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ABSTRACT. Thc moduli space of parabolic bundles with Hxed deterrninant over a smooth

curve of positive genus is proved to be rational whenever one of the multiplicities associ

ated to the quaai-parabolic strueture is equal to olle. It follows that the moduli space of

nonparabolic bundles is in general stably rational, and rational in many caaes.

1. INTRODUCTION

Let X be a smooth complex curve of genus 9 2: 1, L a line bundle of degree d over X,

and Mr,L the moduli space of semistable bundles E of rank r with determinant L.

Conjecture 1.1. Mr,L is rational, i.e. if, is bir'ational to a projedive space.

Despite many positive results [12], this is still an open problem, even for (1', d) = 1.

In this paper, we study a closely related problern, namely the birational classification of

moduli spaces of parabolic bundles over X. These Inoduli spaces oceur naturally

(i) as unitary representation spaces of Fuchsian groups [10],

(ii) as moduli spaces of Yang-Mills connections on X with an orbifold metric [5], and

(iii) as moeluli spaces of eertain semistable bunelles over an elliptie surface [3].

The theory developed in [7] and extended here shows that their birational type depends

only on the quasi-parabolic structure. The lnethods of [12] then prove, in many cases, that

these moduli spaces are rational. The weaker result, Theorem 6.1, uses only Newstead's

theorem, while the stronger one, Theorem 6.2, requires an adaptation of his inductive

argument.

A direct consequence is that Mr,L is stably rational, which had been proved by Ballico

in the case (r, d) = 1 [2]. 'vVe then show why this anel our bonnd on the level implies

Conjecture 1.1 undel' the assumptions that (r, d) = 1 alld either (g, d) = 1 or (g, r - d) = 1.

A number of useflll facts are established along the way. One key point is Proposition 3.2,

which gives a simple criterion for the existence of a universal bundle of stahle parabolic

bundles. We also extend the theory devcloped in [7] in sevel'al inlportant ways (Theorems

Mathematics Subjecl Classijication (1991). Pri mary: 14020, 14 H20. Secondary: 14 F25, 14 [<'32.
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4.1, 4.2, and 5.3); the first two are standard but necessary for our purposes and the third

is completely new. Hs proof requires the idea of shifting 30 parabolic sheaf [17], which also

provides 30 framework for the Hecke correspondence. All of these results play 30 crucial role

in the proofs of Theorems 6.1 anel 6.2.

Abrief word about the organization of this paper: §2 introduces the notation used

in the following sections, §3 eliscusses the existence of universal families, §4 summarizes

and extends the theory of [7], §5 elescribes shifting anel thc I'lecke correspondence, and §6

contains the proofs of the I11ain results anel their corollaries.

Before we begin, we woulellike to acknowledge a certain elcbt to the work of Newsteael,

upon which a nluTIber of our arguments depend, anel without which this paper would be

inconceivable.

2. NOTATION

Let X be a smooth curve of genus 9 2:: 1 and D a reduced divisor in X. ]f E is .30 C'

bundle over X, then a pal'abolic stl'ucture on E with respect to D is just a collection of

weighted flags in the fibers of E over each p E D of the form

(1)

(2)

Ep = F1(p) :) F2(p) :) :) J~p(p) :) 0,

o::; O'l(P) < 0'2(P) < < a~p(p) < 1.

Holomorphic bundles E with parabolic structures are called pal'aboHc bundles, and we use

the notation E. to indicate the bundle (ar, equivalently, locally-free sheaf) E together with

a choice of parabolic structure. A ITIorphism 1J : E. ---+ E: of parabolic hundles is a bundle

ITIap satisfying 4>(Fi(p)) C Fj+l(P) whenever O'i(p) > O'j(p) for a11 p E D. We use the tensor

product notation HO(E: 0 E:) for these morphislns, where E: denotcs the dual parabolic

bundle (cf. [17]).

A quasi-parabolic structure on E is what is left after the weights are forgotten, it is

determined topologically by the multiplicities m(p) = (1nl(P), ... ,1n~p(p)), defined for each

]J E D by rni(p) = diln Fi(p) - dirn Fi+1(p).

A subbundle E' inherits a parabolic structure [rom one on E in a canonical way: The

Rag in E~ is gotten by intersecting with the Rag in Ep and the weights are determined

by choosing maximal weights with the property that the inclusion ITIap froln E' to E is

parabolic (p. 213, [10]). Parabolic structures on quotients E" of E have a similar description

(loc. cit.).

A parabolic bundle E. is called stable if every proper holo1110rphic subbundle E' satisfies

J-l(E:) < J-l(E.), where

Sp

J-l(E.) = pardeg E./r = deg E/r + 2: 2: 112i(p)ai(p)/r.
pED i=l
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The parabolie bundle E. is ealled senLisiable if JL( E~) ::; p(E.) for eaeh subbundle E~.

The eonstruetion of the moduli spaee )\.10 of semistable parabolie bundles, as anormal,

projeetive variety, is given in [10]. The subspace M~ of stahle hundles is smooth, in

particular, if every semistable bundle is stable, then MO' is smooth.

Let ßr = {(at, ... ,ar) 10::; al::; ... ::; ar < I} and define W = {a: D ---+ 6 r}. Points

in W detennine both the weights and the multiplicities. Conversely, given a weight Q in

the sense of (2), the assoeiated point in W is gotten by repeating eaeh Qi(p) aeeording to

it multiplicity mi(p), We abuse notation slightly by refcrring to points in W as weights.

This gives an obvious notion of when a weight is compaiible with a choice of multiplicities,

and for a given 7n, we dcfine the open face of weights cOIl1patiblc with Tn to be

i i+l
\Im = {Q E W I O:i-l(P) = O:i(p) {:} L 1nk(p) < i ~ L 1TIk(p)},

k=l k=l

A weight in the interior of H/ specifies full flags at each p E D. For cvery other ehoice of

m, Vm is contained in the boundary of W. Now W is a sin1plieial set, anel the face relations

give a natural ordering on {Vm} and we write Vm > \Im' if Vm, is a proper face eontained

in the closure of Vm . This agrees with the natural ordering on 1n gotten by sueeessive

refinement.

Weights for whieh M cr is not neccssarily sn100th satisfy 1.l(E~) = p(E.) for some proper

subbundle E'. Letting Eil be the quotient, then the short cxaet sequence of parabolie bun

dIes E; ~ E. -.; E~ detcrmincs a partition of (d, 1', nl,) in the obvious way: (d', d"), (7", r")
and (m', m") are the degrees, ranks, and 111ultiplicities of (E', E"). (Vve define Tn' and m"

hefe slightly unconventionally, namely

1n~(p)

n2~'(p)

di,n(Fi(p) n L(E~)) - dim(Fi+1(p) n 1,(E~)),

= dim(rr(Fi(p)) n E;) - dim(rr(Fi+1(p)) n E;),

(3)

for p E D and 1 ::; i ::; sp.) Notice that 1",7''' > 0 and m~(p),m~'(]J) ~ O. Write e=

(d' ,1", 1n'). For fixed ~, the set of weights compatible with 1TI for whieh J-l( E~) = J-l( E*) is

the hyperplane Ife in Vm given by thc equation

"'p

L L(1ni(p) - n«p))O:j(p) = 1'([' - 7"ef.

rED i=l

There are only finitely nlany hyperplanes; tbe above equation puts a bouud on d' and all

other quantities are already bounded. The hyperplanes incltlce achamber structure on \Im,

achamber being a conneeted component of \Im \ Ue He. Wcights containcd in achamber are

ealled gen eric.

3. FAMILIES OF PARABOLIC BUNDLES

In this scction, we establish the existence of a universal fanlily of stable parabolic bundles

paralnetrized by M~ whenever Vm contains a generic weight. This condition is shown to
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be equivalent to requiring that the multiplicities {rni(p)} and the degree d fonn a set which

is relatively prime. The conclusion, Proposition 3.2, is that Mo is fine in this case. This is

consistent with the known results:

(i) Mr,L is fine if (1', d) = 1 (Theorem 5.12, [13]),

(ii) Mo is fine if D = p and m(p) = (1' - 1,1) (Theoreme 32, [14]).

Definition 3.1. Given a bundle U --t S X X, we adopt the notation U" = Uli"}xx, We

also use 7rs Jor the projection map S X X --t S.

(i) A Jarnily oJ stable pU1'abolic bundles pararnetrized by a variety S is a bundle U over

S X X so that U" is a stable parabolic bundle 01 a fixed type (i. e. fixed d,1n and 0)
for all sES.

(ii) Two Jarnilies U and U' pm'arnetrizcd by S are equivalent, written v' r..I V, if there

exists a line bundle L ove'r S so that U' 8=' U 0 1fsL.

It follows from the construction of Mehta and Seshadri that MO' is a caarse moduli space

(see Remark 4.6 of [10], 01' [9]). This means that for any family of stable parabolic bundles

U parametrized by S, there is a unique morphism 'ljJu : 5' --t M~ so that 'ljJu(s) = [U,,]. A

universal family UO is one parametrized by M~ so that for any family U parametrized by

5, we have U r..I ('ljJu x Ix )*Ua
. If there exists a universal family, thcn M ~ is a fine moeluli

space. (See [13] for a more thorough explanation of these 11latters.) Such a universal family,

if it exists, is clearly only determined up to equivalence.

It suffices to find a fanlily Ua over M~ such that V: 8=' E. for e = [E.] E MO', for then

it follows that any two families U and V' paraIlletrized by S are equivalent if and only if

'ljJu = 'l/Ju" For if U r..I U', then U!J 8=' U; for all s E 5, which shows that 'ljJu(s) = 'l/JUf(S).

Conversely, if 7/Ju = 7/Ju' , then V" 8=' U; for all sES. Since U!J and U; are both stable,

HO( U: 0 u;) 8=' C and (]?!J 1fS) (uv 0 U') is a locally free sheaf of rank lover S whose

corresponding line bundle gives U r..I V'.

To describe the universal faInily Ua
, we need to review the construction of MO' (see [10]

and [9]). Let Q be the Hilbert scheme of coherent sheaves over X which are quotients of

O,N with fixed Hilbert polynomial (that of E(k) for k » g), where N = hO(E). Let U be

the universal family on Q X X. Define R to be the subscheme of Q of points l' E Q so that

Ur is a locally free sheaf which is generated by its global sections anel h1(Ur) = O. Let R be

the total space of the universal flag bundle over R with flag type that of the quasi-parabolic

structure. Then Rhas the local universal property for parabolic bundles (p. 16, [9]).

The subsets R" (RH) corresponding to the stable (sen1istable) parabolic bundles are

invariant under the natural action of GL(N) = Aut(O~N), and Mo is a gooel quotient of

R"!J (with linearization induced by the weights a), and M~ is the geollletric quotient of R".
l'he center of GL(N) acts triviallyon Rand R, but nontriviallyon the locally universal

bundles. In fact, ..\(id) acts on iJ by scalar multiplication by ..\ in the fibers (this follows
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from p. 138, [13]). Givcn a line bundle L over RS~ with a natural lift of the GL(N) action

such that 'x(id) acts by ITIultiplication by ,x, then tlsing Du to denote ÜIRuxx' thc quotient

of Du 0 7rx L -1 gives a universal family.

Proposition 3.2. Such a linc bundle L exists ';1 eithe'!' 0/ the two eq7.1ivalent conditions

hold:

(i) The set. {d, mi (p) I s E D, 1 :S i :S sp} is '1'elatively prime.

(ii) The face Vm containillg 0' contains a gencric weight.

If either of these condilions aTC satisfiedJ then the moduli space Mo- is fine.

The idea of the proof is to find line bundles Lk for each k E {d, n~i(p)} over RU with

natural actiolls of GL(N) such that 'x(id) acts by scalar I11ulti plication by ,x k. Then (i) gives

the existence of kI, ... ,kl E {d, n~i(p)} anel integers (LI, •.• ,(LI so that (LI k1 +... (Llk l = 1.

The required line bundle is then the tensor product L= L%: 0· .. ® L~:. At thc end o[ the

proof, we will show that (i) anel (ii) are equivalent.

We start with a lemma.

Lemma 3.3. I/ E. is paTabolic semistable and If. is a parabolic line bundle of degree hJ

then

(4)

P'1'oof. Serre duality for parabolic bundles (Proposition 3.7 of [17]) iInplies that

h1(H:: 0 E.) ::; hO(E:: 0 H. 0 [{(D)).

(If we had useel hO(E: 0 H. ® I((D)), the circllInHex over H. indicating strongly parabolic

morphisms, we would get the usual statement of Serre duality with equality, see [17, 8].)

Suppose that cj; : E --7 H01{(D) is a non-zero Inap anel let EI be the subbundle generated

by Ker 4>. Then

deg EI ~ deg E - deg [[ ® I((D) = d - h - (2g - 2 + n).

Considering E~ with its canonical parabolic structure as a subbllndle of rank 7' - 1, the

inequaJity (4) follows easily frolll this, scmistability of E., and thc inequalities pardeg E~ 2::
deg EI and parcleg E. 2:: deg E + rn. 0

Proof of P1'oposition. Write the weights a without repetition. Choose e: D ---t Z with

1 :S f p :S sp +1 and set ß(p) = O'lp(p), (Take ß(p) > a"p if ep = sp +1.) For h E Z, define

lp-l

X(f, h) = d + r(l - 9 - h) - L L 7ni(p),
pED i=l

Let H. be the parabolic line bundle with deg H = h < dir - 7'n - (2g - 2) and with weights

ß(p) at p E D. ft follows froIn the leInrTIa that if E. is senlistable, then h1(H: 0 E.) = O.

Thus hO(H: ® E.) = X(f, h) by Riemann-Roch. Hence (RJ7rji.. )(VSS 0 7rxH.) is a locally
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free sheaf of rank x( l, h) over RU. Let L(l, h) be the detcrIninant of the corresponding

bundle. By construction, the GL(N) action on fJ induces one on this bundle (and hence

on L( [, h))i "\(id) acts by scalar multiplication by A on the bundle and by ,,\x(t,h) on L(l, h).

It is now a simple exercise in high school algebra. to see that we can choose h, h' and I!, l'

so that ,,\(id) acts on L(e, h) 0 L(e', h') by ,,\k for any k E {d, 112i(p)}.

This proves the conclusion of the proposition assuming (i), anel now we show that con

ditions (i) and (ii) are equivalent. Suppose first that (i) does not hold. Consider E. as a

quasi-parabolic bundle without holomorphic structure, which will be specified later. Since

the set {d, 111.i(p)} is not relatively prime, there exists a prinle nUlnber q so that q divides

d and each 112i(p). Note that q also divides r = L:~l 112i(p). Set el' = d/q,1" = r-jq and

mi(p) = mi(p)/q. Consider now thc quasi-parabolic bundle E~ with degree d', rank r', and

nlultiplicities m'. Any choice of weights Q' on E. induces (thc same!) wcights on E~, and it

follows that since 9 ~ 1, there is some holomorphic structure for whieh E~ is semistable.

Dcfine the holomorphie structure on E. by

E. = E~ffi . ~ . ffiE~.

It follows that E. is senlistable but not stable for any choice of conlpatible weights. This

inlplies that Vm eloes not contain a generic weight.

Suppose conversely that Vm does not contain a generic weight. Since Vm is affine, Vm C

IJe for some ~ = (r' , d', 112' ) Using (3), we conelude that for all a E Vm ,

Sp

L L(r112~(p) - r'112i(p))ai(p) = rd' - r'd.
pED i=l

(Here, we are still thinking of Q' without repetition.) We ean vary cach Q'i(p) continuously

by same small amount, and it follows that

n12~(p) - r'r12i(p) = 0 = rel' - r'd

for all i and p. Since r' < r, there exists a prilne q such that qk divieles r hut not r'o Hence

q divides d and each mi(p), Thus the set {d,1ni(p)} is not relatively prilne. 0

4. THE VARIATION AND DEGENERATION THEOREMS

In this section, we describe and extencl the theory of [7]. This allows us to compare the

modul i spaces of parabolic bundles Mo and Mß when

(i) a, ß E Vm are generic weights in adjacent chambers,

(ii) Q' E \~ and ß E \Im are generic weights with Vl > \Im.

Cases (i) and (ii) correspond to Theorem 3.1 and Proposition 3.4 of [7]. We present slightly

stronger versions of those results tailored for our purposes here.

Starting with (i), suppose that er, ß E \Im are generic weights separated by a single

hyperplane He. Choose , E J-Ie on the straight line connecting a to ß. Then M')' is stratified
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by the Jordan-Hölder type of the underlying bundle, and since, lies on only one hyperplane,

there are exactly two strata: the stable bundles )\It~ and thc strictly selnistable bundles ~')"

Writing ~ = (1", d', m') for thc partition, then it is not harel to see that ~I' ~ MI'I X M.."fI,
with the obvious definitions for I' and ," coming from thc partition ~.

Theorem 4.1. There are natural algebraic maps cPo and cPß

Mo M ß

rPo~ /'cPß

M.."

which a1'e generized blow-downs along projectivizations 01 vceto1' bund/es oucr 2:..", whe1'c the

projective fiber dimensions eQ and eß satisfy eQ + eß + 1 = codiln 2:')'.

The proof is the salne as in [7], the only elifference bcing the acttlal computation of

the nUll1bers eQ anel eß, which we discuss now. \Ve assUIl1C that E. "'"'S E: EB E~, where

[E.] E .E')' anel "'"'S elenotcs Sesahdri equivalence (i.e. isomorphie Jordan-Hölder form). The

topologieal type of the parabolic bundles E: anel E~ does not change as [E.] varies within

2:')'" We use (1",1,11), (d', d") anel (m', rn") Lo denotc thc ranks, degrees, and multiplicities of

(E:, E~), written as in §2. The moduli spaces Mo, Mß, and MI' have dimension

1 Sp

(g -1)1'2 + 1 + - L 1'2 - L:rni(p)2.
2 pED i=l

Using a similar forn1ula for 2:')' = )\lt1'1 X M,/I, wc find that

~p

codiIl1 E, = r'r"(2g - 1) - 1 + E L: 1n~(p)1n~'(p).
pED i=I

Now we claim that

hO( E~v 0 E~) = 0 = hO( E: v ® E:').

This is true for any cr.' E Vm , a.s one o[ these equations is truc for a, thc other [01' ß, but lJo

is constant as the weights are varied within Vm . Let U' anel U" be the falnilies parametrized

by EI' gotten by pulling back the universal faInilies U.."I anel U...,II, whose existenee follows

froln Proposition 3.2. Then thc vector bundles referred to in the theorem are

(R I 1fL.-y)(U"v 0U') and (Rl 1rL.-y)(U'v 0U").

The projectivizations of these bundles have dilnensions

(5) eo hl(E~V 0 E~) - 1 = r"d' - 1J d" + ,',"(g - 1) + X(Q) - 1,

(6) eß = h1(E: v
QSJ E:) -1 = 1.'(/" -1,"d' + 1/1.'1(g -1) + X(Q') -],

where Q and Q' are skyscraper sheaves supportcd on D obtained as the quotients

~atjjom(E~,E~) --+ jjom(E", E') --+ Q,

~atjjom(E~,E~) --+ jjom(E', E") --+ Q'.
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It is a niee exereise to see

x(Q) +X(Q') = E (1"r" - E m~(}J)m'i(p)),
pED (i,j)ESe(P)

where Se(P) = {(i,j) I ,:(p) = l'j'(]J)}. This shows e Q + eß + 1 = eodim E...".

Now suppose that a E Vl anel ß E Vm , that Vl > \I,,~, anel that Cl' anel ß lie in ineident

ehambers.

Theorem 4.2. There exists a ma]J ljJ : Mo ---t Mß whose restrietion to ljJ-I(Mß) tS a

7norphism with fibe7' a fiag vft1'iety in case er is generic.

The existenee of a IIlap ljJ was proved in [5], where it was also shown that the fibers

over Mß are fiag varieties. "Vhat reIllains is to explain why the restrietion is a morphism

when a is generic. This however follows quite easily froln the existence of the universal

family over Mo. If [E.] E ljJ-l(Mß), then, hy definition, E. is stahle alld remains stahle

when viewed as parabolie bundle with weights ß. Applying this to the restrietion of the

universal family UU to 7j;-l(Mß) x X, we ohtain a fanlily of stahle hundles (with weights

ß anel 111ultiplieities nt) paranleterized by 1j1-I(Mß)' Beeause Mß is a eoarse moduli spaee,

we get amorphisIll frolll 7j;-1 (Mß) to Mf:1, whieh obviausly coincides with 'IjJ.

Remark. In the special case where hoth er anel ß are generic, this implies that ljJ is a

fibration in the Zariski topolagy with fiber a fiag variety.

5. SHIFTING AND THE HECKE CORRESPONDENCE

In this section, we introduce the nation of a shifteel parabolic bundle, which is the result of

changing the weights, 11lultiplicities, anel degree of E. in a preseribeel way. In S0l11e sense,

shifting is a synllnetry of a lenger weight space, one which inc1udes bunelles of different

degrees. Two applications of shiftillg are eliscussed at the end.

Shifting is IUOSt naturally described in ternlS of parabolic sheaves. Ir E is a locally free

sheaf on X, then a par(J.bolic stnLcture on E consists of a weightecl filtration of the form

(7)

(8)

E = ECfJ ~ E,,'l ~ ~ E"I ~ E01+1 = E( -D),

o :::; erl < 0'2 < < erl < 0'/+1 = 1.

We ean define Ex for x E [0,1] by setting Ex = Eai if eri-l < x :::; Cl'i, and then extend to

x E R by setting EX +l = Ex ( - D). "Ve call tbe resulting filtered sheaf t. a parabolic sbeaf

and t = to the underlying sheaf.

We cau define parabolic subsheaves, degree, and stability for these objects, anel there is

a categorical equivalence between locally free parabolic sbeaves anel parabolic bundles. We

describe this in ease D = p, the general case being quite similar ([15], [6]).
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Suppose that E. is a parabolic bundle given by flags and weights in the fibers as in (1)

and (2). Define E. by setting

Ex = ker(E -r Ep / Fd,
for ai-l < x < ai. Thus E. is a parabolic sheaf. Conversely, given a parabolic sheaf E.,

the quotient Eo/EI = E/E( -p) is a skyscraper sheaf with support p and fiber that of E.
Defining a flag in this fiber by setting Fi = (Ea ) Edp and associating the weight ai, we

obtain a parabolic bundle in the sense of (1) and (2).

The category of parabolic sheaves is developed in [15], where one finds for example the

definitions of tensor products E. 0 E~ and duals E:. \Ve use this notation freely in the

calculations of §6 involving sheaf cohomology and point out that Hi(E.) = Hi(E).

Definition 5.1. Given a parabolic sheaf c. and 17 E IR, define the shifted parabolic sheaf

E.[17]. by setting E.[17]x = Ex+tj.

Remark. The above operation can be refined in case D = PI +... +Pn· If 17 = (1]1, ... ,1]n),

then one cau shift E. by 1]i at each Pi E D ([15], [5]).

It is not difficult to verify that &.[1]]. is (semi)stable if and only if E. is (semi)stable, and it

follows that this defines an .isomorphism between the associated moduli spaces of parabolic

bundles.

We can easily describe the parabolic structure on the shifted bundle [; = [.[77]. in case

o < 7J ~ 1 and D = p. Let E~ denote the parabolic bundle associated to E;. If i is the

integer with ai < 7] ~ ai+l, then the weights of E~ are given by

, {aj +i - 77 for j = 1, ... ,r - i,

(9) 0:; = 1 + 0:;-,+. _ 1/ für j = r - i + 1, ... , r.

The quasi-parabolic structure of E~ has multiplicities m ' given by a cyclic permutation

of ffi, i.e. m ' = (mi+I,'" ,m", ml, ... ,md. Although [' is a subsheaf of E, E' is not a

subbundle of E, so one must appeal to sheaf theory in order to define the flag in E~. This

is a simple exercise in tracing through the equivalence between locally free parabolic sheafs

and parabolic bundles gi yen ahove.

R

&.['7J.

R

9
&a, •

9 &al • &(-p)

~
f al ( -p)

0 01 a~ a3 I 1+01

FIGURE 1. The parabolic sheaf f. sbifted by '7 with 0) < '7 < a~.
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There are two interesting applications of slIifting we discuss now. The first is the Hecke

correspondence. Using Mr,d to denote the Inoeluli space of semistable bundles of rank r anel

elegree d, the Hecke correspondence giveH a nleans of cOlnparil1g Mr,d anel Mr,dl through

the use of parabolic bundles. For r = 2, this was observed in aremark at the enel of [8].

To start, define f+{d,r),f_(d,r), a.nel f(d,7') for ri,7' E Z with r > 0 by

f±(d,r) = inf{±(~ -~) I fi','''' E JE, 1 :::; 1" < T, anel ± (~-~) > O}

f(d,'r) = Inin{f±(d,k) Il:~ = 1" .. ,T}.

It is easy to see that f± (d, k) > 0 for a11 k, thus f( d, 1') > 0 as weIl.

Suppose that E is a bundle over X of degree d anel rank l' anel suppose further that

E' is a proper subbunelle. If Il( E') < Il( E), then Il( E) - Il( E') :2: f+ (d, 1'). Shnilarly, if

Il(E') > p(E), then ll(E' ) - IJ,(E) :2: f_(d, r).

~p

Proposition 5.2. S7JPlJOse thai E. satisfies E E nti(p)O'i(P) < f(d, r)/2.
pED i=l

(i) If E is stahle as a regular hU71dlcJ then. E. is parubolic stable.

(ii) If E. is pa1'lLbolic stahle, then. E is sel1üstable as a regular bundle.

Froo/. (i) Ir E: is a proper parabolic subbundle of E., then

thus E. is parabolic stable.

(ii) Ir E' is a subbunelle of E, then

heuce Il( E') :::; /1.( E) anel E is sell1istable. 0

We thus get a 111ap Mo ---t Mr,d which is actua11y a special case of the n1ap of Theorem

4.2. By choosing the wcights and quasi-parabolic structure correctly, we can fit Mr,d and

M r ,d-l into a chain eliagraln of ma.ps as fo11ows. Let D = panel m = (l,r - 1). Choose

weights 0' = (0'1,0'2) with 0'1 + (1' -1)0'2< f(1',d)/2. Choose 7] with 0'1< TJ < 0'2, and let

E~ denote the parabolic bundle E. shifted by TJ. Notice that E~ has clegree d - 1, weights

0" = (0'2 - 17,1 - 17 +ad, anel Inultiplicities 1n' = (1' - 1,1). Choose ß' E Vml generic with

(r -1)ß~+ß~ < f(1', d)/2. COlluect 0" to ß' in V;,~I by a Ene passing through a finite nun1ber

of hyperplanes H(I , ... ,H(n. Choose weights O'i in the intennediate chambers and ,..,/ E Hf.'

for i = 1, ... ,n with an = ß'. TheorCln 4.1 a.pplies each tiIl1e we cross a hyperplane, while

the above proposition gives us ll1a.pS frOll1 Mo to Mr,d anel frOll1 MßI to Mr,d-h which,
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when restrieted to the preinlages of M: d and M: d-ll are pr-l bundles by Theoreln 4.2., ,

This is sunllnarized in the following diagram.

Mal

Mr,d-l

The seeond applieation of shifting is to extend the results of [5] to a ease which is

natural frOln the point of view of represent.ations of Fuehsian groups hut less natural from

the point of view of parabolie bundles. Assl1lne for silnplieity that It( E.) = 0 and D = p.

Thus, deg E = -h~ for SOlne 0 ::; k < 7', anel the relevant weight spaee is

r-l

Consider the union l'V = U lrV"" where we identify
k=o

with its eompanion set

via the identifieation

(10)

Then W is the Weyl ehatnber for 5U(7'), anel froln this point of view 80 W", is an iute

rior hyperplane of W. (Notiee t.hat Gu ~Vk rcally does satisfy the condition (3) for being a

hyperplane. )

Theorem 4.1 does not earry over t.o t.his ea.<;c inllllediately because points in W", and Wk+1

are weights on parabolie bundles of different degrees. Given a quasi-parabolie bundle of

degree -k, what is ueeded is a canonical procedure to construct a quasi-parabolie bundle

of degree -(he: + 1). This is preeisely what is provided by the sbifting operation. Thought

of in tenns of W, tbe following theorenl extcnds Theorenl 4.1 to the ease where ffe = ooW.

We use the notation Mn(k, 7n) für tbe 111üduli space when E. has clegree -k, multiplicities

m, alld weigbts 0'.

Theorem 5.3. Sup]JOse that f E Du W k n '~Il and that a E Wk n \1;1\ is a generic weight

near io l' Choose 17 E IR with 0 < 7] < lml+ 1' Define '7 E 8drV k+l as in (10). Let E~ be

E. shifted by 7], and denote the 7TLultip/icities of E: by m'. Set k' = - deg E' = k + ml' Let

ß E Wk' n \l;n' be gencric near 1. Then there are projectitJe a/gehraic mlLpS!/Ja and!/Jß

Mn(n~, k) Mß(1n', k')

!/Ja~ /!/Jß

M-y(7H, k)
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satisfying the conclusion of ThcOTC1lt 4.1.

Proof. By the choice of a, ß anel 1], we see that amt < 1] < ami +1, 1] < ßl and 1] < Im} +1·

Consequently, the shifting operation defines the following isolnorphisms:

M n (nl, k) ~ M n l(1n', k'),

M ß( 'In', k') ~ Mß'(nl', k'),

M"f(nl, k) ~ M"fl(rn', k'),

where a',ß',,' E ';;"L' are defineel fronl a,ß" as in (9). Now Theorem 4.1 applies to the

shifted moduli spaces to prove the t.heorenl. One can calculate ea and eß by applying

fonnulas (5) anel (6) to o:',ß' anel,'. 0

Rernark. Theorenl 5.3 solves a. problenl mellt.ionecl at the enel of [5] and has a nice appli

cation to the knot invariants introduccd in (4).

6. RATIONALITY OF MODULI SPACES OF PARAßOLIC ßUNDLES

Let L be a holomorphic line buncIle over a curve X of genus 9 ~ 1. Denote by

(i) Mr,L the Inocluli space of selnistable bundles E of rank r with det E = L, and by

(ii) Mn,L the Inoduli space of parabolic bundles E. with weights 0: and det E = L.

Theorem 4.1 holds for the 1110duli spaces with fixed deternlinant with 110 essential difference,

anel one concludes that if \!;'L conta.ins a generic weight, then the birational type of Ma,L

is independent of a E \.;;.n.

Theorenl 4.2 also holels for the f-ixed eletenninant Inoduli spaces, anel if 0' anel ß are

generic, then the fibl'a.tion

Mn,L ------+ lvt ß,L

has fiber a fiag variety (which is ra.tional). Hence Ma,L is rational whenever Mß,L iso

The goal is then to prove rat.ionality with the coarsest choice of lllultiplicities ru. At one

extrelue, we have the trivial Rag, whose 11l0duli space is exactly Mr,L. Proposition 2 of [10]

iIuplies that Mr,L is rational if deg L = ±1 lnod (r», anel so then Proposition 4.2 implies

that Ma,L is also rational for any 0 E Vm if deg L = ±1 mod (r).

Theorem 6.1. If ln(]1) = (1, ... ,1) JOT sorne l' E D, thel1 the rnodllli splLce Ma,L zs

rational.

Proof. First, llse Theorenl 4.2 to reduce to the case D = p by forgetting all the other Hag

structures. If E; elenotes the blllldle obtained by shifting E. by SOllle TJ with 0'1 < 1] < 0'2,

then det E' = L' = L( -J1). It follows that shifting by 17 defines an iSOlnorphisln frolll Ma,L

to Mo/,u. Repeatecl applicat.ioll of shifting puts us in tbe ca..<;;e deg L = 1 fiod (7)), and

then Newstead's theoreln anel Theoreln 4.2 ilnply that Mo,L is rational. 0

12



The above argument works in slightly more generality. We can always shift our bundle to

be any of the Ex appearing in the filtration (7) anel illustrated in Figure 1. Thus, whenever

one of these terms in the filtration is of a degree to which Newstead's theorem applies, the

corresponding moduli space of parabolic bundles is rational.

The next theorem is a considerable strengthening of the previous one.

Theorenl 6.2. If mi(p) = 1 for sorne p E D and sorne 1 S; i S; sp, then Ma,L is rational.

Before delving into the proof of this theorem, we mention sOlne interesting consequences.

Recall that a variety V is called stably rational if V X pk is rational for SODle k. Ir V is

stably rational, then the level of V is the slnallest integer k with this property.

Corollary 6.3. For any rand L, Mr,L is stably rational with level k S; r - 1.

Proo/. TheoreDls 4.2 and 6.2 itnply M: L x rr-l is rational. 0,

Ballico proved stahle rationality of Mr,L for (r, d) = 1 using a different approach [2].
We now apply this last result to Conjecture 1.1.

Corollary 6.4. Suppose 9 > 1 aT1l1 (r, d) = 1. By tensoring with a line bundle, we can

assume that 0 < d < r. Ij either (g, cl) = 1 or (g, r - d) = 1, theu Mr,L is rational.

Prooj. Suppose first that (9, r - d) = 1. Let L be a line bundle of degree r(g - 1) +d. Then

Newstead's construction applies and proves that Mr,L is birational to Mr-d,L x px, where

X = (9 - 1)(r2
- (r - d)'J). But the above corollary implies that Mr-d,L is stably rational

with level k ~ r - d - 1 ~ X, heuce Mr,L is rational.

The case (9, d) = 1 follows by the same argument after applying cluality, which inter

changes (r, d) anel (1', l' - d). 0

Remark. Conjecture 1.1 was previously kllown [12] in the following three cases:

(i) d = ±1 11lOd (1'),
(ii) (r, d) = 1 anel g a prillle power, anel

(iii) (r, d) = 1 and the two smallest distinct prilnes factors of 9 have sum greater than r.

Conjecture 6.4 applies in each case. More iInportantly, it applies in Inany cases not covered

by (i), (ii) or (iii). In fact, for a given rand d with (r, d) = 1, one can easily list those 9

for which the conjecture remains open. For example, if r = 110 and d = 43, then Corollary

6.4 applies as long as 9 is not a multiple of d . (r - d) = 43 ·67 = 2881.

Proof of Theore1n. Set d = deg L. The theorem is clearly true for r = 1 and follows from

Theorelll 6.1 für r = 2, so asslllue l' > 2. Notice that by tensoring with a line bundle, we

cau suppose

1'(g - 1) < d ~ rg.
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By Theorem 4.2, we can again assulue that D = p, and by shifting and another application

of Theorenl 4.2, if necessary, we can arl'ange it so that m(p) = (7' - 1,1). Write

r-l

Proposition 3.2 inlplies that Vm contains a generic weight and that Mo,L parameterizes a

universal family UO. By Theorelll 4.1, the birational type of Mo,L is independent of choice

of compatible weights, so we can assullle that the weights are small enough to satisfy the

hypothesis of Proposition 5.2 (this comes up at various technical points in the argument,

e.g. the proof of Clainl 6.5).

COllsider the following two cases.

CASE I: d = rg. Choose 1] with 0'1 < 1] < 0'2, and let E; = E.. [1]] •. Denote the

weights of E; by 0" as in (9). If det E = L, then det E' = L' = L( -(r - l)p) has degree

d' = d - (r -1). Since d' = 1 1110d (r), Proposition 2 of [12] inlplies that Mr,v is rational,

anel Proposition 4.2 then implies that Mo',v is also rational. Rationality of Ma,L now

follows from the isomorphism of the 1110duli spaces Ma,L ~ Mo/,V defined by shifting by

TJ·

CASE 11: r(g - 1) < d < rg. The idea is to use induction to construct a nonempty,

Zariski-open subset M of affine space of dinlension (1.2 - 1)(g - 1) +r - 1 (= dimMa,L)

and a family of stable parabolic bundles U parametrized by M with det Ue = L for all

( E M. The universal property of Ua then gives a l11ap t/Ju : M -r Ma,L. If, in addition,

we have Ue1 ~ U6 {::} (1 = (2, then .,pu is injective anel rationality of Ma,L follows from

that of M and the dimension condition.
. r'-l

Set r' = rg - d, r" = r - r' anel 0" =(~, 0'2). Assurne that both 0' and 0" are

generic. Let Ua' be the universal family parametrized by Ma',L and I. = OX[O'I]. be the

trivial parabolic line bundle with weight 0'1' If e' = [E~] E Ma',L, then because E~v C9 I. is

a stable parabolie bundle of negative parabolic degree, hO(E~V C9 I ... ) = 0 and

(11)

is independent of e'. Sinee U;,' ~ E~, it follows that

is locally ffee. The associated vectof bunclle V ~ Ma',L has rank n anel fiber over e'

naturally isomorphie to H1(E: v C9 I.).

Let U' = (1r X Ix tua' anel I = 7fiI. be pullbaek bundles over V x X. These are families

of parabolic bUlldles paranletrized by V. There is an extension

(12)
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of bundles over Vffir" X X, such that, for ~ E V:E?r", Ue is the parabolie bundle E~ described

as the short exact sequence

(13)

corresponding to the extension class ~ E Hl(E~V 0 I~r").

Using stability of E: and triviality of I'!r", it fo11ows that

Aut(E~) x Aut(I~rll) ~ C' x GL(r",C).

This group acts natura11y as fiber-preserving maps on the bundle Vffirll since

and two extension classes ~1 anel ~2 in the same orbit have associated bundles Eet and E6

which are isomorphie. We cau ignore the e action here because (z, 1) . ~ = (1, z) .efor

z E e and CE Vffi rll .

Using the inductive hypothesis anel IDeal triviality of V, we can choose a nonempty

Zariski-open subset M' of MoitL isonlorphic to a Zariski-open subset of affine spaee of

dimension (r,2 - l)(g - 1) + r' - 1 such that VIMI s; M' x H1 (E: v 0 I.) (E: is fixed).

Lemma 2 of [12] applies here anel proeluces a Zariski-open subspaee M' x W of VffirlllMI

invariant under the group action, anel affine subspaee A c W so that every orbit in W

interseets A precisely ouee. In fact, A cau be chosen as a Zariski open subset of the

Grassmannian G(7'" , n). In any case, it should be clear that A has cl imension r"(n - r").

Using equation (11) anel the fact that r' + r" = r, we see that M' x A is a Zariski-open

subset of affine space of diIllension

diITI;\It' x A = (r,2 -1)(g -1) + r' -1 + 1'''(n - 7''')

= (r,2 - 1)(g - 1) + r' - 1 + 7,11((2r' + r")(g - 1) + 1)

= (r2
- 1)(g - 1) +r - 1.

Let M be the snbset of Vffirll defined by

anel eonsider the bunclle U restricted to M, whieh we eontinue to denote U. For eE Vffirll ,

let E; = Ue. Clearly E; is a parabolie bunelle with weights 0' anel determinant L, thus M

parameterizes a falnily of parabolie bundles. By the upper senli-eontinuity theorem, M is

Zariski-open in M' x A.

We claim that M is nonempty. Fix e' = (E:J E M' and eonsieler the set
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If N n A =J 0, then M is nonempty. Clearly, N is invariant under the action of GL(r", C),

so it is enough to show N n W =J 0. There is a natural map

with Je = J(~,.) : HO(E:) --+ Hl(I~r") the coboundary map of the long exact sequence

in homology of (13). Now HO(E:) = HO(E' ), and since 0'1 + (r' - 1)0'2 < f(r, d)J2, by

Proposition 5.2, E' is selnistable a.s a non-parabolic bundle. Serre duality implies that

hl(E' ) = hO(E,v 0 !(), and we cOl11pute

deg(E'V 0 !() = -d + r
/(1 - g)

< (r + r' )(1 - g) - r",

which is negative since r" 2:: 1 and 9 2:: 1. This ilnplies that hl(E:) = 0, aod Riemann-Roch

implies that hO(E:) = rUg. Because hl(I~r") = rUg, we see that

~ E N <===> H 1(E~) = 0 <==> Je is an isomorphism.

But J is obviously onto and dim(ker J) = 7'''n. The set N has complement

But J(~, s) = 0 :::::> J(~, zs) = 0 for all z E C, which shows that the map kerJ --+ Nc

has fibers of dilnension ~ 1. Beuce dil11 NC ::; dim(ker J) - 1 < r"n, and we see that N is

nonempty and Zariski-open. Thus N n lV f. 0 and it follows that M is nonempty.

We now prove that M paralneterizes a falnily of stable parabolic bundles, using again

the inequality (1' - 1)0'1 + 0'2 < ((1', d)J2 anel Proposition 5.2.

Claim 6.5. (i) E~ is stahle for (LU eE M.

(ii) E~l ~ E~'J <==> GL(r", C) . el = GL(r", C) . ~2 for aU ~l, e~ E M.

Proof. (i) Suppose to the contrary that E~ is not parabolic stable for some ( E M. Let

G. be a rank s parabolic subbundle of E~ with IL(G... ) > p(E... ). Then p.(G) ~ p.(Ee), since

otherwise

JL(G.) < JL(G) + ((d,r)J2 < /l(Ee) < JL(E~).

As in the argulnent of LelllIna 6 of Newstead, the lllap G --+ E' has a factorization a.s

G -+ GI -+ G2 -+ E' and the arguluents there give the following inequalities:

(14)

(15)

sd
deg(G~) > deg(G) ~ -,

r
sr'

rank(G2
) < rank(G) - hO(G) ::; -.

r

These imply that 11.(G2
) - 11.(E') ~ O. But E: is parabolic stable, so by Proposition 5.2,

E' is semistable and /l( G2) = /l( E'). Thus, we lllust have equalities in equations (14) and
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(15), in particular li(G) = 1l,(Ee). But since It(G.) > J-l(E~), we see that G. mnst inherit

the weight 0'2, which iInplies that G; also inherits 0'2, and it now follows that

where 82 = rank G2 < r'. This contradicts the parabolic stahility of E: and completes the

proof of part (i).

(ii) Since <= is true independent of the vanishing of H 1
, we only prove => . Suppose

E~l ~ E~2 anel set 1t"X(E~i) = ei = [E~'] E MO',L- Notice that hl(E~i) = 0, and so

hO(E~i) = X(E~i) = r". It follows that every hololl1orphic section of E~i has its image

contained in I~,.II. Hence any isolllorphisIl1 'P : E~l --+ E~2 elefines a cOlnmutative diagram

o -t I$r/l Eel -t EI' 0'" -t '" • -t

1~" 1~ 1~'
O-t Iffir" E6 --t E'2 1

0'" -t '" '" ---t

where hoth 'P' anel 'Pli are isomorphisIllS, anel so ~2 = (<p' X <pli) . 6. 0

Part (i) of the clainl anel the universal property of UO gives a Il1ap M ~ Mo,L, which

is injective by part (ii). Since M is noneillpty, dilll M = dill1 MOlL, so rationality of Mo,L
follows from that of M. This conclueles the proof in Case 11. D

Remark. We had originally hopeel to' prove rationality of Ma,L with the weaker hypothesis

that 0' is generic, hut the argument does not hold in this generality. For consider the case

D = p. By tensoring with a line bunelle anel shifting, we can assurne that

r(g - 1) < d ~ r(g - 1) + ml.

Hence, the subbundle split off in the induction is again a Still1 of parabolic line bundles with

the same weights. The difficulty is in pl'oving that the quotient E~ has generic weights 0".

Proposition 3.2 implies that E~ aelnlits a generic weight if anel only if the set {d, mi(p)}
is relatively priIl1e. The statenlent

(d,rnI, ... ,m.. ) = 1 => (d,m;, ... ,m:) = 1,

which is what we would need to prove here, is unfortunately false (notice that m~ =

mI - d + r(g - 1) anel m~ = mi otherwise).
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