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Scalar curvature of spheres

Osamu Kobayashi

It is known that, if a compact n-manifold M, n 2 3, admits
a metric of positive scalar curvature, then any smooth function of
M 1s realized as the scalar curvature function of some metric of M
(cf. [1]). This papér is an attempt to show this statement will be true
even 1f we assume the metric has unit total volume. In the previous
paper [2], this problem was solved except for positive constant
functions. Therefore we have only to find metrics with unit volume
and with scalar curvature equal to a;bitrarily given positive constant.
One difficulty is that we cannot apply the Yamabe problem because it
providés only constant scalar curvature less than or equal to that
of the standard sphere when the veolume is normalized. ©On the other
hand there are cbvious cases in which we can easily get any positive
constant scalar curvature under the volume constraint. That is, when
M is a product manifold Mlx M2 either of whose component admits a metric
of positive scalar curvature, or when M is the total space‘of certain
fiber bundle such that both fiber and the base admit positive scalar
curvature, BAs for spheres Sn, it ig the case when n =23 (mod 4) and

4k+3/53 "‘-"'IHPk. In this paper we

n 2 7 by means of the Hopf fibering S
shall construct metrics of large constant scalar curvature for even

dimensional spheres with dimension at least 4. As a result, we get

Theorem. If n# 1 (mod 4) and n 2 4, every smooth function of s” is

the scalar curvature 2£ some metric g£ unit total volume.
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§1 pPreliminaries.

We begin with a formula for the scalar curvature of a metric

expressed in some special coordinates.

Lemma 1.1. Let‘{hs}s ¢ be 2 l-parameter family of metrics

of an {(n- 1)-manifold N. Then the scalar curvature R of the metric

2 .
ds™ + hs on IXN is given as

. C oL 1. (2 .2
R = —(trhshs) - Z(!hslhs + (trhshs) ) + R,

where.Rs is the scalar curvature of h; and ° stands for 2/3s.

The proof is a straightforward calculation and is omitted.

We shall use this lemma in the following form.

Corollary 1.2. Let hs be as above and R be the scalar

. 2 4/
t th i
curvature of e metric ds + u nh8 where u is a positive

function 25.I3<N..‘Assume trh hs = 0, namely the volume elements
s

2£ hs are the same. Then we have

. n 1 . 2 _ n 4/n
Ut THo R ¢ gl v s g R ),

4/n

where R(u4/nhs) 1s the scalar curvature 9£ u hs.

The following will be the starting point of the proof of

our theorem which will be given in the next section.



Lemma 1.3. Suppose n > 4 is an even integer. Then there

is a smooth l-parameter family of metrics h_ of s%7! with the

following properties:

(i) hO is the standard metric with the scalar curvature (n-1)(n-2);
, 3
(it) trh gghs = (;
s
(i) la h |=1;
Bs s '

(iv) the scalar curvature R(hs).ig constant for every s and

R(h ) < R(h,).
s = 0

Proof. Note that the Hopf fibering Sn-l/S1 E mPn/z-l induces
a Killing vector field of unit length on (Sn-l,h ). "Let w be the

0
l-form associated to the Killing vector field. Then the family of

metrics

h, = exp(-t//(a~1)(n-2)) (h, + (exp t An-1){m-2)) = DwOw)

S

- satisfies the required conditions.

§2 Proof of Theorem.

Let ¢ be a smooth nonnegative function of R such that

[}

¢ (t)
$

b >0 on (0,e/2],

0 for t & (0,€),

<1 and (1)

where £ is a sufficiently small positive number. We then put

rodit) for 0 < r<1
¢r(t) = (2)
¢ (rt) for 1

A
H



So the support of ¢_is contained in (O,tr), where

x

€ for0<rgl
£ = (3)
r

e/r for 1 <r.

Let h9 be the metrics of Sn—1 as ‘in Lemma 1.3 and define

functions A and B_ as
r r

n 1

C . 2
AL(t) = ;== (n=1) +-z’h¢r(t)| ),

(4)
n

B (&) = 4Ty R(h¢r(t))'

where ° is 93/3t. Here we remark that Ar and Br are functions in t

because of (ii) and (¥) of Lemma 1.3, and that
2.
A :=
0 n /4

B0:= nin-2)/4.

Ar(t)

v

(5)
Br(tT

A

Moreover the strict inequalities hold for t (O,tr/2).

Let ur(t) be the solution of the following equations

L e ) = 1-4/n
ur(t) + Ar(t)ur(t) Br(t)u(t)

n/4 n/4

ur(t) = (BO/AO) = {({(n-2)/n) for t <0 (6)

u {t) > Or
r
and Tr > 0 be the maximal time for which (6) is solvable for t < Tr.
Then from (5) we have

Hr(t) + Agu (t) < Bou(t)1'4/”.

0 (7)

Here the strict inequality holds for t & ﬂ),tr/2).



2 o
Lemma 2.1. If At 2 ¢ /4, then u_ < 0 on (0O,min{t _,T }}.

0

Proof. Suppose ﬁr(a) = 0 for some a € (O,min{tr,'rr}). Then

/4

from (7) we can find a, € (0,a] such that u(a ) < (BO/AO)n and

1
Qéal) = 0. Since 0 < a; < ﬂ/2¢A0 , the graph ofuris tangent from

above to the graph of

= ; n/4
v(t) = - k sxn/ig.t + (BO/AO)

at t = a, € (O'al) for some positive k. Therefore

e PP n/4
ur(az) > v(a2) = AO((BO/AO) - ur(az))

> B.u {a )1-+/n
r 2

0 - Aour (az) r

which 1s contrary to (7). Hence ur does not change its sign on

(O,min{tr,Tr}), which implies, again by (7), that ﬁr < 0 in this

interval.
n/4
Lemma 2.2. If u_ < (B /A_) on (0,t), then
e L T ) = -
t2 n/4 t2 n/4
w (e} 2 (1 - 3—( max Ar))(BO/AO) + 3—( max A ) min (B /3 ) .
fo,d fo,t] * fo.£]

Proof. It follows immediately from (6) that

/4

u (&) + max{A_(£) (u_(&) - (B_(e)/a_(£))™ %) ,0} > 0.
r r r r r =

, n/4
Since u_ < (BO/AO) and BO/A0 > Br/Ar , we have

/4 /4

o n n
u, (t) + (max A) ((By/Aj) - (B (e)/A (€))7 7) 20,

which yields the desired inequality simply by integration.



From the above two lemmas we get

Corollary 2.3. If trzmax Ar < 1, then tr < Tr .. Moreover

for t € (O,tr). we have

alt) < 0 (8)
and

L /a4 < u(o). (9)

27070 r .

It is easy to see that there is an EO > 0 such that, if € < 80 ,
then trzmax Ar < 1 for any r. So from now on, we assume £ < EO and
therefore the hypothesis of the above corollary is automatically
satisfied.

Lemma 2.4. ﬁr(tr/Z) + -©® asr > ®,

Proof. First we observe that

lim_ Ar(ktr) =® for 0°'< k £ 1/2. (10)

Hence for any sufficiently large r we have

B (t)/A_(t) < B/3A) for t eljtr/a,tr/zj.

Then we get from (9)

/4A .

1 n
< - g(BO/AO) r

r

Hence £ /2

. . 1 n/4 r
ur(tr/Z) ; ur(tr/3) - E(BO/AO) S Ar(t)dt,
tr/3

and the right hand side goes to -® on account of (10)}.

Lemma 2.5. There exists an R > 0 such that uR(t) =

/

sin™ (T -+t) for t £ <
R r

A



Proof. We put

_ 1. 2 2 n 2-4/n
Er(t) = —2-(ur(t) + Aour(t) iy Bour(t) ).
Then
. . .o 1-4/n
Er(t) = ur(t)(ur(t) + Aour(t) Bour(t) ).
Hence from (7) and (8) we have
E (t) >0 for O0<¢t<t . (11)
r = = = b

From (8), ur(t) < (130/15.0)”/4 for 0 £t ¢ L This together

with Lemma 2.4 yields
lim E_(t_/2) = =,
r r
Y—-+co
Therefore by (11) we get

lim Er(tr) = @,
=0

Since E, (0) < 0, we: then get an R > 0 such that Eg(tp) =0,
which implies

E_(t) =0 for t <t <T .

R r = r
'Then,. the conclusion follows immediately.

Now consider the metric defined as

/nh

G = dt2 + LLR(t)4 6

(t)
R

on E—L,TR) x Snﬂ1 with L > 0. By Corollary 1.2, this metric has

constant scalar curvature n(n-1). By Lemma 1.3 (i) and Lemma 2.5,

this space can be smoothly closed up at t = TR by adding one point.



In this way we get a smooth Riemannian manifold ML with boundary.
Since up and ¢R are constant for t < 0, we can take the double of
ML to get a family of Riemannian metrics GL of s". Recall our
construction dgpends on the choice of £, and the argument here
is valid for any sufficiently small € > 0 in (1). Then choosing
£ small, we easily see

vol(s",Gy) < Vol(s"(1)).
On the other hand

1mL heVOL(ST,6) = =
Consequently, for even n > 4, we obtain, by scaling, a metric of st
with unit total volume whose scalar curvature is constant equal to

/n

any given positive number greater than n(n--l)VQl(Sn(l))2 , which

together with Theorem 3 o6f [27] completes the proof of Theorem.
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