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Abstract

Let Hp = H + MU be a Schrodinger operator H additionally perturbed by a positive
potential U, where M is a positive coupling parameter. The limit of Hps in the
norm resolvent sense is a Dirichlet operator on the complement of the support of U. A
quantitative estimate is given for the rate of this convergence as M is large.



1. Introduction

The main objective of this article is to estimate quantitatively the rate of convergence for
Schrodinger operators if the positive part of the potential tends to infinity.

We consider Schrédinger operators of the form Hpy = Ho +V + MU in L*(RY), Hy is
the selfadjoint realization of —2A, V a potential in Kato’s class, U a positive potential
with support T'. T is a closed subset of IR, called singularity region. Hjs tends to an
operator {Hp+ V)s in strong resolvent sense as M tends to infinity. (Hp + V)y is
the Dirichlet operator corresponding to Hy + V defined in L2(X), where & = R\ T
is the complement of T.

For many estimates in spectral theory it is useful to have not merely the bare convergence
but also the rate of convergence. Among others this is of interest for semiclassical limits
where h*Hy +V +U is compared with (A*H, + V) for small h? (see e.g. [His/Sig]
who studied also large coupling limits in relation to semiclassical considerations).
Therefore we estimate operator norms of resolvent differences, i.e.

(1.1) [Eas =27 = (Ho + V)5 =) < rlo)

Our main technical tool is to estimate the corresponding operator norm of semigroup
differences heavily using properties of Brownian motion.

Of course, the value for r depends strongly on the properties of the boundary OI'. We
tried to find very general conditions for OI'. Therefore we allow Lipschitz continuous OT'.
In this general case we will prove

1 1
2 M) < t ——— —.
(1.2) r(M) < cons Tog )" 0<y< 5

This rate can be improved if OI' becomes more regular. If for instance X is concave then
(1.3) r(M) < const - M ™1,

In the special case of a halfspace one has

(1.4) r(M) < const - M~3.

In order to qualify the upper bounds we also estimate the resolvent and semigroup differ-
ences from below. One rough lower bound is

(1.5) “(HM — )~ ((Ho + V)5 — 2) H > const- M~ *$.

The paper is organized as follows:

In Section 2, we collect some results concerning (1.1) which are preliminary to our discus-
sion. Here, we point out that trace class properties and convergence of e~!/¥ — ¢~tHz

were treated in [Dei/Sim| for bounded T. In [Bau/Dem], Hyx was identified as a suitable
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Friedrichs extension. Furthermore, problems of the above kind are considered in [Dem/vCa
1] for a larger class of free operators Hy.

At the end of Section 2, we extend some results of the preceeding paper [Dem] and explain,
where and why there are limitations for these methods with respect to dimension of the
underlying Euclidean space and boundedness of the singularity regions. We recall that
[Dem] treated the convergence of (Hpy —2)™' —((Ho + V)2 —2)”'  with respect to trace
class, Hilbert-Schmidt and uniform operator norm, but did not obtain convergence rates.

Our main result (1.2) is contained in Theorem 3.1. The corresponding Section 3, which is
independent of Section 2, begins with the method basic to (1.2). In particular, we explain
how the estimation of the semigroup difference leads to two expressions (see (3.2)).

The first of these terms,

(1.6) supP.{A —e < Ar < A},
€L

where Ar is the time the Brownian path started at z € ¥ hits T for the first time,
is probabilistically of interest in its own right (see e.g. [LeG],[Kar/Shr]). We estimate
(1.6) in Section 4, where we see in particular that it leads quite naturally to the Lipschitz
regularity assumption imposed on 9OI' in Theorem 3.1.

The second term, the Laplace transform of (the distribution of) the time spent up to time
€ in a cone by the Brownian trajectory started at the vertex of the cone, is estimated in
Section § using strongly results and methods of T. Meyre [Mey].

Having thus finished the proof of our main result, we then shed some additional light
on Theorem 3.1 in Section 6 by exhibiting the special case of the halfspace (Lemma 6.1),
where the upper bound is improved considerably, and stating lower bounds on the operator
norm of resolvent (Lemmas 6.2,3) and semigroup difference (Lemma 6.4).

The final section deals with applications of the above results to the semiclassical limit. Af-
ter presenting a situation where semiclassical and large coupling limit are different (Theo-
rem 7.1}, we find asymptotic expressions as i — 0 (Theorem 7.2) and show lower bounds
in h? on the semiclassical approximations of resolvents in the ordinary (Theorem 7.3)
as well as in the limit absorption case (Theorem 7.4). See [Nak],[Rob/Tam)] for further
examples of such results.



—
g

2. Assumptions and preliminary results

Throughout this text, we denote the following conditions on two potentials V,U and a
singularity region I' by

Assumption A: Let Hy be the selfadjoint realization of —ZA in L*(R?Y). Let V
be a Kato class potential,i.e. V = Vi — V_, where

lim sup/ d.s/ dy p(z,y|s)V-(y) =0
0 R

a—0 5

and
lirrbsupf ds/ dy p(z,yls)V4(y)xs(y) =0
oa— P 0 Rd

for any compact subset B of IRY.

Moreover, we assume [ to be a closed subset of IR? with positive Lebesgue measure and
a piecewise C! boundary.

Finally, let U be nonnegative and such that supp U =T, U(z) =0 only for z € dr".
Assumption B:  Hy,V,T' asin Assumption A, U = xr.

Here and in the sequel x{.; denotes the indicator function of the set - {...}, and p is
the transition probability kernel for Brownian motion

1 z-y|?
—e” T m r,ye€ R t>0.
(27t)2

p(z,yt) =

Under Assumption A it is known that the limit of
Hy:=Hy+V + MU

exists in the strong resolvent sense as M — oo. Under mild conditions on 4" this limit
coincides with the Friedrichs extension Hy of

Hy + VIMLA(Z) N D(Hy + V),
where £ = RY\T is the complement of T (see [Bau/Dem]).

Since Hy is an operator on L*(Z) while Hy+V actson L2(IR?), we can only compare
functions of Hjs and Hy via the restriction operator

Jf:=f%, feL*RY),

whose adjoint operator J* is the natural embedding L2?(Z) — L2(RR?).



2.1. Convergence in Hilbert-Schmidt sense

The possibility of using the Hilbert-Schmidt norm to measure the approximation of (func-
tions of) Hy by Hp is restricted to very few situations. In particular, one should
consider dimension d < 3.

We recall

Theorem 2.1: Let Assumption A be satisfied, I" bounded. Then

(2.1) Jim | J(Ha—2)"" —(Hz—z)_lJ”p =0, z¢€ p(Hy),

where p indicates the usual operator norm for d > 4, the Hilbert-Schmidt norm for
d < 3 and the trace class norm for d = 1.

This result can be extended to the limit absorption case z = A+1:0 for certain real A (see
[Dem]).
We will not repeat the proof of Theorem 2.1 (given in [Dem]) here but rather emphasize

that it is strongly based upon the Hilbert-Schmidt estimate for differences of powers of
resolvents

o0
2 -2 - . - - 2
(2.2) “J(HM—z)""—(Hg—z)'qJ”HSSc/O dX Aop—ZemRex | Je— a2z g
(with ¢> 0,0 < & < 1) and the estimate
(2.3) [Je2Hm — e A2 g|P = O(A % + e4Y)
for some constant A > 0.

The proof can be used to study a first very restrictive class of unbounded singularity
regions I':

Theorem 2.2: Let I’ be the union of balls B; of radius R; around points a; € R
Then we have the following estimate on the Hilbert-Schmidt norm of semigroup differences:

24 767t — e < o) S (R0 + R,

where a >0, ¢(A) could be given explicitly.

Remark: We know that the Lh.s. of (2.4) tends to zero as M — oo (see (2.5) below).
Note that we can estimate the semigroup difference uniformly in M in dependence of R;.

Proof (of Theorem 2.2): If (92,,P.) denotes the probability space corresponding to
Brownian motion started at z, and (QZ”a, PZ'S) represents Brownian motion conditioned
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to start in = at time 0 and stop in y at time A, we can evaluate the respective integral
kernels and obtain

7oA — e Moy =

(2.5) _ /E " /Rd a

since qu U(w(s))ds vanishes iff the time T\ r(w) = meas {s < A |w(s) € T} of the path
w spent up to A in T does.
Since V is Kato class,

2
A A
A’ i P::O’\(dw)e—fo V(w(a))dse—M fo U(U(a))d’X{T,\'r>0}(w)
=,0

A
(2.6) / Pg’a\(df.u)e_2 fo V(w(a))do < A" TN,
azy
Hence
r.hs. of (2.5) < c)\"ée’“/ d:c/ dy Pz’,é{T,\,r > 0}
b R
(2,7) = c/\-%e’“‘/ dz P {T\r > 0}
P

< C/\—%GA'\ Z dz P,;{T,\'B‘. > 0},
i Y

where weused I'=J; B; and £ C & := R? \ B; in the last step. In order to estimate
the summands above, let B denote a ball {z € R? | |xr — a| < R}. Then

/ dz PI{TA,B > 0}
R\B
< / dz Py{w | w(s) € B for some s < A}
lz-a|2R

=/ du Po{w | jw(s) + u| < R for some s < A}
lu|2R

:/ du / Pg(dw’)X{u | |w(s)+u|<R for some ag,\}(w)x
[u|2R (o

X X{w | |w(8)+u|<R for some a}(w)

< / du [Po{w | |w(s)] > |u| - R for some s < A}]¥ x
lul>R

X [Po{w | Jw(s) + u| < R for some s}]sq'
with arbitrary 1 < p,q < oo s.t. i + % = 1. Since

d—2

(2.8) Po{w | jw(s) + u} < R for some s} < cI—F
u



(see [Sim], p. 70) and
(2.9) Po{w | |w(s)| > r for some s < A} < 2Po{w | |w(A)]| > r}

(see e.g. [Por/Sto]) we obtain
d— d— ul-R)2
/ dz P,{Th,p >0} < cRT du |u|_Tze_u_lTXm_
RI\B lu|>R
= cR%"z'j dr (R+r)%+%-le‘3r?:x
0

d—-2
<cR&

R 4.2 9 3 oo dy31 2
/ dr R?1Te7le™ %x 4 dr et a7 lem%x
0 R

< R [R%+%—1\/X+ ,\%(%+%)]

< ¢()) [R"‘l + R?] .

Note that here and in the following we use the slight abuse of notation that the value of
the constant ¢ may (and in fact usually does) change from step to step.

. - . . . e(d—2) -
Plugging this into (2.7) yields the desired bound with « = —QH_—CZ, ifwelet ¢g=1+4+¢. 0O

2.2. Estimates on the operator norm

The proof employed in Section 2.1 using the Hilbert-Schmidt properties of semigroup
differences fails if I' has unbounded volume. But for applications in solid state physics or
concerning N-body problems, one should also strive for results on potential barriers over

unbounded T.
The approach we will use in the sequel is based once again on the Laplace transform

(2.10) |J(Hm—2z)"'—(Hg-2)""J| < cfo dX eRe || JemMim _ =MHz ||
0

Since the norm on the r.h.s. is not bounded by the Hilbert-Schmidt norm, we make use
of the fact that Je~*I» — ¢=2H= ] ig an integral operator. Using [Kat, eq. (II1.2.8)] and
noting that the kernel is symmetric, we have

||J6—AHM _ C—AHEJ” —<-

A A

1’\ - V(w d -M U 8))ds

(2.11) < iteqza .[md dyr/QM PYo(dw)e Jo viw(s) s, L2 UGw(s) X{T5 50} (@)
z,0

A A
< sggfn P,(dw)e—fn v(w(s))dae—M'ﬂ U(W(J))daX{TA,p‘;»O}(“’)-
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The expression sup, [ ge dy K(z,y) is an upper bound for the operator norm of the
integral operator K.

By Dini’s theorem, the estimate (2.11) provides a result dealing first with bounded T.
But then it can be extended to unbounded T.

Theorem 2.3: Let Hy,V,U satisfy Assumption A, T compact.
Then

”J(HM—Z)"] —(H;;—z)‘l.]” and ||Je—AHM _ e"\HEJ”

tend to zero as M — oco.
Proof: Since ||Je_)‘HM - e"\H”J” < BeA?, it suffices to prove

|| Je~ MM — e~z g ———0
M—oo

in view of (2.10).
If R 1s sufliciently large, then

A
|z]> R

< sup [f (dw)e” 2f V(w(2))ds X [Pz {T\r > 0}]%

(Y1

< ch"ieA ( sup P, {w € Q; | lw(A)—z| > dist(z,[‘)})
|z|=R

_d _ dist{z,T" 2
<ch"Te sup e 8%
jz|2R

becomes arbitrarily small independently of M.

Hence it remains to show that for R fixed sup|,i<g fm(z) tends to zero as M — oo,
where -

b A
() = / P (dw)edo Ve —M [TUwtas )

-

Indeed, we have

A
/ P;(dw)e_fo Viw(s))ds < Be/?,
Qs

—M [} U(w(s))d
and T)r(w) > 0 implies e o TNNIET 0, 50 that far(z) tends to zero nonincreas-
ingly for all z and an application of Dini’s theorem yields the result. O

In contrast to (2.5), there is no integration over z in (2.11). This enables us to deal with
unbounded T as well. The simplest case is a sheet in R%:

9



Corollary 2.4: The conclusion of Theorem 2.3 remains valid, if
T={zecR!|a<z <b},
where —oo < a < b < oo.

Proof: For the sake of notational convenience, we assume V = 0.
Due to the special form of T, we have

A
sup‘/;2 P,(dw)e_Mfo xr(w(andsX{T,\,r)O}(w)

TEY
“M [ Xta (w1 (2))ds
(2.12) = sup fn Pa(dw)e™ M Jo X CiDey o ensa)®)
-M [y d
= sup Pz, (dwi)e fo e (e (e) ’X{wl | TA,[n,b](“1)>0}(W1),

z) @[a,b] /O,

where we used

/ RECHUSE / :

_ / P (denh(en)

1

le(dwl)h(wl)/ Pz, (dws)... P, (dwq)
2., .,

The final expression in (2.3) tends to zero because of Theorem 2.1.
Having in mind many-body situations, the following property is of interest:

Lemma 2.5: Let V=0 and U denote the indicator function of T.
Then the class of sets T' s.t.

“Je_’\H” — e‘AH"J”—-+0
M—co

is closed with respect to finite unions.

Proof: If ' =Ty UT,, we have

A
Sup/ Pz(dw)e_MfO xr(w(’))d"X{T,\,»o}(“’)
z€L JQ,

<sup [ Py(dw)e” ¥ Jy xru ot =¥ [ Fxr(w(e)ds
€L JQ.

X [X{T*-"l >°}(w) + X{T’*J‘z >0}(w)]

—-MT
= erir, /n Po(dw)e™ ¥ Pn @y | soy(@)+

_ﬂT. ( )
oup  Jo, PRI 50y (@) D
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Using Lemma 2.5 and Jacobi coordinates, the following result on an N-body Hamiltonian

(2.13) H = Hy + Z Vij(zi — =)
1<i<j<N

with Hy the free operator in L2(IR®*M) can be reduced to Theorem 2.3.

Corollary 2.6: Consider an N-body Hamiltonian H from eq. (2.13) and

Hy=H+ M Z X, (zi —zj5),
1<i<GEN

where I';; = {z € IRsNI:L','—:Ej € B;;} withbounded Bj;. Set ' =
Jf = f})E, then

i<; Tijy = RM\T,

lim ||J(Hy—z)""—(Hg—2)""J|| = 0.

M-

We refrain from giving the details of the proof, because Corollary 2.6 is actually included
in Theorem 3.1.
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3. General unbounded singularity regions

This section contains our main result Theorem 3.1, where the most general situation is
treated s.t. resolvent or semigroup corresponding to Hps tends to the one corresponding
to Hyx. In particular, there is no restrictions on the dimension of the underlying Euclidean
space nor do we assume boundedness of the singularity region.

We begin this section by explaining the overall strategy how to estimate the semigroup
difference in the case of more general I'. Here we specialize to operators of the form
Hy = Hy + Mxr.

As in section 2

A
(3.1) ||Je"\HM _ e—AHgJ” < S‘égjr; Pz(dw)e_M fo xr(w(a))d,X{TA,rm}(W)-
z x

We recall that T, r denotes the occupation time of the path in T" up to time A,
Thr(w) :=meas {s < A | w(s) €T}
Furthermore, let Ar be the time the path hits I for the first time,
Ar(w) =1inf{s > 0 | w(s) € T'}.

We consider singularity regions I' where the set of regular points for I' coincides with the
regular point set of the interior of T, that is '™ = (I’i‘“)r. In this case, Ar(w) is equal
to the penetration time (see [Dem/vCa 2)), i.e.

A[‘(w) = inf {3 >0 |T,,[‘(w) > 0} .
Clearly Thr(w) >0 implies Ar{w) < A. Therefore

”Je-—)\HM . C—AH,;J” S

<supP {)—e < Ar < A}+
(3.2) z€L

-M [ (w(a))d
+sgg/ P:(dw)e fAr‘(w)xr wis aX{ArS«\—-EJ(“’)’

where € can be chosen at our convenience (0 < e = e(M, ) < A).

Thus, the estimation of the semigroup difference is reduced to the consideration of two
expressions.

The first term on the r.h.s. of (3.2), which is of interest in its own right, is the subject
of Section 4. The analysis there allows I' to have a boundary which is Lipschitz in a
certain sense. We will call a set I' with the properties (L1)-(L4) in Theorem 4.2 a uniform
Lipschitz set (cf. the remarks on these conditions at the end of Section 4) and obtain

1
supP,{\ —¢ < Ap < A} < 1+—) :
sup { r <A} c( 7 Ve
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Using the Markov property, we estimate the second term as follows:

A
/ Pz(dw)e_M‘LI‘(“’)xr(u(’))daX{Apg)\—c}(w)
1.

A=Ap(w)

— f P,(dw) f Poap)(dd)e™ s X‘"(‘:’(’))d"x{Ars,\_,}(aD)

@ w(Ap)

S / Pz(dw)[ Pw(AP)(d(:))e_M fo' XI‘(D(G))dO’
15 s‘lw(*‘r)

We are able to get rid of the dependence on z of the latter expression, if we assume that
I" satisfies the following uniform cone condition:

There is a cone K of finite height in IR? with the origin as vertex

s.t. for any y € 0T there is a motion 7 of R with
(i) y is the vertex of T(K),

(i) T(K)\ {y} CT.

(3.3)

Actually, each uniform Lipschitz set fulfils (3.3) (see e.g. [Wlo], Section 2.2). We emphasize
that unbounded singularity regions are included in these considerations.

Under this assumption, the invariance properties of the Wiener measure imply for each
y =w(Ar) € ar

/ Py(da))e_M fo‘ xr{@(s))ds S / Py(dl’.:')ﬂ_M j:; XT(K)(G)(a))da

Q, Q,

B ./ Po(da)e ™™ Jo xxc(@ads
Qp
which is independent of w(0).
Thus the second term on the r.h.s. of (3.2) is bounded in terms of the Laplace transform

of (the distribution of) T, r, which is dealt with in Section 5.
In fact, if C is a cone of infinite height, we can show (see Theorem 5.4)

Eo (e~ MTec) < c_
TS Gogaa

for any O<'y<% and small e.
Since we are interested in K rather than C, we will let ¢(M,\) - 0 as M — oo in

order to obtain a useful bound on Eg (e'MT'v’*’):

Theorem 3.1: Let I' be a uniform Lipschitz set and suppose Assumption A.

13



Then we have for any 0< v < 1:

~AHum _ ,—AHg 1 1
- - c

for large M.

Proof: Let K  be a standard cone of finite height for TI' as in (3.3),
C = {rzjr 20,z € K} the cone extending K to infinity.

Using the above calculations and the main results of Sections 4,5 mentioned above, we
have for arbitrary 0 <~ < %

|[Je= M — ez J|| < supPo{A — € < Ar < A} + Eo (e M7Tex)
zEL

<supP {A—e < Ar < A}+
TEX

+E (e7MTe¢) 4+ Po{w | |w(s)| > diam K for some s < ¢}

m 1 _ (diam )7
se Km - ﬁ) Vet logMedtnyr ¢ ©

with constants m,m as in Theorem 4.2,
Now (3.4) follows by letting ¢ = M* with a < 0, hence the second assertion using (2.10).
0

Remarks 3.2:  All the results of Section 2 are contained in Theorem 3.1. In particular,
N-body situations are treated to a satisfactory degree, because the singularity region may
be unbounded and the smoothness condition on its boundary is relaxed.

Furthermore, we have a convergence rate for any such uniform Lipschitz singularity region.
For a better convergence rate in a special case see Lemma 6.1 however.
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4. Probability of late arrival

In this section, we provide the estimates needed in Section 3 on the probability of ”late
arrival” in T of Brownian motion starting in 3, i.e. on

(4.1) supP.{t —e < Ar < t},
r€EL

where

(4.2) Ar(w):=inf{s > 0| w(s) € T'}.

We start with the situation where the boundary of T is given globally by a Lipschitz
continuous function.

Propositidn 4.1: Let d>2, f:R*! > R Lipschitz continuous, i.e. there is an
L>0 st |f(a)~- fgb)| < L|a—b| for every a,b € IRY!. If T denotes the set below
the graph of f in IR%,

L= {(, fl")+u)e R | 2' € R",u <0},

then there is a constant ¢ s.t.

=

(4.3) supP,{t —e < Ar < t} < ¢*=
z€l

<,

for 0 <e < t.

Proof: In the following, let z¢ = (zf, f(zh)+uo) € T befixed, and z = (z', f(z')+u) €

L, y= (', f(¥')+v) €T arbitrary,ie. zb,z',y' € R, wp,u<0, v>0.

If a Brownian trajectory w starting at zo hits I for the first time in the time interval

(t —€,t), then we know that w(t —¢) € & and w(s) €T for some s € (t —¢,t). Thus
P.o{t—e<Ar <t} <

< ] dz p(zo,z|t — )P {w | w(s) € T for some 0 < s < €}
T

(4.4) <e fz dz p(zo, 2}t — €)Po{w | [w(e)| > dist(z,T)}

. / dz p(zo, 2t — g)e™ (k="
b

Concerning the distance between z and I, we now prove the existence of a constant
CrL >0 s.t.

45) -zl =l -2 +f@)+v- f@)—ul* 2 CLlv—uf’ Wyel,zex.
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In fact, if |v—u| < L|y' —z'|, then |y—z|® > 5 lv —ul®. If, on the other hand,
lv —u] > L|y' — 2'|, then

ly—z* > Iy —2'* +[lv — u| = [f&") — f(=)])?
> |y —o'|* +[jv —u| - Lly' — «']

= | — uf? [(l—Lliﬁ::z]l)z * (H)zl

> klv— u|2

for some & > 0, because a +— (1 — La)? + a? takes its global minimum.
Having completed the proof of (4.5), we now observe that (dist(z,T))? = inf{|ly — z|*|
y' € R, v >0} > Cp|ul’. After a change of coordinates, we obtain

0 rg-z|?
r.h.s. of (44) S C(t - 6)_% / d'u,/ d;z;’ e_%?ml)-e_gif'lulz
— 00 Rd—l
1 g3
(4.6) <ct— 6)—“;_1 / dz’ e—]To(mlL X
Rd—l

0
[ C 2
X (t—e)_%/ du e~ we el gm ot luo—ul,
—00

Denoting the v-dimensional transition probability kernel by p(,)(-,- | -) and remarking

C
that there is no norming factor corresponding to e~ 7=l we end up with

2¢€ "
— u
CL P y Yo

P, {t—e<Ar <t} <
o
<o [ da pun(aba Bt [ ar gy (0
Rd—l ——00

2t
< evepq) (Oa Ug EZ) < C[\/%

by Chapman-Kolmogorov’s equation. a

2(tC—L €) )

Judging from the above proof, one should assume I' to have a uniform locally Lipschitz
boundary. To this end, we consider tubular neighborhoods of radius [ around 0 =0I' =
oz

O = {z € R* | dist(z,9) < I},

in which we assume locally a similar Lipschitz condition as in Proposition 4.1.

Definition L: We call T' a uniform Lipschitz set if there is an [ > 0 and subsets Cj,
k=1,...,N (N finite or infinite), of R? whose union covers 8; s.t. the following

conditions hold:
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(L1) (uniform Lipschitz condition)
Up to congruence of IR?, each Cj is of the form

Cr={(z', fi(z')+u) | 2’ € U, -l <u <}

with an open set Uy C R?™' and a Lipschitz continuous function fi : Ux —» R
(with a Lipschitz constant L independent of k), and

Cxno = {(z', fu(z")) | =’ € Ui},
Cx N ={(, fi(z') +u) | 2’ € U, ~l <u <0},
CiNT = {(z', fi(z'Y+u) | ' € Us,0 <u <}

(L2) (the Cj must neither be arbitrarily small nor large)
If B,(z) denotes the open ball of radius r around =z, then there are constants
[+ > 0 (independent of k) and "centers” my € R* s.t. B (my) C Cx C By (my).
(L3) (the Ci must not have arbitrarily thin intersections)
For each z € 0y thereisa k s.t. B;_(z) C Ci.
(L4) (uniform local finiteness)
There is a finite constant m s.t. each z € g; lies in at most m of the sets Ck.

Theorem 4.2: Suppose I to be a uniform Lipschitz set in R?, and let m be as in
Definition L.
Then there are constants ¢,m s.t.

(4.7) supP {t —e < Ar <t} <cvfe (m + E)
z€LT \/E

for 0<e<t.
Before giving the proof of Theorem 4.2, we want to discuss assumptions and result therein:

Example 4.3:  Surely, neither of the estimates (4.3) and (4.7) is optimal. For example,
if d=1 and T = [0,), the distribution of Ar is known (see e.g. [Kar/Shr]). We
obtain

sup Pz{t —¢ < Ajp,00) < t}
<0

suP/t 2] e 2_2ds
— »
<0 Ji—e V2ms3

< cE.
t
As usual, this result extends to the case of a halfspace in JR?.

Since the conditions (L1)-(L4) in Definition L are somewhat lengthy and technical, it is
worthwhile to note that they are not nearly so restrictive as they look at a first glance:

17



Remarks 4.4:

a) Let T be R-smooth in the sense of [vdB], i.e. for any =z € 0 there are open balls
B],Bg with radius R s.t. Bl C 2, Bg C F, 831 N aBg - {:Eg}

Then T fulfils (L1)-(L4).

b) In view of (L1), O need not be "smooth” in the usual sense but may very well
have peaks as long as the corresponding angles don’t become arbitrarily small. In
particular, any parallelepiped or cone satisfies the assumptions of Theorem 4.2.

c) The class of sets I' s.t. (4.7) holds for some constant ¢ is closed with respect to
finite unions.

In particular, the union I' of two closed balls or cubes having exactly one point in
common satisfies (4.7) although T'is not an example for the conditions (L1)-(L4) in
the first place.

Here, parts b} and c¢) are trivial, and we will supply the proof of Remark 4.4.a) after giving
the proof of the main result of this section:

Proof (of Theorem 4.2): Let zo € £ be fixed. Then
P,{t—-e<Ar <t} <

< / dz p(ze,z|t — )P {w | w(s) € T for some 0 < s < ¢}
z

5/ d:c...+/ dz ...
znay ZA(ENS)

Using (2.9) once again

-2 —i2
dez ... <2 dz p(zo, 2|t —€)e™ % < 2%,
EN(ZENgy) EA(End;)

(4.8)

and

/ dz ... < f dz p(zo,z|t — )P {w | w(s) € I'N B;_(x) for some s < e}+
£nay £Né;
+/ dz p(zo,z|t — €)P;{w | w(s) € T'\ B;_(z) for some s < ¢}
Eng,

2
< ] dz p(zo,z|t — €)Pr{w | w(s) € TN B;_(z) for some s < e} + 2™+ .
zNa;

Thus, we only have to prove the desired estimate for
I:= f dz p(zo,z|t — )P {w | w(s) € I'N B;_(z) for some s < €}.
N,
To this end, for z € ENJ let k& be asin (L3). Then

I<Z/ dz p(zo,z[t — €)Py{w | w(s) € T'N Ci for some s < €}.

EnC,

18



Using the transformations (L1), we see that
0 T -z|2
(4.9) ISCZ/ dz'/ du (t — €)%= Tmr o= o’
k Uy =1

just as in the global case (see (4.6)). Here, (L1) ensures uniformity in k.

If z € Ck, we have |zo — x| 2 [z0 — mi| — |mx — 2| 2 |zo — mi| — I by (L2). On the
other hand, if A; isthe congruence map assumed in (L1), and z¢ = (z§,up), = = (z',u’)
in the sense of Aj-coordinates, then |zq — x| > |z} — z'|.

Thus

I<CZ/ d;z; t_e)— =1 e m[max(lzo—mhl 1+,|;o._: |)]
(4.10)

As in the global case, the one-dimensional integral is

= 2
><f du (t — &)~} e~ Tikey (mo=w)? o~ Thu
20t — e
Sc\/E/ P (u"’"’ % ))pm (u °
R L
2¢
= C\/Ep(l) (uOgO ‘C—L) = c_\/-_e.

_23
CL
Vi

In the sum (4.10), we now consider two different cases with respect to k.

In the first place, if |zg — my| > 614 (i.e. zo is far away from Cy), it is easily seen that
(Izo — me|—14)? 2> L|zo — z|* for all z € Cy, allowing us to return to the full-dimensional
transition probability kernel in (4.10). By inserting unity, we obtain for such a k that
the double integral in (4.10)

Ik) = [ do' (t —e)~ T emawtay [mex(izo-mal=ty|zo—=|)]"
U,

*° 1 < —u)? _6L .2
x_/ du (t—s)"ie_%‘fﬁ(“ u) o= Geu

— 00

0 .2
<ecve dz' (¢ -—e)_% (l/ du) e Bli—e
Uy [ —1

<eve dz p(zo, z[4(t — €)).
ZnCy
If, on the other hand, |zo — mi| < 6{4 (i.e. zo is near C}), we use the alternative for
the maximum in (4.10). Then

1ot 2
I(k) <c—\/—_f dz' (t—e)_d_:'-le_ =
Re-1
L
Vi
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In total, we obtain

[<cE ] dz p(zo, 3l4(t — ) + 7#{k| [0 — mx] < 614}
klzo———m;,|>6l+ NG

at de p(zo, z|4(t — €)) + —=
Ena;+ \/‘E

with m as in (L4) and a constant m independent of zo. Indeed, we have
sup,, #{k | |zo — mg| < 614} < +oo because of (L2) and (L4). In order to prove this,
we assume without loss of generality that balls are defined with respect to the supremum
norm and that Vi_ =1, for some natural number V.

Consider a point z € IR? and (pairwise distinct) integers ky,...,k, s.t. |z —mg| < 614
for : =1,...,n. Obviously, one can distribute at most k(6V)¢ “balls” of radius I onto
Bgi, (z) in such a way that each point of B, () isin at most k of the smaller "balls”.

Hence -(G—QF < SUPye By, (2) #{kly € Cr} <m. O
Proof (of Remark 4.4.a)): One can construct the necessary quantities appearing
in (L1)-(L4), if T is R-smooth: let ! = ;£ and choose elements y; € & with

vk —yw| 2 {5 for k# & and Uy Br(yx) D 9.
For k fixed, assume w.l.o.g. that the defining balls By, B; meeting at y; are of the
form Bgr((0,+R)), where 0 in the origin in JR?™'. Obviously,

R R
an {(y,y') € R x R‘ vl < 31l < 3}
is given as the graph of a function fy : {y € R‘7!| |y| < R/3} — R. If we let

Oy = {(y,fk(y)+u)

y€ R Iyl < ,Iul<l}

then (L1) is an easy consequence of the mean value theorem and (L2)-(L4) are trivial. O
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5. Occupation time in a cone

The aim of this section is to demonstrate how the method of [Mey] to study the asymptotic
behavior can also be used to estimate the Laplace transform of (the distribution of) the
occupation time

Tic(w) :=meas {s <t |w(s) € C}

of d-dimensional Brownian motion starting at 0 in a cone C given by
C = {rzjr >0,z € F},

where F is a closed subset of the unit sphere $9-! in IR? having a nonempty interior.
In view of our applications in Section 3, it is sufficient to think F to be of the form
{z € 841 |z — x| < 7).

It is hard to determine the distribution of Ty ¢ precisely; for example, to our best knowl-
edge this problem is still open in the easy-looking case where t =1 and C = {(z,y)|z,y >
0} a quadrantin IR? (see e.g. p. 108 in [Mey]).

At the end of this section, we will prove the following quantitative version of Proposition
4.3 in [Mey]:

Proposition 5.1: Let t, =27 for n € IN. If ¢ is large enough, then there is a
constant ¢ s.t.

logn

Tt C(LU)
q k)
Ilogtkl _tk

(5.1) Py {w € Q

<1forsomek>n}§c
n

for large n.

By interpolation, we obtain
Proposition 5.2: If ¢ is sufficiently large, there are positive constants ¢,n s.t.

€ log |log €]
5.2 P A —_— Y L 22
(52) °{T"’ < ”nogew} = “Tloge]

for small € > 0.

Proof: If ¢ € (0,1), let n be the natural number with #, < ¢ < t,_;. From
Tec(w) < nm, we infer

tn—-1 2 t
T <T. <p—220 <L 90l z < =
tn ,C(w) = ,C(w) n |10gtn—1|q = n |10gtn‘q |10gtnlq
for 7 sufficiently small. Hence, (5.1) implies the result. a
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Since any polynomial is increasing faster than the logarithm at infinity, we immediately
obtain

Corollary 5.3: Let a >0 be arbitrary. Then there are ¢,7 >0 s.t.
(5.3) Po {Tec < et} < ———
|log ]

for small € > 0.

The above assertion on how large T, ¢ usually is for small times enables us to show how
small the Laplace transform of T, ¢ is in certain parameter regions.

Theorem 5.4: Let 0 <y < % Then there are positive constants ¢,e9, Ko s.t.

(log(Ms%+‘7))7

(5.4) Eo (e 7)) <

as soon as € < g9 and Me3t? > K.

Proof: Let ¢ > 0 be sufficiently small in the sense of Corollary 5.3. Setting cx := ee~*’
for k € IN, we will use the fact that by (5.3) Po-a.e. w € Qy satisfies Tx(w) > ne,t* for
large k, where « > 0 may be chosen arbitrarily small and T} is a shorthand notation
for T, c:

Eo (G_MT"C) =/ Po(dw)e"MT"C(“")-i—
To2nelta
00

+ / Po(dw)e=MTe.0lw)
k=1 Y Ta2ne, T <nepty

o)
— 14+a - 14a
< e~ Mne + E e~ Mne, Py {Tk_1 <T]E}:t?
k=1

On the r.h.s., every single summand is fine with respect to (5.4). Thus we still have to
prove that

o o]
]. - 1+a
RK(S, M) = Z 1——]‘3 e M’?Ei
k=K1 Hoger—1]

satisfies the desired bound for some K. Letting N = Mne'*®, we have

e_Ne—(l+a)k2

Ri(e,M) < > =n

k=K+1

00 — Ne—(1+a)s?
(55) < cf __6 dz
- K .’L'2—2°'

e—(14a)K?
1
= c/ e_Ny—-—la—dy
0 Y (—logy)z~«
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via the substition y = e—Az?,

Thus we have for arbitrary « <1

N-* e-(l-}-t::))(2
1 1 1=nr 1 ].
Ryg(e,M Sc/ - —dy+4ce N / -
(e, M) o V(-logy)ia " - y (~logy)f-=
< c(klog N)*~¥ 4 cN=e™ V7",
Hence the result by resubstituting N = nMelte, a

Problem: For the halfspace H = {z € R%|z4 > 0}, we know by the arcsine law (see
e.g. Section 4.4 of [Kar/Shr]) that

c

(56) By (¢=MTn) <

g

We believe that for the case of Theorem 5.4 the Laplace transform decays much faster
than logarithmically and might be similar to (5.6).

Proof (of Proposition 5.1): In the rest of this section, we will work our way through
[Mey] in order to prove Proposition 5.1. For ease of reference, we employ Meyre's notation
as introduced in Sections (3.1),(3.2) of [Mey]. We recall that the underlying idea is to
construct for a given t, well-chosen random variables 7,,0, > t, s.t.

1) w(s) € C for all s € [r,(w),on(w)],

i) op(w) ~ Th(w) is large.

To this end, choose 6 > 0 small enough s.t.
F5 = {z € S| dist(z, F°) > 6}

has a nonempty interior and consider the following chain of real numbers, where ¢;,q are
arbitrary:
E\(F°) < Bi(F§) < 2 :=2E:(F5) < q1 < ¢,

where E;(F°) denotes the smallest eigenvalue of —1A (A being the Laplacian on
S4-1y on $§4-1\ F with Dirichlet boundary conditions.

Letting Cs be the cone in IR? determined by Fj, the line of the proof is to show that
the following sequence of stopping times

T (w) :=t, =277,

UB(w) = inf(t > TI'(w) | ()] 2 VE), p=12...,
T?(w) :=inf{t > UP(w) | w(t) € Cs}, p=12...,

"soon” becomes stationary, i.e. soon after time t, the path w will be found "far away”
from the origin and "safely within” the cone C. Therefore we consider

Nn(w) =inf{p € IV | w(T}) > Via}.
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The following estimate immediately follows from Po{N, > k} < p*, k € IN, for some
p < 1, which is shown on p. 120 of [Mey]:

(5.7) { For any K <1 there is a constant ¢ >0 s.t.

Po{Ni > clogk for some k > n} < en!—K.

Thus, the stopping time
. [clog n}
n =T

(where [A] denotes the largest integer smaller than A) usually has the following properties
for large n:

1) 7h 2>t
(5.8) ii) w(m) € Cs,
iii) |w(Ta)| 2 Via

Furthermore 1t 1s bounded from above in the following way:

Lemma 5.5: For large n

(5.9) Po{rx > ti|logtx|" for some k > n} < cloin.

Proof: In the proof of Lemme 3.3 in [Mey] it is shown that Pg(A, ;) < m for

1=1,2, p€ IN and large n, where

Anp1 = {UL = T > ta(log |log ta])?}
An,p,? = {Tff - UT]: 2 tnllogtnlqz}

(note that we — in contrast to Meyre — have chosen ¢z).
For we B, = ﬂLc:_lf;g "](A;,p’l NAg ,2) we obtain as usual 7,(w) < tallogt,|*.
Since Po(BS) < %’ﬂ (5.9) follows. O

Due to (5.8), the stopping time
on(w) :=inf {t > r(w) |w(t) & C}

usually should be much larger than 7,. In fact P, {cr,, -1 < ml%%t—n—f} < 5 (see
the proof of Lemme 3.4 in [Mey]} implies

3o

t
5.10 P R T . — k <
( ) 0 {ok e < Tozlog a2 or some k > n} <
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for large n.

In order to utilize (5.10) for a lower bound on the occupation time up to time t, (recall
Tn 2 tn), one introduces for n € IN the unique number m(n) s.t.

tn
tmn) € s—e—tar < 2tm(n)-
mn) = Sllog @ oomn)

Now 7,(w) < tpllogt,|™,n 2> ng(w), implies Tm(n) (W) £ %tn for large n. From Lemma
5.5 we deduce

2 1
(5.11) Py {Tm(n) > §tn} <ec oin

for large n.
Obviously

T!,.,C(w) > min(am(n)atn) = Tm(n)-
Thus, if 0p(ny(w) > tn, one usually has Ti, c(w) > 3¢, for large n due to (5.11).

On the other hand, if om(ny < tn, (5.10) usually implies Ty, c(w) > (g ]t';‘t" 7 if n
og [log tm(n)
is sufficiently large.

In each of these cases, we conclude |log tn|qw > 1. Hence, the estimates (5.7), (5.10)
and (5.11) now prove Proposition 5.1. O
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6. Estimates from below

Before stating our results concerning lower bounds on semigroup and resolvent differences,

we present a version of Theorem 3.1 in the special case of the halfspace, which can easily
be treated probabilistically:

Lemma 6.1: Let I'=JH = {z € R%z4 > 0}. Then

|[Je2Hn — =Mzl < —Z i MA>1,

T (M)
|J(Hp—2)"'—(Hs—2)"'J|| < # if M is large.

Proof: Proceeding as in the general case in Section 3 and using Example 4.3 and (5.6),
we have

“Je””\H” - e_"H”J” <supP{A—e< Ay <A} +Eg (e'MT"")
Zz€L

sc(§+ \/jﬂ)

Letting &€ = M“\?, we obtain the best result for a = —%, 8= +-§~. This proves the first
assertion. The resolvent estimate follows by integration. a

This example clearly measures the quality of the lower bounds in the rest of this section.
For the lower bounds, we return to the situation of Assumption B, i.e. V Kato class and
U=xr.

We recall that |||y 2= |- ||, i.e. it is sufficient to bound the operator norm from below.
Moreover, let P denote multiplication by xr in L? (IRd). Employing the obvious
notations for the resolvent of Hps and Hy respectively and suppressing the dependence
on the point in the resolvent set for a moment, we have

(6.1) Ry — J*RgJ = PRaps + J*(JRar — RgJ).

Hence \ ) )
|Ra — J*ReJ||” = [|[PRM|” + |7*(JRM — ReJ)|| 2 rey~ 12 (Re)

= |IPRM||2 + ”JRM - REJ”%’(R‘)—‘Lz(E)‘

In particular

(6.2) | Rar — J*ReJ|| 2 max (IIPRMII, 17 Rar — REJlle(m)_.Lz(z))
and

(6.3) |JRy — ReJ||* = |Rm — J*RsJ||* = ||PRu| >
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Lemma 6.2: In addition to Assumption B assume sup_ V(z) < b.
If —a€ p(Hy+ V) is sufficiently small, we have as M — oo

(6.4) | Rar(—a) ~ J*Re(—a)J || 2 [|PRu(-a)ll 2 m =0 (%) _

Proof: For any B C R? with finite Lebesgue measure and any ball T'¢ C T we may
estimate

|P(Hx + @) ||* 2 | P(Hy + @) xs]”

2c/dm/ dA e_“‘\e_M‘\e_b’\f dy p(z,y|A)
r 0 B
oQ e ul2
chdm/ d\ e—(a+b+M)A[ dy _1£_8-1—ng—
r|Jo {vEB| Jy=z|SVA} A3

2c/ dz
To

Choosing B := {y € R?|dist(y,Ts) < 1} we note that é—

2

2

! 1
/ dx e—(a-{-b-}-;ﬂ\'f),'\_T
0 Az

{yeB|ly—q| < x/X}|‘2-

e Bl ly—2l<VA)| =
fg‘{y €ER||ly—z| < \/X}I = const and obtain for sufficiently large M

2>qm| 1
2 (a+b+ M2

\P(Hum + a)'"l”2 > c/ dz

0

1
/ d\ e—(a+b+M),\
0

Recalling (6.2), this completes the proof of (6.4). a

Lemma 6.3: In addition to Assumption B assume sup, V(z) < b and there is a
zg € OI' s.t. for some cones K;,K, of finite height and with vertex z, one has
K, CT, Ko\ {zo} CZL.

If —ae€ p(Ho+ V) is sufficiently small, then

c

|JRy(—a) — Re(—a)J|| 2 @rbrIEh

Proof: In the course of the calculations, we will choose subsets B C R?, £, C £ and
I'o C T of finite Lebesgue measure.
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For any such candidate we have similar to the proof of Lemma 6.2

IJRp — ReJ|* 2
A
> c/ d:r:] dA e‘“f dy/ PY3(dw) (e MTA»F(‘“)—x{TAFO}(w)) o Viwlods
z

2
o0 . A
=f dz / dA e_“)‘/ dy] Pz’.f)‘(dw)e_MT"'r(“’)e" Jo vtanas
B 0 B Ty, r>0
o0 2
c/ dz / dA e_(“+b+M)’\/ dy Pg”a\ {w € Qg'a\ w (%) € F}
= 0 B
! A A
Zcf dx/ dA e—(“+b+M)'\f dy/ dup(as,u E)p(u,y|§>
o 0 B T'o
Now we choose B = {y € R"|dist(y,T9) <1} and obtain as in the proof of Lemma 6.2
1 A 2
\JRy — ReJ|* > c/ dz / dA e_(“+b+M)’\/ du p (:z:,u —)
o 0 I'g 2
Zc(/ dxf dA e_(“"'b"'M)’\/ dup( :\—))
To 2
2
-—c(/ dA e_("+b+M))‘/ d:c/ dup(:n u )) .
Zo I

In principle, we let 3,y be the cones in the assumption on 9T'. In order to estimate
p(:::,u|%) appropriately from below, we rather integrate over the A-dependent sets

Eg(,\)={$€20 |$"$0|S£},

2

2

2

2

PD()\)Z{UEFU |u—$0[§g}.

Then for any such u,z, we have p(:r:,u|%) > cA~5e~!. Hence for large M

1
|JRm — ReJ|| > c/ dX e=(atb+MA 3 g
0

a+b+M
= ¢ —s 4
_(a+b+M)%‘“./o ds e™’s

> c
T (a+ b+ M)FH

c
> :
2 5 O
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Lemma 6.4: In addition to Assumption B assume sup, V(z) < b and there is a cone
K of finite height h with vertex zp € ' s.t. K CT. Then

—AHp _ 7% ,—AH
||6 M JTe 2J“ ce-—?Mz\, A < h2,

c .
—e 2M4\, /\2 h2.

HJB—AHM _ e~ Hz J“ Az

”PB—A(HD+V+MP)” >

Proof: Since the proofs of these estimates are similar to one another and to the preceding
Lemmas, we only give some details concerning the first semigroup difference:

“e—’\HM _ J*e_’\HEJ”z > c“(e——,\HM _ J*e_'\H”J) XK||2

=c/ dz
Rd

> ceMe~MA dz
Rd

2
A
] P, (dw)e™ Jo VM ~MTar L (0(2))
Ta,r>0

2

/ P, (dw)xx(w(A)
w(A)er

2

> e [ s
le

f dy p(z,y|A)
K

= ce_(M"'b)’\/ dyf du p(u,y|2X).
K K

Thus
%e—(M+b)Af dy/ due‘LL?iﬁ, A B2
le=2Ha — Jre=2Hs || > Az k Jk
ce_(M+b)‘\/ dy/ du p(u,y|2)), A < A2,
K JueKlu-y|<VA
completing the proof of the first assertion (cf. proof of Lemma 6.2). a
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7. Applications to the semiclassical limit

The large coupling limit is strongly related to the semiclassical imit. However, these two
limits are not equivalent.

Weset M — 00 and h— 0 for

(7.1) Hym = h*Hy + MU,

where Hp, U are given as in Assumption A.
We will frequently use the following projection P in L2(IR%):

(7.2) (Pf)(z) = xr(2)f(=), f e L*(RY).

Theorem 7.1: In addition to Assumption A, let V =0, sup, U(z) = C, supp U =T,
IT| < co. Then

(7.3) Jim||PemtHrm | f]| = 0,
but
(7.4) lim [Pt |f]]| 2 =M P .

Proof: In order to prove (7.3), it is convenient to use the Hilbert Schmidt norm:

[Pettinn g = [d [ aylem etz )
r R4

=/dx/ dy
r R

1 —2M f"" U(w(8))ds
S (?-}—-2)—‘ dﬂ') Px(dW)ﬂ n% Jo .
ath®)z Jr 0,

2

2
[ e PEE (@)™ H ST 0
el

Now we choose sets I';, C ',y C T with a boundary as regular as 0T, dist(z,Z) > 0 for

any z €9l'y, and I, \I'| =20 as n — oo. Then z €', implies fothz U(w(s))ds >0
forany ¢ >0, w € Q;.
By dominated convergence we infer

M—ooo

en?
fdx/ Pz(dw)e—%fo U(w(s))da_"__}o'
r, 0,

Hence (7.3) by letting n — oo and using that the integrand is bounded.
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On the other hand, (7.4) is an immediate consequence of

—tHy M 2= d
[pe-ttisif = [ gz

> e—2MtC

2

/ P,(dr.:.:)e_#'!“c f‘:az U(w(s))da|f(w(th2))‘
Qs

2
Pe=th*Ho | H .Kasten

On the other hand, the large coupling asymptotics may improve estimates on the semi-
classical limit, as the following result shows:

Theorem 7.2: Let 0<U(z) £C, supp U =T.
Assume that thereisa v >0 s.t. as M — oo

(7.5) HJ(H0 + MU — 2)™" — ((Ho)g, — z)_lJH =0 (M)
and
(7.6) HP(HO + MU - 2)™! H =0 (M),

Then we obtain for the semiclassical limit

1 700+ 0 =)™ = ()5 =) 9 = 0 (h77)
for any z € p((Ho)g) = € \ [0, 00).

Proof: Writing

(7.8) J(h2H0+U—z)_l-(h"’(Ho)E—z)_IJ:hl—?!J(H0+%U—%) —l((Hg)E—%) _J],

we can separate the high energy limit:
1 2\ ! 2\ 7! z 2\7!
-1
z N z

(Ho+ U - ff)_lu < const - |z|, the asymptotics for (7.9) are given by the

(7.9)
x [(HD+U—Z)‘1—J*((HO)E_z)-‘J} x

Since |f5 - z|

asymptotics of

(HD U z) o J*(Ho)g — 2)™'J

h? =
1 -1 1 -1
S P(HD-}-FU_Z) + J(Ho-}-h—zU—Z) —((Hg)z-—z)_l.]
=0 (x*7),
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where we used 1 — P = J*J. Now (7.8) completes the proof. (B

In order to apply Theorem 7.2 it is indispensable to determine not only the convergence
rate of the resolvent difference but also of ”P(Ho + MU -2)"" " in M.
We will not go into detail here, because this term is not as interesting in its own right as

the resolvent or semigroup difference. Furthermore, it leads to very similar considerations.
For example,

[P+ 310 25| = [ a "’

[m d) e—*A (e—A(Ho+MU)f) (z)

0

< c/ dz /°° d) e~Re "’\‘ (c_)‘(H°+MU)f) (:z:)‘2
r 0

o 2
_ c—/; d) e—RezA ‘PC—A(H0+MU)H ||f”2

Hence the rate of | P(Hy + MU — 2)7! ” with respect to M is determined by the one of
“Pe"‘(Hﬂ'*'MU)“.
Due to

|PB—A(H0+MU)|| < Sup/ P,(dw)e—MfoA Ule(s))as
z€l JQ,

we end up in the situation of Section 3 (see e.g. (3.1), where the restriction Thr >0 can
be neglected).

Theorem 7.3: In addition to Assumption B, assume V = 0. Then
(7.10) “ (R*Ho + U +a) ™" = J*(K*(Ho)g + a)"J” > chit
for any a < 0.
Proof: Writing Hy instead of (Hp)y for convenience, Hilbert’s identity yields
(Ho + —12-U + a>—l — J*(Hs +a)"'J
h
= 1? [(KHo + U +1%a) " — J* (K Hy + %) ]
=12 [1+ (a = K2a)(WHo + U + 1%a) | x
x |(*Ho+U +a)™" - J*(h*Hz +a) "7 x
x [1+(a— 8%a)J" (W Hs + hza)_l.I] .

Since for small % e.g.

-1 1 1 c
”1—}—(a-hza)(tho+U+h2a) “ 51+;a|.|1_52|.§.m5 z

32



this implies

1 - _
(Ho+?U+a) —J*(Hg +a) ' J| <

< ch?. % : %17“(52110 +U+a) = (WHs +a) 7|

Now the Lh.s. is bounded below via (6.2). The first alternative for the maximum in (6.2),
i.e. an application of Lemma 6.2 rather than Lemma 6.3, yields the better result, namely

(7.10). O
Theorem 7.4: In addition to Assumption B, assume V =0. If E€ R, v > 0, then
[ [(52Ho + v — B£i0)™" — 7 (82Hs — B £i0) 77 () 77| 2 et

for small %, whenever the expression in ||-]| makes sense, and where (z) = 1/1+ |z|*,
Hy = (Ho)x.

Proof: Since
(Ho + %U + a) T J"(Hs +a)”'J =
= 1 [(WHo + U + 12a) ™" = J* (K By + ha) ']
=12 |1+ (~h?a— Bie)(WHo + U +1%a) | x
X |(FHo +U = BEie) ™ = J"(WHs ~ E£ie) ™' 7] x
x 1+ (=t~ E +is)(WHy + h?a) ],
we have

{=)77

<

(H" taUt “) - J*(Hg + a)“J] (z)”7

<K [1+|rz a+ Bl H(x (h*Ho + U + h’a) ”]

x lim, ”M "{ (B Ho +U - E i)™ - J“‘(h"’Hg —Bie) T} (a)"

X
[1+[n2a+E| ” 7(h2Hy, + hla) ‘(z)“’”]

2
552[1+L73_a.+_E| ]x

a0 (Ho + hle + 0) _l(-'L‘W
~ J*(W*Hg - E£i0) 7' T} (x)"” x

x |77 { (2 Ho + U~ B £40)™

hla+ E
1+—| ahj l“

(@)"(Hz +a)™(2) ||]
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Now

<

(z)™7 (Ho + %U + a) B (z)"

1 —Xa U(w(s))ds
< _— dX e~ / Py’ d AT f 1 ]
_S‘ip (1+|$|2)%/ / ¢ ar) o whe” (1+1y I )

up————— [ d ) e=de L -t g Lty
SS TS /Rd y/; v (14 yl*)

1 o0 e—/\a/ ol? 2\ 1
wp———— [ dA du ™5 (14 |z — uf")?
=% (1+|x|2)%/o At U (o le—ul)

o0 —Aa wl?
Sc/ dx < du e—l'f}\'(1+|u|2)%
0

A2 SR
o0 o0 2
=c/ dX "“’,\“‘/ ds e T (1 4+ \2s%) 75471
0 0

< 0O

A
and the corresponding calculation for H(IW(HE +a) Yz) 7 \ (replace ne=ar Jo UlwtoNds,
by "X {1y r=0}{(w)”) show that

(2)™ (Ho + 27U +a) iy

_.,'

-

(=) (Hs + @) )

are bounded uniformly in %. Thus we have

(z)77

<

(Ho + le + a) o J*(Hs + a)"‘J] ()"

c(E)

-1

H )"{(FFH +U—Ei0)" - J*(iHy ~ E£i0) 7'} (2)” "

An imitation of the proof of Lemma 6.2 finally shows that

> ch?

()77

(H" + %U + a) s J*(Hg + a)_lJ] (z)™7

(note that g, B in the proof of Lemma 6.2 are bounded). O
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