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Abstract

In this paper we prove Takhtajan’s conjecture that Nambu-Poisson tensor which defines
Nambu bracket in Nambu mechanics is decomposible.



1 Introduction

Nambu mechanics is a natural generalization of Hamiltonian mechanics [1,2,3,4]. [t is
defined by Nambu bracket, R-polylinear completely antisymmetric operation {f1,..., f}
in the space C*°(M) of functions on a manifold M, which generalized the bilinear Poisson
bracket {fi,f2}. Any m-1 functions H,,...H,_, € C*(M) (Nambu-Hamiltonians )
determine a Nambu-Hamiltonian flow

df

a = {sz11'°°1Hm-1}

on the manifold A . Jacobi identity for Poisson bracket is replaced by fundamental { or
generalized Jacobi) identity which states that a Nambu-Hamiltonian flow preserves the
Nambu bracket.

An example of Nambu bracket is the canonical Nambu bracket on M = R"™ with the
standard coordinates z,,...,z, given by

d 1y 1vJdm
{flf"'vfm} = a((;:“.—n’in‘;)

where the right hand side stands for the Jacobian of the mapping

f = (flv---afm) : R™— R™.

It is clear from the definition of Nambu bracket that it contains an infinite family of
"subordinated” Nambu structure of lower degree, including Poisson structure. Fundamen-
tal identity imposes strong condition on the possible form of Nambu bracket, hence the
structure of Nambu bracket is more rigid than Poisson bracket. In addition to quadratic
differential equations, it also satisfy an overdetermined system of quadratic algebraic equa-
tions for Nambu bracket tensor.

We prove than in fact any Nambu bracket is locally isomorphic to the canonical Nambu
bracket of the above example , as it was conjectured by L.Takhtajan [5]. Let us begin
with definition of Nambu-Poisson manifold .

Definition 1 Let A be a smooth finite dimensional manifold with algebra of functions
C*(M) and Lie algebra of vector fields x(M)}. M is called Nambu-Poisson manifold if
there exists a muliti-linear map

X [C= ()Pt — x(M)
Vi foreooy fomer € C(M),
(frseo s i) — Xy g
such that the bracket defined by
{f, iy -:fm—l} = an...,f,.._.f
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is skew symmetric in all arguments and is invariant under any Hamiltonian vector fields
X = Xhmfm! i.e.

"‘({gl: .- -,Q’m} = {’Xgl: - -ng} +-- 4+ {gls tr '3"(5’111}‘ (1)

Similar to a Poisson structure, Nambu-Poisson structure is defined by a m-polyvector
P = Pheim ¢ N(A™TM)
by

X.r'l.---.fm-lf = {fafl,---:fm—l} = P(d_f,dfl,...dfm_l) - Piui""'i““ﬁiufﬂglfl...3,-"__lfm_1,

where (zi,...,%,,) are local coordinates and 9;, = agn'

The equation (1) means that the bracket {fi,..., fm-1, fm} satisfies the following
fundamental identity

{{fl': .- '1fm—11fm}1fm+h .- -stm—l} + {fmx {fl: .. -fm—lrfm+1}:fm+2a .. -1f2m—1} (2)
+t {fma . ~1f2m-21 {fl: e -1fm—11f2m-—1}} = {f11 v -vfm—-la{fma . ':f?m—-l}}'

Incidentally Takhtajan has written fundamental identity in this form.

Takhtajan [5] proved that the fundamental identity (2) is equivalent to the following
differential and algebraic constraint equations of Nambu-Poisson tensor P im(z)

5 (’Jki""imm g pinsinein SPIE ow’”’_“)
81:;;

k=1 o =
= ipfljz...jm_lkm (3)
k=1 amk 4

for all is,...,%m, 51,---vJm=1,--+-, N, and
Si; + P(Si;) =0, (4)
where

Si; = Pirim pitcdm 4 pimitis.jm-tia piicdmetiay | pimizinaaii pitcimerii _ pimiac. picjmeiia
(5)

and P is the permutation operator which interchanges the indicices i; and j, of 2m
dimensional tensor S. He proved that any decomposable polyvector

P = X/ A...AXp, X;€x(M)
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satisfies these constraints and hence defines a Poisson-Nambu tensor and conjectured that
any polyvector P which satisfies the algebraic equation (4) is decomposable. To prove
this conjecture we reformulate (4) in coordinate free way.

Earlier Larry Lambe using symbolic computations technique varified in some cases the
decomposibility of Nambu tensor. Anyway, before leaving this section let us de-emphasised
the main slogan of Takhtajan:

Conjecture 2 Any Nambu-Poisson tensor P € D(A™TM) for m > 2 is decomposible.

Notation: In this paper we shall denote wedge product by A and symmetric product
by V.

2 Reformulation of Fundamental identity

Now we write the algebraic Takhtajan identity (4) for polyvector P in a point 0 € M in
coordinate free way. Let us denote by V = T,M the tangent space at the point o and
by

P, =< Pp>e A™FV
result of the natural pairing between a polyvector P € A™V and k-form € A*V" |k <
m.

Lemma 3 The algebraic Takhtajan identity (4) for m-polyvector P € A™V is equivalent
to the identily

m

Z(PaAﬁnir;Pn.'/\,G/\c# + P,Gf\&.,'.quAam#) = 0)

i=1

forany o, B,m,.. . pn €EV", €A™V n = M A...A7,, where
O = (1)U AL A A LA T,

Proof: For any 1-forms «, 8,€%,...,6" ' n!,...,9" € V* = T;M, we choose func-
tions fl] .. '1fm—11gl) ey Gm such that

7 =dglo , Pale=0 & = dfl,, 7> 1.
dzf,'lg = 0 V1 > 0 y df1|0 = 0
Chilo=a®B+BBa = aVp.
The fundamental identity can be written as

X -P(dg,...,dg,) = P({X - q1),dga,...,dgn) +---+ P(dgy,...,d(X - gm)

(6)

= P(d(X -g1),dgy, -, dgm) — P(d(X - g2),dg1,dga, . . .dgn) + P(d(X - g3), dgy, dga, dgs,

cdgm) + -+ (=)™ PA(X - gm), dgy, - - -, dgum)

where
X 0= P(dgi’dfh“ -1dfm—l)-
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Hence we obtain

d(X '91)|o = dP(dgy,df, ..., dfm_1)lo

=P(p',aVv B,E%, .. ™) (7)
=P(n',a, &, "B+ P(n', 8,6 ...,6" N
= PrinangB + Ppaprsc,

where ¢ = E2A...AE™ . Similarly we get,
d(*’Y ' gl')lﬂ = P(dgi,dzfladf% v 'sdfm—l)lo

= P(r',aVB,€,...,6" ") (8)
= PjinaneB + FPringagcr.

Taking into account that X |, = 0 we obtain
0= P(al dg2a Ty dgm)'OquAﬂA¢ + P(ﬂr dg?) ERRE} dgm)|0Pn1A0A¢ (9)
+ ...+ P(dgl! LR dgi—la &, dg:’-{-ls ey dgm)IOPn"/\ﬁA¢ + P(dgla . wdgi—la ﬁ) dgl’-{-lv .. -vdgm)lopq‘AaAqt»
+ .= Panginoanm Pyingag + PﬂAn’AmAn"‘Pn‘aM +...
+ (_l)i—'lPaAn‘A...Avj‘A...An'“ Pﬂ‘AﬁI\¢ + (_l)i_]PﬂAnIA...ﬁ"AA..Aq"‘ Pnll\u/\é + -

= Z(Pm\&.,;npnmﬁmﬁ + PﬁAaq;ﬂP’TiAa’\é)'

i=1
This proves the lemma. O
To rewrite the identity in more simple way we introduce the following Koszul type
operator:
d : A"V VATV — STV ATV @ ATV,
by the formula
d(PR P)(aV B ®@¢) = PaA Fanp + P N Pang,

for a,f € V" and ¢ € A™"2V*. Here P, denotes contraction of P by a etc. Hence P,
, Ps are m — 1 polyvectors and Fgay, Fang are vectors.
Note that d =0 for m = 2.

Let us make a remark that for a decomposable m polyvector ¥ = 7' A---Ap™ we
have

d(P@P)(O‘Vﬁ@QS@‘!/}) =<(P¢1APﬂA¢+PﬁAPuA¢):¢>

= Z(Paf\ﬁ,,'.n Pn.-/\ﬁn‘;é + Pﬁf\t),,‘.n Pyinang)-

i=1

Hence we have
Corollary 4 A polyvector P € A™V satisfies the algebraic Takhtajan identity iff
dP@P) = 0.
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3 Properties of Nambu-Poisson operator

In fact d is composed of two operators d, and d,,

dy : APV @AMV — STV @A™V ATV

and
dy : STV QAW ATV — STV Q ATTEV @ ATV,
defined by
d(POQ) = D> exVe® Pu®Qu
and

dz(S@P@Q) = S®ZPek®6k/\Q.

Here S € S?V and {e;} is a basis of V and {e'} is the dual basis of V*. Hence d is
written as
d = dyod;.

Given any contravariant m-tensor T € V®™ we will denote by supp 7T its support,
that is subspace of V generated by contructions of T" with all covariant (m — 1) tensors.
Since the operator d is the sum of the permutations of tensor factors, we have

supp d(PVv Q) = supp (PVQ)

for any P,QQ € A"V

Let now T € V®™ is a contravariant tensor and e is a non-zero vector. We say that
T contains factor e with multiplicity k if any non-zero coordinate T#1im of T with
respect to a base ¢¢ = e,e),...,e,_; of V has at least £ zero indices and there is a
coordinate which has exactly k zero indices. In other terms, T is decomposed as a linear
combination of decomposable tensors e;, ® --- @ e, each of them has at least k-factors
€hp = €.

[t is clear that this definition is correct (i.e. does not depend on the choice of the base
e = e, --,e,_1 and the multiplicity & of a factor e in T does not change after any
transformation of 7' which is a linear combination of permutations.

Using this argument, we get:

Lemma 5 Let Q € A™ 'V, R € A™V be polyvectors and e is a vector such that e ¢
supp Q+ supp R. Then the polyvector P = e AQ+ R satisfies the equation d(PQP) =0
iff .

dQ®Q) = 0, d((eAQ)VR) = 0, d(R®R) = 0.

Proof: We know
dPRP) = derAQ@®en@Q)+d(eAQVR)+d(R@R) = 0.

Since the summands contain the vector e with the multiplicity 2,1 and 0 respectively,
they are linearly dependent only when they are identically zero.
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1t remains to prove now that
deAnQ®eAQ) =0

implies d(Q®Q) = 0. Let us consider a basis e;,...,ex of supp @ = U and denote by
e',...,e* the dual basis of U*. Using definition of d, we obtain

0 = denQ®eNQ)
= (e®e)®d2(Q®Q)—Z(eVe,-)@dz(QV(e/\Qs;)—l—Z(e,-Vej)®dz((e/\Qe;) V(eVQ.s)).

f 1.1

Since tensors e® e, eV e;, e; Ve; are linearly independent, we have

0 = Z(ee V) ®@da(eAQei} V(e AQes))
= Z(e,- V ej) ® (e ® 6)/.\42(Qe‘ \ er)
)
= (e ® e)/_\ Z(e;' vV ej) @ d2(Qe‘ Vv er)

= (e®e)AdQ® Q).
where A is the Kulkarni-Nomizu product in the space AV®AV of bipolyvectors defined
by
(A@BA(C®D) = (AANC)® (BAD),
for A,B,C,D € AV.

Note that e ¢ supp d(Q®Q) = supp Q. This implies that the operator of Kulkarni-
Nomizu multiplication by e ® e is non-degenerate and we obtain

dQ®Q) = 0.
O
Lemma 6 Let P = eyA...Aep, and 8 = fi A... A fn be decomposable non zero
m-polyvectors. Then
d(PVR) =0

iff R is proportional to P: R = AP.

Proof: We can write P = FAP, R = EAR, where E, P, R’ are decomposable
polyvectors and
supp P'N supp R’ = 0. (10)
Using the arguments as in the proof of Lemma 6, we assert d(PV B) = 0 implies
d(P'V R') = 0. Suppose that deg P’ = deg @' = k > 0. Then the we can write

P o= e N--Ne,, R = fin---f.

Condition (10) implies that the vectors e, -, e}, fi,..., fi are linearly independent.
Then one can check immediately that
d(P'V R')#0.

This contradiction shows & = 0 and R = AP. 0
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4 Proof of Takhtajan’s conjecture
We want to prove the following:

Theorem 7 A polyvector P € A™V,m > 2 satisfies the algebraic Takhtajon identity
d(P®@P) = 0 iff it is decomposable, i.e. P = e, A...Aey, for some vectors ey, -, €, .

Proof: We will assume that supp P = V and we will use method of induction on
n = dim V. Let d(P®P) = 0 for P 0 and 0 # e is a vector which belongs to supp
P, choose Q € A™" 'V and R € A™"1V such that

P=eNQ+R, ed¢(supp@Q+ supp R) = V'
By Lemma 5,
dQ®Q) = 0d(ROR) = 0
dleAQV R) = 0.

Since dim supp ¢ < n and the dim supp R < n by inductive conjecture we may assume
that ¢ and R are decomposable. Then Lemma 6 shows that R =0 and P = eAQ = eA
e1 A...Aen_y is decomposable polyvector. O

As a corollary we obtain the following local description of Nambu-Poisson tensors on
a manifold M.

Corollary 8 Let M be a Nambu-Poisson manifold with Nambu-Poisson lensor Pe
F(A™TM),m > 2. Assume that P, # 0 for some point x. Then there exist a local
coordinates ©,,...,z, in a neighbourhood of = such that

P=30, A...ND, .

Proof:
By Theorem 7, in some neighbourhood of the point z there exist independant vector
fields X,,..., X,, such that P = X, A...AX,,. Itissufficient to prove that m-dimensional

distribution supp P generated by vector fields X; is involutive. This follows from the facts
that this distribution is generated also by all Nambu-Hamiltonian vector fields X, ., .
and that Nambu- Hamiltonian vector fields are closed under the Lie bracket. The last
statement follows immediately from fundamental identity. O
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