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Abstract

Let H be a convex Hamiltonian on T·M. We show that if the
Hamiltonian ßow of H admits on the compact regular energy surface
n-1(0') a continuous invariant Lagrangian subbundle, then there are
no conjugate points provided the energy 0' is sufficiently high. H in
addition H-1(0') is symmetrie we show that for any values of the en·
ergy 0', H-l(O') projects over the whole configuration space M. These
results genera,1ize a. well know theorem of Klingenberg [19] for rieman­
nian metries.

In a. different direction we show that the topological entropy of the
Hamiltonian fiow of a convex Hamiltonian on a compact regular energy
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surface (with sufficiently high energy) ia posi tive as long as 11'"1 (M) has
exponential growth or if 1r] (M) is finite and for same coefficient field
the loop spa.ce homology of M grows exponentia.lly.

1 Introduction

The purpose of the preseot paper is to extend vanous geometrie aod topolog­
ical results that hold for riemaniann metrics to the wider open dass of convex
Hamiltonians. Let M be a manifold without boundary and let H : T·M --+- R
be a smooth Hamiltonian. We will say that H is convex if for each q E M
the function H(q,.) regarded a.s a function on the linear spa.ce Tq• M has posi­
tive definite Hessian; equivalently the second fibre derivative D}H is positive
definite.

As Anosov points out in [1] it is important to distinguish among the
problems of riemannian geometry those which are related to their variational
character alone aod do not depeod 00 the remaining specific peculiarities of
the riema.nnian metric. For several of the results we will describe the common
denominator is precisely the variational calculus in the large Le. the Morse
theory of the loop space.

In [19] Klingenberg proved that if the geodesie flow of a compact rie­
mannian manifold M is Anosov, then M has 00 conjugate points. Mafie
[21] generalized Klingenberg's result to the non-compact ca.se and gave at
the same time a new proof of it using a variant of the Maslov-Amold index
adapted to the use of the Riccati equation. Moreover, Mafie showed that
if M has finite volume aod the geodesie ßow admits a continuous invariant
Lagrangian subbundle, then M has 00 conjugate points. When the geodesie
ßow is Aoosov the stable and unstable subbundles are Lagrangian.

In the present paper we will extend Klingenberg and Maiie's results to
the case of a convex Hamiltonian under adecuate hypotheses on the energy
surface. Dur extensions will include in particular, non-symmetrie Finsler
metries. Anosov in {I] suggested a possible proof to handle the Finsler case
but no details were given. Here we approach the problem using Mafie's ideas
in [21].

Before stating our theorems precisely let· us recall some weH known facts
and give a few definitions. Let H be Hamiltonian on T·M and let 4Jt de­
note its associated Hamiltonian flow. It is weIl known that 4Jt preserves the
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canonical symplectic form of T·M and leaves all the energy surfaces H-l (u)
invariant. From now on we shall assurne that u is a regular value of H and
that the flow tPt on H-1(u) is complete.

We will say that 4Jt has a continuous invariant Lagrangian subbundle if
there exists a continuous subbundle E of TH-1(u) such that for all 8 E
H-1(u) the fibre E(O) is a Lagrangian subspace of TBT·M and E(tPt(O)) =
dtPt(E(O)) for all t E R.

Let 7r : T-M ~ M be the canonical projection. For s E (-f, f) consider
a curve s ~ P. E Tq• M with Po E H-l(U). Let Y(t) be the variational field

d
Y(t) = ds 1.=0 7r 0 tPt(P.)·

We will say that H- 1 «(7) has no conjugate points if for all fields Y as above
we have that Y(t) #- 0 for all t #- O.

Theorem 1.1 Let M be a compact manifold and let H be a convez Hamil­
tonian on T· M. Supposse the HamiItonian flow 0/ H on the compact regular
energy surface H-1 «(1), possesses a continuous invariant Lagrangian subbun­
die. Then H-l«(1) has no conjugate points provided the energy (1 is stricly
bigger than the maximum 0/ H over the zero section of T· M.

The energy surface H-1 «(1) is said to be symmetrie if it is invariant under
the involution (q,p) ~ (q, -p). The next theorem complements Theorem 1.1
under the additional assumption of symmetry.

Theorem 1.2 Let H be a convex Ha miltonian on T-M. Suppose the Hamil­
tonian flow 0/ H on the regular energy surface H-l«(1) possesses a continu­
ous invariant Lagrangian subbundle. Then if H-l (u) is symmetrie and every
point in H-l«(1) is non-wandering we have that 1rH-1«(1) = M and H-1 «(1)
has no conjugate points.

Theorem 1.2 is false -even in the geodesic flow case- if we drop the hy­
pothesis that every point in H -1 ( (1) is non-wandering. As an example take
the paraboloid of revolution z = x 2 + y2. Tbe obvious circle action togetber
with the field of the geodesic flow span a continuous invariant Lagrangian
subbundle hut there are conjugate points.

As in the case of the geodesie flow, if the Harniltonian flow of H on
H-1(u) is Anosov, tbe stahle and unstable hundles give rise to continuous
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invariant Lagrangian subbundles (cf. Lemma 2.3), so all the previous results
hold if we assume the Hamiltonian flow to be Anosov. Consider for example
H = T + U where T is the kinetic energy associated with some riemannian
metric and U is a smooth function on the compact manifold M. It follows
from Theorem 1.2 that if the Hamiltonian flow of H on H-1(u) is Anosov
then (j is strictIy bigger than the maximum of U on M.

We briefly sketch now the ideas involved in the proofs of the previous
theorems. By tbe help of a riemannian metric we obtain in Section 3 a global
Riccati equation associated to any Harniltonian on T-M. The coefficients of
this equation are operators that naturally extend the curvature operator in
the riemannian case. Next we define a Maslov-Arnold index following very
closely Arnold [3] and Maiie [21]. This index is associated to continuous
closed curves on an energy surface of a Hamiltonian provided a continuous
Lagrangian subbundle E is given. The way the index is defined implies
automatically its invariance under homotopies.

In Section 5 we show that if H is convex and E is invariant under the
flow of H, then the Maslov-Arnold index of a c10sed pseudo-orbit of the
Hamiltonian flow is positive as long as E touches the vertical non-trivially.
This result is crucial for proving Theorems 1.1 and 1.2 and is acomplished
by making strong use of the convexity and the Riccati equation mentioned
above. The "spirit" of this result is already contained in Klingenberg's paper
[19]. Various authors have proved it in slightly different settings, cf. [4, 5, 6,
7, 10, 12] (we thank M.L. Bialy for calling our attention to these references).

In the case of Theorem 1.1 a reduction to the Finsler case allows us to UBe

Morse theory and show that in fact the Maslov-Arnold index of any dosed
pseudo-orbit is zero. In this way we deduce that the subbundle E cannot
touch the vertical non-trivially. The convexity implies now via a Sturm­
Liouville type of resuIt that there are 00 conjugate points. For Theorem 1.2
the symmetry is eoough to show that the Maslov-Arnold index of auy dosed
pseudü-orbit is zero. Theorem 1.2 is completed by showing that points that
projeet onto the boundary of 1rH-1(a) give rise to dosed pseudü-orbits with
positive index. All these is done in Seetions 5 and 6.

We observe that the previous theorems allows us to extend many other
properties that hold for Anosov geodesic flows to Anosov convex Hamilto­
nians. Onee the non-existence of conjugate points has been established one
can show easily, for exa.mple, that 1l"1 (M) has exponential growth and that
M is cover by euclidean space as weIl as other properties like topological

4



..

equivalence a.s in [13, Theorem B].
In [25,26] the second author showed that if the geodesic flow on a compact

surface M is expansive, theo there are 00 conjugate points. Recall that a
flow <Pt : X -+ X 00 a cornpact metric space (X, d) is said to be expansive
if given f > 0 there exists 8 > 0 such that if there is an homeomorphism
T : R -+ R, r(O) = 0, such that

d(cjJT(t)(Y), tPt(x)) < 8

then y = tPt where Ill< f. Anosov Hows are expansive flows. Results analo­
gous to Theorems 1.1 a.nd 1.2 also hold for convex expansive Hamiltonians,
however the details are more involved and will be presented in a forthcoming
paper.

In Section 7 we explore a different realm. We are concern here with the
relations between topological entropy and topology . For a flow 'Pt : X -+ X
on a compact metric space X, let htop ( 'Pt, A) denote the topological entropy
of <Pt with respect to the set A c X.

We will say that a compact manifold Mn with finite fundamental group
is rationa11y elliptic if the total rational homotopy of M, 1r.(M) 0 Q, is finite
dimensional [16]. We will show:

Theorem 1.3 Let M be a eompaet manifold with finite fundamental group.
Let H be a eonvex Hamiltonian with Hamiltonian flow ePt on the eompaet
regular energy sur/aee H-l(O') with Cf strietly bigger than the maximum 0/ H
over the zero seetion. If for some p E M we have that

htop(cjJt, H-l (0') n T;M) = 0,

then the loop spaee homology of M with eoeffieients on any field grows sub­
exponentially. In partieular Al is rationally elliptic.

Theorem 1.4 Let At! be a eompaet manifold. Let H be a convex Hamiltonian
wilh Hamiltonian flow <Pt on the compact regular energy surface H-1(0') with
Cf striel/y bigger than the maximum of H over the zero section. If for some
p E M we have that

then 'Irl (M) gTOWS sub-exponentially.
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Theorem 1.4 extends a classical result of Dinaburg [11] and Theorem 1.3
was proved in [23] for the riemannian case although Gromov implicitely UBes

it in [15]. Let us note that Theorems 1.3 and 1.4 show that the results
of the first author in [23, 24] about topological obstructions for complete
integrability of geodesic ßows extend to convex Hamiltonians.

Finally in Section 8 we consider the more general situation of twisted
cotangent bundles and we show that the key lemmas hold in this setting. We
also apply Theorems 1.3 and 1.4 to Hamiltonians that contain terms that
depend linearly in the velocities like the corresponding to the the motion of
charged partic1e uuder the effect of an exact electromagnetic potential.

We are very grateful to R. Mafie for his generous help and for encour­
aging us to write this work. We are also grateful to M.L. Bialy and to the
participants of the Dynamical Systems Seminar at Montevideo for numeroua
conversations.

2 Preliminaries

Let (N,w) be a symplectic manifold. Given a smooth function H : N -+ R
(Le. a Hamiltonian) its symplectic gradient is defined as the vector JVH(x)
for which

dHr(v) =wr(J\lH(x), v),

for all v. As it is weIl known cotangent bundles are symplectic manifolds.
Let M be a manifold and let T·M denote the cotangent bundle of M with
canonical projection 1T'. The canonical 1-form ~ is defined by

~(q,p)(v) = p(d1T'(q,p)(v)),

where p E Tq•M and v E T(q,p)(T· M). The canonical symplectic structure w
on T· M is defined as

w = d~.

Let U be an open set of Rn. We identify T·U with the set of 2n-uples
(q, p) = (qt, ... , qm Pb ... , Pn) where q E U and P ERn. It ia easily seen that
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and
w = l:dPi 1\ dqi.

i

Also if H : T·U ~ R is a smooth function we have that

(1)

Let H pp , H pq , Hqq stand for the matrices of partial derivatives (8:::";)' (8:~~;)

and (a~;~;) respectively.
Next observe that if Mt and M2 are manifolds and f : Mt ~ M2 is a

diffeomorphism, then f induces a diffeomorphism j : T· Mt ~ T· M'J such
that

(2)

Suppose now that Nt and N2 are symplectic manifolds and f is a sym­
plectomorphism. Then if H : N2 ~ R is a smooth function,

JV(H 0 f) = f·(JVH).

Hence if U is a open set of Rn, M a manifold and ep : U ~ ep( U) c M a
diffeomorphism, then for auy smooth function H : T·M ~ R we obtain

.....(JVH) = (ß(H 0 rj;) _ ß(H 0 tP))
ep ßp' 8q .

Suppose now we fix on M a smooth riemannian metric < , > and let b:
T·M ~ TM denote the obvious identificatioo rilap given by the metric. This
ioduces in a canonical way a riemannian metric 9 00 T·M. If 8 E T·M theo
the riemannian connection on M gives rise to a direct sum decomposition
Ts(T· M) = H(8)EBV(8). The subspace H(8) is called the horizontal subspace
and is the kernel of the connection map K : T(T·M) ~ TM defined a.s
fallows: let x E Ts(T·M) and let Z : (-f, f) ~ T· M be a curve such that
Z(O) = 8, Z'(O) = x, then

DbZ
Kx = T !t=o,

where ~ denotes covariant derivative along iT 0 Z(t).
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The subspace V(O) is called the vertical subspace and is nothing but the
kernel of d1ro.

Eaeh subspace H(O) and V(O) can be identified with T7r(o)M using the
maps d1ro and K respectively. We provide T* M with the unique riemannian
metric 9 for which the summands are orthogonal and the restriction of the
metric to each summand is the inner product given by the riemannian metrie
onM.

A subspace E C TsT* M is said to be Lagrangian if the symplectic form
Ws vanishes on it and dimE = n (n = dimM)o It is obvious that V(O) is a
Lagrangian subspace (this fact is independent of the metric). The horizontal
subspace is also Lagrangian since one can show that Ws can be written as
[20]:

wo(x,y) =< d1rex,Ky > - < Kx,d1reY > 0

Equivalently if we write x = (h t , Vt) and y = (h'J' v'J) under the identifications
described above then

wo((ht , vd, (h'l' V'l)) =< ht , V'l > - < h'J' VI > 0

Let Jo : T(JT* M ---+ TsT* M be the complex structure

Js(h, v) = (-v, h)o

Clearly
wo(x, y) = g(Jex, y)o

Let E c T(J(T*M) be a subspace of dimension n and with the property
E nV(O) = {O}. Then E is the graph of same linear map S(O, E) : H(O) ---+

V(O). It can be easily checked that E is Lagrangian if and only if S(O) is
symmetrie with respect to the product < , >.

Consider now a parametrization ep : U ---+ M and the maps cj; : T*U ---+

T* M and tjJ ~ dcj; : TT* U --+ TT* M. Identify T* U wi th U X Rn and TT*U
with U X Rn X Rn X Rn 0 For () E T* Al let epe be the map de.p"p-I (B) : Rn X Rn ---+

ToT*Mo

Lemma 2.1 If cjJ(q, p) = () then

d1rs 0 eps(q' l 0) =depq(q').

8



Proof:

d1ro 0 dep(q,p)(q', 0) = d(7r 0 cp)(q,p)(q',O) = dc.pq(q'),

where the last equalli ty follows from the fact that cj;(q, p) = (c.p (q), (dc.p;) -1 (p) ).
Now observe that e,;s (0, p') E V(0) and since the covariant .derivative of

vertical vectors is just ordinary derivative we have

K 0 .,o9(0,p') = ~ 11=0 b.,o(q,p(t»,

where p'(O) = p'. Thus observing again that cj;(q,p) = (c.p(q), (dc.p;)-1(p)) we
have

o

Now let H be a function on T· M and let tPt deoote the How of the vector
field J~H. It is weIl known that 4>t preserves w and leaves all the level
surfaces H-1(er) invariant. Suppose now that er is a regular value for H. Set

Let Q denote the symplectic vector bundle over S· M whose fiber Q(O)
(0 E S· M) is ToT· M. It is obvious that dtPt acts on Q and preserves the sym·
plectic form 00 the fibers. We recall the definition of a continuous invariant
Lagrangian subbundle.

Definition 2.2 A continuous invariant Lagrangian subbundle Eis a contin..
uous subbundle of TS· M such that each fiber is a Lagrangian subspace of
Q(O) and

E(</Jt(f))) = drPtE(0)

for al/ t E Rand 0 E S*1\1.

We now recall the definition of an Anosov flow. Let N be a compact
riemannian manifold and let 4>t : N ~ N be a How wi th associated vector
field X. The flow 4>t is said to be Anosov if there are numbers c > 0, °< A< 1
aod continuous d4>t·invariant subbundles E6 and EU of T N such that

9



11 dt/J-t lEu 11:5 CA t t 2: 0,

11 d4>t IE.II:5 CAt t 2: o.
Next we will show:

Lemma 2.3 Suppose the Hamiltonian flow 4>t : S· M --+ S· M 0/ the Hamil­
tonian H is an Anosov flow. Then the bundles E' ffi R.X' and EU ffi R.X' are
continuous invariant Lagrangian subbundles.

Proo/: Take x and y in E~(6). Hence

But w(d4>tx,drPtY) goes to zero as t --+ +00 and consequently W9(X,y) = O.
Therefore the symplectic form vanishes on E"(6) ffi RX(6) (obviously by the
same argument W9(X, X(O)) = 0 for x E E'(O)). Similarly the symplectic
form vanishes on EU(O) ffi RX{O) and hence both have to be n-dimensional
and therefore Lagrangian.

o

Finally we give a few generalities about Finsler metrics. Let M be a
differentiable manifold. A Finsler metric on M is a norm on each tangent
space (possibly not symmetrie) such that the unit sphere in each tangent
space TqM is a strictly convex submanifold which depends differentiably on
q. Alternatively, a Finsler metric ia a function N : TM --+ R, differentiable
off the zero-section, such that D}(N2) ia positive definite and such that

N(Av) = AN(v),

for all A > 0 and v E TpM. Here D} denotes the second derivative in the
fibre direction. \Ve call N symmetrie if N( -v) = N(v).

Finsler metries are sometimes conviniently described on the cotangent
bundle. We consider T· M with its standard symplectic structure. Let H
be a Ha.miltonian with Hamiltonian vector field JVH. If D}H ia positive
definite, the Legendre transform

10



is a local diffeomorphism. If H is positively homogeneous of degree two,

H(Ap) = A2H(p),

for A > 0, then LH is a global diffeomorphism and

N 2 = Ho L1/

is a Finsler metric on M. The field J"VH decribes the geodesics of the Finsler
metric since the projection of the integral curves of J"VH uuder T*M --+ M
are the geodesics of N. If 2N'J is a riemannian metric, 2H is the dual metric
and LH = b is the canonical identification between TM and T*M.

3 The linear equation and the Riccati equation

Let Cf' : U --+ cp(U) C M be a diffeomorphism where U ia an open set in Rn.
Take 0 E S*M so that 11"(0) E cp(U) and take x E Q(O). Now consider a

variation
O'.(t) = (q.(t),P.(t))

such that for each s E (-f, f), 0'" is a solution of the Hamiltonian H 0 ep
such that 0'0 has energy (T and f" 1.=0 0.(0) = ep-l(x). Then if we write
(h(t),v(t)) = ep-l(d4>dv)) we have that h aod v verify the following linear
equation

h' = Hqph +Hppv,

v' = -Hqqh - Hpqv, (3)

where derivatives are evaluated along O'o(t). This follows directly from equa­
tion (1).

Fix a riemannain metric on M and using the splitting described in the

previous section write (dtPdo(x) = (h(t),v(t)). Let G(t) ~ ep,pI(O) : R'Jn -+

T1f(4Jd B»)lVl EB T1r(4J,(O»lVl. Then clearly

G(t)(h(t), v(t)) = (h(t), v(t)).

Observation 3.1 Note that S* M has no conjugate points if and only if there
is no non-trivial h a.s above such that h vanishes for two different points. This
is equivalent to saying that for all 0 E S*M and non-zero x E Q(O) the set
{t: dcPt(x) E V(4)t(O))} consists at most of one point.
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Let I denote usual derivatives.and let a dot . denote covariant derivatives.
iFrom the last equation we get

(h, b) = G(h, v) + G(h' ,Vi).

Using the linear equation (3) and evaluating everything in t = 0 we obtain

. (h,;)) = GG-1(h,ü) + G (_~ _~pp) (h,v) =
qq pq

= [GG-1 +G (Hqp Hpp
) G-1](h, v) ~ (H!!p _Hf!PP) (h, v) =

-Hqq -Hpq -Hqq pq

(4)

def - _
= 1-l(B)(h, v).

Tbe operator 1-l(0) : T"'(B)M ffi T"'(B)M -+ T.,,(s)M ffi T.,,(s)M is exactly defined
by the covanant derivatives in t = 0 of the components of dtPt (x) in the
splitting, along the orbit defined by O. The component Hpp of 1-l is what we
are interested in. We will now show:

Lemma 3.2 Suppose H is convex. Then the operator Hpp(O) : T1f(s)M -+

Tlr(s)M is positive definite.

Proof: Observe that G(O, v) is always vertical. Hence GG-1(0; v) has
zero horizontal part. Therefore from equation (4) we have:

H- (0)(-) d G (Hpq HH1'P
pq

) G-1(0, v-).pp V = 1re 0 -H
qq

Using Lemma 2.1 we get

Therefore

< Hpp(v), v >=< depq 0 Hpp 0 dep; 0 b-1(v), V >=

=< Hpp 0 dep; 0 b-1(v),dep; 0 b-1(v) >flab

12



where < , >I'Bt denotes the Hat metric of Rn. Hence if Hpp is positive definite
(H is convex) then H'PP is also positive definite and we deduce the lemma.
The last equality follows from the following (elementary) linear algebra fact:

Let (ltl, < , >1) and (\12, < , >2) be" two vector spaees witb inner prod~

uets. Let b. : Vi- -+ \ti be tbe eanonieal identifieation by means of tbe inner
produet < , >. (i = 1,2). Let A : Vi -+ V2 be a linear map. Tben

o

Next we will obtain a Riccati equation. Let E be a Lagrangian subspace
of Q(8). Suppose for t in some interval (-f, e), dtPt(E) n V( 4>,(8)) = {O}.
As we explained in Section 2 we can write drPt(E) = graph S(t) where
S(t) : T1r(l/Jt(6))M -+ T1r(tJ,.(6))M is asymmetrie map. That is, if x E Ethen

dt/>t(x) = (h(t), S(t)h(t)).

By means of the equation (4) we obtain:

Since this works far every x E E we obtain the Riccati equation:

(5)

4 The Maslov-Arnold index

In this seetion we will define a Maslov- Arnold index associated to an energy
surface of a Hamiltonian Hand a continuous Lagrangian subbundle. We will
follow the presentation in [21, Part III] quite closely.

For 8 E S· Miet A(0) denote the set of Lagrangian subspaces of Q(0).
Denote by I\(S· M) the bundle over S· M whose fibre on 8 is 1\(0). Let I\k(O)
be the set of Lagrangian suhspaces E E 1\(0) such that dim(E n V(O)) = k.
Then I\k(8) is a Lagrangian submanifold of 1\(8) with codimension k(k

2
+l).

Then if A.k(S· M) denotes the set of elements (9, E) E A(S·M) such that E E

13



m(B, E) = 1 - i trace(S(B, E)),
1 +i trace(S(B, E))

When (0, E) E I\I(S·M) set

A,,(8), it follows that A,,(S·M) is a submanifold of I\(S· M) with codimension
"("i1). Define

and let E be the complement of r. Fix a riemannian metric on M. Define a
function m : E -+ SI as follows: if (0, E) E Ao(S·M) take asymmetrie map
(as in Seetion 2) S(O, E) : T1f(8)M -+ Ttr(8)M such that 9raph S(8, E) = E
and define

m(O,E) =-1.

The arguments in [21] show that m ia continuous.
Next we define an index that to every continuous closed eurve j : [0, 1] -+

I\(S· M) associates an integer [nd" If j : [0,1] -+ E is a eontinuous
closed eurve, define [nd, as the degree of the map m 0 j. Obaerve that if
11 : [0,1] --+ E and ,'J : [0,1] -+ E are homotopie then Ind 11 = Ind I'J'
Given a eontinuous closed curve 1 : [0, 1] --+ I\(S· M) define Ind i aß Ind 7
where 7 : [0,1] --+ E is homotopie to j. The arguments in [3, 21] show that
this definition is consistent (the key fact here is that cod(r) 2: 3).

Now suppose that there is a eontinuous Lagrangian subbundle E in Q.
Given a continuous elosed curve a : [0,1] --+ S· M we define & : [9,1] --+

A(S·M) by
&(t) = (a(t),E(a(t))),

and define the index of a by

inda=Ind&.

Remark 4.1 Let UB show that in fact the index we defined is independent of
the riemannian metric we fixed. Let 90 and 91 be two riemannian metries on
M and let let indo and ind1 be the two Maslov·Arnold indices corresponding
to 90 and 91' Let 9. = 39. +(1 - 3)90 and let m. : E --+ SI be the associated
functions. Ir, : [0,1] --+ E is a continuous closed curve, then clearly m. 0 1
ia a homotopy between mo 0, and mt 0,. Hence Indo, = Ind l ",,/ and thua
indo = indl •
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5 Convex Hamiltonians and the Maslov-Arnold in­
dex

In this section we will study various properties in which the convexity enters
in a crucial manner. We will show that the Maslov-Amold index we defined
in the last section is positive as lang as the Lagrangian subbundle is invariant
and touehes the vertieal non-trivially. This is the key for Theorems 1.1 and
1.2.

Lemma 5.1 Assume H is convex. If there is a Lagrangian subspace E C
Q(O) such that V(,pt(O)) n drPt(E) = {O} for t E [O,a] then the segment
{,pt(tJ) , t E (O,a]) does not have conjugate points i.e. the set oft E (O,a]
such that d4Jt (x) E V (,pt (0)) consists at most 0 f one point for all non-zero
x E Q(O).

Proo/: Take the symmetrie map S(t) that gives dtPt(E) as a graph and
let (h(t), v(t)) represent drPt(x) (x E Q(O)). Suppose h(c) =°for some c E
(0, a]. Consider Y(t) : T,,(o)M -+ T1f(tPt(o»M a family of linear isomorphisms
satisfying

Y = (fIqp + fIppS)Y,

Y(O) = id.

Ir we take w such that (w, S(O)w) E E and define

h1(t) = Y(t)w,

Vl(t) = S(t)Y(t)w,

we get that (hI, VI) is a solution of the equation (4). Sinee

w(x, Y)6 = g(Jox, y)

and dtPt preserves the symplectic form on the fibres we get

< h(t), vdt) > - < v(t), h1(t) >= - < v(c), w >

and hence

< Y·(t)S(t)h(t),w > - < Y·(t)v(t),w >= - < v(c),w > .
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Therefore

Since

we get

and hence

h(t) = Y(t)h(c) +Y(t)[ y-l(u)H",,(yo)-lv(c)du.

Since h(c) = 0 we obtain

< y-l(t)h(t),v(c) >= 1.' < Hpp(yot1(u)v(c), (yo)-I(U)V(C) > du.

Then the convexity of H implies via Lemma 3.2 that h( t) f:. 0 for all t E [0, a]
different from c and hence there are no conjugafe points along the segment
(cf. Observation 3.1).

o

Next we will show:

Lemma 5.2 Suppose H is convex. If E C Q(O) is a Lagrangian s~bspace,
the set oft ERsuch that dtPt(E) n V(tPt(O)) =F {O} is di3crete.

Prao/: Set Et = dtPt(E). We need to show that if E n V(O) f:. {O} there
is a neighborhood I of t = 0 such that Etn V (q,t(0)) = {O} for a.ll 0 =F tEl.

Let
Pt: Q(tPt(B)) --. H(q,t(O)),

be the orthogonal projection. As in Lemma 111.2 in [21] we have that P(E)
is the orthogonal complement of Js(E n V(O)) in H(O).

For t close to 0 take a. set of linearly independent vectors

{i1(t), ... , ~(t)},
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such that in t = 0 they span fI;"l P(E). Note that since H is convex, Lemma
3.2 implies that flpp is positive definite and hence invertible. Define

Let {Wb ... ,Wk} be a basis of unitary vectors of E n V(8), then k + m =
dimH(6). Define

fli:Wi
Wi = I )flpPWi I'

Observe that < HppZi(O), Wj >= 0 and hence < ..jHppzi(O),..j fIppwj >= O.
Thus

is a basis of H(8).
Now take (hi , Vi) solutions of the linear equation (4) so that

Define

Notice that
{Yi (t), ... ,Yk ( t)} c (..jIipp)-l Pt ( Et ).

Define
:Ft = {zdt), ... , zm(t), Yi(t), ... ,Yk(t)}.

Observe that

17



and notice that :Ft converges to:F. Therefore P(Et) = H(cPt(8)) which yields
the desired lemma.

<>

Suppose now that E is a continuous invariant Lagrangian sub­
bundle.

Definition 5.3 A continuous closed eurve Q : {a, T] -+ S*M is ealled a
pseudo.orbit of the Hamiltonian ftow if for all to E (a, T] where

E(a(to)) n V(o(to)) i= {al,

there exists € > a sueh that

o(t + to) = tPt(o(to)),

for t E (-f, f) (for to = a or to = T we take the eontinuous periodie extension
of 0 to the realline).

lf S*M is symmetrie we require (in addition) the last equation to hold
also for to E [0, T] such that

E(o*(to)) n V(o*(to)) ~ {O},

where o*(t) = (q(t), -p(t)) if o(t) = (q(t),p(t)).

Lemma 5.4 Suppose H is eonvex. If Q : {O, T] -+ S* M is a closed pseudo­
orbit of the Hamiltonian ftow such that the set

K = {s E [O,T]: E(o(s)) n V(o(s)):F {Oll

is not empty, then ind a > o.

Proof: As in [21, Lemma 1II.1] consider the set:

P(a, c) = {t E {O,T]: mo &(t) = cl,

Exactly the same arguments as in [21, Lemma 111.1] imply that to prove the
lemma it is enough to show that there is a c such that

. (m 0 &)'(t)
EtEP(a c)stgn( '( ")( )) > O.

• t moo t
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On a.ccount of the previous lemma the set of points where moa = -1 ia
finite. Let t1J ••• , tr be this set and let \Ii be a neighborhood of t. so that on
ea.ch Vi, er is an orbit. Now take -1 < c < 0 so nea.r -1 so that

P(0:, c) C U.Vi,

Let t be a point in P(a, c) and suppose it belongs to Vi, Let S(t) be the
symmetrie map that gives E(0:( t)) a.s a graph. Hence

(m 0 &)'(t) = -2 trS
i (m 0 &)( t) 1 + tr2S '

and then using the Riccati equation (5)

(m 0 a)/(t) tr(HppS 2
) +tr(HpqS) +tr(HqpS) + tr(Hqq )

i(mo&)(t) =2 1+tr2S '

where tr denotes trace. Since Hpp ia positive definite (Lemma 3.2), the matrix

JHpp is weH defined and since S is symmetrie we get

_ tr2
( ~S)

tr(Hpp S2
) ~ n

V~]~ .

For a fixed matrix B define

O'B = infllAll=l I tr(BA) I .
Then

Notice that t E P(a, c) implies trS == -i~~~. So if we take c very near -1,
then I trS(t) I becomes very large and thus

(m 0 &)'(t) > _1_0-2_ •

i (m 0 &) (t) - n - 1 H pp

This clearly implies equation (6).
0-
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Remark 5.5 We observe that if the set K io the last lemma ia empty then
we have that ind 0' = 0 since in this case the map mo & does not take the
value -1 and hence it is no surjective.

Lemma 5.6 IfE(8)nV(8) '1= {O} and every point in S*M is non-wandering,
then there exists a closed pseudo-orbit 0 : [0, T] ~ S· M such that 0(0) = 8
and hence with positive index by the previous lemma.

Proo/: It follows from Lemma 5.2 exactly aB in [21].

6 Proofs of Theorems 1.1 and 1.2.

ProoE oE Tbeorem 1.1:
Since H is convex aod q is strictly bigger than the maximum of H over

the zero section, we deduce that for each q E M, H-1(q) n Tq*M is a strictly
convex hypersurface containing the origin in its interior. ThuB we can defioe
a Finsler metric F so that F-1

( 1) = S*M. Theo 00 the level surfa.ce S*M the
orbits of the Hamiltonian flow of F are just reparametrizations of the orbits
of the Hamiltonian flow of H [27]. Then one easily checks that H possesses
a continuous invariant Lagrangian subbundle if and ooly if F does, and that
S*M has conjugate points if and only if the Finsler metric has conjugate
points. So we only need to prove the theorem in the case of a Finsler metric.

Hy Lemma 5.1 it is enough to show that E(8) n V(8) = {O} far all
8 E S· M. Suppose there exists 8 E S*M such that E(O) n V(O) ;f {O}.
Lemmas 5.4 and 5.6 imply that there exists a pseudO-orbit a with ind a > O.
Note that sioce S·M ia a aphere bundle over M, homotopies in M can be
lifted to homotopies in S· M. Consider now the free homotopy dass of the
curve 1r 0 a. Ir this dass is trivial, dearly ind a = 0, since the index is a
homotopy invariant. Suppase the dass is not trivial. Then on account of
Morse theory, which also works far Finsler metrics (see for example [29]), we
can find a geodesie 7T 0 ß freely homotopic to 1r 00' and such that it minimizes
the length in its homotopy dass. Hence 'Ir 0 ß has zero Morse index and
thus, it has 00 conjugate points within ooe period (also 'Ir 0 ß has 00 self­
iotersections). By [12, Equation (4.10)] we have that E(ß(t)) never touches
the vertical ooo-trivially and thus ßmust have zero Maslov-Amold index (cf.
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Remark 5.5). But this is a eontradietion beeause ind ß= ind 0 > 0 since 0

and ß are homotopic.
<>

ProoE oE Theorem 1.2:
The symmetry condition replaces the use of Morse theory in the proof

of Theorem 1.1. Sinee the energy surface S·M is symmetrie, if o(t) =
(q( t), p(t)) is a closed pseud<rorbit of H , then the curve ö( t) = (q( -t), -p(-t))
is also a closed pseud<rorbit (recall the definition of pseud<rorbit in the sym­
metrie case, cf. Def. 5.3). Now observe that the curve 0 and the eurve
o·(t) = (q(t),-p(t)) are always homotopic and hence ind 0 = ind 0·. But
clearly ind o· = -ind ö. On aceount of Lemma 5.4 and Remark 5.5 the in­
dex of a clased pseud<rarbit is always non-negative. Since ö is also a closed
pseudo-orbit we deduee that ind 0 = O. Lemmas 5.6 aod 5.1 imply that
there are no conjugate points.

Ta complete the proof of Theorem 1.2 we need to show that 1rS·M = M.
Suppase by absurd that rrS· M is strictly contained in M. Then 1rS·M is
a smooth n-dimensional manifold with boundary given by U-1(0'), where
U(q) = minpET;MH(q,p). Hut for 0 E S·M such that 1r8 E U- 1(0') we have
that d1f9(ToS· M) = T~9U-l(q). Since E(9) C ToS· M and dirn E(9) = n
we clearly have that E(9) n ker d7r9 f:. {O}. This a contradiction since we
showed befare that E ca.nnot touch the vertica.I non-trivially.

<>

Remark 6.1 We do not know bow to drop tbe symmetry candition in The­
orem 1.2.

7 Topological entroPYJ loop space homology and the

fundamental group

Let M be a. manifold endowed with a Finsler metric. Let cPt denote its
geodesie flow. Assume it is complete (this would be tbe C&se if M is compact).
The flow cPt acts on TM minus the zero section. Since N'J is positively
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homogeneous of degree two we have the relation:

4>.(tv) = t4>.t(v) (7)

for all real s and t > o.
As in riemannian geometry we set exp = 1r 0 4>1 where 1r : TM -+ M is

the canonical projection and let exppbe the restrietion of exp to TpM - {O}.
Equation (7) implies that t -+ expp(tv) (for t > 0) ia the geodesie through p
with velocity v.

The proofs of the results that follow are similar to ones given in [23] for
the riemannian case. One of the difficulties now is that the exponential map
is defined on the punctured tangent space TpM - {O}.

Assume from now on that M is compact. Fix a. point p E M and a
number ..\ > O. Denote by np(q,..\) the number of geodesics connecting p
and q with length < ..\. Let B(..\) be the set of vectors v E TpM - {O} with
N(v) < ..\. If q is a regular value of expp then the set exp;1(q) n B(..\) being
discrete and closed is fini te, hence since n p ( q, ..\) is the cardinality of this set,
we obtain that np(q,..\) is finite. Moreover, it is locally constant as a function
on q. Endow M with a riemannian metric, call w the associated volume form
and p. the induced measure (if M is not orientable we work with its double
covering). Set

Ip (..\) = 1M np(q, ..\)dp.(q), (8)

(Berger and Bott already considered this integral for the riemannian case in
[8]).

Let X denote the set of regular values of expp ' By Sard's theorem X has
full measure and we saw that np(q,..\) is finite and locally CODstant on X,
thus I p (..\) is weIl defined.

Take now S > 0 and small and let np ( q, S, ..\) denote the number of
geodesics connecting p and q with length in [S, ..\). Then clearly

np(q, A) = np(q, 8) + np(q, 8, ..\),

and hence

Ip(A) = 1M np(q,6)dp(q) +Lnp(q, 6, >.)dp(q) ~ Pp(6) +Qp(6, >.). (9)

Now we state an important property of Finsler metrics: if 0 is small
enough, there exists a unique geodesic from p to q with length < 8. (cf [9]).
Thus Pp(S) = Jl(B(p, S».
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(10)

Next let A(0, .\) denote the annulus in T1'M - {O} given by those vectors
v that verify °~ N(v) < .\. In view of the previous consideratioos the
exponentia.l map is a covering on A(o, .\)nexp;1(Ua ) where Ua is a connected
component of X. Hence we get

Q1'(o,.\) =1: ( I exp;w I,
a JA (6,).,)nup;1 (Ua )

where exp;w is the pull·back of the volume form wunder the exponential
map. Therefore from equation (9) we obtain

11'(.\) ~ p.( B(p, 8)) + f 1 exp;w I .JA(6,).,)

As in (23] we define u1" the geodesie entropy at p by

u. = limsup~_oo X/Og I.(A).

Denote by S1'M the set of vectors v E T1'M with N(v) = 1. and let
htop(4>h S1'M) denote the topological entropy of the flow rPt respect to the set
S1'M.

Theorem 7.1 For all p E M we haue that (71' ~ hto1' (4)t, S1'M).

Proof: Set ß = limsupt_oo t log Vol(4)t(S1' M)) where Vol stands for the
(n - l)-riemannian volume on TM induced by the metric we fixed 00 M.
Yomdin's theorem implies {28] (see also (15]) that htop(<PI, S1'M) > ß. Hence
we ooly need to show that (71' ~ ß. Let V(t) = Vol( 4>t(S1'M)).

Choose K > 0 such that I 8tP~!tI) le=ol~ K for v E SM.
Define tf;: R x S1'M -+ TM by t/J(t, v) =<Pe(v) and g: R x S1'M -fo TM

by g(t, v) = tu. Observe tbat equation (7) implies

1r 0 4>1 0 9 = 1r 0 "p.

A direct ca1culation shows that

(11)

therefore

{ I exp;w 1= ( Idet(d( 1rO 4>l)v) 1= ( 1det{ d(1r0 4>1 og)(t,v») 1=
J A(6,).,) J A(6,).,) J(6,).,] xSpM
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= f Idet(d( 7r 0 ,p )(t,v)) 1$ f 1det(d,p(t,v») 1:5
J[S,>'l xSpM J{S,>'l xSpM

$ K f Idet( d( tP,)v) 1=
1{s,>'lXSp M

=K t V(t)dt,

where the last inequality follows from equation (11).
Therefore from equation (10)

Ip(>') ~ p(B(p,6» +K t V(r)dr.

But given f > 0 there exists T( f) such that if t ~ T( f) then V (t) < e(~+t)t.

Thus

/s
T(t) h>'!p(>') $ P(B(Pl 8)) +!( V(r)dr +K e(6+t)rdr.

s T(t)

This clearly implies that up :5 ß + f.

o

ProofofTheorem 1.3: Since for all q E M we have that H- 1(u)nT;M is
a compact strict1y convex hypersurface containing the origin in its interior,
we can define a Finsler metric P on T· M -as we did in the proof of Theorem
1.1- so that P-1(1) = H-1 (a). But then the curves of H on H-1(er) are just
reparametrizations of the curves of F (see [27]). Hence, since the topological
entropy is a dynamical invariant we have that htop(tPt, SpM) = 0 where tPt
denotes the geodesic flow of the Finsler metric F. But now Theorem 7.1
implies that ap = O.

In [14] Gromov proved in the riemannian case that there exists a constant
c depending only on the geometry of M such that whenever P and q are not
conjugate (i.e. if q is a regular value of expp) then

c(>.-l)

np(q, A) ~ E bj(OM, K),
i=l

where bi(OM, K) are the Betti numbers of the loop spa.ce OM respect to the
field K. His proof extends directly to Finsler metrics, since Morse theory
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also works for Finsler metrics (see for example (29]). Thus if we integrate the
above inequality respect to q we obtain

c('\-I)

Ip(A) ;::: Vol(M) L: bi(nM, K).
i=l

Hut if (jp = 0, then L~l bi(nM, K) grows sub-exponentially as we wanted
to show. If K = Q this implies that M is rationally elliptic (16].

<>

Observation 7.2 In general it is not known whether sub-exponential growth
implies polynomial growth for the loop space homology unless the field K has
carachteristic zero or tbe earachteristic p =J 0 verifies the condition p > din;. M

where r is tbe least positive integer such that M has bomology in degree r.
The latter result is quite new and still unpublished and was obtained by
Anieh, Felix, Halperin and Thomas (18].

Let M be a manifold endowed with a Finsler metrie. Recall that M
naturally earries a distance function d (possibly not symmetrie) that anses
as tbe infimum of length of curves. Suppose now M is eompact and let M
be the universal covering equipped witb tbe indueed Finsler metric. Piek a
volurne form on Mand set V(p, r) = Vol(B(p, r)) ·where

B(p,r) = {y E M: d(p,y) < r}.

Tbe same arguments as in (22] show now for tbe Finaler case that r-1log V(p, r)
converges to a limit A ;::: 0 as r -+ +00 and that A is independent of p. More­
over sinee for a manifold with a complete Finaler metric ia a.lso true that
two points ean be joined by a minimal geodesic ·tbis property eao be easily
deduced from Morse theory- the proof of Theorem 1 in (22] carries to tbe
Finsler ease to show

A~ htop (rPb SpM).

ProoE of Theorem 1.4: Arguing a.s in tbe proofs of Theorems 1.1 and 1.3
we obtain a Finsler metric with htop(tPt, SpM) = O. Thus A= 0 wbieh in turn
implies that trI (M) grows sub-exponentially.

<>
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8 Twisted cotangent bundles

Part of the material io this sectioo is takeo from [17, Chapter 1]. Let M be
a manifold so that T· M deootes its cotangeot bundle and w the canonical
2-forrn on T·M. Suppose that we are given an electromagnetic field F which
is a c10sed 2-form. Via the projection 11" : T*M ~ M we can pull back F to
T·M to obtain a 2-form 00 T·M which we shall continue to denote F. We
define

We,F = W+eF,

where e is an electric charge. Then We,F is a symplectic form on T·M and
T· M equipped with this form is called a twisted cotangent bundle. Any
complete Lagrangian fibration with simply connected fibres can be viewed
as a twisted cotangent bundle [2, p. 38]. Let H be a Hamiltonian on T·M.
If 9 is a riemannian metric on M, the Hamiltonian equations corresponding
to the Hamiltonian H (q, p) = ! I p I; relative to the symplectic form We,F
describe the motion of a charged partic1e of charge e in the presence of the
electromagnetic potential field F.

Since F is closed, locally we can wri te F = dA, for some I-form A. We
can think of A as a section of T· M and introduce a modified Hamiltonian
He,A, where

He,A(q,P) = H(q,p - eA(q)).

If one defines 'Pe,A : T-M ~ T-M

CPe,A(q,p) = (q,p +eA(q)),

then one checks that
(12)

'P:,AHe,A = H. (13)

Hence the solution eurves of H relative to we,F are images under 'Pe,A of the
solution eurves of He,A relative to w. Sinee 1r 0 CPe,A = 7r we obtain the same
trajeetories on M from one system as from another.

Now observe that if H is eonvex, then He,A is also eonvex. Thus if a
continuous invariant Lagrangian subbundle for the flow of H relative to We,F
is given, then equations (12) and (13) imply that the basic lemmas 5.3, 5.4
and 5.6 -which have a Ioeal nature- hold in the more general setting of twisted
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cotangent bundles. However we do not know how to extend Theorem 1.1 or
Theorem 1.2 to this situation.

Finally suppose that F is exact and that M is compact. Let H(q,p) =
! Ip I; and set 1( = maXqeM I A(q) Is. Then HetA verifies the hypotheses of

Theorems 1.3 and 1.4 provided u >~ and we have:

Theorem 8.1 Let M be a compact manifold. 1f 1Tt(M) is finite and for
some coefficient field the loop space homology of M grows exponentially, or
i/ rrdM) has exponential growth, then the motion 0/ a charged particle under
the effect of an exact electromagnetic potential with energy u > e'~ has
positive topological entropy.

In general if we consider a Hamiltonian

1
H = 2 1p - A(q) I; +U(q),

then H will verify the hypotheses of Theorems 1.3 and 1.4 for an appropiate
u and thus all the previous results apply if we include conservative forces
represented by the potential U.
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