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Abstract. We classify the ODEs that correspond to elliptic CR-mani-
folds with maximal isotropy. It follows that the dimension of the isotropy
group of an elliptic CR-manifold can be only 10 (for the quadric), 4
(for the listed examples) or less. This is in contrast with the situation
of hyperbolic CR-manifolds, where the dimension can be 10 (for the
quadric), 6 or 5 (for semi-quadrics) or less than 4. We also prove that,
for all elliptic CR-manifolds with non-linearizable istropy group, except
for two special manifolds, the points with non-linearizable isotropy form
exactly some complex curve on the manifold.

1. Introduction

In [4] the authors used a correspondence between so-called torsion-free el-
liptic CR-manifolds and complex second order ODE to describe elliptic CR-
manifolds with non-linearizable isotropy. This description was based on an
investigation of ODE’s with a shear symmetry y ∂

∂x
on the x, y-plane near

the singularity (0, 0).
The major aim of this paper is to describe elliptic CR-manifolds with big
isotropy. We will show that the maximal dimension of the isotropy for non-
quadratic elliptic CR-manifolds is 4 and is attained exactly for manifolds
that correspond to the ODE’s

y′′ = yk(y − xy′)3

y′′ = y`y′(y − xy′)2 + Cy2`+2(y − xy′)3

where k, ` are non-negative integers and C is a complex constant. Thus,
according to earlier results by the authors [3], the possible dimensions of
the isotropy of elliptic CR-manifolds are 10, 4, 3, 2, 1, 0. This is somewhat
unexpected, because the corresponding numbers for analogous hyperbolic
manifolds are 10, 6, 5, 3, 2, 1, 0 (see [6]).
In Section 4 we represent open parts of elliptic CR-manifolds with non-
linearizable isotropy as copies of SL(2,C) with the standard action of sub-
groups of SL(2,C).
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In Section 5 we show that the duality of ODE that results from switching the
rôles of variables x, y and parameters c1, c2 corresponds simply to switching
to the complex conjugate CR-manifold. We demonstrate this feature for the
exceptional quartic.
Section 6 is devoted to shear-invariant elliptic CR-manifolds with one addi-
tional non-isotropic symmetry. We show that these manifolds coincide with
the manifolds obtained in Section 3 for a different choice of the reference
point.
In Section 7 we conclude that the quartic is the only shear invariant elliptic
CR-manifold with 6-dimensional automorphism group.
Finally, in Section 8 we show that the quadric and the quartic are character-
ized by the property that the points with non-linearizable isotropy fill more
than a complex curve, whereas in all other cases, they fill exactly a complex
curve.

2. Preliminaries

Let M be a CR-manifold M of CR-dimension two and CR-codimension two,
i.e., M is a 6-dimensional manifold with a 4-dimensional distribution D ⊂
TM and a smooth field of endomorphisms Jx : Dx → Dx with J2

x = − id.
The Levi form at x ∈M is a bilinear mapping

Lx : Dx ×Dx → TxM/Dx.

Lx(X,Y ) is defined as the bracket of two sections X̃, Ỹ of D that extend
X,Y , followed by the natural projection π : Tx → Tx/Dx.
M is called elliptic if any real linear combination of the two scalar compo-
nents of L is a non-degenerate bilinear form. It follows that there exist two
mutually conjugate complex degenerate combinations. Its null vectors define
a canonical splitting Dx = D+

x ⊕D−

x . For a pair of sections X̃ in D+ and Ỹ

in D− the vectors (X̃x,
¯̃Yx, [X̃,

¯̃Y ]x) define a complex structure on TxM .
We assume that Lx(JxX, JxY ) = Lx(X,Y ) for all x ∈M , i.e., M is partially
integrable.
For partially integrable elliptic CR-manifolds a Cartan connection was con-
structed in [1] (see also [7, 9]). In this paper we consider only elliptic man-
ifolds, whose so-called torsion-part of the Cartan curvature vanishes. This
algebraic condition is equivalent to the following geometric properties:

(1) M is embeddable,
(2) the line bundles D+ and D− are integrable,
(3) the canonical almost complex structure is integrable.

It follows that M must be real analytic. For a smooth embedded elliptic CR-
manifold vanishing of the torsion at a point x ∈M can also be expressed by
the equivalent condition thatM has contact of third order with its osculating
quadric at x (see [8]).
We have

Proposition 1. There is a 1-1 correspondence between
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(1) Torsionfree elliptic CR-manifolds of CR-dimension two and CR-
codimension two,

(2) Complex 3-folds with two holomorphic direction fields that span a
non-involutive distribution,

(3) Complex second order ODE.

Proof. If M̃ is a complex 3-fold with a pair of non-involutive direction
fields one can introduce local coordinates x, y, p such that Z1 = ∂

∂p
and

Z2 = ∂
∂x

+ p ∂
∂y

+ B(x, y, p) ∂
∂p

(see [4]). This allows an interpretation of

a local part of M̃ as a chart of the projectivized tangent bundle over C
2

with coordinates x, y in the base and p = dy
dx

in the fibre. The projections
of the integral curves of Z2 are then nothing but the integral curves of
y′′ = B(x, y, y′) in C

2. Vice versa, the lifts of integral curves of a second
order ODE to the projectivized tangent bundle define a direction field Z2

that does not commute with Z1 = ∂
∂p

.

If M is a torsionfree elliptic CR-manifold then M has an integrable al-
most complex structure and two holomorphic direction fields that generate
D+, D̄−. Vice versa, if M̃ is a complex 3-fold with holomorphic direction
fields Z1,Z2 then Dx can be defined as the span of these direction fields. Jx

is defined by JxZ1,x = iZ1,x and JxZ2,x = − iZ2,x. Non-involutivity of the
two direction fields is equivalent to the ellipticity of the Levi form.
It remains to show that the obtained CR-manifold M is torsionfree. It is
convenient to represent M as an embedded CR-submanifold of C

4. We look
for four independent coordinate functions that are annihilated by

Z̄1 = ∂
∂p̄
, Z2 = ∂

∂x
+ p ∂

∂y
+B(x, y, p) ∂

∂p

Two obvious solutions are z2 = x̄ and w2 = ȳ. We need two additional
coordinate functions of the form f(x, y, p). Thus, we have to solve

∂
∂x
f + p ∂

∂y
f +B(x, y, p) ∂

∂p
f = 0.

The characteristic equation of this PDE is

ẋ = 1, ẏ = p, ṗ = B(x, y, p).

It is equivalent to ÿ = B(t, y, ẏ). Let

x = t, y = φ(t, C1, C2), p = φ̇(t, C1, C2)

be the characteristic curves. Then the desired coordinate functions are z1 =
C1(x, y, p) and z2 = C2(x, y, p). In C

4 with coordinates z1, z2, w1, w2 the
equation of the manifold M takes the form

w̄2 = φ(z̄2, z1, w1).

M has two foliations: into holomorphic curves (for z̄2, w̄2 fixed) and into
antiholomorphic curves (for z1, w1 fixed). The tangent spaces to the curves
that pass through a given point span the maximal complex subspace of the
tangent space of M at this point. The corresponding directions annihilate
degenerate complex linear combination of the components of the Levi form.
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Thus, they provide the canonical splitting. By construction, the correspond-
ing line bundles are integrable. The induced almost complex structure is the
one that is obtained by adopting z1, z̄2, w1, w̄2 as holomorphic coordinates
in the ambient space. Therefore, it is clearly integrable. �

Remark 1. The embedding constructed in the proof of Proposition 1 has the
property that the two canonical foliations coincide with the foliations into the
fibres of the projections to the z1, w1-plane and the z2, w2-plane, respectively.

It was proved in [4] that elliptic CR-manifolds with non-linearizable isotropy
group are in 1-1 correspondence with shear invariant second order ODE.
Such ODE can be represented by

(1) y′′ = B(x, y, y′) = f0(y)(y − xy′)3 + f1(y)y
′(y − xy′)2,

where two ODE are equivalent if and only if there is a mapping

(x, y) →
(

c1x

1 − cy
,
c2y

1 − cy

)

that takes one to the other. A finer classification can be obtained if we
take into account possible additional symmetries. Sophus Lie [5] classified
second order ODE with one-, two-, and three-dimensional symmetry groups.
The difference of our approach is that we are interested in fixed points of
the automorphisms, whereas Lie always chooses a point, where one of the
symmetries is a translation ∂

∂y
. In our situation one of the symmetries is

the shear y ∂
∂x

. Our choice of the canonical symmetries and regularity of the
ODE at the reference point imply that B is a third order polynomial with
respect to y′ and x.

3. Classification of shear invariant ODE with 4-dimensional
isotropy

If there is only one (up to scale) shear symmetry of a shear invariant ODE
then it can be used as an invariant. On the other hand, as it is known from
[4], all ODEs with more than one shear can be written as

y′′ =
K(y − xy′)3

(1 − cy)3
.

If we exclude these then any additional isotropic symmetry of the ODE
y′′ = B(x, y, y′) must preserve the single shear symmetry and, consequently,
must have the form

(2) ((φ(y) + a)x+ ψ(y)) ∂
∂x

+ φ(y)y ∂
∂y
.
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The general equation for infinitesimal symmetries ξ ∂
∂x

+ η ∂
∂y

is

(3) ξ
∂B

∂x
+ η

∂B

∂y
+ φ

∂B

∂p
+

(

2
∂ξ

∂x
+ 3p

∂ξ

∂y
− ∂η

∂y

)

B−

− ∂2η

(∂x)2
+ p

(

∂2ξ

(∂x)2
− 2

∂2η

∂x∂y

)

+ p2

(

2
∂2ξ

∂x∂y
− ∂2η

(∂y)2

)

+ p3 ∂2ξ

(∂y)2
= 0.

We plug in B from (1) and the infinitesimal automorphism (2). The compo-
nent of degree 3 in p and degree 0 in x in equation (3) immediately implies
ψ′′ = 0. Since we are here interested only in isotropic automorphisms and
since we know that the shear y ∂

∂x
is an automorphism we may assume ψ = 0.

The component of degree 3 in p and degree 1 in x in equation (3) yields now
φ′′ = 0, thus φ = β1 + α3y
From the components of degree 3 in p and degree 2 and 3 in x we get

af1 + 3β1f1 + 3α3yf1 + β1yf
′

1 + α3y
2f ′1 = 0

2af0 + 4β1f0 + 3yα3f0 + yβ1f
′

0 + y2α3f
′

0 = 0.

If f0 =
∑

∞

n=k bny
n and f1 =

∑

∞

n=` cny
n then

(a+ (n+ 3)β1)cn + (n+ 2)α3cn−1 = 0

(2a+ (n+ 4)β1)bn + (n+ 2)α3bn−1 = 0.

The first equation for n = ` and the second equation for n = k give rise to
a linear system that implies β1 = a = 0 and, consequently, α3 = 0, unless
k = 2`+ 2, or either f0 = 0 or f1 = 0.
From the recursive formulae we find

f0 = C1 y
k(1 − cy)−k−3

f1 = C2 y
`(1 − cy)−`−3

By applying a transformation x1 = c1x
1−cy

, y1 = c2y
1−cy

this can be reduced to

one of the following two series of ODE

y′′ = yk(y − xy′)3(4)

y′′ = y`y′(y − xy′)2 + Cy2`+2(y − xy′)3(5)

where k, ` are non-negative integers and C is a complex constant. According
to Theorem 3 in [4] these ODE are pairwise non-equivalent.
The additional symmetry is

(k + 2)x ∂
∂x

− 2y ∂
∂y
, resp. (`+ 2)x ∂

∂x
− y ∂

∂y

The corresponding CR-manifolds are exactly the CR-manifolds with an
isotropy group of real dimension 4.
We conclude

Theorem 1. The isotropy group of an elliptic CR-manifold has

(1) dimension 10 if and only if it is equivalent to the quadric
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(2) dimension 4 if and only if it corresponds to one of the ODE (4) -
(5)

(3) dimension ≤ 3 in all other cases.

Proof. Statements (1) and (2) follow from the obtained classification.
Statement (3) was proved in [3]. �

4. SL(2,C) representation of the shear invariant manifolds

Any shear invariant ODE

y′′ = f0(y)(y − xy′)3 + f1(y)y
′(y − xy′)2

obviously admits the solutions y = cx for any constant c. Thus, the solution
passing through (x0, y0) ∈ C

2
∗

= C
2 \ {(0, 0)} with slope p0 = y0/x0 is

y = p0x.
Notice that the equation y = px describes a canonical section in the trivial
fibre bundle C

2
∗
× CP

1, which is induced by the tautological mapping

τ : C
2
∗
→ CP

1

(x, y) 7→ [x : y]

By M∗ we denote the bundle with deleted section τ .
Here we will give a representation of the part of the solution manifold that
corresponds to initial conditions (x0, y0, p0) ∈ M∗. M∗ can be identified
with SL(2,C) using the map

(x, y, p) 7→
(

1
y−xp

x
p

y−xp
y

)

=

(

α β
γ δ

)

.

The two distinguished direction fields now take the form

Z1 = β ∂
∂α

+ δ ∂
∂γ

Z2 = α ∂
∂β

+ γ ∂
∂δ

+ (f0(δ) + γf1(δ))Z1

The one-parametric action produced by the field Z1 is right multiplication
with

(

1 0
t 1

)

.

The second field generates a linear action only if f1 ≡ 0 and f0 = const, i.e.,
in the cases of a quadric (f0 ≡ 0) or a quartic (f0 ≡ 1).
The shear symmetry is represented by

θ = γ ∂
∂α

+ δ ∂
∂β

and produces left multiplication by
(

1 t
0 1

)

.
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In the quadric case Z2 = ZQ = α ∂
∂β

+γ ∂
∂δ

corresponds to right multiplication

with
(

1 t
0 1

)

and in the quartic case Z2 = ZQ + Z1 to right multiplication with

(

cosh t sinh t
sinh t cosh t

)

.

It is clear that in both cases these actions commute with the complete left
multiplication by SL(2,C).
For manifolds with two isotropic symmetries the second (linear) symmetry
has the form

L = 2α ∂
∂α

+ (k + 2)β ∂
∂β

− (k + 2)γ ∂
∂γ

− 2δ ∂
∂δ
,

and respectively,

L = α ∂
∂α

+ (`+ 2)β ∂
∂β

− (`+ 2)γ ∂
∂γ

− δ ∂
∂δ
,

It generates the one-parametric action
(

α β
γ δ

)

7→
(

tk+4 0
0 t−k−4

)(

α β
γ δ

)(

t−k 0
0 tk

)

,

and, respectively,
(

α β
γ δ

)

7→
(

t`+3 0
0 t−`−3

)(

α β
γ δ

)(

t−`−1 0
0 t`+1

)

,

Since Z1 commutes with the left part of the action and is mapped to kZ1

(resp. (`+ 1)Z1) by the right part of the action we find

[L,Z1] = kZ1 resp. [L,Z1] = (`+ 1)Z1.

For the second field

Z2 = ZQ + FZ1

we have

[L,ZQ] = −kZQ resp. [L,ZQ] = (−`− 1)ZQ.

and

[L, FZ1] = kFZ1 + (LF )Z1 resp. [L, FZ1] = (`+ 1)FZ1 + (LF )Z1.

In the first case this requires LF = −2kF , which is satisfied for F = δk.
In the second case this requires LF = −2(` + 1)F which is satisfied for
combinations of γδ` and δ2`+2.
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5. Dual ODE

A duality of ODE appears from the symmetry of interchanging the distin-
guished direction fields Z1 and Z2. This corresponds to interchanging the
roles of the variables x, y and the parameters c1, c2 of the solutions. In terms
of the embedded CR-manifold this will be achieved by complex conjugation.
The symmetry group of the dual ODE clearly will be isomorphic to the sym-
metry group of the initial ODE, though the action is different. It follows
that ODE corresponding to elliptic CR-manifolds that are complexifications
of real hypersurfaces in C2 are self-dual. The non-quadratic CR-manifolds
with non-linearizable automorphisms are never self-dual.
If the complete solution of an ODE is known then the dual ODE can be easily
obtained by differentiating with respect to the parameters and eliminating
the variables x, y.
In the case of y′′ = (y − xy′)3 the complete solution is the quartic

(y − c1x)
2 − c22x

2 − c2 = 0

We find the dual ODE

(6) y′′ =
1 − (y′)2

x(y′ +
√

(y′)2 − 1)
.

(Here we adopted c2 as the new independent variable x and c1 as the new
dependent variable y.)
The family of solutions can be written in the form

(x− c1)
2 − (y − c2)

2 = c21.

The symmetries are generated by

∂

∂y
, x

∂

∂x
+ y

∂

∂y
, 2xy

∂

∂x
+ (x2 + y2)

∂

∂y

The ODE (6) is equivalent to

η′′ +
2η′(1 −√

η′)2

ξ − η
= 0

from Lie’s list of ODE with three symmetries. The equivalence is established
by ξ = y + x, η = y − x. In this notation the infinitesimal automorphisms
become

∂

∂ξ
+

∂

∂η
, ξ

∂

∂ξ
+ η

∂

∂η
, ξ2

∂

∂ξ
+ η2 ∂

∂η

The corresponding group is PSL(2,C) acting by “coupled” Möbius transfor-
mations on the complex ξ and η planes

(ξ, η) 7→
(

αξ + β

γξ + δ
,
αη + β

γη + δ

)

.
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6. Shear invariant ODE with one non-isotropic symmetry

If a shear invariant ODE admits a non-isotropic symmetry we may assume
that, after a coordinate change x = f(x∗, y∗), y = g(x∗, y∗), it takes the form

∂
∂x∗

. Then the shear becomes θ = ξ ∂
∂x∗

+ η ∂
∂y∗

where ξ = g ∂f∗

∂x
, η = g ∂g∗

∂x
,

and (f∗, g∗) is the inverse coordinate change. We prove

Lemma 1. If ∂
∂x∗

and the shear θ are the only symmetries of the ODE then

[ ∂
∂x∗

, θ] = µθ

Proof. From

[ ∂
∂x∗

, θ] = µθ + ν ∂
∂x∗

,

we conclude

∂
∂x∗

ξ = ν + µξ

∂
∂x∗

η = µη.

Now, if µ = 0, then

ξ = νx∗ +K1(y
∗)

η = K2(y
∗).

We distinguish two subcases: If K2 ≡ 0 then ∂
∂x
g∗ ≡ 0, and therefore

g = g(y∗) with g(0) = 0. It follows that ξ = 0 for y∗ = 0. Since θ vanishes
exactly at one curve, this curve must coincide with y∗ = 0. Hence ν = 0.
In the second subcase y∗ = 0 is an isolated zero of K2. Thus again y∗ is the
only curve on which θ can vanish and therefore ν = 0.
Suppose now that µ 6= 0. Then

ξ =
−ν
µ

+K1(y
∗) eµx∗

η = K2(y
∗) eµx∗

.

Again, either K2 ≡ 0 or 0 is an isolated zero of K2. Analogous arguments
to the ones used above show that ν = 0 in this case as well. �

As in Section 3 we consider the equation (3). We conclude ψ(y) = α0 but
now we assume that α0 6= 0. Then we can rescale the additional infinitesimal
automorphism is such a way that α0 = 1. Thus we look for an infinitesimal
automorphism of the form

(1 + (φ(y) + a)x) ∂
∂x

+ φ(y)y ∂
∂y
.

From the component of degree 3 in p and 1 in x we find

f1 =
−φ′′
2α0

=
−φ′′
2
.
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The components of degree 3 in p and 2 resp. 3 in x yield now the system

−1

6
(yφ′′′ + 3φ′′)φ− a

6
φ′′ = f0(7)

(4φ− yφ′ + 2a)f0 + yφf ′0 = 0,

which is equivalent to the ODE

(8) (y2φIV + 8yφ′′′ + 12φ′′)φ2 + a(3yφ′′′φ+ 10φ′′φ− yφ′′φ′) + 2a2φ′′ = 0

on φ. We see immediately that a = 0 implies φ′′ = 0 and therefore f0 =
f1 = 0. Assume a 6= 0.
The ODE (8) yields the following equations on the coefficients of an analytic
solution φ(y) =

∑

∞

n=0 φny
n :

j−2
∑

β=0

β
∑

α=0

(j − β + 2)!

(j − β − 2)!
φαφβ−αφj+2−β + 8

j−1
∑

β=0

β
∑

α=0

(j − β + 2)!

(j − β − 1)!
φαφβ−αφj+2−β+

(9)

12

j
∑

β=0

β
∑

α=0

(j − β + 2)!

(j − β)!
φαφβ−αφj+2−β + 3a

j−1
∑

β=0

(j − β + 2)!

(j − β − 1)!
φβφj+2−β+

10a

j
∑

β=0

(j − β + 2)!

(j − β)!
φβφj+2−β − a

j
∑

β=0

(j − β + 1)!

(j − β − 1)!
(β + 1)φβ+1φj+1−β+

2a2(j + 2)(j + 1)φj+2 = 0

It follows for j ≥ 0

(j + 2)(j + 1)(a+ (j + 3)φ0)(2a + (j + 4)φ0)φj+2+

+ (j + 2)(j + 1)j(3a + 2(j + 3)φ0)φ1φj+1 = · · ·
The dots indicate a sum, whose summands contain only factors φn with
n ≤ j and at least one factor φn with n ≥ 2.
Let φk with k ≥ 2 be the first non-vanishing coefficient. Then either

φ0 = − a

1 + k
, or φ0 = − a

1 + k
2

,

and, consequently,

φ1 =
aφk+1

(−1 + k)(1 + k)φk
, or φ1 =

aφk+1

(−1 + k)(1 + k
2 )φk

,

respectively.
For any parameter a 6= 0 related to the automorphism, we obtain two series
of solutions:
If 2a+(k+2)φ0 = 0 (second option) then (a+(j+1)φ0)(2a+(j+2)φ0) 6= 0 for
all j ≥ k+ 2 and therefore all φj with j ≥ k+ 2 can be obtained recursively
for given parameters k, φk 6= 0, φk+1.
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If a + (k + 1)φ0 = 0 (first option) then again all φj with j ≥ k + 2 can be
obtained recursively, except for j = 2k + 2. Here an additional parameter
φ2k+4 appears.
All other components in φ (and, thus, in f0, f1) can be obtained recursively
from (9) which can be rewritten as

(a+ (j + k + 3)φ0)(2a+ (j + k + 4)φ0)φj+k+2+

(j + k)(3a+ 2(j + k + 3)φ0)φ1φj+k+1+

j−k+2
∑

β=0

β
∑

α=0

(j − β − k + 4)!

(j − β − k)!

φk+αφk+β−αφj−β−k+2

(j + k + 2)(j + k + 1)
+

a

j
∑

α=0

(3j − k − 4α+ 10)(j + 2 − α)(j + 1 − α)φk+αφj+2−α

(j + k + 2)(j + k + 1)
= 0

The convergence of the formal solutions can be proved by induction.
By applying a map of the form

x1 =
c1x

1 − cy
, y1 =

c2y

1 − cy

we can renormalize a solution in such a way that −a = α0 = 1, f1,k−2 =

−k(k−1)φk

2α0
= 1 and f1,k−1 = −k(k+1)φk+1

2α0
= 0. Thus, up to equivalence, we

obtain exactly two series of solutions, such that a solution of the first series
is determined by a non-negative integer k and a solution of the second series
is determined by a non-negative integer k and a complex number C which
is related to φ2k+4. In all cases we have

f0(y) = −1

6
(yφ′′′ + 3φ′′)φ+

1

6
φ′′

f1(y) =
−φ′′

2

with the additional symmetry

(1 + (φ− 1)x) ∂
∂x

+ φy ∂
∂y
,

where φ satisfies (8) with initial conditions

φ0 =
1

j + 1
, φ1 = 0 or φ0 =

2

j + 2
, φ1 = 0.

The first option corresponds to

y′′ = yj(y − (x− c)y′)3,

which is obtained by shifting the ODE (4) in the x-direction by c. The
parameter c can be rescaled by applying the additional isotropic automor-
phism.
The second option corresponds to shifts of (5)

y′′ = yjy′(y − (x− c)y′)2 + Cy2j+2(y − (x− c)y′)3.
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In the special case C = 0 we deduce f0 ≡ 0 and

(yφ′′′ + 3φ′′)φ− φ′′ = 0.

In terms of f1 the latter equation becomes
(

f1

3f1 + yf ′1

)

′′

= −2f1.

7. Shear invariant ODE with two additional symmetries

If a shear invariant ODE has two additional symmetries then either one
of them can be chosen to be isotropic or both give rise to a transitive sub-
semigroup on C

2. According to the results of Section 3 the first case leads to
three particular series of ODE, which have only isotropic symmetries. The
only ODE (up to equivalence) with two additional isotropic symmetries is

y′′ = (y − xy′)3.

Consider the second case. We may assume that there is an infinitesimal
non-isotropic automorphism σ in the direction of the line of fixed points of
the shear θ. Without loss of generality we have then

σ = ∂
∂x
, θ = (y + a) ∂

∂x
+ b ∂

∂y
,

where a(x, y), b(x, y) are of at least second order. But then

[σ, θ] = λθ

because θ is the only isotropic symmetry. According to the results of Section
6 we conclude that the ODE must be a shift of (4) or (5). Again, only

y′′ = (y − (x− c)y′)3

has three-dimensional symmetry.

8. Non-linearizable automorphisms of elliptic CR-manifolds

In [4] we proved that the phenomenon of non-linearizable isotropy takes
place on a whole complex curve. As a consequence of the classification
results from above we prove here the following converse statement for an
elliptic CR manifold M with the additional property that all infinitesimal
automorphisms are globally defined.

Theorem 2. Let M be an elliptic CR-manifold with non-linearizable isotropy
group at p ∈M . If M is neither equivalent to the quadric

w1 − w̄2 − z1z̄2 = 0

nor to the quartic

w1 + w2
1 z̄

2
2 − (w̄2 − z1z̄2)

2 = 0

then there exists a neighbourhood U of 0 such that Autq M is linearizable
for q ∈ U outside a complex curve γ.
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Proof. Let q ∈ M be a point with non-linearizable isotropy. If M is not
equivalent neither to the quadric nor to the quartic then there is a single
shear at q, which either coincides with the single shear in 0 or it provides
an additional symmetry at 0. In the first case q is a fixed point of y ∂

∂x
and

therefore belongs to γ = {y = p = 0}.
In the second case M corresponds to one of the ODEs listed above. But
then only the shear has non-isolated fixed points outside 0. All these fixed
points belong to {y = p = 0}. �

The quartic can be characterized by the following property.

Proposition 2. The set of points at the quartic with non-linearizable isotropy
is the complex hypersurface Γ = {y = xp}.
Proof. The mapping

(x, y) = (a(x1 + 1) + cy1, b(x1 + 1) + dy1)

takes the the point (a, b, b
a
) to (0, 0, 0) and the ODE y′′ = (y − xy′)3 again

to an ODE that admits a shear, namely to

y′′ = (ad− bc)2(y − (x+ 1)y′)3.

Since the orbit of 0 under these mappings is the hypersurface Γ, at all points
of Γ the isotropy group is non-linearizable.
We show that the isotropy of the quartic is linearizable (even trial) at any
point outside Γ. Any infinitesimal automorphism of the quartic at 0 has the
form

(αx+ βy) ∂
∂x

+ (δx− αy) ∂
∂y

+ (δ − 2αp− βp2) ∂
∂p
.

If the discriminant ∆ = α2 + βδ is different from 0 then fixed points occur
only for x = y = 0. If the discriminant vanishes we distinguish the two
subcases β 6= 0 and β = 0. In the first subcase we find fixed points for
αx + βy = 0, p = −α

β
. This implies y − xp = 0. If β = 0 we conclude

α = δ = 0. Then only the identical automorphism has fixed points other
than 0. �
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