.

Let eo := -(eI + ... + e,), and let Hi be the subgroup generated by ei; for
i = 0, .. " s, let VJi E Ht be the unique character such that VJi(ei) = Cd;; note
that, for each j = 1, ... , sand i 1= 0 we have a} = dij, while aJ =bj (dj - 1).
Moreover o(ed = d i , for i = 0, ... , s. Let I = {O, ... , s}; identify I with a
subset of Ja via i H (Hi,1/Jd.

Fix a smooth proj ective variety Y of dimension d, and assurne that s 2: d ~ 2.
Let f : X -+ Y be a (G, I)-cover of Y, with branch divisors Di. Equations (3.0.2)
become
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for a11 j = 1, ... , s, henee they ean be solved by letting L j = AloO Fj, A1j =
A10 0 Fj

0d
j , for aH j =1, ... , s.

We compute explicitly Lx for X E C*, using equation (3.0.3). Let X E C*,
and write X =Xr 1

••• X~', with 0 ~ Uj < dj. One gets

where Nx = -[(-ulb l - ... - u~bJ)/do]. In partieular Nx is an integer ~ 0;
Nx = 0 if and onIy if X =0, Nx = 1 if and only if 2: (ujb.:) ~ do.

In the following we will always assurne that Cl (Fj) = 0, for j = 1, ... , s;
let ~ = cdA10 ). Assume also that X is a smooth (G,I)-cover, that is that the
divisors Di are smooth and their union has normal crossings.

In the surface case, one can compute the Chern invariants of the cover X:

(Ky + (s - (döt + ... + d;I))~)2

= e2(Y) - ((s + 1) - (döl +... + d;I))~Ky +

(e;2) + ~di' + o~~~.di'dj') e

K}/#C =
C2(X)/#G

The first equality follows from [PalL proposition 4.2; the second from the ad­
ditivity of the Euler characteristie, by decomposing Y in locally closed subsets
aceording to whether a point lies io 2, 1 or 00 branch divisor. Note that 00

other possibilities can oceur, as we assume that the union of the branch divisors
has normal crossings. The second equality could also be derived by Noether's
formula and proposition 4.2 in [Pai].

Lemma 6.3 Let f : X -+ Y be a (C, I)-eover as in eonstruction 6.2. Assume
that q(Y). is nonzero, that ~ E N S(Y) is sufficiently ample, that Fj = CJy (for
j = 1, ... , sJ) and that Di E IMil = IMol is generic (JOT i = 0, ... ,8). Then,
for eaeh k = 0, .. " S, there exists a component 1\1k of the moduli of manifolds
with ample canonical dass, containing X, such that the generic automorphism
group GMI< C C is equal to Gk = Zdl X ... X Zdl<'

PROOF. Sy assumption X has ample eanonical dass, Aut(X) = G and the
natural deformations of X are complete. Assurne first that Y is rigid. Let
X E G* be such that Nx = 1, and let (i, X) E S; these are the only values of i, X
(with X nontrivial) for whieh A1j ® LXI ean have sections, i.e. ean contribute to
non-Galois deformations. In fact cdlvfi 0 Lx 1) =0, henee it has sections if and
only if it is trivial (compare remark 5.11). The condition that the line bundle
Mi 0 Lx 1 be trivial ean be expressed, in terms of the F/s, as

L ujFj = diFj •

j

(6.3.1)
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Let Tk C PicO(y)" be the locus where Fi = 0 for aU i > k. Note that Fi = 0
for aB i > k implies that 1\1j = 1\10 for aH i > k, and that Afj <9 LXI is trivial
for any (i, X) such that Nx = 1, i > k and X restricted to Gk is trivial.

For a generic choice of (Fj) E Tk , the line bundles Mi 0 LXI are nontrivial
for eaeh X such that XIG" i- 1; in fact, for any such X there exists jo ~ k such
that D:io > 0, henee the coefficient of Fjo in (6.3.1) is nonzero (being either
D:jo > 0 or D:io - dio < 0).

On the other hand, for each j > k, one has (0, Xj) E Sand 1\10 0 Li 1 is
trivial (in fact one has to exclude here the ease where do is equal to 2, and henee
aB di 's are; this case needs a slightly different analysis, see below). Henee for
every 9 E G \ Gk, and for any (G, I)-cover with building data in Tk, there are
natural deformations of the cover to whieh the action of 9 does not extend.

Therefore the (G, I)-covers whose building data are in Tk, together with
their natural deformations such that Si ,x = 0 for aU X acting nontrivially on Gk ,

form an irredueible component of the Kuranishi family of X; in fact they are
parametrized by an irreducible variety, and at same point they are complete (at
least at alt points corresponding to (G, I)-covers with a generic choice of the Fi 's
for j ~ k). The generic element of this eomponent has therefore automorphism
group Gk .

In the case where do = 2, (0, Xi) rt. S; however, if k :f. 8 - 1, we ean consider
Mp 0 Li 1 instead of Mo 0 Li l

, where j' is any index> k and different from
j. Ifk=s-I,letX=Xl+x,;thenNx=1(ass2:2),and(O,X)ES. As
x(e,) =I 0, there are natural deformations to whieh the action of G does not
extend.

The same argument applies if Y is non~rigid, by replacing PicO(y) with
Pic~(Y)", where y ~ T is the restriction of the Kuranishi family of Y to the
locus where ~ stays of type (1, 1). 0

Remark 6.4 We ean find a Y of arbitrary dimension aod an ample dass e
such that deformations of Y for whieh estays of type (1,1) are unobstructed;
for instanee, by taking Y a product of eurves of genus at least two and ~ the
canonieal dass. .

Theorem 6.5 Let d 2: 2 be an integer. Given any integer N, there exists a
point in the moduli space of manifolds of dimension d with ample canonical
class which is contained in at least N distinct irreducible components.

PROOF. Without loss of generality, assurne that N 2: d. Choose arbitrarily
integers d1 , , dN , each of them .2: 2. Let (Y, L) be as in lemma 6.3; then for
each k = 1, , N there exists a component of the moduli containing X and
having generic automorphism group isomorphie to Zd l x ... X Zdl,' Henee X
lies in at least N different irreducible components of the moduli. 0

In the case of surfaces, this result gives a strong negative answer to the open
problem (ii) on page 485 of [Ca2].
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Theorem 6.6 Let G be a finite abelian group'. and d ~ 2 an integer. Then
there exist infinitely many components Iv! 0/ the moduli space 0/ mani/alds 0/
dimension d with ample canonical class such that GM = G.

PROOF. Let G = Zd1 X ... X Zdlo:' If k 2::: d, let s = k; if k < d, let s = d and
choose arbitrarily dk +1 , . •• , d~. Choose (Y,~) aB in lemma 6.3. Applying the
lemma to (Y, i~) for i ~ 1 gives the claimed result. 0

In the case of surfaces, another natural question concerns the cardinality of
the automorphism group. Xiao proved in [XiI] that if X is a minimal surface
of general type, #G :5 52Kl + 32 for aB abelian subgroups G of Aut(X)j it
is not known whether this bound is sharp, but he gives examples to the effect
that any better bound mllst still be linear in [(k. It seems natural to ask if
there is a smaller bound if one replaces Aut(X) by Autgen(X), the interseetion
in Aut(X) of GM, for each irreducible component M containg X. Notice that
in Xiao's examples the generic automorphism group is obviously smaller, so a
better bound should in principle be possible. In particular, it is an open question
as to whether such abound could be less than linear in [(k. We prove here
that it cannot be "much" .less than linear.

Proposition 6.7 There exists a sequence Sn 0/ minimal sur/aces 0/ general
type such that

1. kn =K~ .. tends to infinity with 11,

2. Sn lies on a unique irreducible component, A1n ,.

PROOF. Let 11 2::: 2 be an integer. Apply contruction 6.2 with s = 11, Y a
principally polarized abelian surface with N S(Y) = Z and eequal to the double
of the dass of the principal polarization. Choose Sn to be a cover branched over
divisors Di whose linear equivalence classes are generic; then all infinitesimal
deformations must be G alois, and the Kuranishi -family of Sn is smooth. So G At..

must contain Z~, hence #GM .. ;:::: 2n
• On the other hand, by [Pa1L proposi tion

4.2, we have
kn =2n (n + 1)2e2/4.

A simple computation yields the result. Note that as we only want to bound
GM from below, we don't need to apply theorem 4.6, which would have forced
us to choose aB dass ~ a higher multiple of the principal polarization. 0

Remark 6.8 Using the computation of Chern numbers for construetian 6.2,
one can determine where the examples construeted so far lie in the geography
of surfaces of general type. For instance by setting all di '8 equal to m and letting
sand m ga to infinity, one gets a sequence of examples where f{2/ C2 tends ta 2
from below.
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7 Resolution of singularities

Remark 7.1 Let 1r : X -+ Y be a (G, I)-cover with Y smooth and brunch locus
with normal crossings. Let Z -+ X be aresolution 01 singularities.: then the
exceptionallocus 01 Z has uniruled divisorial components.

PROOF. The question is Iocal on Y, so we can assume that Y is affine and that
the line bundles Lx and O(Dd are trivial. Let G' be the abelian group with
#1 generators eI, ... , e" and relations tnjei = 0 (where mi =#Hd. There
exists a smooth G'-cover XI of Y branehed over the Di such that the inertia
su bgroup of D j is generated by ej, and such that the map V -+ Y fadors via
X. Let Z' be a resolution of singularities of the fibre product Z Xx X'; we have
a commutative diagram

Z' -+ X'
.l. .!.

Z -+ X

Let E be an irredueible divisorial component of the exceptionalloeus of Z -+ X;
its strict transform EI in Z' must be contracted in X' as X' -+ X is finite. As
X' is smooth and ZI -+ X' is birational, EI must be ruled by [Ab], therefore E
must be uniruled. 0

Lemma 7.2 Let y -+ ~ be a /amily 0/ smooth mani/olds, .l' -+ Y an abelian
cover branched on divisors which are all smooth except D, 0/ branching order
n, which has local equation fn h + tg =0 with f, t , h, 9 local coordinates on Y
(and t coordinate on .6.). Then there erists a morphism Y -+ Y such that:

1. Y -+ Y is a composition 0/ blowups with smooth center;

2. the normalization .1? 0/ the induced cover 0/ Y is an abelian cover 0/ Y
brnnched over anormal crossing divisor~'

3. the exceptional divisors 0/ .i' -+ X have Kodaira dimension -00.

PROOF. \Ve will construct Y by successive blowups; a loeal coordinate and
its strict transform after the blowup will be denoted by the same letter. At
each blowing-up step one checks that the normalization of the last introduced
exceptional divisor has Kodaira dimension -00 (further blowups change the
situation only up to birational maps).

The strategy of the proof is as folIows; each blowup introduces a divisor
which is a pr bundle (for r = 1,2), and we prove that the induced cover of the
generic pr has Kodaira dimension -00. \Ve can assume that the Galois group
coincides with the inertia subgroup H of D; if this is not the case, consider the
factorization X -+ X / H -+ Y land note that the map X / H -+ Y is unramified
near generic points of D! hence after blowing up the inverse image of the generic
pr is an unramified cover! which is therefore a disjoint union of copies of pr.
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We first prove the result on the locus where h:/;O (this is all one needs if Y
is a threefold). By changing IDeal coordinates oue can assume h = 1. Let n be
the order of H. \Ve distinguish two cases: n even and n odd. Let EI, E 2 , ... be
the subsequent exceptional divisors.

CASE OF n EVEN. Blow up at each step the singular locus t =f =9 =0 and
look at the fehart. At the first step one obtains

and the total transform of the branch locus Dis D+2EI , The covering restricted
to EI is the composition of a totally ramified cover of degree n/2 and of a double
cover ramified over D n EI which is (on each p2 in Et} a (possibly reducible)
conic. Hence the cover of E 1 is fibered in two-dimensional quadrics (maybe
singular).

At the k-th step (1 < k ~ n/2) we have

zn = f2k(fn-2k + tg)

and the total transform of D is

D+2EI + ... + 2kEk'

Again D cuts out a (possibly reducible) conie on the p2 fibration of E k ; more­
over, E k n Ei =0 if i < k - I, and Ek n E k - I is (fibrewise) a line which is not
contained in D.

If ~ is a generator of the group H, the induced cover of Ek is the composite
of a totally ramified cover and of a cyclic cover of degree r, where r is the
cardinality of H /(~2k); the cover is ramified on each p2 on a conic and on a
line. The pairs (inertia group, character) for the branch divisors correspond,
via the bijection defined in §2, to ~ for the conic and to ~-2 for the Hne.

The canonical bundle of the cover is (fibrewise) the pullbaek of a multiple
of a line in p2, the multiple being -

-3 + 2 (r ~ 1) + (r/~/; 1) < 0

if r is even and

(r-l) (r-l)-3 + 2 -r- + -r- < 0

if r is odd; in both cases the anticanonical bundle of the cover is ample and the
surface must be of Kodaira dimension -00.

CASE OF n ODD. Start by blowing up the singular locus t = f = 9 =O. At
the first step the total transform of D is D + 2EI and the cover of EI is totally
ramified (as 2 is prime with n), hence the cover is again EI. If 2k < n the
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same formulas as before hold; we can repeat the previous argument where r is
necessarily odd.

Look now at the k = (n - 1)/2 case. The total transform of D is

D + 2E1 + ... + (n - 1)E(n-l)/2'

The strict transform of D is now smooth; E(n-l)/2 n D is fibered in singular
conics, and we blow up the singular locus. The center of this blowup does
not meet Ek for k < (n - 1)/2, and D and E(n-l)/2 have the same tangent
space there. Therefore after blowing one gets an exceptional divisor E(n+l)/2
intersecting both E(n-l)/2 and D in the same line. The equation (in the 9 chart)
becomes

zn =r- 1gO (f + t9).

The cover of E(n+l)/2 is a pl-bundle ramified on a generic pI with opposite
characters on the same divisor, hence when normalizing it splits completely.
The components of the total transform of D are smooth, but they meet non­
transversally along the pl-bundle f =9 = O.

We now blow up the locus f = 9 = 0 and caU tbe exceptional divisor F; the
total transform cf D is

D + 2E1 + ... + (n - 1)E(n-l)/2 + nE(n+l)/2 + 2nF,

and F is a pl-bundle over a pl-bundle. The covering of the generic pl-fibre of F
is ramified cf degree n over two points (corresponding tc FnD and FnE(o+1)/2)
with opposite characters , hence is again isomorphie to pI.

In botb cases the fact that the divisors are smooth and transversal ean be
checked at each step out of the center of tbe next blowup.

We now work in the neighborhood of a point where h =O. Ir n is even, one
can perform the same blowups as in the previous case and check that the same
arguments work. Ir n is odd, one can perform the first (n - 1)/2 blowups as
before. After them , the total transform of D has equation fn-l (fh + tg). In
particular (the striet transform of) D is not smooth any more; we blow up its
singular loeus, and get a smooth exeeptional divisor E. The total transform of
Dis

D + 2E1 +... + (n + 1)E

and is given (in loeal equations in the h ehart) by

Let ~ be a generator of H; the iodueed cover of E is eydie with group H / (€n+1),
henee it is totally ramified and therefore of Kodaira dimension -00, being a p2_
bundle. We are not done because the divisors D and E(n-l)/2 are not transversal
along f =9 = t = 0; but naw we ean apply the previous blowup proeedure again.
o
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Proposition 7.3 Let .l' ---+ Y --+ D. be an abelian cover.. branched over all
smooth divisors except one, which has local equation rh + tg I rohere /, t ,gare
coordinates and m is the order of bmnching (where t is the coordinate on D.).
Then .l:' and all its transforms via an n-th root base change admit aresolution
of s!'ngularities such that the divisoriol components of the exceptional divisor all
have [(odaim dimension -00,

PROOF, The statement without the base change has already been proved; let
.i' be such aresolution. By Hironaka's resolution of singularities ([Hi], p. 113,
lines 8-4 from the bottom) we can assume that ,·f·o is anormal crossing divisor.
Let now Pn : D.. --+ D. be the map t ..-r tn . There is a natural birational mapping
P~X ---+ P~.1'; moreover P~'i' is a cyc1ic cover of the m_anifold.1' ramified over ;fo1
which has normal crossings, hence by remark 7.1 p~,l' has a resolution such that
the divisorial components of the exceptional divisor aB have Kodaira dimension
-00. 0
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