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Abstract. Kontsevich’s integral for the Homfty palynomial is studied by using represen-
tations of the cord diagram algebras via classical r-matrices for sl and via a Kauffman
type state model. We compute the actual value of the image of Z{oco) by these rep-
resentations, where Z(oco) is the normalization factof to comstruct invariant from the
integral. This formula implies relations among mixed Euler numbers, which are values of

generalized zeta functions at 1.






Introduction

Kontsevich defines a knot invariant by using iterated integral to get monodromy of
the Knizhnik-Zamolodchikov(KZ)-equation {2], [7]. He considers KZ-equation with
values in an algebra A, where A is a linear span of cord diagrams with relations
corresponding to the flatness of the KZ-equation. These relations are similar to the
classical Yang-Baxter equation (CYBE) (without spectral parameters), and so we
can construct a state model or a ‘representation’ of the algebra A by using a classical
r-matrix, a solution of the CYBE [2]. This state model defines a mapping from A
to C called a weight, and applying it to the integral invariant, we get a C-valued
invariant.

In this paper, we give an actual correspondence of the Homfly polynomial and in-
variants coming from the integral related to the classical r-matrix associated with the
vector representation of sl ,. The Homfly polynomial is defined by the skein relation
and coming from quantum R-matrix, associated with the vector representation of sl
as in {10]. If r is the classical limit of a quantum R-matrix, then it is clear more or less
from Drinfeld’s work [4] that the Kontsevich integral, via weight of r, should be the
same as the invariant coming from the R—matrix as in Reshetikhin-Turaev approach
[8]. The reason is the corresponding quasi-Hopf algebras are gauge equivalent. But
since Drinfeld’s work [4] does not treat knot invariant thoroughly, and since literature
on Kontsevich integral does not mention even the quasi-Hopf origin of the invariant,
here we present a direct proof that these invariants are the same. For braids, Kohno
[8] investigate such iterated integral and find skein relation in it and we generalize it

for links. This is a partial answer of problem 4.9 posed by Bar-Natan in [2].

As an application of the correspondence, we get relations among mixed Euler num-

bers ((s(, 89y =+ 8p) = > m} 5= (Arnold calls >

m, <m,<--<m, My Myt Ty m,<m, <~ <m,
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A 57 Lagier’s zeta function, but here we use the terminology suggested
ml m2 4w m
by Zagier.) We compute the normalization factor Z(oo) of the integral invariant for
the state model by two ways. One uses the actual correspondence of the integral
and the Homfly polynomial. Another uses the expression of Z{o0) involving mixed
Euler numbers. These two formulas give us relations among mixed Euler numbers.
For example, we can compute the values of (2, ---, 2) and can reproduce the fa-
mous theorem of Euler which explains ((2n) in terms of a Bernoulli number. Using

this method to other invariants (e.g. the Kauffman polynomial), we may get more

relations.
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1. Kontsevich’s integral
In this section, we review some resulis we need later in {7] and [2].

1.1. Algebra of cord diagrams.

Definition 1.1.1. (generalization of Definition 1.5 in [2]) Let k be a positive
integer. A cord diagram on k strings is k oriented numbered circles called Wilson
loops with finitely many dashed cords marked on it, regarded up to orientation and
component preserving diffeomorphisms of the circles. Here dashed cords means that
two different cords does not meet and they just give pairings of points on Wilson
loops. Denote the collection of all cord diagrams on k circles by D), This collection
is naturally graded by the number of cords in such a diagram. Denote the piece of
degree d of D by GaD®). G;D*) is simply the collection of all cord diagram having

precisely d cords.
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To extend Kontsevich’s integral to links, we generalize the notion of the algebra of
cord diagrams in the above definition.
Definition 1.1.2. (generalization of Definition 1.7 in [2]) Let the vector space

A'®) be the quotient
AR spa.n(D(k))/ span(4 — term relations),

where 4-term relation is given in Figure 1 (a). A1) is also denoted by A.

a) 4-term relation

AN AN TN AN

N _/

_—L - e —— —

b) framing independence e
relation N, -0
i \ -

Figure 1. Relations for cord diagrams.

Definition 1.1.3 Let A’O(k) be the quotient of A"¥) by the framing independence

relation Figure 1 (b).
A;](k) = A'®) /framing independence relation.

This means that a cord diagram with a part as in Figure 1{b) is considered to be 0.
Af)l} is also denoted by Ag.

Definition 1.1.4 (Completion) The module A"*) has a grading by the number of
cords. Let A% be the completion of A'**) by this grading. The module A:)(k) is also
has similar grading and let .Agk) be the completion by this grading.

The 4-term relation implies the following. Let D and Dy be two cord diagrams in
Ak and A%2) | each with a noted string. Remove an arc on each noted string which
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does not contains any vertex and then using two lines to combine the two strings
into one single string. We get a cord diagram in A%1+%2=1) called the product (or
connected sum) of )7 and D along the noted strings. As in [BarNatan], this oper-
ation does not depend on the location of the arcs removed and A has an commutative

algebra structure with this product.

1.2. Tterated integral for knots and links. Let L be a k-component link em-
bedded in R x C. We assume that L is in a general position. Then we can define

A‘()k)-valued integral for L as in [2].

(12.1) Z(L) =
2 1 " dz. — dz' (k,k")
2 Y e AT e Al
n=0 (QTH)n ‘/t‘mi"(‘l':"(tm“ applicable pairings i=1 G4
C P={(za)

In the above equation, t_; (f,.¢) 18 the minimal (maximal) value of { on D, an

min
‘applicable pairing’ is a choice of an unordered pair (z;, z}) for every 1 < ¢ < n, for

which (z;, t;) and (z;

1’

t;) are distinct points on D, #P; is the number of points of
the form (z;, t;) or (z;, ¢;) at which D is decreasing, Dp is the image of the cord
diagram in .A{()k) naturally associated with D and P, and every pairing defines a

locally homeomorphic map {¢;} — {(z;, z/)}. If L’ is obtained from D by horizontal
deformation, then Z(L) = Z(L').

1.3. Invariant. Let L be a link with £ numbered components. For : =1, :--, k let

3; be the number of maximal points of the ¢-th component. Let
(1.3.1) Z(Ly= v @@y - Z(I),

here in the right hand side, y~% acts on the i-th string. Then as in [2], we get

Theorem 1.3.2. Z(L) is an isotopy invariant of oriented links.
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2. Weights for cord diagrams

2.1. Weights from the classical r-matrices. Let U be a finite dimensional vector
space, m = dimU, and {e,, €5, - -, €,,} be a basis of U/. Let (R= R(q), p{q), o(q),
B(q)) be an enhanced Yang-Baxter (EYB) operator of Turaev’s sense ({10}, 2.3) for

U. We assume that u(1) = id. Let R;‘; be the matrix element of R with R{e;®e,;) =
I p—1
p d(R' — R
dh A=0
P (u, ®uy) = uy®u,. Comparing the degree two terms with respect to k of the braid

Py Rf}es ®e. Put g =exp(h), R =a'Randr =

, where

relation for R, we get the following.

Lemma 2.1.1, The matrix r satisfies the 4-term relation

(21'2) [Tijarik + rjk] =0 ({Z,],k} = {11213})7

where;; € End(U®3) acts on the i-th and j-th component of U®® by r.

Comparing the degree one terms with respect to k& of the conditions of 2.3.1 in {10]

for u , we get the following.

Lemma 2.1.3. Foranyi, k€ {1,2,--- ,m},
L
(2.1.4) rki = 0,

Suppose r is an arbitrary matrix in End(U @ U) satisfying (2.1.2) and (2.1.4). As
in {2], we construct a state model for cord diagrams as follows. This model is called
the weight of cord diagrams associated with r. Let D be a cord diagram on k strings.
A mapping f : {arcof D} — {1, 2, ---, d} is called a state of D. For every state of

)



D, we assign r;g:%ﬁ:;g h for each cord ¢ as in Figure 2. let Wr(D)bl,b,,--- be a state

sum on [ defined by

aj ay
flaz)f(ag)
Y T Ty
a, aq
Figure 2
(2.1.5) We(D)y= Y IT #rieifas
f cord ¢

{arc}-'{ll‘:z"" |m} of D

Due to (2.1.2) and (2.1.4), W, can be thought as a mapping from .Agk) to C[h]].

Especially, W, gives a mapping [rom .4y to C[[A]}.

Proposition 2.1.8. Let r be a classical r-matrix associated with an irreducible

representation of a Lie algebra on U. Then, for any cord diagrams Dy and Dy, we

have
(2.1.7) Wr(Dl#Dz) = W,-(Dl) W,-(Dz)/m,

where Dy# D, is a connected sum of Dy and D4 along arbitrary component.

Proof. After removing a small arc from Dy and D2, we get cord diagrams D]
and Dj, each has two end points. We extend the definition of W so that W, (D})
and W,(Dj) are matrices in End(U), where rows and columns are corresponding to
the state of two arcs containing the end points. We have W, (D;) = TrW,(D}) for
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i =1, 2, While W,(D(#D3) = Tr(W,(D}) W,(D5)). Since the representation of the
Lie algebra on U is irreducible and both W,(D}) and W, (D)) commute with this

representation, we have W;(D}) = const, id and W, (D)) = const, id. It follows that

Te(W, (D)) We(D3)) = (TeW, (DY) (TeWy(Dy))/m.

For a link L, let

(2.1.8) k(L) = miL)-2 W, (Z(L)) W,(Z(oo))l*’u’),

where 0o denote the knot diagram given by Figure 3. Since Z(L)/Z(00)*(D)—1 is an

invariant of L, (2.1.7) implies the following.

Figure 3

Theorem 2.1.9. For a link L, W,(L) is an ambient isotopy invariant of L. It

satisfies

for the trivial knot (),
k. (L1#L2) = k. (L1) k. (L2),

for a connected sum of two links Ly, Ly along arbitrary components, and

xr(Ll U L'Z) = R,.(Ll) .‘C,.(Lz) WT(Z(OO))/ma
7



for the disjoint union of Ly, Lo.

2.2. sl,, case. Let U be the fundamental representation of sl,,. Let (R, g, a, §)
be the EYB-operator for U in [10], §4.2 and let ¢ = exp(h). Then R=—¢ 3, Ei; ®
Eii — i Eij ® Bji + (07! = @) Tig; Bii ® Ejj, pp = dinglpy, -, pyy) Where
gy = g# ™' a=—~¢™ and B =1. Let

dR - R

(2.2.1) r=P 7 "

where ' = a1 R. Then r is given by r = 2(£ — m id). Another construction for
r is the following. Let Tr(AB) be the usual scalar on sl,,, and I, is an orthonormal
basis of sl,,. Then r = 2(3_, I, ® ). Sending Q to hr, we get a representation of
A%X) By theorem 2.1.8, we get an isotopy invariant &.(L) € C[[h]].

Next we will present a graphical algorithm to compute Wg for a cord diagram. Let

r the matrix given by {2.2.1). Then r = 2(P — m id) and is graphically presented by

(2.2.2) W,(l""}) = 2 W(W,(m l J) - w,(>< }).

W, also satisfies
W (DU Q) =m W, (D),

WA(O) =m.

This interpretation resembies Kauffman’s state model for the Jones polynomial. For

(2.2.3)

a cord diagram D, we can compute W, (D) from (2.2.2) and (2.2.3).

2.3. Equivalence of invariants from the integral and the Homfly polyno-
mial. For sl case, Kohno already shows in Theorem 4.1 of [8] that the representa-
tion of the braid groups coming from the iterated integral satisfies the skein relation.
We show that the invariant &, from the permutation model also satisfies the skein

relation.



Theorem 2.3.2. «, is equal to the Homfly polynomial satisfying the skein relation
(233)  exp(—mh)«, (L) — exp(mh) k,(L_) = (exp(—h) — exp(h)) &, (Lo),

where L, L_, Ly are identical except with in a ball as in Figure 4.

XX

Figure 4

Proof. By isotopy, we can push the local part containing the difference of the three
links far away as in Figure 5. In this figure the different part of the three links are in
the box denoted T. The complement parts are the same and is denoted by X. We
suppose that the end points of X are (0, 0}, (0, 1), (1, 0), (1, 1). In Figure 5, L is
decomposed into three tangles, the top is denoted by 77, the middle by 75, the bottom
by T3. The middle contains T" and two extra lines parallel to the straight line R. We
suppose the upper end points of these two lines are (¢, 1), (€41, 1). We will consider
the limit when £ — oo, and write 73(¢), T9(), and T3(¢). Let Z(T2(€)) = A + B(¢)
where B(f) is the part containing all the cord diagrams with at least one “long” cord
connecting a string of the left part of Ty and a string of the right part of T,, A = Z(T)
is the remaining. Of course A does not depend on £. The coefficient of a diagram of
B(f) tends to zero when £ tends to infinity at least as fast as log(1 + 1/¢€). This also
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follows easily from the integral formula.

(\\

T
o/

Figure 5

For all cord diagrams with less than k cords of Z(T}(£)) or Z{73(£)), the coefficients
tends to infinity when £ tends to infinity, but at most as fast as (log £)F. This also
follows easily from the integral formula, Using limg—o, log(l + 1/£) (log £)* = 0, we

see that

2(L) = lim Z(13(6)) x Z(T) x Z(T5(8)).

Now let T respectively the diagram of Figure 4. Then, by applying Kohno’s result
in [6] for the braid group B; on two strings, we get the skein relation. We can also

get this relation by direct computation of W, for two braids in Figure 4. g

3. Computation of Z(oco) and W,(Z(o0))

3.1. Computation of Z(co). Our method to compute Z(oo) is suggested by [1].

First present the diagram co as in Figure 6. For [ = (p;,9;,P, 90, " 1Py ), let

Q(I) be the configuration as in Figure 6. Let p({) = Y.7_,p;, ¢() = Y0, 4,

[I| = p(I) + ¢({) and g(I) = g. Then the coeflicient of the cord diagram Q(/) in
10



Z(00) is given by

jI/ttil A /tafh dtl” . dtl“"’%‘{'] dt!”"]p o dtl”"%"ﬂg-i-] L
o Jo 0o Jo .tm bt)mg, T 1“1 LT tlﬁl—qg—mﬂ‘

My v

QQ Pﬂ
by, Mg dy
¥tP1+q1 t]_[l—pl‘*'ll ¥1 - tp] 1 - t]J
@ Py
To compute the above iterated integral, we introduce a function F(s;,5,,---,s;; )
for positive integers s;,35,- - , 3.
(3.1.1)
T ™
F(lyz) = -l——dyz-ln(]-—:r)zw Z —_
0 R4 m, €N ™
T F(87,  ,84_1,813Y
F(sl,--',sk_l,sk,l;w)=/ (11 1, k—=1'"% )dy
0 -y
k4t

— (____1)#-4-1

l]<ml<m2<---<m,‘<m,+]

T F(sy, 8108 — Liy)
F(sl,---,sk_l,sk;z):A i y] — dy
™

= (~1)F Z ————— for 5, > 2.
Tn131 LR mksk
B<m, <m,<--<m,

L., 3 )
mll mkkmkH

Remark 3.1.2 The function F' is an extension of dilogarithmic functions.

Especially, #(8,,85,-++ ,8,31) = (81,39, -+ ,8;) for s, > 2, where ( is Zagier’s
mixed Euler numbers defined by
(3.1.3) C(51y 89,1+ ,8x) = Z —

. 1992y 12k m]sl---mk’k'

0<m,<m,<--<m,

The value of Z(co) in A1) is a sum of iterated integrals for all the configurations

of cord diagrams in Figure 6. Note that the integral is zero if p; = 0 or ¢, = 0 and

so we omit these cases. Let



1D

By using F', the iterated integral for this configuration is equal to Gr ¢

(I). Hence

we get

Figure 6

(_“1)11(1)

Theorem 3.1.4. Z(o0) =1 + Z mm

1g(I)21

(Ha,

By computing the integral for this configuration from the top to the boltom, we

get (=M (=)0 ¢(1) /(2w i)l!], where J* = (¢4, pg, - - ,42P3, 41, Py). Hence we get
Lemma 3.1.5. (inversion formula for () {(I*) = ((]).

3.2. Computation of W, (Z{c0)). To apply the weight to the configuration (7},
we denote (1) by Q1% QaF9 ... 7 Qp9,

_(@hm)i!

Lemma 3.2.1. W,(Q(])) = 2g—1
m

~m?).

Proof. (Induction on |/]) Let P;, P; and id be the configurations in Figure 7. Then
the state model replaces Q; to 2h (P; —m id) for 2 = 1, 2. The definition of the state

model implies the following.

U U
[ ()

P Py id
Figure 7
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"Vr(QZ )=Wr( Ql):o, Wr( P2Q2 "'):Wr("‘Plﬂl ...)=0’
W,-(Pl .Pz) = ], WT(PI) = W,-(Pz) = 1.

With these relations, we get

W (% QP - - D QoP1) = ~2h W, (% QoPs - % QP17 (m — )
= —2h W, (m 9QP7 - - D Qo1
== (=2R)P T P T T WL % QP T Q)
= (=2h)Pr mP W, ()% Qy% - % (—Py))
= —(=2Rh) 0Pl e =l W (0,9 QoPe . Q) Py)
= (—1)2 (=2 h) 1 FPupt =Pl W (Q % QP ... Py Py)
== (__1)251-1(_2 h)pg+“'+91+ﬂlmpg’—1+“‘+q1""-1+P1_1Wr(Q]Pl Py)
= —(-2 h)q,+p,+---+ql+p1—lmq,—l+p,——1+---+q1—1+p1—lwr(ﬂl P3)
= —(=2h) TPt AP eIt bt TR =y (- Py P)

= (=2 h)%tPettutm L S § [ m?)

= (=2 h)TetPat O tP e tPet b tPi0 (] m2).

From the above lemma, we have

Wi (2(c0))
YD ‘m)m W, Q)X ()
(-
(

I,g()21 P8 PriggSl

S )

ag(])>1 Py Pr:99<l
o [n/2]

_1yath)
=1+Y ) > (*h)”u_m?)%-rmn—?fc(n.

n= 19(]) 1p1,4) pgngzl
A

—1)p0) (2 hm)l!!
2m )t mZel)

—m?)((I)
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The inversion formula for { implies that the coefficient of A™ in the above formula is

equal to 0 if n is odd. Hence we have

(322) W,-(Z(oo)) =1+ i ’Zi Z (__1)9(1)-71 th m2ﬂ—~29 (1 _ mZ)gi_)_

rin
n=lg=1py,q5.- ,pg,qg21
{l]=2n

3.3. Another formula for W;(Z(o0)). Since the invariant «, satisfies the skein

relation (2.3.3), we have

exp(mh) —exp(—mh) sinhmh

£(QUQ) = exp(h) —exp(—h)  sinhh

On the other hand, x,.x,(L) = m* D=2 W (Z(L)/Z(c0)*D=1), W{Z(QUQ)) = m?
and W, (Z(()) = m. Combining these relations, we get the following.

sinh A

Theorem 3.3.1. W, (Z(o0))=m pp—

3.4. Relations for mixed Euler numbers. Comparing (3.2.2) and Theorem 3.3.1
for Wy(Z(00)), we get relations for generalized zeta functions at one. To get these re-
lation, we expand m sinh h/sinh mh. Since t exp(zt)/(exp(t)—1) = ¥ nop Bn(z)t"/n!

where B, (z) is the Bernoulli polynomial, we have

sinh k e m+ 1, (2m)2n!
=1 Ban in
™ sinh mh +HZI i 2m )(2n+1)!
We also know that
n 2n + 1
Bon1(3E) = - }: ) (1= 2'7%) (2m) 2" 1+20 By,
p= p

14



because Bp{z + h) = Z:zo By(z) h®P, Ba(1/2) = —(1 = 2'"*) B, and Byy1 = 0
for any positive integer £. Here B, are the Bernoulli numbers. Hence comparing the

coefficients of £%" of (3.2.2) and Theorem 3.3.1, we have
o n
1 2n+1
14 < (2 - 22%) ()" Byp h" =
(2 + 1) =\ 2 )
Y ()
D30 DD DI Co Ll A (e

n=1 g=l P1s8rs ,PQ,QQZI
Hl=2n

Comparing the coefficient of 22" m?P, we get

2n+1
1 ( (2 - 22p) BZp =

@r+1 L 9
(_l)q(l)—n g%l_) _ 2 (__] )p(])—-n g_(zf_)
P18 Prepinep2] " P11 sPrept 1 Onmpir 21 4
H=2n {l=2n

This relation implies the following.

n=g (o +1

P19y :pn-png?..l
Hl=2n

Examples. If p = 0 then

(3.4.3) (2,2, ,2)/xF = 1/(2k + 1)1
k

If p = n then
p1—1
2 - 22" (T
(344) (2 )' 2n = - (_l)pl—-n C(v 1:.2’: k! + 1)
Pu?l?l
pi+¢=2n

= (~1P g ) — (L2 = ) 4 L L)

15



By using By = 2(20)H{—=1)""1 (27)72" ((2n), we get

((2m) — (1, 2m = 1)+ ({1, ,1,2) = 21 = ) (20,

Hence

(3.4.5) (

92n=2 - 1)((2n)—((1,2n-—-1)++((1, ,1,2) = 0.

For example, if n = 2, —%C(fl) - ¢(1.3) +¢(1,1,2) = -}C(ti) — ((1.3) = 0 since
¢(1,3) = ((4), and so

(3.4.6) ¢(1,3) = ig(at) = 3']6'6 x4

Remark 3.4.7. The Euler’s relation By, = 2(2r)!(=1)""1 (27)72" ((2n) can be
obtained from (3.4.3) and relations like ((4) = ¢(2)* —2¢(2,2).
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