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Abstract

We study the commutator subgroup of integral orthogonal groups be-
longing to indefinite quadratic forms. We show that the index of this
commutator is 2 for many groups that occur in the construction of
moduli spaces in algebraic geometry, in particular the moduli of K3
surfaces. We give applications to modular forms and to computing the
fundamental groups of some moduli spaces.

Many moduli spaces in algebraic geometry can be described via period do-
mains as quotients of a symmetric space by a discrete group, or modular
group. We shall be concerned with the case of the symmetric space DL

associated with a lattice L of signature (2, n), and discrete subgroups of
the orthogonal group O(L) that act on DL. Such groups arise in the study
of the moduli of K3 surfaces and of other irreducible symplectic manifolds
(see [GHS1], [GHS3] and the references there), and of polarised abelian
surfaces. Orthogonal groups of indefinite forms also appear elsewhere in
geometry, for instance in the theory of singularities (see [Br], [Eb]). In this
paper we study the commutator subgroups and abelianisations of orthogo-
nal modular groups of this kind, especially for lattices of signature (2, n).

Notation. For definitions and notation concerning locally symmetric vari-
eties and toroidal compactification we refer to [GHS2].

We write 〈X〉 for the group generated by a subset X of some group.
If n is an integer 〈n〉 means the rank-1 lattice generated by an element of
square n.

For a group G, we write [G,G] for the commutator subgroup (derived
subgroup) of G (not G′ because we want to keep the notation O′(L) from
[Kn1]) and we use Gab for the abelianisation, i.e. the quotient G/ [G,G],
which is also the group Hom(G,C×) of characters of G.

The commutator subgroup and the abelianisation of a modular group
carry important information about modular forms. For example the fact
that SL2(Z)ab ∼= Z/12Z reflects the existence of the Dedekind η-function.
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Its square η(τ)2 is a modular form with respect to SL2(Z) with a character of
order 12. However, the commutator subgroup of orthogonal modular groups
is generally not known. We are aware of two previous studies.

In [GH1] two of us analysed the commutator of the paramodular group

Γt (the integral symplectic group of a symplectic form with elementary divi-
sors (1, t)), which is the modular group of the moduli space At of polarised
abelian surfaces with a polarisation of type (1, t). According to [GH1, The-
orem 2.1]

Γt
ab ∼= (Z/(t, 12)Z) × (Z/(2t, 12)Z). (1)

We note that Γ1 = Sp4(Z). The projectivised paramodular group Γt/{±1} is

isomorphic to the stable special orthogonal group S̃O
+
(Λ2t) (see (2) below),

associated with the lattice Λ2t = 2U⊕〈−2t〉 where U is the hyperbolic plane.
Therefore (1) is a result about orthogonal groups of signature (2, 3).

S. Kondo ([Ko1, Main theorem]) considered the lattice L2d of signature
(2, 19) associated with moduli of polarised K3 surfaces of degree 2d. He

proved that the abelianisation of the modular group Õ
+
(L2d) is an elemen-

tary abelian 2-group whose order divides 8. We show in Theorem 1.7 that
this group is in fact of order 2. Moreover a similar result is true for a large
class of orthogonal groups that appear in the theory of moduli spaces.

The paper is organised as follows. In Section 1 we make some basic def-
initions, state our main results and give some examples. We prove some of
the results straight away as corollaries of a theorem of Kneser. Section 2
gives an application to the theory of modular forms, showing that in many
cases of interest the order of vanishing of a modular form at a cusp is neces-
sarily an integer. In Section 3 we describe the Eichler transvections, which
are special unipotent elements of the orthogonal groups we are interested
in, and the Jacobi group, and use them to obtain suitable generators for the
modular groups. Section 4 is mainly devoted to the proof of Theorem 1.7
but also includes some remarks about the number field case. We conclude in
Section 5 with some applications to fundamental groups of moduli spaces.
In particular we show that the compactified moduli spaces of polarised K3
surfaces and of polarised abelian surfaces are simply-connected.

Acknowledgements: The first and the second author are grateful to the
Max-Planck-Institut für Mathematik in Bonn for support and for providing
excellent working conditions.

1 Commutator subgroups

In this section L is always an integral even lattice, i.e. a free Z-module with
a non-degenerate bilinear form (· , ·) : L×L→ Z such that (u, u) = u2 ∈ 2Z
for any u ∈ L. The dual lattice

L∨ = {v ∈ L⊗ Q | (v, l) ∈ Z ∀ l ∈ L}
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contains L. We denote the discriminant group of L by D(L) = L∨/L. It
carries a quadratic forms with values in Q/2Z. The stable orthogonal group

Õ(L) is defined as the kernel

Õ(L) = ker(O(L) → O(D(L)))

of the natural projection to the finite orthogonal group O(D(L)).
For an indefinite lattice there are two ways to choose the real spinor norm

because O(L, b) = O(L,−b) where b is the bilinear form on L. We note that
the different spinor norms agree on SO(L ⊗ Q). For any field K different
from F2, any g ∈ O(L⊗K) can be represented as the product of reflections
g = σv1

σv2
. . . σvm , where vi ∈ L⊗K. We define the spinor norm over K as

follows (see [KnS]):

snK(g) = (−
(v1, v1)

2
) · . . . · (−

(vm, vm)

2
)(K×)2.

Thus snK : O(L ⊗ K) → K×/(K×)2 is a group homomorphism. We have
made this choice −( , ) in the definition of sn because it is convenient for the
geometric applications when the lattices have signature (2, n). In that case,
reflection with respect to a vector with negative norm fixes the connected
component of the homogeneous domains.

We define three subgroups of O(L):

O+(L) = O(L) ∩ ker snR,

Õ
+
(L) = Õ(L) ∩ O+(L), (2)

O′(L) = SO(L) ∩ ker snQ .

O′(L) is sometimes called the spinorial kernel. We also use the notation

SO+(L) = O+(L) ∩ SO(L) and S̃O
+
(L) = Õ

+
(L) ∩ SO(L); but O′(L) is

already a subgroup of SO(L).
If a ∈ L and a2 = −2 then a is called a (−2)-vector or root. The reflection

σa : v −→ v − 2(a,v)
(a,a) a

determined by a belongs to Õ
+
(L).

The Witt index of L over a field K is the maximal dimension of a totally
isotropic subspace of L ⊗K. For any prime p the p-rank of L, denoted by
rankp(L), is the maximal rank of the sublattices M in L such that det(M)
is coprime to p. By the integral hyperbolic plane we mean the lattice

U := Ze⊕ Zf where (e, e) = (f, f) = 0, (e, f) = 1.

The following result of Kneser is very important for us. It allows us to
use reflections to generate certain orthogonal groups over the integers, not
just over a field.
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Theorem 1.1 ([Kn1, Satz 4]) Let L be an even integral lattice of Witt
index ≥ 2 over R. We assume that L represents −2 and that rank3(L) ≥ 5
and rank2(L) ≥ 6. Then O′(L) is generated by the products of reflections
σaσb where a, b ∈ L and a2 = b2 = −2.

We shall say that a lattice satisfies the Kneser conditions if it satisfies the
conditions of Theorem 1.1.

Corollary 1.2 If L satisfies the Kneser conditions, then

O′(L) = S̃O
+
(L).

Proof. According to Theorem 1.1, O′(L) is a subgroup of S̃O
+
(L). But

by [Kn1, Satz 2], the local orthogonal group Õ(L ⊗ Zp) is generated by
reflections with respect to (−2)-vectors for every finite prime p. Therefore for

any g ∈ S̃O(L) we have snQv(g) = 1 ∈ Q×
v /(Q

×
v )2 for every p-adic valuation v

on Q. Therefore for any g ∈ S̃O
+
(L) snQ(g) = snR(g) ·

∏
p snQp(g) = 1. 2

Note that Corollary 1.2 is also true with opposite signs, i.e. if L contains
at least one 2-vector and we consider the reflections σa with a2 = 2. To see
this, simply multiply the quadratic form of the lattice L by −1.

Our first result on the commutator is a corollary of Kneser’s theorem.

We consider the group Õ
+
(L), which is the main group in the geometric

applications we shall give later.

Theorem 1.3 Let L be a lattice which satisfies the Kneser conditions.
Then Õ

+
(L)ab (resp. S̃O

+
(L)ab) is an abelian 2-group. Its order divides

2N (resp. 2N−1), where N is the number of different Õ
+
(L)-orbits (resp.

S̃O
+
(L)-orbits) of (−2)-vectors in L.

Proof. For roots a, b ∈ L we write a ≡ b mod Õ
+
(L) if there exists

g ∈ Õ
+
(L) such that g(a) = b. In this case σg(a) = gσag

−1 and σaσb ∈

[Õ
+
(L), Õ

+
(L)]. By Theorem 1.1, any element of S̃O

+
(L) is a product

of reflections by (−2)-vectors, and since L represents −2 the same is true

for Õ
+
(L). Using this, and the evident property σuσv = σσu(v)σu, we can

rewrite any class modulo commutator as the class of a product σa1
. . . σan ,

where the (−2)-vectors ai all belong to different Õ
+
(L)-orbits. The square

of such a class can be written as the class of a product of elements σbi
σci

where bi ≡ ci mod Õ
+
(L), so it belongs to the commutator. Exactly the

same argument works for S̃O
+
(L). 2

Let us remark that if L = 2U⊕L0 and L0 contains a sublattice isomorphic
to A2 then L satisfies the Kneser conditions.
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We do not know exactly how far the conditions on rank2(L) and rank3(L)

are necessary in Theorem 1.3. For S̃O
+
(L) they cannot be weakened much,

as the following examples show.

Example 1.4 Take t 6≡ 0 mod 3 and take L = Λ2t = 2U ⊕〈−2t〉. Then Λ2t

satisfies all the Kneser conditions except that rank2(Λ2t) = 4. In this case

S̃O
+
(Λ2t)

ab contains a subgroup isomorphic to Z/4Z if t is even.

In this case S̃O
+
(Λ2t) is isomorphic to the projective paramodular group

Γt/{±14} (see [GH2]). Hence the 4-torsion element appears because of
equation (1). If 3|t, then there is also 3-torsion (and the Kneser condition
on rank3(Λ2t) fails also).

However, we do not know an example where the conclusion of Theo-
rem 1.3 fails and the Kneser conditions fail only because rank2(L) = 5.

Example 1.5 Take L = 2U ⊕ A2(−3). Then L satisfies all the Kneser

conditions except that rank3(L) = 4. In this case S̃O
+
(L)ab contains a

subgroup isomorphic to Z/3Z.

In fact, Desreumaux has constructed a modular form with respect to S̃O
+
(L)

with a character of order 3 (see [De]).

Proposition 1.6 Let L = 2U ⊕ L1 be an even unimodular lattice of rank

at least 6. Then S̃O
+
(L)ab is trivial and Õ

+
(L)ab ∼= Z/2Z.

Proof. L satisfies the Kneser conditions so S̃O
+
(L) = SO+(L) is generated

by products σaσb with a2 = b2 = −2. The orbit of a (−2)-vector a is
determined by its image in the discriminant group (this is a case of the
Eichler criterion, from [Ei, §10]: see Proposition 3.3(i), below). But that
group is trivial. Therefore there exists g ∈ SO+(L) such that g(a) = b. But
then σaσb = σaσg(a) = σagσag

−1 is a commutator. 2

The lattices that appear in the theory of the moduli spaces of symplectic
varieties frequently contain two integral hyperbolic planes even if they are
not unimodular. In the case of polarised K3 surfaces of degree 2d the lattice

L2d = 2U ⊕ 2E8(−1) ⊕ 〈−2d〉 (3)

occurs.
In the main theorem of [Ko1] it was proved that the order of Õ(L2d)

ab

divides 16 or equivalently that the order of Õ
+
(L2d)

ab divides 8. But there

are at most two Õ
+
(L2d)-orbits of (−2)-vectors in L2d [GHS2, Proposi-

tion 2.4(ii)]. Hence by Theorem 1.3 the order of Õ
+
(L2d)

ab divides 4. (There
are two orbits if and only if d 6≡ 1 mod 4.)
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But in fact the order is 2, for any d. This is a special case of the following,
which is our main theorem in this paper.

Theorem 1.7 Let L be an even integral lattice containing at least two hy-

perbolic planes, such that rank2(L) ≥ 6 and rank3(L) ≥ 5. Then S̃O
+
(L)ab

is trivial and Õ
+
(L)ab ∼= Z/2Z.

The proof of Theorem 1.7 will be given in Subsection 4.1 below. The main
tool is the Siegel–Eichler orthogonal transvections introduced in [Ei, Ch.
1–2].

For L of signature (2, n) Borcherds proposed in [Bo] a very powerful
construction of automorphic forms with respect to subgroups of O+(L). We
can use Theorem 1.7 to give an answer to the question discussed in the
remark on page 546 of [Bo].

Corollary 1.8 For L a lattice as in Theorem 1.7, the orthogonal group

Õ
+
(L) has only one non-trivial character, namely det, and S̃O

+
(L) has no

non-trivial characters.

Remark 1.9 In many cases where the quotient Õ
+
(L)\DL of the homoge-

neous domain DL associated to L (see Section 2 below) represents a moduli
functor. In these cases, Corollary 1.8 also means that the torsion group of
the Picard group of the associated moduli stack is Z/2Z. See also [GH1,
Proposition 2.3] for the case of abelian surfaces.

Returning to the polarised K3 lattice L2d we note that O(L∨
2d/L2d) ∼=

(Z/2Z)ρ(d) where ρ(d) is the number of divisors of d (see [GH2]). Then

according to Theorem 1.7 [O(L2d),O(L2d)] = S̃O
+
(L2d) and

O(L2d)
ab ∼= (Z/2Z)ρ(d)+2.

2 Vanishing order of cusp forms

The modular form η2 is a cusp form for SL2(Z), but it has highly non-trivial
character and its order of vanishing at a cusp is not an integer (it is not a sec-
tion of a line bundle, only of a Q-line bundle). In [GH1] there are also many
examples of modular forms with more complicated characters for orthogo-
nal groups of lattices of signature (2, 3). On the other hand, Corollary 1.8
shows that for lattices satisfying the conditions of Theorem 1.7 there are no
modular forms with complicated characters (indeed no complicated charac-
ters). In this section we consider lattices of signature (2, n) and analyse the
relation between the character of a modular form and its possible orders of
vanishing at cusps. We use the following notation: DL is the symmetric
domain associated with the lattice L; D• is the affine cone on D; F is a
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cusp, corresponding to an isotropic subspace defined over Q, and D(F ) a
suitable neighbourhood of it; U(F ) is the centre of the unipotent radical of
the stabiliser of F in Aut(D) and U(F )Z is the intersection of U(F ) with the
modular group; Hn is a tube domain. For more details we refer to [GHS2]
and for the general theory of toroidal compactification to [AMRT].

Proposition 2.1 Let L = 2U⊕L0 be a lattice of signature (2, n) containing
two hyperbolic planes and let ψ be a modular form with character det or

trivial character for an arithmetic subgroup of Õ
+
(L). Then the order of

vanishing of ψ along any boundary component F of DL is an integer.

Proof. If ψ is of weight k then near the boundary component F we have

ψ(gZ) = j(g, Z)χ(g)ψ(Z),

where Z ∈ DL(F ) and g ∈ U(F )Z, for some factor of automorphy j and χ
the character of the modular form ψ. If the factor j(g, Z)χ(g) is equal to
1 for every g ∈ U(F )Z then ψ is a section of a line bundle near F and its
order of vanishing along F is therefore an integer.

Under the hypotheses of the proposition, we do indeed have χ(g) = 1
because g is unipotent and therefore has trivial determinant. It therefore
remains to check that the factor of automorphy j(g, Z) is also trivial for
g ∈ U(F )Z.

If F is of dimension 1 then according to [GHS1, Lemma 2.25] we have

U(F ) =







I 0

(
0 ex
−x 0

)

0 I 0
0 0 I


 | x ∈ R




.

But the automorphy factor is given by the last ((n + 2)-nd) coordinate of
g
(
p(Z)

)
∈ DL, where

p : Hn −→ DL

Z = (zn, . . . , z1) 7−→
(
−

1

2
(Z,Z)L1

: zn : · · · : z1 : 1
)

is the tube domain realisation of DL: see [GHS2, Section 3] or [Gr2, Section
2] for the notation and more detail. From this description it is immediate
that j(g, Z) = 1 for g ∈ U(F )Z.

If F is of dimension 0 then F corresponds to some isotropic vector v ∈ L,
and U(F ) is the centre of the unipotent radical of the stabiliser of v. In this
case the unipotent radical is abelian. With respect to a basis of L ⊗ Q in
which v is the last (n+2-nd) element, the penultimate (n+1-st) element w is
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also isotropic and the remaining elements span the orthogonal complement
L′ of those two, we have

U(F ) =







In b 0
0 1 0
tc x 1


 | L′b+ αc = 0, tbL′b+ 2αx = 0



 .

Here b and c are column vectors, x ∈ R and α = (w, v)L: compare [Ko2,
(2.7)]. In this case the tube domain is contained in Cn and is identified with
a subset of the locus zn+1 = 1 ⊂ D•

L. The automorphy factor j(g, Z) is
therefore equal to the n + 1-st coordinate of g(p(Z)), where p(Z)n+1 = 1;
but this is 1 as p(Z) is a column vector. 2

From Proposition 2.1 and Corollary 1.8 we have immediately the following
result.

Corollary 2.2 If L is a lattice of signature (2, n) satisfying the conditions

of Theorem 1.7, then any cusp form for Õ
+
(L) or S̃O

+
(L) vanishes to in-

tegral order along any toroidal boundary divisor. In particular the order of
vanishing of a cusp form along a boundary divisor is always at least 1.

3 Eichler transvections and the Jacobi group

In this section we analyse the modular groups and construct useful sets of
generators for them.

3.1 Eichler transvections

Let V = L⊗Q be a quadratic space over Q and let e be an isotropic vector
in V (i.e. e2 = 0) and a ∈ e⊥V . The map

t′(e, a) : v 7−→ v − (a, v)e (v ∈ e⊥V )

belongs to the orthogonal group O(e⊥V ).

Lemma 3.1 t′(e, a) extends to a unique element t(e, a) ∈ O(V ).

Proof. We first complete e to a rational hyperbolic plane Qe⊕ Qf ⊆ V . If
there exist γ1, γ2 ∈ O(V ) such that γ1(e) = γ2(e) = e and γ1|e⊥

V
= γ2|e⊥

V
,

then they take the same value on f . The unique orthogonal extension of
t′(e, a) on V is given by the map

t(e, a) : v 7−→ v − (a, v)e + (e, v)a −
1

2
(a, a)(e, v)e. (4)

This element is called an Eichler transvection (see [Ei, §3]). 2
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We note that t(e, a) acts as the identity on e⊥V ∩ a⊥V ⊂ V . In particular
t(e, a)(e) = e. Using Lemma 3.1 it is easy to see that

t(e, a)t(e, b) = t(e, a+ b) and t(e, a)−1 = t(e,−a), (5)

γt(e, a)γ−1 = t(γ(e), γ(b)) ∀ γ ∈ O(V ), (6)

t(xe, a) = t(e, xa), t(e, xe) = id ∀x ∈ Q∗, (7)

t(e, a) = σaσa+ 1

2
(a,a)e if (a, a) 6= 0. (8)

Using equation (8) one can prove (see [Ei, (3.12)]) that for any non-isotropic
a orthogonal to the rational hyperbolic plane Qe⊕ Qf

t(f, a) t(e, 2
(a,a)a) t(f, a) = σaσe+(2/(a,a))f . (9)

From the definition (4) we see that any transvection t(e, a) is unipotent.
From equation (8) we have that t(e, a) ∈ SO+(L ⊗ Q). According to equa-
tion (4)

t(e, a) ∈ S̃O
+
(L) for any e ∈ L, a ∈ L with (e, e) = (e, a) = 0. (10)

Moreover for any primitive isotropic e in L

t(e, ∗) : e⊥L −→ S̃O
+
(L)

is a homomorphism of groups with kernel Ze.
One can also give a description of the transvections in the terms of the

Clifford algebra of L. For any isotropic e ∈ L ⊗ Q and any a such that
(a, e) = 0 we have that 1− ea ∈ Spin(L⊗Q) and π(1− ea) = t(e, a), where
π(γ)(v) = γvγ−1 for any γ in the Clifford group (see, e.g., [HO’M]).

3.2 The Jacobi group

Suppose L = U ⊕ U1 ⊕ L0, where U = Ze ⊕ Zf and U1 = Ze1 ⊕ Zf1

are two integral hyperbolic planes. Let F be the totally isotropic plane
spanned by f and f1 and let PF be the parabolic subgroup of SO+(L)
that preserves F . This corresponds to a 1-dimensional cusp of the modular
variety SO+(L)\DL. We choose a basis of L of the form (e, e1, . . . , f1, f).
The subgroup ΓJ(L0) of PF of elements acting trivially on the sublattice L0

is called the Jacobi group.
The Jacobi group is isomorphic to the semidirect product of SL2(Z) with

the Heisenberg group H(L0), the central extension Z ⋊ (L0 × L0). More
precisely (see [Gr2] for more information) we define elements [A] ∈ ΓJ(L0)
for A ∈ SL2(Z) and [u, v; z] ∈ ΓJ(L0) for u, v ∈ L0, z ∈ Z by

[A] :=



A∗ 0 0
0 1n0

0
0 0 A


 ,
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[u, v; z] :=




1 0 −tvS0 −(u, v) − z −(v, v)/2
0 1 −tuS0 −(u, u)/2 z
0 0 1n0

u v
0 0 0 1 0
0 0 0 0 1



,

where S0 is the matrix of the quadratic form L0 of rank n0, we consider u
and v as column vectors, and A∗ = ( 0 1

1 0 )A−1 ( 0 1
1 0 ). Thus any element of

ΓJ(L0) may be written in the form [A] · [u, v; z] for suitable A, u, v and z.
The Jacobi group is generated by the transvections

t(e, f1) = [( 1 1
0 1 )] , t(f, e1) =

[(
1 0
−1 1

)]
, (11)

t(e, v) = [0, v; 0], t(e1, u) = [u, 0; 0], t(e, e1) = [0, 0; 1]. (12)

Note that t(e, e1) generates the centre of the Heisenberg group. It is easy to
see, using only the elementary divisor theorem, that

SL2(Z) × SL2(Z)/{±(12,12)} ∼= SO+(U ⊕ U1).

If we identify xe + x1e1 + y1f1 + yf ∈ U ⊕ U1 with X =
( x1 x

y −y1

)
, the

isomorphism is given by

(B,A) 7−→
(
X 7→ BXA−1

)
. (13)

The map X → BXA−1 certainly preserves the quadratic form − detX. Its
kernel is the centre ±(12,12) of SL2(Z) × SL2(Z). The first copy of SL2(Z)
(parametrised by B in (13)) is generated by the transvections t(e, e1) and
t(f, f1), the second by t(e, f1) and t(f, e1). From the representation above
and from the elementary divisor theorem for 2×2 matrices there follows the
next lemma, which is well-known.

Lemma 3.2 SO+(U ⊕ U1) is generated by the four transvections t(e, e1),
t(e, f1), t(f, e1) and t(f, f1). For any v ∈ U⊕U1 there exists g ∈ SO+(U⊕U1)
such that g(v) ∈ U1.

3.3 The group E(L) of unimodular transvections

The divisor div(l) of l ∈ L is the positive generator of the ideal (l, L) ⊂ Z,
so l∗ = l/div(l) is a primitive element of the dual lattice L∨. Therefore l∗

(mod L) is an element of order div(l) of the discriminant group D(L) and
div(l) is a divisor of ord(D(L)) = |det(L)|. One can complete an isotropic
element e ∈ L to an integral isotropic plane U = Ze⊕Zf ⊂ L if and only if
div(e) = 1. We call such an isotropic vector unimodular. For a unimodular
isotropic vector e we have L = U ⊕ L1.

We define E(L) to be the group generated by all transvections by uni-
modular isotropic vectors:

E(L) := 〈{t(e, a) | e, a ∈ L, (e, e) = (e, a) = 0, div(e) = 1}〉.
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We have seen that E(L) is a subgroup of S̃O
+
(L). Now let us fix a uni-

modular isotropic vector e ∈ L and the decomposition L = U ⊕ L1 where
U = Ze⊕ Zf . Then we set

EU (L1) := 〈{t(e, a), t(f, a) | a ∈ L1}〉.

Proposition 3.3 Let L = U ⊕ U1 ⊕ L0, where U = Ze ⊕ Zf , U1 is the
second copy of the integral hyperbolic plane in L and L1 = U1 ⊕ L0.

(i) If u, v ∈ L are primitive, (u, u) = (v, v) and u∗ ≡ v∗ mod L, then
there exists τ ∈ EU (L1) such that τ(u) = v.

(ii) E(L) = EU (L1).

(iii) O(L) = 〈EU (L1), O(L1)〉.

(iv) For any (−2)-vector r ∈ L there exists ρ ∈ EU (L1) such that σr =
ρ · σe−f .

Proof. (i) First we note that div(u) = ordD(L)(u
∗). Therefore div(u) =

div(v) = d. According to Lemma 3.2 there exists τ1 ∈ EU (U1) such that
τ1(u) ∈ L1. Thus we may assume that u and v are in L1. Then we can
realise the translation by w = (u − v)/d in the sublattice L1 orthogonal to
U as a composition of Eichler transvections:

u
t(e,u′)
7−→ (u− de)

t(f,w)
7−→ (v − de)

t(e,−v′)
7−→ v,

where u′, v′ ∈ L1 are such that (u, u′) = (v, v′) = d.

(ii) Let t(u, a) be an arbitrary unimodular transvection in E(L) with
(u, u) = 0 and div(u) = 1. According to (i) there exists τ ∈ EU (L1) such
that τ(u) = e. By equation (6) we obtain that τ t(u, a)τ−1 = t(τ(u), τ(a)) =
t(e, τ(a)) is in EU (L1).

(iii) Let g ∈ O(L). According to (i) and (ii) there exists τ ∈ EU (L1)
such that τ(g(e)) = e. We have

(
τg(e), τg(f)

)
= (e, τg(f)) = (e, f) = 1.

Therefore

(τg)(f) = f + b−
1

2
(b, b)e = t(e, b)(f),

where b ∈ L1. Now we see that h = t(e,−b)τg acts trivially on U . Therefore
h ∈ O(L1).

(iv) There exists τ ∈ EU (L1) such that τ(r) = a ∈ L1. According to
equation (9)

τσrτ
−1 = σa = t(f, a) t(e,−a) t(f, a)σe−f

(σa and σe−f commute). To finish we use that σe−fτσe−f ∈ EU (L1) for any
τ ∈ EU (L1). 2
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Notice that (iii) is true for all the groups we have considered: for instance,

Õ
+
(L) = 〈EU (L1), Õ

+
(L1)〉 and similarly for SO, S̃O, etc.. This is because

in the proof of (iii) the product t(e,−b)τ ∈ S̃O
+
(L), which is a subgroup of

all of these groups.
All the results of Proposition 3.3 are essentially to be found in [Ei].

(i), which is sometimes called the Eichler criterion, is proved in [Ei, Satz
10.4] for lattices over local rings. See also the second proof given in “An-
merkungen zum zweiten Kapitel” [Ei, p. 231]. There is a global variant in
[Br, p.85]. (iii) was proved in [Wa, 5.2] for unimodular lattices (see also
[P-SS], [Eb], [Gr2]). One can prove (ii), under an additional condition on
rankπ(L) for all primes ideals π, over any commutative ring, but the proof
is much longer: see [Va1, Theorem 3.3(a)]).

Proposition 3.3 gives us the following result about generators of the or-
thogonal group which was briefly indicated in [Gr2, p.1194].

Proposition 3.4 Let L = U⊕U1⊕L0 be an even lattice with two hyperbolic
planes, such that rank3(L) ≥ 5 and rank2(L) ≥ 6. Then

S̃O
+
(L) = O′(L) = E(L) = EU (L1) (14)

and
Õ

+
(L) = 〈ΓJ(L0), σ1〉, (15)

where L1 = U1 ⊕ L0, ΓJ(L0) is the Jacobi group, U1 = Ze1 ⊕ Zf1 and
σ1 = σe1−f1

.

Proof. According to Proposition 3.3(iv) the product σaσb of any two reflec-
tions with (a, a) = (b, b) = −2 belongs to E(L). Therefore from Theorem 1.1
and Proposition 3.3(ii) it follows that

S̃O
+
(L) = O′(L) = E(L) = EU (L1) = 〈{t(c, a) | a ∈ L1, c = e or f}〉.

(16)
The Jacobi group ΓJ(L0) contains the transvections t(e, v) (v ∈ L1) and

t(f, e1) (see (11)–(12)). To have the whole group S̃O
+
(L) = E(L) we have

to add t(f, u + xf1) with u ∈ L0 and x ∈ Z. The SL2(Z)-subgroup of the
Jacobi group is generated by t(e, f1) and t(f, e1). Consider the element
S =

[(
0 −1
1 0

)]
∈ ΓJ(L0). We have

S(e) = −e1, S(f) = −f1, S2 = − id .

Using equation (6) we deduce

σ1t(f, e1)σ1 = t(f, f1),

(Sσ1Sσ1)t(e, u)(Sσ1Sσ1)
−1 = t(f, u) for all u ∈ L0.

Therefore 〈ΓJ(L0), σ1〉 contains all the generators of EU (L1). The proposi-
tion follows from equation (16). 2
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4 Strong Approximation

In this section we prove Theorem 1.7, and make some remarks about similar
results over number fields.

It is enough to prove Theorem 1.7 for S̃O
+
(L) (or, equivalently by equa-

tion (16), for E(L)), because Õ
+
(L) = 〈S̃O

+
(L), σe−f 〉. Vaserstein [Va1,

Theorem 3(c)] did this under the extra assumption that that rankp(L) ≥ 5
for any odd prime p.

Our method is different and Theorem 1.7 does not have the infinite set
of conditions rankp(L) ≥ 5 for p > 3. We use the strong approximation
theorem (L is indefinite) and the positive solution of the principal congruence

problem for the spinorial kernel O′(L) = S̃O
+
(L) for a lattice L with real

Witt index ≥ 2 (see [Kn2, 11.4]).

4.1 Proof of Theorem 1.7

First we note that [E(L), E(L)] is an infinite normal subgroup of O′(L)
which is not a subgroup of its centre. Therefore [E(L), E(L)] contains a
congruence subgroup of O′(L) of some level m. We may assume that 6
divides m. According to Proposition 3.3(ii), the group E(L) is generated
by all t(e, u) and t(f, v) where u, v ∈ L1. We prove that these generators
are the products of commutators in E(Lp), where Lp = L ⊗ Zp, for any
prime divisor p of m. For this purpose we introduce the Eichler orthogonal
transformation P (s) ∈ SO(L⊗ Qp) for s ∈ Q×

p :

P (s) : e 7−→ s−1e, f 7−→ sf, u 7−→ u ∀ u ∈ L1.

We have P (s)−1 = P (s−1). We can describe P (s) in terms of reflections
because σe−sf = P (s−1)ψ, where ψ ∈ O(L) is the permutation of e and
f . Thus P (s) = σe−fσe−sf . The following formula (see [Ei, (3.16)]) can be
obtained as a corollary of (10):

t(f, sw)t(e,w) = t(e, (1 − sw2

2 )−1w) t(f, s(1 − sw2

2 )w)P ((1 − sw2

2 )2) (17)

for any w ∈ L1 ⊗ Qp and s ∈ Qp such that 1 − sw2

2 6= 0. In particular for
any v6 ∈ L1 ⊗ Zp such that (v6, v6) = 6 and s = 1 we obtain that P (4) is a
commutator in E(Lp) if p 6= 2:

P (4) = t(f, 2v6)t(e, 2
−1v6)t(f, v6)t(e, v6). (18)

It follows that t(e, u) and t(f, v) are commutators in E(Lp) if p 6= 2 or 3:

t(e, u) = P (4)−1t(e, 3−1u)P (4)t(e,−3−1u). (19)

Now we consider p = 2. Let L = U ⊕ U1 ⊕ L0, with U = Ze ⊕ Zf and
U1 = Ze1 ⊕ Zf1. For any u orthogonal to e and f1 we have

t(e1, u)(e) = e, t(e1, u)(f1) = f1 + u−
1

2
(u, u)e1.
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Therefore for any s ∈ Q×

2 we have

[t(e,−sf1), t(e1, u)] = t(e, su− su2

2 e1).

Using the same formula for v and −(u + v) we obtain the following repre-
sentation

t(e, s(u, v)e1) =

[t(e,−sf1), t(e1, u)] · [t(e,−sf1), t(e1, v)] · [t(e,−sf1), t(e1,−u− v)].

Since rank2(L) ≥ 6, we can find u, v ∈ L0 ⊗ Z2 such that (u, v) ∈ Z×

2 .
Therefore taking s = (u, v)−1 we obtain t(e, e1) as the product of three
commutators in E(L ⊗ Z2). The same argument works for t(e, f1). Then
we can replace e1 by any unimodular isotropic vector of the form e′1 =

e1 +w − w2

2 f1 where w ∈ L0. We note that (e′1, f1) = 1. We can repeat the
arguments above for this new hyperbolic plane U ′

1 = 〈e′1, f1〉 and we obtain

that t(e, e1 +w− w2

2 f1) belongs to the commutator subgroup of E(L⊗Z2).

Using t(e, e1), t(e, f1) and t(e, e1 + w − w2

2 f1), we see that t(e, l) for any
l ∈ L1 is a commutator in E(L⊗ Z2).

For p = 3 we can use the same calculation with a vector u ∈ L0 such that
(u, u) ∈ Z×

3 (rank3(L) ≥ 5).
We have proved that the generators t(e, u) and t(f, v) (u, v ∈ L1) are

elements of the commutator subgroup of E(Lp) for any prime divisor p of
the level m. So we can write

t(e, u) = [t
(p)
1 , t

(p)
2 ] · . . . · [t

(p)
2n−1, t

(p)
2n ],

where the index n does not depend on p (some of the factors may be trivial).
We denote this product of commutators by [[ti]].

Using the strong approximation theorem for the spinorial kernel O′(L)
(see [O’M, 104:4]) we find hi ∈ O′(L⊗ Q) such that

‖t
(p)
i − hi‖p < ε ∀ p|m and ‖hi‖p = 1 ∀ p ∤ m.

If ε is sufficiently small then hi ∈ O′(L) and ‖t(e, u)[[hi]]
−1−1‖p will be small

for any prime divisor of m. Then t(e, u)[[hi]]
−1 ≡ 1 mod m. It follows that

t(e, u) belongs to the commutator subgroup of O′(L) = E(L).
This completes the proof of Theorem 1.7.

4.2 Orthogonal groups over number fields.

A version of Theorem 1.1 holds over an algebraic number field. To formulate
this, collecting the remarks in [Kn1, §5], we must give a suitable extended
version of the Kneser conditions. We say that a lattice L over the ring of
integers OK of a number field K satisfies the Kneser conditions if L is even

14



and represents −2; there exists a real place ν of K such that the Witt index
of L⊗Kν is at least 2; and the the π-rank rankπ(L) is at least 5 (respectively
at least 6) if π is a place such that the residue field kπ is F3 (respectively
kπ = F2).

Theorem 4.1 ([Kn1]) Suppose L is an integral lattice over OK satisfying
the Kneser conditions. Then O′(L) = SO(L) ∩ ker snK is generated by the
products of reflections σaσb where a, b ∈ L and a2 = b2 = −2.

In this context we have the following result, analogous to Theorem 1.3
and Theorem 1.7.

Theorem 4.2 Let L be a lattice over the ring of integers OK of an algebraic
number field K which satisfies the Kneser conditions. Then O′(L)ab is an
abelian 2-group. Its order divides 2N−1, where N is the number of different
O′(L)-orbits of (−2)-vectors in L.

If L contains two hyperbolic planes and OK is a principal ideal ring then
O′(L)ab is trivial.

Proof. The first part of the theorem is similar to Theorem 1.3. We show
briefly how to generalise the proof of Theorem 1.7 to the case of algebraic
number fields. According to [Va2] (see also [HO’M]) the group SL2(OK) is
generated by the unipotent matrices ( 1 a

0 1 ) and
(

1 0
b 1

)
where a, b ∈ OK .

If OK is a principal ideal domain then Lemma 3.2 is still true if we replace
SO+(U⊕U1) by O′(U⊕U1). The proof is the same: one uses the action (13)
and the elementary divisor theorem, which is true for principal ideal domains
in its classical matrix form (there exist g, h ∈ SL2(OK) such that gMh is
diagonal). Moreover using (11) and Vaserstein’s result from [Va2] we obtain
O′(U ⊕ U1) = E(U ⊕ U1). Using this version of Lemma 3.2, we see that
Proposition 3.3 is still true over a principal ideal domain. (There are no
changes in the proof.) Now we can repeat the proof of Theorem 1.7 using the
strong approximation theorem and the positive solution of the congruence
subgroup problem (see [Kn2]). 2

5 Fundamental groups

In this section we use our results above to compute the fundamental groups
of some locally symmetric varieties and their compactifications.

Let D be a bounded symmetric domain and let Γ be an arithmetic group
acting on D. Put X = Γ\D.

Lemma 5.1 There is a surjective homomorphism Γ ։ π1(X), which is an
isomorphism if Γ acts freely on D.
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Proof. The map φ : Γ → π1(D/Γ) is defined as follows. Choose a base point
p0 ∈ D, and suppose γ ∈ Γ. Since D is connected and simply-connected, we
may join p0 and γ(p0) by a path σγ and any two such paths are homotopic.
The quotient map π : D → Γ\D makes this into a loop π ◦ σγ based at
x0 = π(p0), and we define φ(γ) to be the homotopy class [π◦σγ ] ∈ π1(X,x0).

However, π1(X,x0) is isomorphic to π1(X,x) for any base point x ∈ X.
It is easy to check that the map φ is well-defined and has the required
properties. 2

Lemma 5.2 If γ has fixed points in D then γ ∈ ker φ.

Proof. In the proof of Lemma 5.1 we may choose p0 and σγ freely, so we
choose p0 to be a fixed point of γ and σγ to be the constant path at p0.
Then [π ◦ σγ ] = 1. 2

Now we pass to compactifications of X. Let X denote a normal com-
pactification of X and let X̃ denote a projective smooth model of X.

Proposition 5.3 There are surjections Γ ։ π1(X̃) and Γ ։ π1(X), both
factoring through φ : Γ → π1(X).

Proof. Note first of all that π1(X̃) does not depend on the choice of the
model X̃ (see for example [HK] or [Sa, Lemma 1.3]). So we may take
a toroidal compactification X ′ of X with only finite quotient singularities
and X̃ a resolution of X ′. Since X ⊂ X ′ there is a surjection π1(X) →
π1(X

′). By [Kol, §7], resolving finite quotient singularities does not change
the fundamental group, so we have (by, for example, [Sa, Lemma 1.2]) a
surjection Γ ։ π1(X̃) factoring through π.

For the case of X, in particular for the Satake compactification, one may,
as in [Sa, p. 42], apply the remark [Fu, p. 56] that the inclusion of an open
subvariety in a normal variety induces a surjection on fundamental groups.

2

Corollary 5.4 If Γ is generated by elements γ ∈ Γ with fixed points in D,
then π1(X) = π1(X̃) = 1.

Proof. This follows immediately from Lemma 5.2 and Proposition 5.3. 2

For an integral lattice L of real signature (2, n) one can determine the
hermitian homogeneous domain of type IV

D(L) = {[Z] ∈ P(L⊗ C) | (Z,Z) = 0, (Z, Z̄) > 0}+

where + means a connected component. In [GHS1]–[GHS3] we studied the
geometry of the modular varieties

F(L) = Õ
+
(L)\D(L) and SF(L) = S̃O

+
(L)\D(L).
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For L = L2d (see (3)) the variety F2d = F(L2d) is the moduli space of K3
surfaces with a polarisation of degree 2d. The variety SF2d corresponds to
the addition of a spin structure (see [GHS1, § 5]).

Theorem 5.5 Let L be a lattice with signR(L) = (2, n) satisfying the con-
dition of Theorem 1.7. Then F(L) and SF(L), as well as any smooth
complete model of F(L) or SF(L), are simply connected. In particular this
is true for the moduli spaces F2d and SF2d.

Proof. In view of Corollary 5.4 it is enough to verify that Õ
+
(L2d) and

S̃O
+
(L2d) are generated by elements having fixed points in DL2d

. It is easy
to see that L2d satisfies the Kneser conditions. So by Theorem 1.1 and

Corollary 1.2, S̃O
+
(L2d) = O′(L2d) is generated by products of pairs of

reflections, and Õ
+
(L2d) is generated by reflections. Both reflections and

the products of two reflections have fixed points, so the result follows. 2

Proposition 5.6 The moduli space E of Enriques surfaces, and any smooth
compactification of it, are simply-connected.

Proof. This follows from the hard fact that the moduli space of Enriques
surfaces is rational [Ko3]. However, for simply-connectedness we can give
a quick proof using the results above. The moduli space E is associated
with the lattice L = U(2) ⊕ U ⊕ E8(−2), which has 2-rank 2 and therefore
does not satisfy the Kneser conditions. But E = O+(L)\DL is also equal to
O+(L′)\DL′ , where L′ = U ⊕ U(2) ⊕ E8(−1), since L is obtained from L′

as the sublattice of L′(2) of index 4 where the generators e, f of U(4) are
replaced by e/2 and f/2: see [Ko3].

Since L′ does satisfy the Kneser conditions, Theorem 1.3 tells us that

Õ
+
(L′) is generated by pairs of reflections, and these have fixed points. But

Õ
+
(L′) is of index 2 in O+(L′), and the reflection that interchanges the two

generators of U(2) is the extra generator that we need. It also has fixed
points in DL′ , so by Lemma 5.4 we are done. 2

Apart from elements with fixed points there are also other elements in
the kernel of Γ ։ π1(X), namely those coming from the unipotent radical
of parabolic subgroups. By Lemma 3.1, a unimodular transvection t(e, v)
is determined by a unimodular isotropic vector, e2 = 0, div(e) = 1, and
by v ∈ e⊥L . Thus e defines a zero-dimensional cusp of the modular vari-

ety X = S̃O
+
(L) \ DL. In other words t(e, v) is an element of the corre-

sponding parabolic subgroup P , and hence it belongs to the centre of the
unipotent radical UP of P . Different transvections correspond to different
0-dimensional cusps. According [Sa, Theorem 1.5] and [Sa, Corollary 1.6],

E(L) is contained in the kernel of the surjection φ : S̃O
+
(L) → π1(X̃).
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For the moduli space At of abelian surfaces with a polarisation of type
(1, t) the lattice that occurs is Λ2t = 2U ⊕ 〈−2t〉 and the group is the
paramodular group Γ2t. As we have seen, both the Kneser conditions and
the conclusions of Theorem 1.3 fail in this case. However, the results of this
paper together with those of [Sa] still give us results about the fundamental
groups.

Theorem 5.7 Any smooth model Ãt of a compactification of At is simply-
connected.

Proof. We cannot apply Proposition 3.4 to the lattice Λ2t but the last
identity (15) of this proposition is still true for Λ2t. According to [GH2]

there exists an isomorphism Φ: Γt/{±1} → S̃O
+
(Λ2t). For the paramodular

group Γt we have

Γt = 〈ΓJ
t , Jt〉 where Jt =




0 0 −1 0
0 0 0 −1/t
1 0 0 0
0 t 0 0




and ΓJ
t is the Jacobi subgroup of the paramodular group. This follows from

the elementary divisor theorem for the symplectic group: see, for exam-
ple, [Gr1].

We know (see [GH2]) that Φ(ΓJ
t ) = ΓJ(Λ2t), which is generated by

transvections (see Subsection 3.2). Then

Φ(Jt) =




0 0 0 0 −1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
−1 0 0 0 0




= σe+f σe1+f1

where we use notations of Subsection 3.2. As in the proof of Proposition 1.6
we see that Φ(Jt) is a transvection. Therefore

S̃O
+
(Λ2t) = E(Λ2t), Õ

+
(Λ2t) = 〈ΓJ(Λ2t), σe1−f1

〉 (20)

2

In [Sa, Theorem 3.4] it was proved that Ãp is simply-connected for any
odd prime p. Also in [Sa] one may find examples of locally symmetric
varieties that are not simply-connected. However, in all these cases one
has, in particular, that the fundamental group is finite and therefore the
irregularity is zero.

In a similar way, by combining the results of [Sa] and those of Subsec-
tion 4.2, one can prove that some Shimura varieties (considered as complex
manifolds) are simply-connected.
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sur un espace de dimension 4. J. Théorie des Nombres de Bordeaux
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