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Abstract

In this paper we prove Takhtajan'sconjecture that Nambu-Poissoll tensor which defines
Nambu bracket in Nambu mecllanics is decomposible.
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1 Introduction

Nambu mechanics is a natural gencralization of Hamiltonian mechanics [1,2,3,4]. It is
defined by Nambu bracket, IR.-polylinear completely antisymmetric operation {lI, ... , Im}
in the space COO(M) of functions on a manifold M, which generalized the bilinear Poisson
bracket {/I,lz}. Any rn-I functiolls H I , ... Hm - 1 E COO(M) (Nambu-Hamiltonians )
determine a Nambu-Hamiltonian flow

dl
-d = {/,HI, ... ,Hm-dt.

on thc mallifold At!. Jacobi idcntity for Poisson bracket is replaced by fundamental ( or
generalized Jacobi) identity which states that a Nambu-Hamiltonian flow preserves the
Nambu bracket.

All example of Nambu bracket is the canonical Nambu bracket on M = IRn with the
standard coordinates Xl, ••• , In given by

ß(/ll ... , Im)
ß(Xl' . .• , X m )'

where the right hand siele stands for the Jacobian of the mapping

It is c1ear from the definition of Nambu bracket that it contains an infinite family of
"subordinated" Nambu strllctllre of lower degree, including Poisson structure. Fundamen
tal identity imposes strong conditioll on thc possible form of Nambll bracket, hence the
structure of Nambu bracket is more rigid than Poisson bracket. In addition to quadratic
differential equations, it also satisfy an overdetermined system of quadratic algebraic equa
tions for Nambu bracket tensor.

We prove than in fact any Nambu bracket is locally isomorphie to the canonical Nambu
bracket of the above examplc , as it was conjcctul'cd by L.Takhtajan [5]. Let us begin
with definition of Nambu-Poisson manifold .

Definition 1 Let At! be a smooth finite dimensional manifold with algebra of functions
Coo (M) anel Lie algebra of vector fields X(A1). M is called Nambu-Poisson manifold if
there exists a multi-linear map

VII, Iz, ... , Izm+l E Coo (lvI),

(11, .. ., Im-d l---7 ··'-Y.h, ... ,f.,.-l·

such that the bracket defined by

{I, 11, ... ,Im-d := ..:Y.h ... / ..._11
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is skew symmetrie in all arguments and is invariant under any Hamiltonian veetor fields
)( = .:Y/t.,,/... , Le.

(1)

Similar to a Poisson structure, Nambu-Poisson structure is defined by a m-polyvector

by

where (Xl"'" X m ) are loeal coordinates alld Oi n = 8~n'

The equation (1) means that the bracket {lI,"" Im-I, Im} satisfies the following
fundamental identity

{{lI, , Im-I, Im} I Im+ll ' , , , 12m- tl + {Im , {lI, ' , . Im-I, fm+l}, Im+2, , f2m- tl (2)

+ + {Im, , .. , f2m-21 {ft, , .. , fm-t, f2m-tl} = {ft, .. , I Im-1, {fm, , 12m-tl}·

Incidentally Takhtajan has written fundamental identity in this form.

Takhtajan [5] proved that the fundamental identity (2) is equivalent to the following
differential and algebraie constraint equations of Nambu-Poisson tensor pi}J ... ,i rn (x) :

for aB i 2 , ••• ,im , j11 ... ,jm = 1,"',/ll, and

(4)

where

Sii = pi1 ... i rn pil .. .j,.+pi... i1(} .. .j,.-li'J pil ...i,.-li'J+.. ,+pi.. i'J ... in_1i l pil"jrn-liI_pirni'J'" piI· .. jrn-lil

(5)
and P is the permutation operator which interchanges the indiciees i 1 and j1 of 2m
dimensional tensor S. He proved that any decomposable polyvector
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satisfies these constraints and hence defines a Poisson-Nambu tensor and conjectured that
any polyvector P which satisfies the algcbraic equation (4) is decomposable. To prove
this conjeeture we reformulate (4) in coordinate free way.

EarHer Larry Lambe using symbolic computations technique varified in some cases the
dccomposibility of Nambu tensor. Anyway, berorc Icaving this section let us dc-cmphasised
the main slogan of Takhtajan:

Conjecture 2 Any Nambu-Poisson tensor P E r(!\mTM) for m > 2 is dec01nposible.

Notation: In this paper we shall denote wedge product by !\ and symmetrie product
by V.

2 Reformulation of Fundamental identity
Now we write the aJgcbraic Takhtajan idcntity (4) for polyvector P in a point 0 EMin
coordinate free way. Let us denote by V = ToM the tangent space at the point 0 and
by

P1/ = < P,7} >E I\m-kv

result of the natural pairing between a polyvector P E !\mv and k-form 1] E I\kV· ,k ~

m.

Lem ma 3 The algebraic Takh tajn n iden tily (4) for m -polyvector P E 1\m V is equivale 11 t
lo the identity

m

'L)Pa I\8'l.fI P1/;I\ßI\r/> + Pß I\ 8 'li1/P1/iI\OI\r/» = 0,
i=l

for any 0', ß, 171, .. ·1]m E V·, 1> E !\m-
2 V·, 1] = 1J1!\"'!\ 11m, whe1Y~

Proof: For any I-forms 0', ß, ~2"", ~m-1, 1]1, .. ,,1]m E \I. = T; M , we ehoose func
tions 111'" 1 Im-1, gl, ... ,gm such that,

i 2 .
11 = dgil o 1 d gdo = 0 e = d/ilp1 j > 1.

d2/ilo = 0 Vi>O 1df11o=0

d2/do = Q' <'8 ß+ ß0 0: = 0' V ß·
Thc fundamental idcntity can be written as

)( . P(dgl"'" dgm ) = P(d(){ . gl), dg2 , ...... , dgm ) + ... + P(dg1 , ••• , d(.X . gm) (6)

= P(d()(· gl), dg 2 ,· •. , dgm ) - P(d( ..Y . 92)' dg1, dg21 ••• dgm ) + P(d( ..y . g3), dg1 , dg21 dg31
1 dgm) + ... + (_1)m-1 P({l()( . 9m), dg 11 "" 1rigm )

where
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Hence we obtain

d()( . gl)10 = dP(dgl' dl1 , ••• , dlm-dlo
=P(r/,O'V ß,E2

," .,~rn-l)

= P(r/, O',~2, ... ,~m-l)ß + P(r/, ß, ~2, ... , ~rn-l)O'

= P,.,I AetA,pß + P,.,IAßA4JCr',

(7)

where 4> ~2 /\ ... /\ ~m-l. Similarly wc gct,

d()( . gi) 10 = P(dgi , (P11, d/2 , •.• , dIrn-I) 10

= P(r/,O'V ß,E2
, •• • ,Em

-
1

)

=PtjiAaA,pß + P,.,iAf3ArjlD:.

(8)

Taking into account that ..,\'"10 = 0 we obtain

o= P(0', dg21 ••• I dgm)l 0 P,., 1Aß"rP + P(ß, dg'::h ... , dgm)1oP,., 1Aa"t/J' (9)

+ + P(dg1 , , dg i - 1 , 0', dgi+11 ••• , dgm) loP,.,i"ß"rP + P(dg11 • •• I dg i - ll ß, dgi+l"'" dgm) IOP,.,;"a"';'

+ = PetA,.,'JA Atjm Ptjl AßA.p + Pß"tj'J", .. Afl m Ptjl a".;. + .
+ (-1)i-l PetA ,., 1" ..."rj i" ... "tj .... Ptj 1".0"';' + (-1) i -1 Pß",., I" rj; " ... ",.,'" P,., 1Ao:"rP +...

rn

= L (Pa"8Fl ;,., Ptjj "ß"rP + PßA8Fli'" P",;"etArP)'
i=l

This proves the lemma. 0
To rewrite the identity in more simple way we introduce the following Koszul type

operator:

by the formula

d(P 0 P)(O' V ß 0 4» = Pa /\ PßA<p + Pß /\ Pa"rPl

for G', ß E \I- and 4> E /\m-2 \1-. Here Pa denotes contraction of P by G' etc. Hence Pa

, Pß are m - 1 polyvectors and PßArP , Pa"rP are vectors.
Note that d = 0 for m = 2.

Let us make aremark that for a decomposable m polyvector 'Ij; = 7]1 /\ ... /\ 17m we
have

m •

= L (POA8Flj'" P"'i"ßA" +PßA8Fli 'l P'li"O:"rP)'
i=l

Hence we have

Corollary 4 A polyvectol' P E /\m \I satisfies the algeb1'Clic Takhtajan identity iff

d(P0 P) = O.
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3 Properties of Nambu-Poisson operator

In fact d is composed of two operators d l and d2 ,

dl : I\mV 0 I\mV ---+ S2V 0 I\m-Iv 0 I\m-lv

and

defined by

and

d2 (S 0 P 0 Q) = S 0 L Pek 0 ek 1\ Q.

Here S E S2V and {ed is a basis of \I and {ei} is the dual basis of V·. Hence d is
written as

cl = d2 odl •

Given any contravariant In-tensor T E VOm we will denote by SUpp T its support,
that is subspace of V generated by contructions of T with all covariant (m - 1) tensors.
Since the operator d is the sum of the permutations of tensor factors, we have

supp d(P V Q) = supp (P V Q)

for any P, Q E 1\mv .
Let now T E VOm is a contravariant tensor and e is a non-zero vector. We say that

T contains factor e with multiplicity k if any non-zero coordinate Ti\, ... ,i.,. of T with

respect to a base eo = e, el, ... ,en -l of V has at least k zero indices and there is a
coordinatc which has exactly k zero indices. In other terms, T is decomposed as a linear
combination of dccomposable tensors eil 0 ... 0 ei.,. each of them has at least k-factors
eo = e.

It is clear that this definition is correct (i.c. does not depend on the choice of the base
€o = e,"', en -l and the multiplicity k of a factor e in T does not change after any
transformation of T which is a linear combination of permutations.

Using this argument, we get:

Lemma 5 Let Q E Arn - 1V, R E I\m \I be po/yvectors and e is a vector such that e ~

supp Q + supp R. Then the polyvecto r P = e A Q + R satisjies the equation d(P 0 P) = 0
iff

d(Q 0 Q) = 0, d((e 1\ Q) V R) = 0, d(Rf3; R) = O.

P roof: 'vVe know

d(P0 P ) = d(eAQ0eAQ)+d(eAQV R)+d(R0R) = O.

Since the summands contain the vector e with the multiplicity 2, 1 and 0 respectively,
they are Iinearly dcpendent only when they are identically zero.
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U and denote by

It remains to prove now that

d( e /\ Q ® e /\ Q) = 0

implies d(Q <9 Q) = O. Let us consider a basis el,' .. , ek of supp Q
e l

, ... , ek the dual basis of U*. Using definition of d, we obtain

o = d(e /\ Q 0 e /\ Q)

=(e®e) 0d2(Q ®Q) - L(eV ei) 0 d2(Q V (eI\Qe i ) + L(ei V€j) <9 d2((eI\Qe i ) V(eVQei)).
i i,j

Since tensors e <9 €, e V ei, ei V ej are linearly independent, we have

o = L(ei Vej) 0 d2 ((e 1\ Qe i ) V (e /\ Qei))
i,j

iJ

iJ

= (e<9 e)i\d(Q <9 Q).
where i\ is the l( ulkarni-Nomizll product in the space /\ V 0/\V of bipolyvectors defined

by
(A <9 B)i\(C ® D) = (A 1\ C) <9 (13 1\ D),

for A, B,C, D E 1\ II .

Note thate1:. Sllpp d(Q®Q) = supp Q. This implies that the operator of Kulkarni
Nomizu multiplication by e ® e is non-degenerate and we obtain

d(Q ® Q) = o.
o

Lemma 6 Let P = el /\ ••• 1\ Cm nnd R = 11 /\ ... /\ Im be decomposable non zero
m-polyvectors. Then

d(PV R) = 0

iff R is proportional to P: RAP.

Proof: We can write P = E 1\ pI, R = E 1\ R' , where E, pi, R' are decomposable
polyvcctors and

supp pi n supp R' = O. (10)

Using the arguments as in the proof of Lemma 6, we assert d(P V R) = 0 implies
d(P I V R' ) = O. Suppose that deg pi = deg Q' = k > O. Then the we can write

P' = e; 1\ ... 1\ e~, R' = f; /\ f~.

Condition (10) im plies that the vectors e~,· .. , e~, f{, , f{ are linearly independent.
Then one can check immediately that

This contradiction shows k

d(PI
V R' ) f:. O.

o and R = AP. 0
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4 Proof of Takhtajan's conjecture

We want to prove the following:

Theorem 7 A polyvector P E t\mv, rn > 2 satisfies the algebraic Takhtajan identity
d( P ® P) = 0 iff it is decomposable, i. e. P = Cl /\ ... t\ em , for some vectors el, .. " e m •

Proof: We will assume that supp P = V alld we will use rnethod of induction on
n = dim V. Let d(P0 P) = 0 for P f; 0 and 0 f; e is a vector which belongs to supp
P 1 choose Q E t\m-l V anel R E t\m-l V such that

P = e t\ Q+ Fl, e ~ ( supp Q+ supp R) \f'

By Lemma 5,
d(Q 0 Q) = 0 d(R 0 R) 0

d(e t\ Q V R) = O.

Since dirn supp Q < n and the dirn supp R < n by inductive conjecture we mayassurne
that Q and Rare decomposable. Then Lemma 6 shows that R = 0 and P = e/\Q = e/\
€l t\ ... /\ €m-l is decom posable polyvector. 0

As a corollary we obtain the following local dcscription of Nambu-Poisson tensors on
a rnanifold M.

Corollary 8 Let Ivl be Cl Nambu-Poisson manifold with Nambu-Poisson tensor P E
r(/\mT NI), m > 2. Assume that Px f:. 0 for some point x. Then there exist a local
coordinates Xl' ... , X n in a neighbourhood 0 f x such that

Proof:
By Theorem 7, in some neighbourhood of the point x there exist independant vector

fields ..:Y1, ... 1 ..:Ym such that P = ~y1 t\ . ..1\. .•,y.m' It is su fficient to prove that rn-dimensional
distribution supp? generated by vector fields ..:Y j is involutive. This follows from the facts
that this distribution is generated also by all Narnbu-Hamiltonian vector fields ":Y1l, ...,1",-1

and that Nambu- Hamiltollian vector fields are c10sed under the Lie bracket. The last
statement follows immediately from fundamental identity. D
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