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Abstract

Let H be a convex Hamiltonian on 7" M. We show that if the
Hamiltonian flow of H admits on the compact regular energy surface
H~1(o) a continuous invariant Lagrangian subbundle, then there are
no conjugate points provided the energy o is sufficiently high. If in
addition H~!(o) is symmetric we show that for any values of the en-
ergy o, H=1(o) projects over the whole configuration space M. These
results generalize a well know theorem of Klingenberg [19] for rieman-
nian metrics.

In a different direction we show that the topological entropy of the
Hamiltonian flow of a convex Hamiltonian on a compact regular energy
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surface (with sufficiently high energy) is positive as long as 1 (M) has
exponential growth or if 71(M) is finite and for some coefficient field
the loop space homology of M grows exponentially.

1 Introduction

The purpose of the present paper is to extend various geometric and topolog-
ical results that hold for riemaniann metrics to the wider open class of convex
Hamiltonians. Let M be a manifold without boundary and let H : T*M — R
be a smooth Hamiltonian. We will say that H is convex if for each ¢ € M
the function H(g,.) regarded as a function on the linear space T’ M has posi-
tive definite Hessian; equivalently the second fibre derivative D% H is positive
definite.

As Anosov points out in {1] it is important to distinguish among the
problems of riemannian geometry those which are related to their variational
character alone and do not depend on the remaining specific peculiarities of
the riemannian metric. For several of the results we will describe the common
denominator is precisely the variational calculus in the large i.e. the Morse
theory of the loop space.

In [19] Klingenberg proved that if the geodesic flow of a compact rie-
mannian manifold M is Anosov, then M has no conjugate points. Mané
[21] generalized Klingenberg’s result to the non-compact case and gave at
the same time a new proof of it using a variant of the Maslov-Arnold index
adapted to the use of the Riccati equation. Moreover, Maiié showed that
if M has finite volume and the geodesic flow admits a continuous invariant
Lagrangian subbundle, then M has no conjugate points. When the geodesic
flow is Anosov the stable and unstable subbundles are Lagrangian.

In the present paper we will extend Klingenberg and Mafié’s results to
the case of a convex Hamiltonian under adecuate hypotheses on the energy
surface. Our extensions will include in particular, non-symmetric Finsler
metrics. Anosov in [1] suggested a possible proof to handle the Finsler case
but no details were given. Here we approach the problem using Mané’s ideas
in [21].

Before stating our theorems precisely let us recall some well known facts
and give a few definitions. Let H be Hamiltonian on T*M and let ¢, de-
note its associated Hamiltonian flow. It is well known that ¢; preserves the



canonical symplectic form of T*M and leaves all the energy surfaces H~(o)
invariant. From now on we shall assume that ¢ is a regular value of H and
that the flow ¢, on H~'(o) is complete.

We will say that ¢; has a continuous invariant Lagrangian subbundle if
there exists a continuous subbundle E of TH~'(¢) such that for all 8 €
H~Y(o) the fibre E(0) is a Lagrangian subspace of TyT*M and E(¢,(9)) =
d¢,(E(0)) for all t € R.

Let 7 : T*M — M be the canonical projection. For s € (—¢,¢) consider
a curve 8 — p, € Ty M with py € H™'(o). Let Y(t) be the variational field

V()= 5 lumo 70 4(p.)

We will say that H~(o) has no conjugate points if for all fields Y as above
we have that Y(¢) # 0 for all t #£ 0.

Theorem 1.1 Let M be a compact manifold and let H be a convez Hamil-
tonian on T*M. Supposse the Hamiltonian flow of H on the compact regular
energy surface H™1(0), possesses a continuous invariant Lagrangian subbun-
dle. Then H~'(o) has no conjugate points provided the energy o is stricly
bigger than the mazimum of H over the zero section of T*M.

The energy surface H=!(o) is said to be symmetric if it is invariant under
the involution (g, p) — (¢, —p). The next theorem complements Theorem 1.1
under the additional assumption of symmetry.

Theorem 1.2 Let H be a conver Hamiltonian on T*M. Suppose the Hamil-
tonian flow of H on the regular energy surface H™(o) possesses a continu-
ous invariant Lagrangian subbundle. Then if H1(0) is symmetric and every
point in H™'(0) is non-wandering we have that tH™'(c) = M and H™ (o)
has no conjugate points.

Theorem 1.2 is false -even in the geodesic flow case- if we drop the hy-
pothesis that every point in H~!(o) is non-wandering. As an example take
the paraboloid of revolution z = z? + y®. The obvious circle action together
with the field of the geodesic flow span a continuous invariant Lagrangian
subbundle but there are conjugate points.

As in the case of the geodesic flow, if the Hamiltonian flow of H on
H~'(o) is Anosov, the stable and unstable bundles give rise to continuous
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invariant Lagrangian subbundles (cf. Lemma 2.3}, so all the previous results
hold if we assume the Hamiltonian flow to be Anosov. Consider for example
H =T + U where T is the kinetic energy associated with some riemannian
metric and U is a smooth function on the compact manifold M. It follows
from Theorem 1.2 that if the Hamiltonian flow of H on H~'(o) is Anosov
then o is strictly bigger than the maximum of U on M.

We briefly sketch now the ideas involved in the proofs of the previous
theorems. By the help of a riemannian metric we obtain in Section 3 a global
Riccati equation associated to any Hamiltonian on T*M. The coeflicients of
this equation are operators that naturally extend the curvature operator in
the riemannian case. Next we define a Masiov-Arnold index following very
closely Arnold [3] and Maiié [21]. This index is associated to continuous
closed curves on an energy surface of a Hamiltonian provided a continuous
Lagrangian subbundle E is given. The way the index is defined implies
automatically its invariance under homotopies.

In Section 5 we show that if H is convex and E is invariant under the
flow of H, then the Maslov-Arnold index of a closed pseudo-orbit of the
Hamiltonian flow is positive as long as E touches the vertical non-trivially.
This result is crucial for proving Theorems 1.1 and 1.2 and is acomplished
by making strong use of the convexity and the Riccati equation mentioned
above. The “spirit” of this result is already contained in Klingenberg’s paper
[19]. Various authors have proved it in slightly different settings, cf. [4, 5, 6,
7, 10, 12] (we thank M.L. Bialy for calling our attention to these references).

In the case of Theorem 1.1 a reduction to the Finsler case allows us to use
Morse theory and show that in fact the Maslov-Arnold index of any closed
pseudo-orbit is zero. In this way we deduce that the subbundle E cannot
touch the vertical non-trivially. The convexity implies now via a Sturm-
Liouville type of result that there are no conjugate points. For Theorem 1.2
the symmetry is enough to show that the Maslov-Arnold index of any closed
pseudo-orbit is zero. Theorem 1.2 is completed by showing that points that
project onto the boundary of # H~'(c) give rise to closed pseudo-orbits with
positive index. All these is done in Sections 5 and 6.

We observe that the previous theorems allows us to extend many other
properties that hold for Anosov geodesic flows to Anosov convex Hamilto-
nians. Once the non-existence of conjugate points has been established one
can show easily, for example, that (M) has exponential growth and that
M is cover by euclidean space as well as other properties like topological
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equivalence as in [13, Theorem B].

In [25, 26] the second author showed that if the geodesic flow on a compact
surface M is expansive, then there are no conjugate points. Recall that a
flow ¢ : X — X on a compact metric space (X, d) is said to be expansive
if given € > 0 there exists § > 0 such that if there is an homeomorphism
r: R — R, 7(0) = 0, such that

d(¢‘r(i)(y)? 45!('7")) < 6

then y = ¢; where | £ |< . Anosov flows are expansive flows. Results analo-
gous to Theorems 1.1 and 1.2 also hold for convex expansive Hamiltonians,
however the details are more involved and will be presented in a forthcoming
paper.

In Section 7 we explore a different realm. We are concern here with the
relations between topological entropy and topology . For a flow ¢y : X — X
on a compact metric space X, let hyo,{¢, A) denote the topological entropy
of ¢, with respect to the set A C X.

We will say that a compact manifold M"™ with finite fundamental group
is rationally ellipticif the total rational homotopy of M, 7,(M)® Q, is finite
dimensional [16]. We will show:

Theorem 1.3 Let M be a compact manifold with finite fundamental group.
Let H be a convex Hamiltonian with Hamiltonian flow ¢, on the compact
regular energy surface H™'(c) with o strictly bigger than the mazimum of H
over the zero section. If for some p € M we have that ’

h!op(‘?sts H_l(a) n T;M) = Oa

then the loop space homology of M with coefficients on any field grows sub-
ezponentially. In particular M is rationally elliptic.

Theorem 1.4 Let M be a compact manifold. Let H be a convez Hamiltonian
with Hamiltonian flow ¢, on the compact regular energy surface H™'(o) with
o strictly bigger than the mazimum of H over the zero section. If for some
p € M we have that

heop(be, H (o) N ;M) =0,

then m,(M) grows sub-ezponentially.



Theorem 1.4 extends a classical result of Dinaburg [11] and Theorem 1.3
was proved in 23] for the riemannian case although Gromov implicitely uses
it in [15]. Let us note that Theorems 1.3 and 1.4 show that the results
of the first author in [23, 24] about topological obstructions for complete
integrability of geodesic flows extend to convex Hamiltonians.

Finally in Section 8 we consider the more general situation of twisted
cotangent bundles and we show that the key lemmas hold in this setting. We
also apply Theorems 1.3 and 1.4 to Hamiltonians that contain terms that
depend linearly in the velocities like the corresponding to the the motion of
charged particle under the effect of an exact electromagnetic potential.

We are very grateful to R. Mafié for his generous help and for encour-
aging us to write this work. We are also grateful to M.L. Bialy and to the
participants of the Dynamical Systems Seminar at Montevideo for numerous
conversations.

2 Preliminaries

Let (N,w) be a symplectic manifold. Given a smooth function H: N - R
(i.e. a Hamiltonian) its symplectic gradient is defined as the vector JVH(z)
for which :

dH (v) = w (JVH(z),v),

for all v. As it is well known cotangent bundles are symplectic manifolds.
Let M be a manifold and let 7*M denote the cotangent bundle of M with
canonical projection 7. The canonical 1-form £ is defined by

E{q.p)(”) = P(d“(qm)(v))r

where p € Ty M and v € T, )(T*M). The canonical symplectic structure w
on 7" M is defined as
w=d¢.

Let U be an open set of R*. We identify T*U with the set of 2n-uples
(¢,2) = (q1,-+-s@ny P1y .., Pn) Where ¢ € U and p € R™. It is easily seen that

£ = ZP.‘ A dg;,



and

w= Z dp; A dg;.
Also if H : T*U — R is a smooth function we have that
= (5 —a—q)- (1)

), ()

Let H,p, Hyq, Hy, stand for the matrices of partial derivatives (ap-ap» b
OPy WOgy

and (32:;‘;1_) respectively.
Next observe that if M; and M, are manifolds ~a.nd f: M - Misa
diffeomorphism, then f induces a diffeomorphism f : T*M; — T*M; such
that )
fréa=¢6. (2)
Suppose now that N, and N, are symplectic manifolds and f is a sym-
plectomorphism. Then if H : N; — R is a smooth function,

JV(H o f) = f{(JVH).

Hence if U is a open set of R*, M a manifold and ¢ : U = o(U) C M a
diffeomorphism, then for any smooth function H : T*M — R we obtain

d(Ho@) O(Hog)

Suppose now we fix on M a smooth riemannian metric <, > and let b :
T*M — T M denote the obvious identification map given by the metric. This
induces in a canonical way a riemannian metric g on T*M. If § € T*M then
the riemannian connection on M gives rise to a direct sum decomposition
To(T*M) = H()®V(0). The subspace H(0) is called the horizontal subspace
and is the kernel of the connection map K : T(T*M) — TM defined as
follows: let z € Te(T*M) and let Z : (—¢,€) — T*M be a curve such that
Z(0) =40, Z'(0) = z, then

DbhZ
Kz = T |¢=o,

where % denotes covariant derivative along 7 o Z(t).
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The subspace V(0) is called the vertical subspace and is nothing but the
kernel of dry.

Each subspace H(8) and V(8) can be identified with T, M using the
maps dng and K respectively. We provide T*M with the unique riemannian
metric g for which the summands are orthogonal and the restriction of the
metric to each summand is the inner product given by the riemannian metric
on M.

A subspace E C T;T"M is said to be Lagrangian if the symplectic form
wg vanishes on it and dimE = n (n = dimM). It is obvious that V(0) is a
Lagrangian subspace (this fact is independent of the metric). The horizontal
subspace is also Lagrangian since one can show that wy can be written as
[20]: |
wy(z,y) =< dmpz, Ky > — < Kz,dmgy > .

Equivalently if we write z = (h{,v,) and y = (hq, v2) under the identifications
described above then

wy((h1,v1), (he,v2)) =< by, v > — < hay vy >
Let Jy : TeT*M — TyT*M be the complex struct'ure
Jo(h,v) = (—v, h).
Clearly

wy(<,y) = g(Joz,y).

Let E C Ty(T*M) be a subspace of dimension n and with the property
ENV(8) = {0}. Then E is the graph of some linear map S(4, E) : H(6) —
V(8). It can be easily checked that E is Lagrangian if and only if S(8) is
symmetric with respect to the product <, >.

Consider now a parametrization ¢ : U — M and the maps ¢ : T*U —
T*M and ¢ & dg : TT*U — TT*M. ldentify T*U with U x R and TT*U
with U x R"xR"xR". For 6 € T*M let ¢y be the map dpz-15) : R*xR"* —
TyT*M.

Lemma 2.1 If ¢(q,p) = @ then

dms 0 $o(q',0) = dipg(q')-

K 0$4(0,p") = b(dg})~' (p').



Proof:
drg 0 dP(g)(q',0) = d(m 0 &) (ep)(q'0) = dip(q"),

where the last equallity follows from the fact that ¢(g, p) = (¢(q), (dy;)~'(p))-
Now observe that (3¢(0,p') € V(8) and since the covariant derivative of
vertical vectors is just ordinary derivative we have

- r d -
Ko <pa(0,p ) = H_t' |t=0 b‘P(Q’,P(t)),

where p'(0) = p’. Thus observing again that ¢(q,p) = (¢(q), (d¥;)™"(p)) we
have
K 0 $9(0,7') = b(de;) 7 (2').

Now let H be a function on 7" M and let ¢, denote the flow of the vector
field JVH. It is well known that ¢, preserves w and leaves all the level
surfaces H~!(o) invariant. Suppose now that o is a regular value for H. Set

S*M = H (o).

Let @ denote the symplectic vector bundle over S*M whose fiber @(8)
(0 € 8*M) is T,T*M. It is obvious that d¢; acts on Q and preserves the sym-
plectic form on the fibers. We recall the definition of a continuous invariant
Lagrangian subbundle.

Definition 2.2 A continuous invariant Lagrangian subbundle E is a contin-
uous subbundle of TS*M such that each fiber ts a Lagrangian subspace of

Q(8) and
E(¢(0)) = d¢£(6)

forallte R and 8 € 5*M.

We now recall the definition of an Anosov flow. Let N be a compact
riemannian manifold and let ¢, : N — N be a flow with associated vector
field X. The flow ¢; is said to be Anosov if there are numbersc¢ > 0,0 < A < 1
and continuous d¢,-invariant subbundles E* and E* of TN such that

TN=E'"®E*"®RX, -
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" d¢_g iEu”S C/\t t 2 0,
” d¢¢ |El S CAt t 20.

Next we will show:

Lemma 2.3 Suppose the Hamiltonian flow ¢, : S*M — S5*M of the Hamil-
tonian H is an Anosov flow. Then the bundles E* @ RX and E* @ RX are
continuous invariant Lagrangian subbundles.

Proof: Take z and y in E°(6). Hence
we(z,y) = W¢(0)(d¢t$s dé.y).

But w(dé;z,dd,y) goes to zero as t — +o0o and consequently ws(z,y) = 0.
Therefore the symplectic form vanishes on £°(8) & RX(8) (obviously by the
same argument wy(z, X(0)) = 0 for z € E*(6)). Similarly the symplectic
form vanishes on E*(8) & RX(#) and hence both have to be n-dimensional
and therefore Lagrangian. :

o

Finally we give a few generalities about Finsler metrics. Let M be a
differentiable manifold. A Finsler metric on M is a norm on each tangent
space (possibly not symmetric) such that the unit sphere in each tangent
space T, M is a strictly convex submanifold which depends differentiably on
q. Alternatively, a Finsler metric is a function N : TM — R, differentiable
off the zero-section, such that D%(N?) is positive definite and such that

N(Av) = AN(v),

for all A > 0 and v € T,M. Here D% denotes the second derivative in the
fibre direction. We call N symmetric if N(—v) = N(v).

Finsler metrics are sometimes conviniently described on the cotangent
bundle. We consider "M with its standard symplectic structure. Let H
be a Hamiltonian with Hamiltonian vector field JVH. If D% H is positive
definite, the Legendre transform

Ly =DpH :T"M — TM,
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is a local diffeomorphism. If H is positively homogeneous of degree two,
H()p) = NH(p),
for A > 0, then Ly is a global diffeomorphism and
N*=Ho Ly

is a Finsler metric on M. The field JV H decribes the geodesics of the Finsler
metric since the projection of the integral curves of JVH under T*M — M
are the geodesics of N. If 2N? is a riemannian metric, 2H is the dual metric
and Ly = b is the canonical identification between TM and T* M.

3 The linear equation and the Riccati equation

Let ¢ : U — ¢(U) C M be a diffeomorphism where U is an open set in R".
Take 8 € §*M so that 7(8) € (U) and take ¢ € Q(0). Now consider a

variation
aa(t) = (q.(t):pl(t))
such that for each s € (—¢,¢€), a, is a solution of the Hamiltonian H o ¢
such that oo has energy ¢ and £ [,=0 a,(0) = $7(z). Then if we write
(h(t),v(t)) = ¢~ '(dée(v)) we have that h and v verify the following linear
equation
h' = H,h + Hypv,
v' = —H,h — Hyv, (3)

where derivatives are evaluated along ag(t). This follows directly from equa-
tion (1).

Fix a riemannain metric on M and using the splitting described in the
previous section write (dé:)e(z) = (h(t),5(t)). Let G(t) o Gai(e) : ¥ —
Tr(éc(e)yM @ Tr(s,(6y)M. Then clearly

G(t)(h(t), v(t)) = (h(2), 5(t)).

Observation 3.1 Note that S*M has no conjugate points if and only if there
is no non-trivial & as above such that & vanishes for two different points. This
is equivalent to saying that for all § € S*M and non-zero z € Q(0) the set
{t: doi(z) € V(¢:(0))} consists at most of one point.
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Let ’ denote usual derivatives.and let a dot * denote covariant derivatives.
i From the last equation we get

(h,3) = G(h,v) + G(K', V).
Using the linear equation (3) and evaluating everything in ¢ = 0 we obtain

i = — Ao-YE 5 Hy, H,, -
(h,v) = GG (h,v)-{-G(_qu —H, (h,v) =

=[GG"+G(_H;}; _ﬁ’;’;)G“J(fz,a“é‘( 2 H”)(fz,a)=

|
=

|
uml

< 1(6)(k, D).

The operator H(8) : TreyM @ TroyM — TroyM @ Tr(e)M is exactly defined
by the covariant derivatives in ¢ = 0 of the components of d¢;(z) in the
splitting, along the orbit defined by 8. The component H,, of H is what we
are interested in. We will now show:

Lemma 3.2 Suppose H is convez. Then the operator H,,(6) : TeoyM —
Tre)M is positive definite.

Proof: Observe that G(0,v) is always vertical. Hence GG~1(0,%) has
zero horizontal part. Therefore from equation (4) we have:

- L H, H i =
Hyp(8)(7) =dmgo G ( _ﬁ:q HZ ) G~(0,9).

Using Lemma 2.1 we get
H,,(8) = dpy 0 Hyp 0 dpl 0 b7 ().
Therefore
< Hyp(9), 8 >=< dipg 0 Hyp 0 dip; 0b71(9),0 >=
=< H,,0dp; o b'l(ﬁ),dgo; 0 b™H(D) > frat,
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where <, > ji,; denotes the flat metric of R". Hence if H,, is positive definite
(H is convex) then H,, is also positive definite and we deduce the lemma.
The last equality follows from the following (elementary) linear algebra fact:

Let (Vi, <, >1) and (W3, <, >;) be two vector spaces with inner prod-
ucts. Let b; : V* — V; be the canonical identification by means of the inner
product <, >; (i=1,2). Let A: V; — V; be a linear map. Then

< Av,w >3=< v, A w >y .

Next we will obtain a Riccati equation. Let E be a Lagrangian subspace
of Q(8). Suppose for ¢ in some interval (—e¢,¢€), dg:(E) N V(4:(6)) = {0}.
As we explained in Section 2 we can write d¢,(E) = graph S(t) where
S(t) : Tr(ee(o))M — Tr(su(s)M is a symmetric map. That is, if z € E then

dée(z) = (h(t), S(t)h(t)).

By means of the equation (4) we obtain:
Sh + S(Hyh + H,,Sh) = —Hyh — H,, Sh.
Since this works for every z € E we obtain the Riccati equation:

S+SH,S+SH,+ H,S+H, =0. o (5)

4 The Maslov-Arnold indez

In this section we will define a Maslov-Arnold index associated to an energy
surface of a Hamiltonian A and a continuous Lagrangian subbundle. We will
follow the presentation in {21, Part III] quite closely.

For 8 € S*M let A(0) denote the set of Lagrangian subspaces of Q(9).
Denote by A(S™M) the bundle over $*M whose fibre on 8 is A(f). Let A(f)
be the set of Lagrangian subspaces E € A(#) such that dim(ENV(9)) = k.
Then Ai(f) is a Lagrangian submanifold of A(#) with codimension ﬂ%ﬂl
Then if Ax(S*M) denotes the set of elements (6, E) € A(S*M) such that E €

13



Ai(8), it follows that Ax(S*M) is a submanifold of A(S*M) with codimension
-k-@i;'—ll. Define

F = UkQQAk(S-M)
and let T be the complement of I'. Fix a riemannian metric on M. Define a

function m : L — S as follows: if (8, E) € Ao(S*M) take a symmetric map
(as in Section 2) S(6,E) : TeeyM — Tr@e)M such that graph S(,E) = E

and define
1 —itrace(S(6, E))
1 +1trace(S(6,E))

m(8,E) =
When (8, E) € A (S M) set
m(0, E) = —1.

The arguments in {21] show that m is continuous.

Next we define an index that to every continuous closed curve v : [0,1] —
A(S*M) associates an integer Ind . If v : [0,1] — X is a continuous
closed curve, define Indy as the degree of the map m o 4. Observe that if
1 :[0,1] = T and 7; : [0,1] — ¥ are homotopic then Ind 4, = Ind v,.
Given a continuous closed curve v : [0,1] — A(S*M) define Ind v as Ind ¥
where 4 : [0,1] — I is homotopic to 4. The arguments in [3, 21) show that
this definition is consistent (the key fact here is that cod(T') > 3).

Now suppose that there is a continuous Lagrangian subbundle E in Q.
Given a continuous closed curve « : [0,1] — S*M we define & : [0,1] —

A(S°M) by
&(t) = (a(t), E(a(t))),
and define the index of a by

ind o = Ind a.

Remark 4.1 Let us show that in fact the index we defined is independent of
the riemannian metric we fixed. Let go and g; be two riemannian metrics on
M and let let :ndy and ind, be the two Maslov-Arnold indices corresponding
to go and g,. Let g, = sg, + (1 — s)go and let m, : £ — S? be the associated
functions. If 4 : [0,1] — X is a continuous closed curve, then clearly m, o v

is a homotopy between mg oy and m, o v. Hence Indyy = Indy+ and thus
indy = ind;.
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5 Conver Hamiltonians and the Maslov-Arnold in-
dex

In this section we will study various properties in which the convexity enters

in a crucial manner. We will show that the Maslov-Amold index we defined

in the last section is positive as long as the Lagrangian subbundle is invariant

and touches the vertical non-trivially. This is the key for Theorems 1.1 and
1.2

Lemma 5.1 Assume H is convez. If there is a Lagrangian subspace E C
Q(0) such that V(¢:(0)) N dé(E) = {0} for t € [0,a] then the segment
{4:(8), t € [0,a]} does not have conjugate points i.e. the set of t € [0,a]
such that dé(z) € V(¢(8)) consists at most of one point for all non-zero

z € Q(0).

Proof: Take the symmetric map S(t) that gives d¢.(E) as a graph and
let (h(t),5(t)) represent dé,(z) (z € Q(6)). Suppose h(c) = 0 for some ¢ €
[0,a]. Consider Y(¢t) : To)M — Ty(4.(ep)M a family of linear isomorphisms
satisfying ) ) )

Y = (Hy + HpS)Y,

Y(0) =1d
If we take w such that (w, S(0)w) € E and define

m(®) = Y(t)o,
w(t) = SOY (B,
we get that (hy,v;) is a solution of the equation (4). Since
w(z,y)s = g(Joz,y)
and dg; preserves the symplectic form on the fibres we get
< h(t),n1(t) > — < 5(t), hi(t) >= — < B(c),w >
and hence

<Y ()S(t)h(t),w > — < Y*(£)3(t),w >= — < 5(c),w > .
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Therefore

B(t) = S(tR(t) + (Y*) ' (t)5(e)-
Since .
h = Hyph + Hppv,
we get
b= (Hyp + HppS)h + Hpp(Y*)5(c)
and hence

Since 2(c) = 0 we obtain
< Y Y)R(2), 5(c) >= / L < By (V) w)(e), (V)" (w)a(c) > du.

Then the convexity of H implies via Lemma 3.2 that A(t) # 0 for all ¢ € [0, a}
different from ¢ and hence there are no conjugate points along the segment
(cf. Observation 3.1).

o

Next we will show:

Lemma 5.2 Suppose H is convez. If E C Q(0) ts a Lagrangian subspace,
the set of t € R such that dg:.(E) NV (¢:(8)) # {0} is discrete.

Proof: Set E; = dé:(E). We need to show that if EN V(8) # {0} there
is a neighborhood I of t = 0 such that E; NV (¢(8)) = {0} forall0 # ¢t € I.
Let

Py : Q(¢:(0)) — H(:(9)),

be the orthogonal projection. As in Lemma II1.2 in [21] we have that P(E)
is the orthogonal complement of Jo( £ N V(8)) in H(H).
For t close to 0 take a set of linearly independent vectors

{fl(t)? ey Z;"(t)}a

16



such that in ¢t = 0 they span A - P(E). Note that since H is convex, Lemma
3.2 implies that H,, is positive deﬁmte and hence invertible. Define

z=Hyi forl<i<m.
Let {«;,...,wx} be a basis of unitary vectors of £ N V(8), then k+m =
dimH(8). Define
N
| pr‘:’i |

Observe that < H,p2;(0),; >= 0 and hence < /H,,7:(0),\/Hppd; >= 0
Thus
FE {21(0), 0 2m(0), 01, i},

is a basis of H(9).
Now take (h;, §;) solutions of the linear equation (4) so that

5:(0)=w; forl<i<k.

i) = - il
| (VHp) 'R t) |
Since }—;;(0) = H,,5;(0) we get

Define

[/ Fy B~

hmf,_.oY;(t) = ]img_.o

Notice that

{Valt), s Yi(0)} € (Y Hy) ' PUE).
Define

Fe= {zl(t):'--aZM(t)aYl(t)? ey Yk(t)}

Fo C (VHyp) ' PEL),

17
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and notice that F, converges to . Therefore P(E,) = H(¢,()) which yields
the desired lemma.
o

Suppose now that E is a continuous invariant Lagrangian sub-
bundle.

Definition 5.3 A continuous closed curve a : [0,T] — S*M is called a
pseudo-orbit of the Hamiltonian flow if for all ty € [0,T) where

E(a(te)) N V(a(to)) # {0},
there exists € > 0 such that
a(t + to) = ¢e(a(to)),

fort € (—¢,¢€) (fortg =0 orty =T we take the continuous periodic ezxtension
of a to the real line).

If S*M is symmetric we require (in addition) the last equation to hold
also for to € [0,T) such that

E(a*(to)) N V(a™(to)) # {0},
where a*(t) = (g(t), —p(t)) ¥f a(t) = (a(t), p(t))-

Lemma 5.4 Suppose H is convez. Ifa: [0,T] = S*M is a closed pseudo-
orbit of the Hamiltonian flow such that the set

K ={s€0,T]: E(a(s))NV(a(s)) # {0}}
is not empty, then ind a > 0.
Proof: As in [21, Lemma III.1] consider the set:
Pla,c)={te[0,T]: moa(t) =c},

Exactly the same arguments as in [21, Lemma III.1] imply that to prove the
lemma it is enough to show that there is a ¢ such that
. (moa&)(t)
EteP(a.c)Sign(i(m ~ &)(t)) > 0. (6)

18



On account of the previous lemma the set of points where moa = —1 is
finite. Let t,,...,t, be this set and let V; be a neighborhood of ¢; so that on
each V,, a is an orbit. Now take —1 < ¢ < 0 so near —1 so that

P(q, C) C U V..

Let ¢ be a point in P(a,c) and suppose it belongs to V;. Let S(t) be the
symmetric map that gives E(a(t)) as a graph. Hence

(mod)(t) _ trS

i(mod)(t)  “14tr2S’

and then using the Riccati equation (5)

(moa)(t) 2tr(I-{,,,,S’) + tr(H,,S) + tr(I_Iq,,S) + tr(H,,)
i(mod)(t) 1 4+ tr28 !

where tr denotes trace. Since H,, is positive definite (Lemma 3.2), the matrix
v/ Hyp is well defined and since S is symmetric we get

_ tr3(\/H,,S
tr(H,,S%) > i(_;’f__).

n-—1

For a fixed matrix B define

og = inf“,g”:l | tr(BA) | .

Then
6'2 —
(m o &)'(t) S 242G~ (og,, +op, )trS +tri,,
i(mo&)(t) ~ 1 4tr2S '

Notice that t € P(a,c) implies tr§ = —i1=%. So if we take ¢ very near -1,

then | trS(t) | becomes very large and thus

(moa)(t) 1,
imoa)t) = no1 He

This clearly implies equation (6).
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Remark 5.5 We observe that if the set K in the last lemma is empty then
we have that ind a = 0 since in this case the map m o & does not take the
value —1 and hence it is no surjective.

Lemma 5.6 IfE(8)NV(8) # {0} and every point in S*M is non-wandering,
then there ezists a closed pseudo-orbit a : [0,T] — S*M such that o(0) = 6
and hence with positive indez by the previous lemma.

Proof: 1t follows from Lemma 5.2 exactly as in [21]. o

6 Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1:

Since H is convex and o is strictly bigger than the maximum of H over
the zero section, we deduce that for each ¢ € M, H~!(o) N Ty M is a strictly
convex hypersurface containing the origin in its interior. Thus we can define
a Finsler metric F so that F~1(1) = S*M. Then on the level surface S*M the
orbits of the Hamiltonian flow of F are just reparametrizations of the orbits
of the Hamiltonian flow of H (27]. Then one easily checks that H possesses
a continuous invariant Lagrangian subbundle if and only if F' does, and that
S*M has conjugate points if and only if the Finsler metric has conjugate
points. So we only need to prove the theorem in the case of a Finsler metric.

By Lemma 5.1 it is enough to show that E(6) N V(8) = {0} for all
0 € S*M. Suppose there exists § € S*M such that E(8) N V(#) # {0}.
Lemmas 5.4 and 5.6 imply that there exists a pseudo-orbit a with ind a > 0.
Note that since S*M is a sphere bundle over M, homotopies in M can be
lifted to homotopies in S*M. Consider now the free homotopy class of the
curve 7 o a. If this class is trivial, clearly ind a = 0, since the index is a
homotopy invariant. Suppose the class is not trivial. Then on account of
Morse theory, which also works for Finsler metrics (see for example [29]), we
can find a geodesic 7o g freely homotopic to 7 o and such that it minimizes
the length in its homotopy class. Hence = o # has zero Morse index and
thus, it has no conjugate points within one period (also = o 8 has no self-
intersections). By [12, Equation (4.10)] we have that E(B(¢)) never touches
the vertical non-trivially and thus # must have zero Maslov-Arnold index (cf.
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Remark 5.5). But this is a contradiction because ind § = tnd a > 0 since a
and 8 are homotopic.
o

Proof of Theorem 1.2:

The symmetry condition replaces the use of Morse theory in the proof
of Theorem 1.1. Since the energy surface S*M is symmetric, if a(t) =
(g(t), p(t)) is a closed pseudo-orbit of H , then the curve &(t) = (g(—t), —p(—t))
is also a closed pseudo-orbit (recall the definition of pseudo-orbit in the sym-
metric case, cf. Def. 5.3). Now observe that the curve a and the curve
a*(t) = (q(t), —p(t)) are always homotopic and hence ind a = ind a*. But
clearly ind a* = —ind @. On account of Lemma 5.4 and Remark 5.5 the in-
dex of a closed pseudo-orbit is always non-negative. Since & is also a closed
pseudo-orbit we deduce that ind a = 0. Lemmas 5.6 and 5.1 imply that
there are no conjugate points.

To complete the proof of Theorem 1.2 we need to show that #S*M = M.
Suppose by absurd that #S*M is strictly contained in M. Then 7S*M is
a smooth n-dimensional manifold with boundary given by U~'(o), where
U(g) = mingery;mH(g,p). But for 6 € S*M such that 70 € U~*(0) we have
that dmg(TpS*M) = T,pU~'(0). Since E(8) C TpyS*M and dim E(8) = n
we clearly have that E(8) N ker dry # {0}. This a contradiction since we
showed before that £ cannot touch the vertical non-trivially.

°

Remark 6.1 We do not know how to drop the symmetry condition in The-
orem 1.2.

7 Topological entropy, loop space homology and the
fundamental group

Let M be a manifold endowed with a Finsler metric. Let ¢, denote its
geodesic flow. Assume it is complete (this would be the case if M is compact).
The flow ¢ acts on TM minus the zero section. Since N? is positively
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homogeneous of degree two we have the relation:

¢s(tv) = tdu(v) )

for all real s and ¢t > 0.

As in riemannian geometry we set ezp = 1o ¢, where v : TM — M is
the canonical projection and let ezp, be the restriction of ezp to T,M — {0}.
Equation (7) implies that ¢t — ezp,(tv) (for t > 0) is the geodesic through p
with velocity v.

The proofs of the results that follow are similar to ones given in [23] for
the riemannian case. One of the difficulties now is that the exponential map
is defined on the punctured tangent space T,M — {0}.

Assume from now on that M is compact. Fix a point p € M and a
number A > 0. Denote by n,(g,A) the number of geodesics connecting p
and ¢ with length < A. Let B()) be the set of vectors v € T,M — {0} with
N(v) < A If g is a regular value of ezp, then the set ezp;*(g) N B()) being
discrete and closed is finite, hence since n,(g, A) is the cardinality of this set,
we obtain that ny(g, A) is finite. Moreover, it is locally constant as a function
on q. Endow M with a riemannian metric, call w the associated volume form
and # the induced measure (if M is not orientable we work with its double
covering). Set

L) = [ nala, \du(a), ®)

(Berger and Bott already considered this integral for the riemannian case in

(8])-

Let X denote the set of regular values of ezxp,. By Sard’s theorem X has
full measure and we saw that n,(g,A) is finite and locally constant on X,
thus I,(A) is well defined.

Take now § > 0 and small and let n,(q,6,)) denote the number of
geodesics connecting p and ¢ with length in [6, ). Then clearly

nP(q’ ’\) = nP(Q) 6) + nP(Q! 67 A)a

and hence
L) = [ no(a0,6)du(@) + [ (0,6 Ndu(a) € B8 + Q6,0 (9)

Now we state an important property of Finsler metrics: if § is small
enough, there exists a unique geodesic from p to ¢ with length < §. (cf [9}).
Thus P,(8) = p(B(p,6)).
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Next let A(6, X) denote the annulus in T,M — {0} given by those vectors
v that verify § < N(v) < A. In view of the previous considerations the
exponential map is a covering on A(8, \)Nezp;*(U,) where U, is a connected
component of X. Hence we get

QEN=T [,

where expjw is the pull-back of the volume form w under the exponential
map. Therefore from equation (9) we obtain

L) S BN+ [ leanjwl. (10)

expiw |,
(s.x)nm;‘(uu)l P |

As in [23] we define o, the geodesic entropy at p by
1
A

Denote by S,M the set of vectors v € T,M with N(v) = 1. and let
heop(bt, Sy M) denote the topological entropy of the flow ¢, respect to the set
S, M .

log I()).

op, = limsupy—o

Theorem 7.1 For all p € M we have that o, < hyop(de, S, M).

Proof: Set A = limsup,_. } log Vol(¢:(S,M)) where Vol stands for the
(n = 1)-riemannian volume on TM induced by the metric we fixed on M.
Yomdin’s theorem implies [28] (see also [15}) that A.p(¢e, SpM) > A. Hence
we only need to show that o, < A. Let V() = Vol(¢:(S, M)).

Choose K > 0 such that | 8%;‘(31 le=o]< K for v € SM.

Define ¢ : R x S,M — TM by (t,v) = ¢:(v) and g : R x S,;M - TM
by g(t,v) = tv. Observe that equation (7) implies

TO@,09=mo01.

A direct calculation shows that

| det(diie,)) |S K | det(d(gy)o) |, (11)

therefore

- = det(d v =/ . —
L ez 1= [ Vdetldlzog)) = [ | det(d(rodr0)cn) |
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| det(d(mop)um) IS [ | det(dbu) 1<

./[.s,,\] x SpM [6M]XSpM

S [ | (6 1=

=K js "V,

where the last inequality follows from equation (11).
Therefore from equation (10)

LY < W(B(6) + K [ V(r)dr.

But given € > 0 there exists T'(€) such that if t > T'(¢) then V() < el8+9)t,
Thus
() A (A+e)r
L) < u(B(p,8) + K /5 V(rddr + K [ e@rar.

This clearly implies that 0, < A + ¢

Proof of Theorem 1.3: Since for all ¢ € M we have that H='(o)NT;M is
a compact strictly convex hypersurface containing the origin in its interior,
we can define a Finsler metric F' on T*M -as we did in the proof of Theorem
1.1- so that F~1(1) = H~ (o). But then the curves of H on H~'(¢) are just
reparametrizations of the curves of F (see [27]). Hence, since the topological
entropy is a dynamical invariant we have that hyp(d:, SpM) = 0 where ¢,
denotes the geodesic flow of the Finsler metric F. But now Theorem 7.1
implies that o, = 0.

In [14] Gromov proved in the riemannian case that there exists a constant
¢ depending only on the geometry of M such that whenever p and ¢ are not
conjugate (i.e. if ¢ is a regular value of ezp,) then

e(A-1})

np(qv’\)z Z b,(ﬂM,K),

i=1

where b;(2M, K) are the Betti numbers of the loop space M respect to the
field K. His proof extends directly to Finsler metrics, since Morse theory
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also works for Finsler metrics (see for example [29]). Thus if we integrate the
above inequality respect to ¢ we obtain

c(A-1)
L(A) 2 Vol(M) Y b(OM,K).
i=1
But if o, = 0, then 172, (M, K') grows sub-exponentially as we wanted
to show. If K = Q this implies that M is rationally elliptic [16].
o

Observation 7.2 In general it is not known whether sub-exponential growth
implies polynomial growth for the loop space homology unless the field K has
carachteristic zero or the carachteristic p # 0 verifies the condition p > 2222 “'"‘ M
where r is the least positive integer such that M has homology in degree r.
The latter result is quite new and still unpublished and was obtained by
Anich, Felix, Halperin and Thomas [18].

Let M be a manifold endowed with a Finsler metric. Recall that M
naturally carries a distance function d (possibly not symmetric) that arises
as the infimum of length of curves. Suppose now M is compact and let M

be the universal covering equipped with the induced Finsler metric. Pick a
volume form on M and set V(p,r) = Vol(B(p,r)) where

B(p,r)={ye M: d(p,y) <r}.

The same arguments as in [22] show now for the Finsler case that r~'log V(p,r)
converges to a limit A > 0 as r — 400 and that ) is independent of p. More-
over since for a manifold with a complete Finsler metric is also true that
two points can be joined by a minimal geodesic -this property can be easily
deduced from Morse theory- the proof of Theorem 1 in [22] carries to the
Finsler case to show

A S htop(qsh SpM)

Proof of Theorem 1.4: Arguing as in the proofs of Theorems 1.1 and 1.3
we obtain a Finsler metric with h,p(¢¢, S,M) = 0. Thus A = 0 which in turn
implies that =, (M) grows sub-exponentially.

¢
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8 Tuwisted cotangent bundles

Part of the material in this section is taken from [17, Chapter 1]. Let M be
a manifold so that 7™M denotes its cotangent bundle and w the canonical
2-form on T*M. Suppose that we are given an electromagnetic field F which
is a closed 2-form. Via the projection » : T*M — M we can pull back F to
T*M to obtain a 2-form on T*M which we shall continue to denote F'. We
define

w,p=w+eF,

where e is an electric charge. Then w, r is a symplectic form on T*M and
T*M equipped with this form is called a twisted cotangent bundle. Any
complete Lagrangian fibration with simply connected fibres can be viewed
as a twisted cotangent bundle {2, p. 38]. Let H be a Hamiltonian on 7M.
If g is a riemannian metric on M , the Hamiltonian equations corresponding
to the Hamiltonian H(q,p) = } | p |} relative to the symplectic form w, £
describe the motion of a charged partlcle of cha.rge e in the presence of the
electromagnetic potential field F'.

Since F is closed, locally we can write F = dA, for some 1-form A. We
can think of A as a section of T*M and introduce a modified Hamiltonian
H, 4, where

H.4(q,p) = H(q,p ~ eA(q)).
If one defines @, 4 : T°M - T"M

Pe.a(q, P) = (‘I,P + eA(‘I)),

then one checks that
‘P:,Aw = We Fy (12)

¢aHon=H. (13)

Hence the solution curves of H relative to w, g are images under ¢, 4 of the
solution curves of H, 4 relative to w. Since 7 0 ¢, 4 = 7 we obtain the same
trajectories on M from one system as from another.

Now observe that if H is convex, then H, 4 is also convex. Thus if a
continuous invariant Lagrangian subbundle for the flow of H relative to w, r
is given, then equations (12) and (13) imply that the basic lemmas 5.3, 5.4
and 5.6 -which have a local nature- hold in the more general setting of twisted

26



cotangent bundles. However we do not know how to extend Theorem 1.1 or
Theorem 1.2 to this situation.

Finally suppose that F is exact and that M is compact. Let H(q,p) =
3 1p|? and set K = maz.em | A(q) |g- Then H, 4 verifies the hypotheses of

Theorems 1.3 and 1.4 provided o > ﬁ-;ﬁ and we have:

Theorem 8.1 Let M be a compact manifold. If mi(M) is finite and for
some coefficient field the loop space homology of M grows ezponentially, or
if 11 (M) has ezponential growth, then the motion of a charged particle under
the effect of an ezact electromagnetic potential with energy o > °’f’ has
positive topological entropy.

In general if we consider a Hamiltonian

1
H=31p~Ag) [ +U(g),

then H will verify the hypotheses of Theorems 1.3 and 1.4 for an appropiate
o and thus all the previous results apply if we include conservative forces
represented by the potential U.
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