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ABSTRACT. In this paper we consider the configuration space of n-marked points in the
complex plane and introduce the Gauss Skizze -operad, which is homotopically equivalent
to the little disk operad. This construction leads us to define a Gauss Skizze-braid operad ,
which is an operad equivalent to the classical Artin braid operad. This is done by merging
together completely different approaches : a cosimplical model for configuration spaces
and one of the constructions of Frobenius manifolds using classical complex space of poly-
nomials, and the monodromy on the Frobenius manifold, around the discriminant locus.
Our construction is done using a special category of graphs. We introduce a new way of
understanding the little disk operad and related algebraic structures. Through this work,
we point out hidden geometrical similarities between the approaches given forM0,n(R)
andM0,n(C).

1. INTRODUCTION

In this paper we introduce the Gauss Skizze operad (Gs-op, in short) for the space of con-
figurations of n marked points in the complex plane. The Gs-op is a topological operad,
which is homotopically equivalent to little disc operad [5] and which gives the possibil-
ity of having information concerning the critical values and critical points of polynomi-
als of high degree. There exist important similarities between this Gauss-Skizze and the
Grothendieck dessins d’enfant [28]. A detailed study concerning the Gauss-Skizze can be
found in [9, 10, 11] and are used more implicitly in [12, 13, 14].

Not only this approach establishes a more explicit bridge between the geometric results
found for the real locus of the moduli spaceM0,n(R) [17, 18, 20, 29] and in the complex
versionM0,n(C) (see for example [30, 31, 16, 22]), but also gives a great deal of infor-
mation about the monodromy occurring for small loops around the discriminant locus of
the configuration space. The study of the monodromy on the Frobenius manifold, using
the Gs-op is a construction which leads us to define the Gauss Skizze-braid operad being
equivalent to the classical Artin braid operad.

A stepping stone towards the construction of this new Gs-op is to use the categorical
language introduced in [26, 27, 34, 35, 43, 44] for configuration spaces of marked points
in the Euclidean space. This approach fits perfectly the language used in one of the con-
structions of Frobenius manifolds [39] and which was extensively used by Dubrovin [19]
and Manin [39], as well as Arnold and his school in the seventies [1, 2, 3, 8, 47, 48, 49],
to study configuration spaces and marked points as a space of complex polynomials.

Merging those two approaches, and using the technique relying on Gauss drawings
(see [23, 24, 25, 4]), we show the existence of a new point of view on the little disc operad
and related algebraic structures.

First, we recall the cosimplicial model from [43, 44, 34, 35], constructed from the con-
figuration spaces. Historically, the utility of this model was to consider the topology of
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spaces of knots (note that for that approach the real dimension of the affine space is of di-
mension greater or equal to 4). We adopt this approach, however in a completely different
perspective: the real dimension of the affine space being 2 there, are no relations to spaces
of knots.

Second, we introduce our tool: the category of special decorated graphs and operations
on those graphs. Third, we explain how, by using this tool, we can develop a new inter-
pretation of the little 2-disc operad and use it as a bridge connecting results for M0,n(R)
and the complex version M0,n(C). We wish to point out some hidden relations between
the real and complex configuration spaces (resp. moduli spaces) of n marked points on
the genus 0 curve; as well as to establish deeper bridges between the known results for
M0,n(R) andM0,n(C).

1.1. Cosimplical model for configuration spaces. The consideration of so-called con-
figuration spaces of points on the projective complex (or real) line, emerged from the
interest of physicists in Conformal Field theory. A configuration space Confd(C) of d
marked points on the complex plane is :

Conf(C) = {(x1, ..., xd) ∈ Cd|xi 6= xj}.

One can investigate those configuration spaces using cosimplicial models. We borrow
the cosimplicial model which has been constructed for the space of long knots R ↪→ Rd,
for d ≥ 4 (presented in [43, 44, 35]) and apply it to the more specific case of configurations
spaces with marked points on the complex plane. We briefly recall some general facts
about cosimplicial models. For more details we recommend [6] and [7].

A cosimplicial object over a category C consists of a diagram in C indexed by the
category ∆ of finite ordinal numbers. It is formed from objects Xn ∈ C for n ≥ 0 with
coface maps di : Xn → Xn+1 for 1 ≤ i ≤ n and codegeneracy maps sj : Xn+1 → Xn,
1 ≤ j ≤ n satisfying the usual cosimplicial identities ( [7] p. 267). To a cosimplicial
object over Cop, corresponds a cosimplical object over C.

By a simplicial model category, we mean a model category C which is also a simplicial
category satisfying axioms:

(1) the object X ⊗K and hom(K,X) exist for each X ∈ C and each finite K ∈ S.
(2) if i : A→ B ∈ C is a cofibration and p : X → Y ∈ Cis a fibration , then:

map(B,X)→ map(A,X)×map(A,Y ) map(B, Y ),

is a fibration in S which is trivial if either i or p are trivial.

As is mentioned in [6], when C is a model category, there is an induced model category
structure on the category of cosimplicial objects over C. By simplicial category, is meant
a category C enriched over S, and we write map(X, Y ) ∈ S for the mapping space of
X, Y ∈ C.
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Let M be a smooth manifold with non - empty boundary (2-disc in our case). The n-th
entry of the considered cosimplicial model is given by the Cartesian product Mn. Fix two
unit tangent vectors α ∈ UTM (resp. β ∈ UTM ), located on the boundary of M pointing
inward (resp. outward).

We consider configurations spaces Conf(M). Elements of UTM , the unit tangent bun-
dle to M , are denoted by ξ = (x, v) , with x ∈M and v ∈ UTxM with ||v|| = 1.

We consider the configuration space Confq(M), consisting of (q + 2)-tuples,

ξ0 = (x0, v0), ξ1 = (x1, v1), . . . , ξq+1 = (xq+1, vq+1)) ∈ (UTM)q+2

such that ξ0 = α, ξq+1 = β and xi 6= xj .
For our purposes, it is necessary to take a Fulton-MacPherson compactification Conf(M).

The idea of the construction is that elements of Conf(M) consist of some “virtual” con-
figurations, where the marked points xi and xj may be equal - in which case, some extra
data serves to distinguish two points infinitesimally close , as explained in the definitions
4.1 and 4.12 of [43]).

Very important to us, in the construction for the doubling maps for this cosimplicial
model. Let 0 ≤ i ≤ q:

(1) di : Confq−1(M)→ Confq(M)

(ξ0, ..., ξi, ..., ξq) 7→ (ξ0, .., ξi, ξ
′
i, ...., ξq),

where ξ′ = (x′i, vi) with xi = x′i but infinitesimally x′i − xi = vi.
Whereas, the forgetting maps are defined as follows:

(2) sj : Confq(M)→ Confq−1(M),

(ξ0, ..., ξi, ..., ξq) 7→ (ξ0, ..., ξ̂i, ..., ξq),

where ξ̂i means that this point is “forgotten”.

Remark 1. As was pointed out in [43] definition 6, by defining forgetting maps sj , a
natural guess would be that this gives a cosimplicial space with di as cofaces and sj as
codegeneracies. However, this is not true: certain cosimplicial identities are not satisfied.
To remedy, it is possible to replace Confq(M) by a homotopy equivalent quotient, for
which the induced map satisfy the cosimplicial identities. This latter space is denoted by
C ′〈[M,∂]〉. The cosimplicial space is given by

X•{C ′〈[M,∂]〉, di, sj}q≥0.

Two important tools are used in the cosimplicial model: the maps θ and δ. We denote
by S a finite set of points. Let x be a given configuration.
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(1) Take two distinct elements a and b in S:

θa,b : ConfS(M)→ S1

θa,b : x 7→ x(b)− x(a)

||x(b)− x(a)||
.

This map gives the direction between vectors given two points of the configuration
x.

(2) For three distinct elements a, b, c in S, we define their relative distance map:

δa,b,c : ConfS(M)→ [0,+∞)

x 7→ ||x(a)− x(b)||
||x(a)− x(c)||

.

For three different points a, b, c in S and x ∈ ConfS we adopt the notation:

x(a) ∼= x(b) rel x(c),

if their relative distance is zero.

Remark 2. Note that up to translations and dilatation, any configuration can be recovered
from direction θ and the relative distances δa,b,c.

Proposition 1. Let x be a given point in the Fulton-MacPherson compactified configura-
tion space. We have the following equivalent conditions:

(1) x lies in the boundary of the configurations space,
(2) (if and only if) there exist three points a, b, c in S, such that a and b are relatively

close, with respect to c. This is denoted by x(a) ∼= x(b) rel x(c).

1.2. Configuration spaces and moduli spaces. Fadell and Neuwirth [21] were first to
investigate these spaces, in a formal manner.

There are many different ways of looking at those configuration spaces. One way of
looking at configuration spaces is by using their relation to moduli spaces. This relation is
first given by noticing that :

Confn(C) ∼= Confn+1(P).

Note that the points are non-coincident. So, both spaces are non compact and taking
the quotient of those spaces by the action of PGL2(C) (which is also non-compact) is
problematic: it leads to a (natural) compactification of the spaces:

M0,n
∼= Confn+1(P)/PGL2(C)
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Different approaches to the compactification have been given (Deligne-Mumford, Keel,
Knudsen, Fulton-MacPherson,Kapranov [16, 22, 29, 31]) but for our purposes we will fo-
cus only on the compactification of Fulton-MacPherson. For the genus 0 case, the different
methods of compactifications were shown to be equivalent.

We wish to point out some hidden relations between the real and complex configuration
spaces (resp. moduli spaces) of n marked points on the genus 0 curve; as well as to
establish deeper bridges between the known results forM0,n(R) andM0,n(C).

Let us start by recalling a very basic step, given by the following commutative diagram.

Conf(R) Conf(C)

M0,∗+1(R) M0,∗+1(C)

φ

ψ

η

The upper right corner is the homotopy equivalence of the little discs operad; whereas
the space in the upper left corner is the classical A∞ operad {Σ∗ × K∗−1.} The moduli
spaceM0,k(R) is described by the surjective map:

Σn ×Dn Kn−1 →M0,n(R),

where the symbol Dn stands for the dihedral group of order 2n and Kn−1 is the associa-
hedron (Dn acts as a group of isometries on Kn−1).

More precisely, this map is a bijection on the interior of the cells and, from Theorem
3.1.3 [15] its is known that these real moduli spaces are tesselated by the Stasheff associ-
ahedra (there are (n−1)!

2
copies of Kn−1 tesselatingM0,n(R)).

For the next step, it is necessary to mention the definition of the operadic structure on
this configuration space, Conf• = {Confn}n≥0. We will principally be interested in the
Fulton-MacPherson operad. In particular, we heavily rely on the construction explicited
in Lambrechts [35]. It is mostly convenient to our approach, since it establishes a relation
between the real approachM0,n(R) andM0,n(C).

This operad is homotopy equivalent to many other operads such that the Little N -balls
operad (or the little N -cube operad) [5]. The space Confn is a compact manifold with
corners, obtained by adding a boundary to the regular (and open) manifold Confn (i.e
where points of C do not collide). The operad of structure of Confn corresponds to the
inclusions of various faces of the boundary.

1.3. Operads, weak partitions and totally ordered sets. Consider a symmetric monoidal
category C. Let Fin be the category of finite sets with the bijections. Given any subset
S ⊂ S ′, we write S/S ′ := S \ S ′ t {∗}.

An operad in C is a presheaf F : Finop → C endowed with partial composition,

F(S/S ′)⊗F(S)→ F(S ′),
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for any S ⊂ S ′ and unit η : 1C → F : ({∗}) such that equivariance, associativity
axioms are satisfied [40].

1.3.1. The little disc operad. Boardman and Vogt have constructed a topological operad
called little disc operad [5].

Consider a unit disc D in C and let O(n) be a topological space.

O(n) =

{(
z1 . . . zn
r1 . . . rn

)
∈
(
Dn

Rn
+

)
|the discs riD + zi are disjoint subsets of D

}
.

The symmetric group Sn acts on Pn by permuting the discs. The product operation in this
operad is defined by glueing disks.

If

a =

(
z1 . . . zk
r1 . . . rk

)
and bi =

(
wi1 . . . wini

si1 . . . sini

)
,

then, the final output of the product operation is:(
r1w

1
1 + z1 . . . r1w

1
n1

+ z1 . . . rkw
k
1 + z1 rkw

k
nk

+ zk
r1s

1
1 . . . r1s

1
n1

. . . rks
k
1 rks

k
nk

)
.

The map from the topological spaces O(n) to the configuration space Confn(C) defined
by (

z1 . . . zk
r1 . . . rk

)
→ (z1, . . . , zk)

is a homotopy equivalence. One can easily move from those topological operads onto the
braid operad (where the collection of objects are braid groupsBn given by π1(Confn(C)) =
Bn). The product operation is given by cabling Bd ×Bi1 × ...×Bid → Bi1+...+id as com-
position. We will show in the next section that we have a braid operad, defined in terms of
the Gauss Skizze-operad, in short Gs− op.

1.3.2. Weak partition and totally ordered set. We define some notions such as the weak
partition, following [35]. To do this, we fix two objects: a finite set S and a weak partition
v : S → P , where P is a linearly ordered finite set.

A weak partition of a finite set S is a map v : S → P between two finite sets (here P is
not required yet to be a linearly ordered finite set), where for a given p ∈ P , the preimages
v−1(p) are elements of the partition.

It is not required that v is surjective, so some of the elements v−1(p) are allowed to
be empty. The weak partition is degenerate if v is not surjective, and non-degenerate
otherwise. From now on, we will simply say “partition” instead of a non-degenerate weak
partition.

The (weak) partition v is ordered if its codomain P is equipped with a linear order. The
undiscrete partition is the partition v : S → {1} whose only element is S. We adopt the
following notations:
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(3) P ∗ = {0} ? P,AP = v−1(p), and A0 = P.

A linearly ordered (or a totally ordered) set is a pair (L,≤) where L is a set and ≤ is a
reflexive, transitive, and antisymmetric relation on L such for any x, y ∈ L we have x ≤ y
or y ≤ x. We write x < y when x ≤ y and x 6= y.

Given two disjoint linearly ordered sets (L1,≤1) and (L2,≤2) their ordered sum is the
linearly ordered set L1 ?L2 := (L1∪L2,≤) such that the restriction of≤ to Li is the given
order ≤i and such that x1 ≤ x2 when x1 ∈ L1 and x2 ∈ L2.

More generally, if {Lp}p∈P is a family of linearly ordered sets, indexed by a linearly
ordered set P , its ordered sum ?p∈PLp is the disjoint union tp∈PLp equipped with linear
order ≤ whose restriction to each Lp is the given order on that set such that x < y when
x ∈ Lp and y ∈ Lq with p < q in P .

We have:

(4)
∏
p∈P ∗

ConfAp = ConfP ×
∏
p∈P

Confv−1(p),

which defines the operad structure:

Φv :
∏
p∈P ∗

ConfAp → ConfA,

As a more intuitive explanation, the configuration x = Φv((xp)p∈P ‘∗) is obtained by
proceeding by a replacement, the p-th component x0(p) of the configuration x0 ∈ ConfP ,
for any point p ∈ P , by the configuration xp ∈ ConfAP

made infinitesimal, see section 5.2
of [35].

The case of inserting two points - which are infinitesimally close - enter the perspectives
described in [34, 35] where is defined a cosimplicial space. The n-th component Confn
of the cosimplicial space is some compactification of the configuration space of points in
I × Rd−1 = [0, 1]× Rd−1.

2. MONODROMY AND FROBENIUS MANIFOLDS

2.1. Frobenius manifolds. We start with reminding some basic notation and facts from [39].
Let us recall that an affine flat structure on the (super)manifold M is a subsheaf T fM ⊂

TM of linear spaces of pairwise (super)commuting vector fields, such that TM = OM⊗T fM .
Sections of T fM are called flat vector fields.

A Frobenius manifold is a quadruple (M,T fM , g, A), where M is a supermanifold in one
of the (classical) categories; g is a flat Riemannian metric compatible with the structure
T fM ; A is an even symmetric tensor A : S3(TM)→ OM .

This data must satisfy the following conditions :
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• Potentiality of A. There exists a function Φ verifying, for any flat vector fields
X, Y, Z:

(5) A(X, Y, Z) = (XY Z)Φ.

• Associativity. The symmetric tensor A together with the flat Riemannian metric g,
define a unique symmetric multiplication ◦ : TM ⊗ TM → TM such that :

(6) A(X, Y, Z) = g(X ◦ Y, Z) = g(X, Y ◦ Z).

This multiplication must be associative.
In the analytic case, an affine flat structure can be described by a complete atlas whose

transition functions are affine linear, one can find local coordinates xa such that ea =
∂
∂xa

= ∂a are commuting sets of linear independent vector fields. In flat local coordinates,
the equation 5, becomes Aabc = ∂a∂b∂cΦ and equation 6, is rewritten as:

∂a ◦ ∂b =
∑
c

Acab∂c,

where Acab :=
∑

eAabeg
ec, (gab) := (gab)

−1.

M is called semisimple if an isomorphism of the sheaves of OM -algebras:

(TM , ◦)→ (On
M , componentwise multiplication)

exists everywhere, locally.
The semisimplicity of the Frobenius manifold implies that, in the local basis (e1, ..., en)

of TM , the multiplication takes the form:

(
∑

fiei) ◦ (
∑

gjej) =
∑

figiei,

and in particular
ei ◦ ej = δijej.

In the dual basis, the metric ( g(ei, ek) = δikgii) is diagonal, and A also.
Moreover, we can introduce a local function (metric potential) η, defined up to addition

of a constant, such that: gii = eiη.

2.2. The space of polynomials. The space of polynomials is an example of semisim-
ple Frobenius manifolds of arbitrary dimension (the construction is due to Dubrovin [19]
and Saito [41]). Consider the n-dimensional affine space An with coordinate functions
a1, ..., an. We identify the space An with the space of degree n + 1 polynomials P (z) =
zn+1 + a1z

n−1 + · · ·+ an. Let
π : Ãn → An

be a covering space of degree n! whose fiber over a point P (z) consists of the total order-
ings of the roots of P ′(z). In other words, Ãn supports functions ρ1, ..., ρn such that:
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π∗(P ′(z)) = (n+ 1)
n∏
i=1

(z − ρi);

π∗(ai) = (−1)i+1n+ 1

n− i
σi+1(ρ1, ..., ρn), i = 1, ..., n− 1

and σ1(ρ1, ..., ρn) = ρ1 + ...+ ρn = 0. We will omit π∗ in the notation of lifted functions.
Let M ⊂ Ãn be the open dense subspace in which :
(1) ∀i, P ′′(zi) 6= 0 that is ρi 6= ρj for i 6= j.
(2) ui := P (ρi) form local coordinates at any point.

M is a semisimple Frobenius manifold with the following structure data:
(1) The n-tuple (ui), generate the canonical coordinates, the basis is given by ei = ∂

∂ui
,

and the dual basis is generated by (dui).
(2) Flat metric

g =
∑ (dui)2

P ′′(ρi)

with metric potential

η =
a1

n+ 1
=

1

n− 1

∑
i<j

ρiρj =
1

2(n− 1)

∑
ρ2i .

2.3. Monodromy. The main instrument to calculate the monodromy of a Frobenius man-
ifold coming from loops winding around the discriminant is a differential equation, with
rational coefficients. Let Σ = {t|det(gij(t)) = 0} be a proper analytic subset of M , which
is the discriminant locus of the Frobenius manifold. For the space of polynomials, the
discriminant locus is the space of polynomials with multiple roots.

Definition 1. Let (Pt)t∈[0,1] be a continuous path in the space of polynomials i.e. the
configuration space. By intertwining of a pair of roots zi(t) and zj(t) of Pt we mean the
following: {

zi(t) = r exp(2ıπ( t
2

+ t1)) + z0,

zj(t) = r exp(2ıπ( t
2

+ t2)) + z0,

for t ∈ [0, 1] where t1 and t2 are the values of t such that z1(0) = z1 and z2(0) = z2 (up
to exchanging the numbering of the roots, we may assume that t2 − t1 = 1

2
) and z0 is a

complex point in the complex plane.

Following [19], for flat coordinates, the equation of the linear pencil of the metrics is:

(7) (gij − ληij),
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as the functions of the parameter λ. The coordinates x1 = x1(t), . . . , xn = xn(t) are the
orthogonal flat coordinates for the metric gij(t).

More precisely, the functions

(8) x̃i(t, λ) = xi(t− λ, t2, ..., tn), i = 1, ..., n.

form flat coordinates for the metric in equation 7. Their gradient ξk = ∂kx(t, P ), satisfies
the following system of linear differential equations in P :

(9) (tηik − gik(t)) d
dλ
ξk = ηik(

−1

2
+ µk)ξk,

where µ : π1(M \ Σ) → Isom(An) is the representation, obtained from the action of
the fundamental group on the universal covering , which is lifted by the isometries on the
affine space.

This equation is a system of linear ordinary differential equations with rational coeffi-
cients depending on parameters t1, ..., tn. The coefficients have poles on the shifted dis-
criminant locus

Σλ = {t|∆(t1 − λ, t2, ..., tn) = 0}.
By [19], we know that:

Lemma 1. The monodromy system in equation ( 9) of differential equations with ratio-
nal coefficients around the Σλ coincides with the monodromy of the Frobenius manifold
around the discriminant Σ. The monodromy does not depend on the parameter t.

3. Gauss Skizze-OP, GRAPH MODIFICATIONS AND MONODROMY

We explain the monodromy in the semisimple Frobenius manifold formed from the
space of polynomials, using graphs and their Whitehead modifications. It is known that
(Appendix G [19]) the monodromy along a small loop around the discriminant on an
analytic Frobenius manifold satisfying semisimplicity condition is a reflection. We can
prove this property, for the space of polynomials using the graphs that we introduce in this
section. This property is strengthened because we can show that the small loop around the
discriminant is invariant under the Klein group.

3.1. Graphs. In the language of Frobenius manifolds, the configuration space is inter-
preted as the space of complex polynomials with n roots (which are distinct- if we omit
the discriminant locus). We use this remark in the following way. Taking the inverse im-
age of R ∪ iR under a given polynomial gives so-called Gauss Skizze which are objects
reminiscent of the Grothendeick dessins d’enfant [28], but which have been introduced by
Gauss. Let P be a degree n polynomial. Then the properties of any Gauss-skizze are that:

• P−1(R) (resp. P−1(iR)) gives a system of n red (blue) curves (properly embedded
in C).
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• The drawing is geometric realization of a graph which is a forest.
• The curves are oriented, and each red curve intersects a unique blue curve, once.
• The asymptotic directions are 2kπ

4n
, where k ∈ {0, ..., 4n− 1}.

We start by recalling some classical definition and terminology for graphs.
Let V and E be two finite sets. A finite graph G is defined by V (the set of vertices) and

E (the set of edges) and a mapping d that interprets edges as pairs of vertices. A forest,
is a graph, such that there exists no subgraph forming a k-gon, where 1 ≤ k ≤ m, for a
given m ∈ N∗.
Card(V ) stands for the cardinality of the set V . The notation val(v) , where v ∈ V ,

indicates the valency of the vertex v i.e. how many edges are incident to the vertex v. By
flag we mean the union of a vertex and the set of half-edges incident to it.

We now introduce the objects of our study: decorated n-forests and their morphisms.

Definition 2. The decorated n-forest σn is a graph, defined by a sextuple of sets and
maps:

(Vσ = Vroots ∪ Vcrit ∪ {∗}, Eσ, Fσ, ∂1, ∂2, n),

where:
• Vσ are vertices; 0 ≤ Card(Vroots) ≤ n and 0 ≤ Card(Vcrit) ≤ n− 1.
• Eσ are (colored) edges,
• Fσ are (colored) 2-cells,
• the map ∂1 : Fσ → Vσ , ∂2 : Fσ → Eσ are the boundary maps.

We call this graph decorated since, two additional (coloring) maps exist:

Eσ → {R,B}

e 7→ eR (resp. eB)

Fσ → {A,B,C,D}

f 7→ A (resp.B,C,D.)

Precisely, the rules of the coloring are given below:
• For any eR ∈ E, ∂−11 (eR) is {A,D} or {B,C},
• For any eB ∈ E, ∂−11 (eB) is {A,B} or {C,D}.
• For any v1 ∈ Vroots, ∂−11 (v1) = {A,B,C,D}, val(v1) = 4k, k ∈ N∗;
• ∂−11 (∗) = {A,B,C,D}, val(∗) = 4n ;
• for any v2 ∈ Vcrit, such that v2 6∈ Vroots, we have: ∂−11 (v2) = {B,C} or {A,D}, if

edges incident to v2 are colored R
• ∂−11 (v2) = {A,B} or {C,D}, if edges incident to v2 are colored B
• for any v2 ∈ Vcrit, such that v2 6∈ Vroots: 4 ≤ val(v2) ≤ 2n .
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Remark 3. We call those graphs generic if Vcrit is empty. Flags, for vertices in Vroots have
4k half-edges of alternating colors. Flags for vertices of Vcrit have 2m edges of a given
fixed color, where m ≥ 2.

Definition 3. We call a red (or blue) half-graph the above graph, obtained by omitting all
the edges of blue (or red) color.

3.2. Geometric realisations. The geometric realisation |σn| of a graph σn refers to a
Gauss drawing (or Gauss skizze), i.e. a pre-image of C under a polynomial. We can label
the regions in the complementary part of the drawing by A,B,C,D (each region being
the inverse image of a quadrant of the complex plane).

• The roots of the polynomial are intersections of a red curve with a blue curve; a
root is a vertex in Vroots.
• The critical points z0 of P verifying Re(P )(z0) = 0 (resp. Im(P )(z0) = 0) i.e.

such that the critical values P (z0) are imaginary numbers (resp. real)- intersection
of blue curves (resp. red); it is a vertex in Vcrit.
• the point at∞ corresponds to {∗}.
• The roots of the polynomial are given by the intersection of a red and a blue curve.

The adjacent 2-faces are respectively colored A,B,C,D in the trigonometric ori-
entation.
• The critical points of real (imaginary) critical values are represented by the inter-

section of red (blue) curves, the adjacent 2-faces are colored A,D,A,D,A,D, or
B,C,B,C,B (A,B,A,B,A, or C,D,C,D,C,D).

Remark 4. The geometric realisation of a red (or blue) half-graph is obtained by taking
P−1(R) (or P−1(ıR)).

3.3. Gs-op.

Definition 4. Gs − op is a collection of objects {F(S)|S ∈ Set}, which belong to the
monoidal category of the topological spaces of genus 0 Riemann surfaces, on which are
drawn topological realisations of the |S|-graphs verifying the definition 2.

Proposition 2. Gs-op is a topologico-combinatorial operad.

Proof. The collection of objects {F(S)|S ∈ Set}, belong to the monoidal category of the
topological spaces of genus 0 Riemann surfaces, on which are drawn topological realisa-
tions of the |S|-graphs verifying the definition 2. This collection of objects is endowed
with some extra structures:

(1) F(S), where |S| = n carries an action of the symmetric group Sn on the vertices
of Vroots.

(2) The product F(S/S ′)⊗F(S)→ F(S ′) is inherited from section 1.3.2 and defined
as follows:
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Let P be the linear set from section 1.3.2. Consider a point in ConfP . It corresponds to
a Riemann surface on which is uniquely drawn a topological realisation of a graph σn0 .

Consider a weak partition v : S → P and determine v−1(p), for all p ∈ P . The
cardinality of v−1(p) gives the multiplicity of the p-th point in the Fulton MacPherson
compactified space ConfP . Cut out a small disc centred at the p-th point such that except
for this special point, the combinatorial data of the graph remains unchanged, and insert
instead of this small disc a starlike tree, such that the inner node is of valency 2|v−1(p)|
and edges alternate colors. The resulting graph (after replacement of the 4-edged starlike
graph of inner node the p-th point and insertion of the new starlike tree) is required to be
an object of the considered category. From the combinatorial point of view, this operation
may seem not well defined because there exist many different possibilities in the manner
of inserting the starlike tree. However, from the configuration space point of view, this
operation is well-defined because the way of inserting the starlike tree defines uniquely a
polynomial, and therefore corresponds to a unique configuration of points.

The product operation satisfies the well known axioms. �

3.4. Modifications of graphs. We now turn our attention to morphisms between those
graphs. Take two graphs σn1 and σn2 .

Modifications are done on the graphs (and therefore their geometric realisations), using
so-called Whitehead moves (WH moves). We have two types of such moves, which we call
respectively contracting WH− and expanding WH+ moves. The composition of a con-
tracting and an expanding Whitehead move on edges of a color R (or B) will be denoted
WHR (resp. WHB).

Definition 5. A contracting half - Whitehead move WH−, is a modification done in 2
steps.

STEP1. Add a k-gon within a 2-cell f in Fσ, with vertices lying on edges of σ. Those
edges of color R or B, are incident to f .

STEP 2. The k-gon is contracted to one vertex.

However, we ought to stress a degenerate case: if there exist two vertices in Vcrit in the
boundary of a blue (red) edge, then we contract the edge to one vertex.

Definition 6. A expanding half - Whitehead move WH+, is a modification done in 2
steps.

STEP 1. Consider a vertex in Vcrit of valency 2k.
STEP 2. Replace it by a (small enough) 2k-gon, vertices agreeing with the incoming

red (or blue) edges. Draw diagonals, in the 2k-gon, such that all vertices are connected
and such that there are no cycles (i.e no m-gons).

We define the category F of decorated n-forests, where the objects Ob(F ) are deco-
rated n-forests defined from definition 2, and morphisms are described as follows. Let
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σn1 , σ
n
2 ∈ Ob(F ). The morphisms Hom(σn1 , σ

n
2 ) are given by a finite sequence of contract-

ing and expanding WH moves starting on the graph σn1 and ending on σn2 . If σn1 and σn2
are isomorphic (or σn1 = σn2 ) then Hom(σn1 , σ

n
2 ) includes also the isomorphism (resp. the

identity).
Note that due to the 1-connectivity of the configuration space, Hom(σn1 , σ

n
2 ) is never

empty.

3.5. Metamorphosis of graphs. We introduce some terminology. A mixed WH move is
such that there is a WH move operating alternatively on red and on blue edges.

Definition 7. Let σn ∈ Ob(F ) be a generic n-decorated forest. We call metamorphosis
of σn, an element of Hom(σn, σn), different from the identity, and given by the smallest
number of mixed WH moves.

Proposition 3. An element Hom(σn, σn), different from the identity, is formed from a
number of mixed WH moves which is a multiple of 4.

Proof. An element from Hom(σn, σn) is obtained by using a certain number of pairs of
WH moves - one WH move which operates on R-edges and one on B-edges - and then,
by taking the inverse operations. This is a multiple of 4. �

Corollary 1. Let Hom(σn, σn) be different from the identity. Then, the minimal number
of mixed WH moves is 4.

Theorem 1 (Metamorphosis theorem). Let σn ∈ Ob(F ) be a generic decorated n-forest.
Consider the set of all complex polynomials having Gauss drawings |σn|. Let (v1, v2, ..., vn−1)
be their set of critical values in Cn−1. Then, φ ∈ Hom(σn, σn) is a metamorphosis if there
exists a critical value verifying v1(t) = r1 exp(t), for t ∈ [0, 2π]. Reciprocally, there exists
a metamorphosis in Hom(σn, σn) for which v1(t) = r1 exp(t), for t ∈ [0, 2π].

Proof. The proof will be done in two parts. Suppose that φ ∈ Hom(σn, σn) is a metamor-
phosis such that the superimposition of WHR

− ∪WHB
− forms, up to isotopy - with respect

to the asymptotic direction - a star-like subgraph in σn, with eight branches of alternating
colors (red, blue). Consider a pair of roots of the polynomial in a small neighbourhood.
The edges of some color, say blue are incident to the same facefA. The geometric real-
isation of the contracted graph σn (by WH− move) indicates that, in terms of complex
polynomials, there exists a critical point on the real part of the polynomial. This node
v2 ∈ Vcrit, verifies: ∂−11 (v2) = {A,B}. The expansion step modifies the graph in such a
way that the new pair of blue edges are both incident to a face of color B. The same rea-
soning is applied for the three other expansion and contraction WH moves. Therefore, by
continuity of the loop in the space of polynomials and continuity of the map P : C → C,
there exists a critical value, being the image of the critical point c1(t) , and given by
Pt(c1(t)) = v1(t) forming a loop around the origin in C.
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Secondly, consider a simple smooth path v(t) = (v1(t), v2, ..., vd−1). Suppose that all
the critical values are distinct and fixed, for all t ∈ [0, 1]. Suppose without loss of gener-
ality that v1(t) moves from one quadrant of the complex plane colored A to its adjacent
cell colored D. Thus, there exists a unique t0 ∈ (0, 1) such that v1(t0) lies on the real
(resp. imaginary) axis. The system of d red curves is obtained by taking P−1(R). Since
P−1(v1(t0)) ⊂ P−1(R)), the point P−1(v1(t0)) lies on the red curves. This point is a crit-
ical point, thus a singular point for the real polynomial ReP (x, y). For t 6= t0, the critical
value v1(t) is strictly contained in the interior of:{

the cell A if t < t0
the cell D if t > t0.

The pullback ofA (resp. D) under Pt(z) is again a cell coloredA (resp. D). Therefore this
defines a metamorphosis (one contracting Whitehead move followed by one expanding
Whitehead move of a couple of red curves). �

Proposition 4. A pair of roots intertwine if and only if a critical value forms a loop around
the origin.

Proof. (1) if z1(t) and z2(t) intertwine then for t ∈ [0, 1] the polynomial Pt(z) forms
a loop in Pc,v around the polynomial P = (z − z0)2Q(z) where z1 = z2 = z0. We
have: {

z1(t) = r exp(2ıπ( t
2

+ t1)) + z0
z2(t) = r exp(2ıπ( t

2
+ t2)) + z0,

Now, if z0 = z1 = z2, then z0 is a critical point of critical value v = 0. Therefore,
if Pt(z) moves along a non contractible loop around P , then 0 6∈ v(t). From the
non-autonomous ODE [37, 45] it follows that the critical value v(t) forms a loop
around 0.

(2) Suppose that v(t) forms a loop around 0. Consider the Taylor expansion around
the critical point z = c:

P (z) = P (c) + P ′(c)(z − c) + P ′′(c)(z − c)2Qa(z),c(z)(z)

= v + (z − c)2Q.
If P ∈ Pc then v 7→ (cv, av) is analytic in v (smooth). For v = 0, Pa(z) =
0+(z−c)2Q. So, we have double roots z = c0. In a small neighborhood of v = 0,
the roots are solution of: v + (z − c0)2Q = 0, where Qa0,c0(z) = Kv. Thus, we
solve :

v + (z − c0)2Kv = 0

z = ±−v
Kv

= ± −v
K0 + ....

.
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Therefore, one loop v(t) = r exp 2iπt implies tha zt = ±−r
K0

exp(πit). So , the
roots intertwine.

�

Corollary 2. The intertwining of a pair of roots of a polynomial, lying in a small ε-ball
forms a metamorphosis.

Proposition 5. The metamorphosis is invariant under a Klein group.

Proof. It is known that - the monodromy along a small loop around the discriminant on an
analytic Frobenius manifold, satisfying the semisimplicity condition - is a reflection [?].
We have two types of reflections, for the case of the space of polynomials. This property
can be easily showed by studying the geometric realisations of the pair of subgraphs occur-
ring in the neighbourhood of the multiplicity 2 point. Indeed, let us consider a disc strictly
containing only the pair of intertwining roots; let us label from 1 to 8 (in some given
order) the (end)-vertices lying on the boundary of the disc, and obtained by intersecting
the colored curves with this boundary. Then, the edges of the subgraphs connecting the
vertices labeled 1 and 7 (respectively 3 and 5) are mapped by the modification induced
by the metamorphosis, to a pair of edges connecting 1 and 3 (respectively 5 and 7). As
for the edges of the opposite color, we proceed in the same way: the edges labeled 2 and
4 (resp. 6 and 8) are mapped to 4 and 6 (resp. 2 and 8). Geometrically, this procedure
is equivalent to having a pair of reflections and, therefore, the metamorphosis is invariant
under the Klein group . �

Let ˜̃An be the affine space corresponding to the space of critical values.
We have the following triangular diagram relating the space of polynomials, the space

of their critical points and values as follows. Lifting a point in ˜̃An gives a finite family of
polynomials:

(c1, ..., cn) ∈ Ãn

P ∈ An (u1, ..., un) ∈ ˜̃An.

P

π

π̃

4. Gauss Skizze BRAID-OPERAD, ASSOCIAHEDRA AND THE MOSAIC OPERADS

4.1. From Gs-op to Braid Gauss Skizze-operad. We reinvestigate the operad structures
(homotopy equivalent to little disc operad or cube operad) under the light of the graphs
which were introduced in the section 3 and the model 1.1. This operad is called Gs-operad.

Our construction, using the graphs, relies on the “infinitesimally close” argument, con-
cerning given points. In particular, to avoid any source of confusion, we choose an initial
point x in Confn(C) such that no pair of points lie in the interior of an ε-ball. Then, for
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a chosen i-th point, which we duplicate, via the coface map, we apply the “infintesimally
close” argument for this new pair of points. In fact, the hidden idea is to pass onto the
compactified version i.e. to the case where the duplicated point is now a multiplicity two
point, and to interpret this situation using the decorated graphs. The multiplicity two point,
turns out to be the inner node of a starlike graph, with eight branches of alternating colours.
Winding around this point gives some monodromy and, interpreting this using the meta-
morphosis procedure, we have eight different possible new graphs. For points of higher
multiplicities, we proceed in a similar way.

If we start with a configuration of points such that there exists a subset of points lying
in an ε-neighbourhood, then we proceed the same way as above. However, there are more
possibilities of new graphs, since it may occur that a Whitehead move (or a sequence of
Whitehead moves) modifies the new subgraph with a given other tree of the initial graph.

Proposition 6. Consider a configuration of n marked points on the complex plane and
the coface map δi(m + 1) : Confn(C)→ Confn+m+1(C). Then, omitting the cases where
graphs can be obtained one from another by using the degenerate Whitehead contracting
move, there are at 8m+1 possible graphs which can be created.

Suppose that we are given n marked points on the complex plane. Then using the con-
struction depicted before, we chose one point and duplicate it using the i-th coface map.
In the language of our graphs, duplicating one point, is the same as replacing the flag of
four edges of alternating colors by a flag of eight edges of alternating colors. The other
components of the graph remain unchanged. As in the construction given by [35], we dis-
tinguish those two points “infinitesimaly”. Applying our construction to this infinitesimal
modification, we have any of the eight possible graphs given by the metamorphosis which
are possibly inserted in the ε-neighbourhood of the duplicated point.

For points of higher multiplicities, the i-th coface map can also be used. Indeed, take a
triple i-th point. It can be considered as a composition of two i-th coface maps: one which
splits the multiplicity 3 point into a pair of points - one of which is a double point- and
then, apply a second time the coface map in order to split the double point into two in-
finitesimally close points. Now again, for the first splitting, we have eight possible graphs
coming from the metamorphosis (note that the flag around the multiplicity two point forms
an eight-branched star like graph, with edges of alternating color). The second splitting
concerns this double point, i.e. the 8-edged flag, which splits into two infinitesimally close
points, and which we can apply a metamorphosis and have eight new possibilities.

We continue by induction, on the multiplicity of the i-th point. Consider an i-th point
of multiplicity m. By hypothesis, we apply successively m − 1 infinitesimal splittings at
the multiple point (i.e. we split each multiple point into a pair of points - one of which
is of multiplicity 1 - and we continue this procedure until all points are of multiplicity 1).
From this operation and via metamorphosis we have 8m−1 possible graphs, which can be
constructed. Suppose that we have we have an i-th point of multiplicity m + 1. Then, we
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split it into a pair of infinitesimally close points: one of multiplicity m and the other of
multiplicity 1. For this case, the metamorphosis gives 8 possible graphs. We can apply the
induction hypothesis to the multiplicity m point. In conclusion, we have 8m+1 possible
graphs that can be obtained.

Conclusion: going back to the operad, whenever we have a duplication of points by
the map d, we insert in a small neighbourhood of this point any of the eight possible
modifications of the star-like tree with 8 branches of alternating colors (given by WH
moves). We therefore can construct the operad, in this way.

The Gs-operad furnishes an operadic model for the braid operad.

Definition 8. We call a Gauss Skizze-braid-op ( in short Gsb-op) the collection {GsbS|S ∈
Set} of objects which are generated by |S − 1| pairwise different metamorphosis opera-
tions.

Definition 9. The Artin braid operad is a collection of {BS|S ∈ Set} such that BS is the
Artin braid group on |S| strings with cabling as composition

Proposition 7. Gauss Skizze-braid-op (or Gsb-op) is an operad, coinciding with the clas-
sical Artin braid operad.

Proof. We have defined Gs-op previously, in section 3.3. Now, we can add to this operad
a supplementary property: that the roots, which have been duplicated by the coface map,
intertwine. If those points intertwine then, we have a metamorphosis occurring. This meta-
morphosis is a non-trivial loop in the configuration space ConfS and therefore a generator
for the braid group BS . This forms a braid operad, since:

1. The action of the symmetric group on the strands of the braid corresponds at most
to a rotation of the discs which are formed from the infinitesimally close points of the
cosimplicial model (and at least to a permutation of the points inside those discs).

2. The product operation is obtained, in the classical way, by cabling. It is easy to verify
that this product operation satisfies the axioms. �

4.2. Associahedra and mosaic operads in Gauss-skizze operad. We wish to point out
the rich similarities between the mosaic operad introduced in [17] and our Gs-operad. The
richness of their interaction, comes from the fact that, as inM0,n(R), the structure of the
decomposition in Gauss Skizze of the configuration space of marked points on C, contains
associahedral structures.

An associahedron Kn is a CW-ball with codimension k faces corresponding to using k
parentheses meaningfully on n letters.

For example, K2 is a point; K3 is a line; K4 is a pentagon. Let us show that in the
decomposition provided by Gauss drawings, we have the structure of an associahedron.

We start with a “canonical” half-graph i.e. a diagram of the following type:
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1 2 . . . n

1
2

...

n-1

n

FIGURE 1. Canonical (red) half-graph
]

where the curves in the diagram are labeled from 1 to n, clockwise. This forms a
word in n letters: 1, 2, ..., n. To each pair of curves (being deformed until they intersect)
corresponds a pair of parentheses in the given word.

Example 1. In the word 1, 2, ..., n, if the curves 1 and 2 are deformed until they intersect,
then this word becomes (1, 2)..., n.

This procedure gives exactly the construction of an associahedron. For example, see the
case of theK4 associahedron in connection with the half-graph decomposition, in figure 2.

Our decomposition is richer. Using the analogy of associahedron, there exist different
drawings which are attributed to the same word (for the case of K4 in the figure 2, the
dashed half-graph corresponds to the second drawing associated to a parenthesised word).
Therefore, the decomposition of the semi-simple Frobenius space of complex polynomi-
als and which is given by the Gauss drawings of P−1(R) (resp. P−1(ıR)), contains the
associahedron structure Kn. We prove this statement.

Let {Ci}i∈I be a cell decomposition (and even a good cover in the sense of Čech [9]) of
the space of degree n polynomials indexed by the graphs corresponding to Gauss Skizze
(i.e. verifying definition 2). Let {Vj}j∈J be the cover of this space indexed by half-graphs
of degree n of a given colour.

Let us consider the associahedron Kn, where an interior point of Kn corresponds to the
word 1 2 . . . n+ 1 ( it can also be identified with an n+ 1-gon) and an interior point of a
codim k face corresponds to k pairs of parenthesis on the 1 2 . . . n+1 ( word (this can also
be identified with an n+ 1-gon containing k non-crossing diagonals, within the polygon).

Let us construct the following mapping. Let us map the half-graphs with empty Vcrit
and which verify the property of figure 1 to the interior of Kn; and let us map the set
of half-graphs corresponding to a given word, with a certain combination of k pairs of
parenthesis to a codim k face of Kn. This is a surjective map. Indeed, it is enough to
notice the case of the subword ((ij)k) corresponds already two different drawings. Since
the sets of n-half-graphs and of faces in Kn are finite, we have a surjective map from the
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FIGURE 2. Associahedra K4 and the half-graph decomposition

set of half-graphs to the set of faces of Kn. We call the associahedron red (or blue) if the
half-edges of the graphs are red (or blue).

So, we have proved that:

Proposition 8. The cell decomposition {Ci}i∈I of the space of degree n polynomials in-
dexed by the decorated n−forests, contains an underlining pair of red and blue associa-
hedra Kn.

Corollary 3. The Čech nerve of decomposition of the space of degree n polynomials in-
dexed by the decorated n−forests contains a substructure, isomorphic to the dual of an
associahedron Kn.

We show now the relation between the mosaic operad and the Gs-operad. Let us recall
the definition of the mosaic operad.

Let GL(m, l) be the space of m-gons with l non-crossing diagonals (in the case of the
moduli space of m points on R, this corresponds to l points having coalesced).
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Definition 10. [17] Given G ∈ GL(m, l) and Gi ∈ GL(ni, ki) (where 1 ≤ i ≤ m), there
are composition maps

G ◦a1,b1 G1 ◦a2,b2 G2 ◦a3,b3 ... ◦am,bm Gm 7→ Gt,

where Gt ∈ GL(−m+
∑
ni,m+ l +

∑
ki). The object Gt is obtained by gluing the side

ai of G along side bi of Gi. The symmetric group acts on Gn by permuting the labelling of
the sides. These operations define the mosaic operad {GL(n, k)}.

The relation between the n-gon and the associahedron Kn−1 follows from [36] and has
been mentioned in the above paragraphs.

We recall the following proposition:

Proposition 9 ( [36], §5). The dihedral group Dn acts as a group of a isometries on Kn−1.

This relation to polygons, is particularly important because it enables the use of the
mosaic operad structure on Kn−1 and, therefore we can state that:

Proposition 10. The structure of the Gs-operad contains a pair of red and blue mosaic
operads.

Remark 5. A red (blue) mosaic operad means that it is an operadic structure for the red
(blue) curves of Gs-op.

Proof. Let us consider the decomposition for P−1(R) and apply proposition 8. Each face
of Kn−1 is a product of lower dimensional associahedra( [17], prop 2.4.1). In general, a
codimension k − 1 face of the associahedron Km−1 will decompose as

Kn1−1 × . . . Knk−1 ↪→ Km−1,

where
∑
ni = m+ 2(k − 1) and ni ≥ 3. This parallels the mosaic operad structure:

G(n1) ◦ ... ◦G(nk) 7→ G(m),

where G(ni) is an ni-gon and G(m) is a m-gon, containing k − 1 non-intersecting diago-
nals in its interior. The glueing of sides is arbitrary. We proceed similarly for P−1(R) and
P−1(ıR), so we have a pair of red and blue mosaic operads. �
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