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1 Introduction

Consider the linear equation
Λt = {Λ, ψ}, (1.1)

where {Λ, ψ} = ψpΛx − ψxΛp. Here the unknown function Λ(x, t, p) depends on the “spectral”
parameter p and a function ψ = ψ(U(x, t), p). Following [1], we call (1.1) the Vlasov-type

equation generated by ψ(U, p). Equation (1.1) is also known as the dispersionless Lax equation.

It is easy to check that a partial hodograph transformation Λ(x, t, p) → p(x, t,Λ) reduces

(1.1) to the following conservative form

pt = ψ(U, p)x. (1.2)

Here Λ plays a role of parameter.

For some functions ψ Vlasov-type equations are closely related to integrable hydrodynamic

chains [2, 3]. A hydrodynamic chain associated with Vlasov-type equation can be derived by

expanding Λ(x, t, p) at a singular point of the function ψ. In such a case, formula (1.2) yields
conservation laws for the hydrodynamic chain.

Example 1 (The Benney chain) [4, 5, 6, 1]. The Vlasov equation (or collisionless Boltzmann
equation) has the form

Λt + ΛpUx − pΛx = 0, (1.3)

where ψ = p2

2
+ U. Substituting the expansion

Λ = p +
A0

p
+
A1

p2
+
A2

p3
+
A3

p4
+ ... (1.4)

into (1.3), one derives the famous Benney hydrodynamic chain

Ak
t = Ak+1

x + kAk−1A0

x, k = 0, 1, 2, ...,

where A0 = U. Let

p = Λ − H0

Λ
− H1

Λ2
− H2

Λ3
− H3

Λ4
− ...

be the inverse series for (1.4). Functions Hi can be easily calculated: H0 = A0, H1 = A1, H2 =
A2 + (A0)2, . . .. The formula

pt =
(p2

2
+ U

)

x

generates infinitely many conservation laws for the Benney chain:

(Hk)t =
(

Hk+1 −
1

2

k−1
∑

i=0

HiHk−i−1

)

x
.
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Example 2 (The Kupershmidt chain) [7, 8]. The Kupershmidt hydrodynamic chain

Bk
t = Bk+1

x +B0Bk
x + βkBkB0

x, k = 0, 1, 2, ...

is connected to the Vlasov-type equation (1.1), where

ψ =
pβ+1

β + 1
+ U p,

by the expansion

Λ = pβ +B0 +
B1

pβ
+
B2

p2β
+
B3

p3β
+ ...,

where B0 = U. Conservation laws for this chain can be calculated in the same way as in Example

1.

The hydrodynamic chains described in Examples 1, 2 admit infinitely many hydrodynamic

reductions [9, 10]. The corresponding Vlasov-type equations admit the same reductions.

The following “integrable” functions ψ were found in [2]:

Case 1. ψ(U, p) = U +W (p), where

W ′′ = c1W
′2 + c2W

′ + c3

and

Case 2. ψ(U, p) = U W (p), where

W ′′ =
1

W

(

c1W
′2 + c2W

′ + c3

)

.

Here ci are arbitrary parameters. The Benney chain corresponds to Case 1 with W (p) = p2/2.

In this paper we describe all possible “integrable” functions ψ(U, p) using the method of
hydrodynamic reductions. The existence of hydrodynamic reductions have been proposed as a

definition of integrability for dispersionless multi-dimensional equations in [9]. We apply this
approach for Vlasov-type equations.

2 Hydrodynamic reductions

Suppose there exists a semi-Hamiltonian [11] hydrodynamic-type system

ri
t = vi(r)ri

x i = 1, 2, ..., N, (2.5)

and functions U = u(r) and Λ = λ(r, p) such that these functions satisfy (1.1) for any solution

r(x, t) of system (2.5). Then (2.5) is called a hydrodynamic reduction for the Vlasov-type equa-
tion (1.1). The partial hodograph transformation λ(r, p) → p(r, λ) leads to the corresponding

hydrodynamic reduction of (1.2).
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Substituting Λ = λ(r, p) and U = u(r) in (1.1) and (1.2), we obtain the equations

λt = ψpλx − ψxλp (2.6)

and

pt = ψ(u, p)x. (2.7)

Calculating the derivatives by virtue of (2.5), we obtain from (2.6) that

∑

(

λpψu ∂iu+ [vi(r) − ψp]∂iλ
)

ri
x = 0,

where we use the notation ∂i = ∂/∂ri. Since r is arbitrary solution of system (2.5), we get

λpψu ∂iu = [ψp − vi(r)] ∂iλ, i = 1, 2, ..., N. (2.8)

Let us determine functions pi(r), i = 1, 2, ..., N as solutions of the equations

vi(r) = ψp|p=pi. (2.9)

Then (2.8) implies that the equation λp = 0 has N solutions (pairwise distinct in the generic

case), i.e.
λp|p=pi = 0, i = 1, 2, ..., N. (2.10)

Without loss of generality we can fix the Riemann invariants ri of the system (2.5) in such a
way that

ri = λ|p=pi. (2.11)

Indeed, if we substitute p = pi into equation (2.6), then (2.6), (2.10) imply

(λ|p=pi)t = (ψp|p=pi)(λ|p=pi)x.

This means (see (2.9)) that λ|p=pi satisfies (2.5) and therefore λ|p=pi = Ri(r
i) for some functions

Ri. According to (2.10), the branch points of the Riemann surface determined by the equation

Λ = λ(r, p), are nothing but the Riemann invariants of system (2.5). This fact is well-known
for hydrodynamic-type systems that produced by the Whitham averaging procedure applied to

multi-phase solutions of both integrable continuous dispersive equations and integrable discrete

equations (see references in [3]).

Substituting functions p(r, λ), u(r) in (2.7), we obtain

∂ip =
ψu∂iu

ψp|p=pi − ψp

. (2.12)

If we fix λ = rk, k 6= i, then (2.11) implies p = pk and we obtain

∂ip
k =

ψu|p=pk∂iu

ψp|p=pi − ψp|p=pk

. (2.13)
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Let us introduce the following notation:

fi =
ψu

ψp|p=pi − ψp

, fik =
ψu|p=pk

ψp|p=pi − ψp|p=pk

, i 6= k.

The compatibility conditions ∂k(∂ip) = ∂i(∂kp), i 6= k are equivalent to the equations

∂2

iku =
fik ∂pkfk − fki ∂pifi + ∂u(fk − fi) + fi ∂pfk − fk ∂pfi

fi − fk

∂iu ∂ku. (2.14)

Equations (2.13), (2.14) form a system of equations named in [2] the generalized Gibbons–Tsarev

system (cf. [10]).

Since u does not depend on p, (2.14) implies the following functional equation

∂p

(fik ∂pkfk − fki ∂pifi + ∂u(fk − fi) + fi ∂pfk − fk ∂pfi

fi − fk

)

= 0 (2.15)

for the function ψ(u, p). In the next sections we study this functional equation and found its
general solution. The general solution is expressed in terms of a pair of arbitrary solutions of

the standard hypergeometric equation

u(u− 1) y(u)′′ + [(α + β + 1) u− γ] y(u)′ + αβ y(u) = 0. (2.16)

Note that the general solution of the Chazy equation, which appears in the classification paper

[12], can also be parameterized by a pair of hypergeometric functions. Our solution ψ(u, p) is
a generalization of the solution h(ξ, u) found in [13] (see Example 4).

3 Particular solutions

In Sections 4, 5 we solve the functional equation (2.15) in terms of quadratures of hypergeo-
metric functions. In this section we consider some particular cases, where the result can be

written more explicitly.

Computing the numerator of the left hand side of (2.15) and expanding it at pi = p, pk = p,

we obtain that the vanishing of the coefficients up to 8-th degree in the corresponding Taylor
series is equivalent to the following system of PDEs for the function ψ(u, p):

3ψ3
pppψ

3
u − 4ψppψpppψppppψ

3
u + ψ2

ppψpppppψ
3
u − 3ψppψ

2
pppψ

2
uψpu + 2ψ2

ppψppppψ
2
uψpu+

6ψ2
ppψpppψ

2
uψppu − 5ψ3

ppψ
2
uψpppu − 6ψ4

ppψpuψuu + 6ψ4
ppψuψpuu = 0,

(3.17)

3ψ2
pppψ

3
uψppu − ψppψppppψ

3
uψppu − 3ψppψpppψ

3
uψpppu + ψ2

ppψ
3
uψppppu − 3ψ2

ppψpppψuψpuψuu−

6ψ3
ppψ

2
puψuu + 3ψ3

ppψuψppuψuu + 3ψ2
ppψpppψ

2
uψpuu + 6ψ3

ppψuψpuψpuu − 3ψ3
ppψ

2
uψppuu = 0,

(3.18)
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and

−3ψ2
pppψ

2
uψpuψuu + ψppψppppψ

2
uψpuψuu − 6ψppψpppψuψ

2
puψuu − 6ψ2

ppψ
3
puψuu+

3ψppψpppψ
2
uψppuψuu + 6ψ2

ppψuψpuψppuψuu − ψ2
ppψ

2
uψpppuψuu + 3ψ2

pppψ
3
uψpuu−

ψppψppppψ
3
uψpuu + 6ψppψpppψ

2
uψpuψpuu + 6ψ2

ppψuψ
2
puψpuu − 3ψ2

ppψ
2
uψppuψpuu−

3ψppψpppψ
3
uψppuu − 3ψ2

ppψ
2
uψpuψppuu + ψ2

ppψ
3
uψpppuu = 0.

(3.19)

This system and the functional equation (2.15) are invariant under any transformation of the

form u→ f(u). They are also invariant with respect to the following symmetry group:

ψ → c2ψ + c1p+ c0, p→ k2ψ + k1p+ k0. (3.20)

These symmetries are associated with linear transformations of independent variables in (1.1),

(1.2). Notice that any function ψ = W (u)+ p V (u) satisfies equation (2.15) and system (3.17)-
(3.19).

The integrable cases ψ(u, p) = u + W (p) and ψ(u, p) = uW (p) described in Introduction
can be found directly from (3.17). We denote these cases as Case 1 and Case 2, respectively.

We mention two more particular integrable cases:

Case 3. ψ(u, p) = W (u− p), where

W ′′ = c1W
′3 + c2W

′2 + c3W
′;

Case 4. ψ(u, p) = p u+W (p), where

W ′′ =
1

p

(

c1W
′2 + c2W

′ + c3

)

.

Here ci are arbitrary constants. The Kuperhsmidt chain belongs to Case 4. It is easy to see

that Case 3 is connected to Case 1 by the transformation ψ ↔ p. In all these four particular
cases system (3.17)-(3.19) is equivalent to some ordinary differential equation of the fifth order

for the function W.

System (3.17)-(3.19) admits the substitution

ψp = F (p, ψ), (3.21)

corresponding to the factorization with respect to the symmetry group u→ f(u). As the result,

one gets an overdetermined system of three PDEs for the function F (x, y). We do not present
this system here because of its complexity.

Case 1 corresponds to the case 1̄: F (x, y) = V (x), where V = W ′. Case 3 corresponds
to 3̄: F (x, y) = V (y). Case 2 corresponds to 2̄: F (x, y) = yV (x), where V = W ′/W. Case 4

corresponds to 4̄: F (x, y) = y/x+ V (x), where V = W ′ −W/x.
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Another particular solution is determined by the function

F (x, y) =
2x+ α

x2 + αx+ β
· y

2 + γy + δ

2y + γ
. (3.22)

The corresponding equation (3.21) leads to equation (2.7) of the form

pt = ∂x

√

u (p2 + t1) − t2,

where ti are arbitrary constants. In this example the function F has the form

F (x, y) =
V (y)

W (x)
. (3.23)

An investigation of this ansatz leads to the following result. The case, where V or W is a
linear function, was considered above. Namely, the cases W = 1, V = 1 and V = y coincide

with Cases 3, 1 and 2, respectively. The case W = x transforms to Case 2 by the substitution
ψ ↔ p. If V ′′ 6= 0 and W ′′ 6= 0, then the following three classes of solutions (3.23) exist:

Case 5. V V ′′ = 2V
′
2

+ c1V
′ + c2, WW ′′2W

′
2

+ c1W
′ + c2,

Case 6. V V ′′ = V
′
2

+ c1V
′ + c2, WW ′′ = W

′
2

+ c1W
′ + c2,

Case 7. V V ′′ = −V ′
2

+ c1V
′ + c2, WW ′′ = −W ′

2

+ c1W
′ + c2.

For all these cases the generic solution depends on 6 arbitrary parameters. Function (3.22)
belongs to Case 5 with c1 = −3, c2 = 1.

4 General solution

Let us expand the left hand side of (2.15) into the Taylor series at pk = p. Denote by S(pi, p) the
first nontrivial coefficient of this expansion. For fixed p consider S = 0, Sp = 0 as a system of

linear algebraic equations with respect to derivatives ψu, ψupi. Its determinant does not vanish
if ψuψpp 6= 0. Solving this system, we obtain

ψu =
Q(ψp)

ψpp

, (4.24)

where Q is a polynomial with respect to ψp of degree not greater than 4 with coefficients

depending on u only. Taking into account (4.24), it is easy to extract from the equation Spi = 0
that

ψppp

ψ2
pp

=
R(ψp)

Q(ψp)
, (4.25)

where R is a polynomial of degree not greater than three. The compatibility condition of
equations (4.24) and (4.25) has the form

Q2Qxxx − RQQxx +RQ2

x − (R2 + RxQ)Qx +RQu −RxxQ
2 + (2RRx − Ru)Q = 0, (4.26)
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where x = ψp.

Assume that the polynomial

Q(x) = a(x− b1)(x− b2)(x− b3)(x− b4)

has distinct roots and rewrite (4.25) as

ψppp

ψ2
pp

=
k1

ψp − b1
+ ...+

k4

ψp − b4
. (4.27)

One can verify that the system consisting of equations (3.17)-(3.19) and (4.26) is equivalent to

the following :

1. The functions ki(u) are arbitrary constants such that k1 + ...+ k4 = 3.

2. The functions a(u), bi(u) satisfy the following system of ODEs:

b′i = a(1 − ki)
∏

j 6=i

(bi − bj), i = 1, ..., 4. (4.28)

The function a(u) can be chosen arbitrarily due to the admissible transformations u → s(u).

Consider the double ratio

ρ =
(b1 − b2)(b3 − b4)

(b1 − b3)(b2 − b4)
.

Differentiating ρ by virtue of (4.28), it is easy to check that ρ′ 6= 0. Let us change u in such a

way that ρ = u. This means that we choose

a =
1

(b2 − b3)(b1 − b4)
+

1

(b1 − b2)(b3 − b4)
.

One can verify that the formulae

b1 =
z2 + uy2

z1 + uy1

, b2 =
y2

y1

, b3 =
z2 + y2

z1 + y1

, b4 =
z2
z1
,

where (y1, z1), (y2, z2) are two arbitrary solutions of the linear system

y′ =
k1 + k2 + k3 − 2

u− 1
y +

k1 + k2 + k3 − 2

u(u− 1)
z, z′ =

1 − k1

u− 1
y +

1 − k1 − k2 + k2u

u(u− 1)
z, (4.29)

define a general solution of (4.28). Notice that if k1 + k2 + k3 6= 2, then

z = −uy +
u(u− 1)

k1 + k2 + k3 − 2
y′

and system (4.29) is equivalent to the hypergeometric equation (2.16), where k1 = 1 + α − γ,
k2 = 1 − α, k3 = γ − β.
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System (4.24), (4.25) can be reduced to quadratures by the following way. Let us determine
a function φ(u, p) as the solution of the over-determined system:

φu = − φ(φ− 1) y′1
β(y1φ+ z1)

, φp =
φk1(φ− u)k2(φ− 1)k3

y1φ+ z1
. (4.30)

It is easy to check that this system is consistent. Then the solution of the following system in
involution

ψu =
y2y

′
1 − y1y

′
2

β(y1φ+ z1)
φ1−k1(φ− u)1−k2(φ− 1)1−k3 , ψp =

y2φ+ z2
y1φ+ z1

, (4.31)

is a general solution of (2.15). This fact can be verified by a direct calculation. It turns out

that the expression under differentiating in the left hand side of (2.15) is equal to

(1 − u− β)α2 + (1 − u− α)β2 + u (4αβ − α− β)

u(u− 1)(α− β)2
,

where α = φ(u, pi), β = φ(u, pk).

Remark. The standard Wronskian formula for second order linear ODE implies that the
expression y2y

′
1 − y1y

′
2 from (4.31) equals Cuk1+k2−2(u− 1)k2+k3−2 for some constant C.

5 Degenerations

In Section 4 we have considered the general case. This means that the polynomial Q has
degree 4 and all its roots bi are distinct for the generic value u. In this section we consider

degenerations. It is easy to see that the degree of the polynomial Q can be fixed by 4 with the

help of transformations (3.20). It turns out that in all cases the result can be parameterized
by a pair of solutions of some degenerations of the hypergeometric equation.

Degeneration 1. Suppose Q = a(x− b1)
2(x− b2)(x− b3); then

R

Q
=

k1

x− b1
+

f1

(x− b1)2
+

k2

x− b2
+

k3

x− b3
,

where k1, k2, k3 are constants such that k1 + k2 + k3 = 3, and

b′1 = −a(b1 − b2)(b1 − b3)f1, b′2 = a(b2 − b1)
2(b2 − b3)(1 − k2),

b′3 = a(b3−b1)2(b3−b2)(1−k3), f ′
1 = af1

(

(b1−b2)(b1−b3)(2−k1)+(b2+b3−2b1)f1

)

. (5.32)

A general solution of system (5.32) can be parameterized in the following way:

b2 =
y1

y2

, b3 =
z1
z2
, b1 =

y1 + uz1
y2 + uz2

,
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where (y1, z1), (y2, z2) are two arbitrary solutions of the linear system

y′ =
(

− 1

2
+

3k2 + k1 − 4

2(k2 − 1) u

)

y + z, z′ =
k1 + k2 − 2

(1 − k2) u2
y +

(

− 1

2
− 3k2 + k1 − 4

2(k2 − 1) u

)

z. (5.33)

The functions a, f1 are determined by system (5.32). Note that system (5.33) is equivalent to

the Bessel equation

y′′ + y′ +
(1

4
+

(k2 − k1)(k1 + k2 − 2)

4(k2 − 1)2 u2

)

y = 0.

Degeneration 2. Suppose Q = a(x− b1)
2(x− b2)

2; then

R

Q
=

k1

x− b1
+

f1

(x− b1)2
+

k2

x− b2
+

f2

(x− b2)2
,

where k1, k2 are constants such that k1 + k2 = 3, and

b′1 = −a(b1 − b2)
2f1, b′2 = −a(b1 − b2)

2f2,

f ′
1 = a(b2 − b1)f1

(

(b2 − b1)(k2 − 1) + 2f1

)

, f ′
2 = a(b1 − b2)f2

(

(b1 − b2)(k1 − 1) + 2f2

)

.

The general solution is given by

b1 =
y1

y2

, b2 =
z1
z2
,

where (y1, z1), (y2, z2) are two arbitrary solutions of the linear system

y′ =
3k1 − 5

2 u
y + u z, z′ = −1

3
y +

3(1 − k1)

2 u
z. (5.34)

Notice that the function y(u) satisfies the following second order equation:

y′′ +
(u

3
− 3(3k1 − 5)(3k1 − 7)

u2

)

y = 0.

Degeneration 3. Suppose Q = a(x− b1)
3(x− b2); then

R

Q
=

k1

x− b1
+

f1

(x− b1)2
+

f2

(x− b1)3
+

k2

x− b2
,

where k1, k2 are constants, such that k1 + k2 = 3, and

b′1 = a(b2 − b1)f2, b′2 = a(b2 − b1)
3(1 − k2),

f ′
1 = a

(

(b2 − b1)(f
2

1 − k2f2) − 2f1f2

)

, f ′
2 = 2af2

(

(b2 − b1)f1 − f2

)

.

The general solution can be written in the following form

b1 =
y1

y2

, b2 =
y′1 + uy1

y′2 + uy2

,
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where y1, y2 are arbitrary solutions of the Weber equation y ′′ =
(

u2+(1−2k2)
)

y. The functions

a, f1, f2 are completely determined by the above system.

Degeneration 4. Suppose Q = a(x− b)4; then

R

Q
=

k1

x− b
+

f1

(x− b)2
+

f2

(x− b)3
+

f3

(x− b)4
,

where k1 = 3, and

b′ = −af3, f ′
3 = −3af2f3, f ′

2 = −2a(f 2

2 + f1f3), f ′
1 = a(f3 − 2f1f2).

Eliminating f3, f2, f1 from this system and choosing a = −1/b′2, one obtains the equation

b′′′

b′
− 3

2

b′′2

b′2
= −2u.

Its general solution can be written in the form b = y1/y2, where y1, y2 are arbitrary solutions
of the Airy equation y′′ = uy.

Deeper degenerations can be obtained by the restriction that the polynomial Q possesses
one or several constant roots. In this case it is convenient to make one of these roots the

infinity using transformation (3.20). Consider, for instance, Degeneration 4 under assumption

b = const. Choosing the normalization a = 1, one obtains f3 = 0 and

f ′
2 = −2f 2

2 , f ′
1 = −2f1f2.

The simplest solution f2 = f1 = 0 of this system corresponds (for b = ∞) to the Benney
pseudo-potential from Example 1. The solution f2 = 0, f1 6= 0 implies ψ(u, p) = up+ p log (p),

which coincides with Case 4 from Section 3 for c1 = c2 = 0, c3 = 1. Finally, if f2 6= 0, one can
obtain (up to the equivalence)

ψuψpp = 1, ψpp = λ
√
u exp

(

− 1

4u
ψ2

p

)

.

In this case the solution cannot be expressed in terms of elementary functions.

For general system (4.28) the fact that some roots bi are constant, is equivalent to the

equality ki = 1 for corresponding values ki. Solutions of system (4.28) for such degenerations
can be extracted from (4.30), (4.31). We omit the explicit formulae for such cases and the

analysis of the case of constant bi for Degenerations 1-3.

Let us describe particular solutions from Section 3 in the context of Sections 4, 5. It turns

out that Case 5 with c21 6= 8c2 is equivalent to (4.28), where b1 = −b2, b3 = −b4, k2 = k1

k4 = k3. Namely,

k1 =
3c3 − c1

4c3
, k3 =

3c3 + c1
4c3

.

for c2 = c21/8 − c23/8.
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Case 6 with c21 6= 4c2 is equivalent to (4.28), where two roots bi are constant. The right
hand side of (4.25) reduces to the form

1

x
+

k1

x− b1
+

k2

x− b2
,

where x = ψp,

k1 =
c3 − c1

2c3
, k2 =

c3 + c1
2c3

.

for c2 = c21/4 − c23/4.

In Case 7 with c21 6= −4c2 we have Q(x) = ax(x− b1)(x− b2) and

R

Q
=

k1

x− b1
+

k2

x− b2
, (5.35)

where

k1 =
3c3 − c1

2c3
, k2 =

3c3 + c1
2c3

for c2 = −c21/4 + c23/4. Notice that in this case k1 + k2 = 3. It is easy to verify that if the right

hand side of (4.25) has the form (5.35), then the constants k1, k2 can be arbitrary, and b1, b2
satisfy the system

b′1 = a(b1 − b2)(1 − k1), b′2 = a(b2 − b1)(1 − k2). (5.36)

In the case, when k1 + k2 = 2, system (5.36) possesses the solution a = 1; bi = u + ti,
where k1 = 1 + 1/(t1 − t2), k2 = 1 + 1/(t2 − t1). It corresponds to Case 4 from Section 3 with

c1 6= 0, c22 6= 4c1c3. For the Kupershmidt chain (see Example 2),

R

Q
=

k1

x− b1
,

a = 1 and b1 = u+ t1.

For Case 2 with c1 6= 0, c22 6= 4c1c3 we have (5.35), (5.36) and k1 + k2 = 1. Under the
latter condition, (5.36) possesses the solution a = 1/u; bi = tiu, where k1 = t2/(t2 − t1), k2 =

t1/(t1 − t2).

Case 1 corresponds to a constant solution of system (5.36), which exists for k1 = k2 = 1. It

was already mentioned in Section 3 that Case 3 is equivalent to Case 1.

6 Conclusion

We apply the method of hydrodynamic reductions to classify integrable Vlasov-type equations

of the form (1.1), (1.2). In this paper the simplest case of one function U(x, t) is completely

12



analyzed. In the next paper we are going to solve a more complicated problem of classifica-
tion of integrable Vlasov-type equations in the case of two functions U1(x, t), U2(x, t). It turns

out that there exist several essentially different classes of integrable functions ψ(U1, U2, p).
One of such classes corresponds to two-component (2+1)-dimensional hydrodynamic-type sys-

tems. This class was constructed in the paper [14]. Note that examples of integrable functions
ψ(U1, . . . , Un, p) appeared earlier in other papers, where other approaches were used. In partic-

ular, functions ψ, associated with algebraic curves of an arbitrary genus, were constructed in
[15]. An integrable function ψ(U1, . . . , Un, p) was constructed from any n-dimensional Frobenius

manifold in [16].

As it was shown in [10], equation (2.12) in the case of the Benney chain (see Example 1)

is nothing but the Loewner equation well known in the theory of conformal mappings. The
results obtained in our paper can be of interest in connection with the so-called Laplacian

growth problem (see [17] and references therein). Moreover, each integrable case leads to an
integrable hydrodynamic chain similar to the Benney chain (see Example 1.) If the range of

the discrete variable k is the set of all integers, the corresponding hydrodynamic chains can be
constructed rather easily. However, the problem of a ”right” truncation of such chains to the

set of non-negative values of k is not trivial. We are going to write a separate paper on the

subject.
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