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§1. INTRODUCTION

1.1. This paper continues the study of value distribution of p-adic holomorphie funetions

(see [Hal]-[Ha5], [H-M)). Dur purpose is to construct a. p-a.die analogue of Nevanlinna

theory. As it is mentioned in earlier papers, the study is motivated by the works eoneerning

the relation between number theory and value distribution theory (see [LaI], [La2], [La3] ,

[NoI], [N02] , [Vo)).

1.2. One of most essential differenees between complex holomorphic functions and p-adie

ones is that the modulus of a Jradle holomorphie funetion depends only on the modulus of

arguments, exeept on a "eritical set". This fact led us to introduce the notion of height of
'"

a p-adic holomorphie function. Using the height one cau reduce in many eases the study

of the zero set oI a holomorphic function to the study a real convex parallelopiped. This

makes it easier to prove p-adic analogue of statements of Nevanlinna theoty.

1.3. It is well-known that the Lelong number plays an important role in the theory of

complex entire functions. Here we defin'e the Lelong number of a p-adic entire functions

of several variables. In the p-adic case we do not know how to define an analogue of the
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"volume element", and we use here the notion of loeal heights. The study of the zero set

of an entire funetion by using the Lelong number will be deseribed in a future paper.

1.4. There are interesting relations between the value distribution theory, Diophantine

problems and hyperbolie geometry. Some of them are deep results of Faltings, Vojta,

Noguehi and others , while mauy statements are still eonjeetural (see [LaI], [La2], [Nol],

[No2] , (Vo]). In the p-adie ease, beeause of the total diseontinuity it is diffieult to def1ne

an analogue of the Kobayashi distance. In this paper we propose adefinition of p-adic

hyperbolicity in the sense of Brody. Namely, a domain X in the projeetive space pn(cp ) is

ealled hyperbolic if every holomorphic map from Cp to X is constant. We shall prove some

theorems of Borel type on rnaps with the image lying in the cornplement of hyperplanes and

algebraie hypersurfaces. Dur purpose is only to exammine in p-adic case BOrne properties

of hyperbolic spaces described in Lang's book (La3].

1.5. The contents of the paper are as folIows. The heights of p-adic holomorphic functions

are def1ned in Section 2. We gjve an analogue of the PoisBOn-Jensens formula and basic

properties of heights. §3 is devoted to p-adic Lelong number. In §4 we are trying to find

an analogue of hyperbolicity .

1.6. The author would like to thank the Max·Planck-Institut für Mathematik in Bonn

for hospitality and financial supports.

§2. HEIGHTS OF p-ADIC HOLOMORPHIC FUNCTIONS

2.1. Let p be a prime number, Qp the field of p-adie numbers, and Cp the p-adic

completion of the algebraic closure of Qp. The absolute value in Qp is normalized so that

Ipj = p-l. We further use the nation v(z) for the additive va.luation on Cp which extends

ordp . Let D be the open unit disc in Cp :

D 1 = {z E Cp;lzj < l}
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and D = D I X ... X D I the unit polydisc in C:.

Let f(ZI, •.. , z,,) be a holomorphic function in C: represented by the convergent senes:

(1)

We set:

00

f( ) - """"' ml mJlZI , •.. , Zn - L....J a m1 ... mJl Zl .•. Z", •
Iml=O

a -am - ml ...mJl'

Iml = mI + ... + mk,

Then for every (tI, ... , t,,) E R" we have:

lim {v(am ) + mt} = 00.
\ml-oo

Hence, there exists an (mI, ... ,mk) E NI: such that v(am ) +mt is minimal.

2.2. Definition. The height of the function f(ZI, ... , z,,) is defined by

We use also the notation H/(ZI, ... , Zk) = H,(V(ZI), ... , v(z" )).

2.3. Let us now give a geometrie interpretation of heights. For every (mI, ... , mk) we

construct the graph r ml ... mll: representing v(amz m
) as function of (tl" ... , tk)' Then we

obtain a hyperplane in Rk+ I :

Since lim {v(am )+mt} = 00 for every (tl, ... , tk) E Rk there exists a hyperplane realizing
Iml-oo
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for all r m; ...m~' We denote by H the boundary of the interseetion in Rk x R of half-spaces

of Rk+1 lying under the hyperplanea r ml ... m .. ' It ia easy to show that if (tl, ... , tk, tk+1) ia

2.4. To study of the zero set of a holomorphie funetion we need the following definition

of Ioeal heights.

We set:

k

[f(t1, ... , tk) = {(mI, ... , mk) E N k
1 v(am ) +L miti = Hf(tI' ... , tk)}

j=1

ni(tI, ... , tk) = min{miI3(mI, "'l mi, .. , mk) E [f(t}, ... , tk)}

It ia easy to see that there exists a number T such that for (tl, ... , tk) ~ (T, ... ,T) (this

means ti ~ T for all i), the numbers ni(t1' ... , tk) and ni(tI, ... , tk) are eonstanta. Then

we set:

hi(t1' , tk) = ni(tI, , tk)(T - td

hi(t1l , tk) = ni(t1, , tk)(T - ti)

hi(tI, , tk) = hi(tI, , tk) - hi(t1' ... , tk)
k

hf(t1, ... , tk) = L hi(t1, ... , tk).
i=1

2.5. Deflnition. hf( t I , ... 1 t k) is said to be the Ioeal height of the function f (Z1 , .. , Zk) at

2.6. One ean prove basie propertiea of the height and Ioeal height by uaing the geometrie

interpretation 2.3. For our purpose we need some of them, nameIy, the following.

2.7. H ia the boundary of a eonvex polyedron in R k+1 •
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2.8. If we denote by ß(H) the set of the edges of the polyedron H then the set of the

critical points is exactly the image of ß(H) hy the projection:

2.9. We can show that for every finite parallelopiped in Rk+l, P = {-oo < ri <

ti < +00, i = 1, ... , k + 1}, H n P x R consists of parts of a finite numher of hyperplanes

rml .. ,m.' Indeed, these are the hyperplanes such that at least for an index i we have

ffii = nt(t}, ... , tk) or mi = ni(t}, ... , tk) for a point (tl, ... , tk) E P.

2.10. For every finite parallelopiped and every hyperplane L in general position with

respect to H, L n H n P is apart of a hyperplane of dimension k - 1.

2.11. H for i ::; k the hyperplane ti = Si =const is not in general position, then the

hyperplane ti = Si ± f. are in general position for small enough f. • Moreover we have:

lim Hf( ... ,Si ± f, ... ) = Hf(· .. ,Si, ... ).
E-O

'2.12.The set of critical points 1rkß(H) is an union of hyperplanes of dimensions less or

equal k - 1.

2.13. Suppose that S = SI n ... nSk-1 , where Si is the hyperplane ti = Si, i = 1, ... , k-1.

Replacing Si by stE
: ti = Si ± f if necessary, one can suppose that the hyperplanes Si

are in general position. Then the intersection sn 1rkß(H) nP is a finite set of points.

Note that we are using "general position" in an evident sense.

2.14. Now we are ahle to formulate and prove an analogue of the Poisson-Jensen formula.

For any (tl, ... , tk) E Rk we set:
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and for two points (tl, ... , tk) and (Tl, ... ,Tk):

C. _ h-fi(tf1 tt i - l Tti Tfll)
U. - i 1 , ... , i-I' i , ... , k

hfi (t f1 tti-l t T- ti+1 T-fll )- i l' ... , i-I' i, i+l , ... , k

+ '" hfi (tfl t fi
-

l T-fi+l T- fll )L...J i 1 , •.. , i-I ,Si, i+1 , ... , k

where fi = sign(Ti - t.) and the SUffi takes a1l Si E (Ti, ti) . Note that by 2.4 the hi

are vanishing , except possibly on a finite set of values Si, and Oi does not depends on the

choice of T.

2.15. THEOREM. (The Poisson-Jensen formula).

k

Hf (T1 , ... , Tk) - Hf (t 1 , ... , tk) = L fiOi.
i=1

PROOF: By using 2.3 - 2.14, it suffices to prove Theorem 2.15 for holomorphic functions

of one variable.

Let J(z) be an entire function on Cp and let to > t > O. Then the formula in Theorem

2.15 takes the following form:

(2) Hf(to) - Hf(t) = hf(to) - hj(t) + L hf(s)
t,,>a>t

Suppose that to > tl > t2 > ... > t n > t are all the critical points of the function J(z).

Note that the height Hf(s) is a linear function of Sin every segment [tk+b tk] and we have:

nj(tk) = nj(tk+l)

Hf(s) = v(anj(tl+d) + nj(tk+l)S = v(anj"(tll») +nj(tk)s.

From this it follows that :

Hf(tk) - Hf(tk+I) = [v(anj" (tll») +nf(tk)tk] - [v(anj(tll+d) +njt(k + 1)tA:]

=nj(tk)(tk - tk+l)
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Hf(to) - HJ(t) = Hf(to) - Hf(tl) +Hf(tl) - Hf(t2) +...

+ Hf(tn) - H J(t)

=(ni(to)to - ni(to)t 1 ) + (nf(tt)t 1 - nf (t 1 )t2 ) +...

+ (nf(tn)tn - nf(tn)t)

=hf(to) + tl(ni(tl) - ni(to)) + t 2 (n f (t2) - nf(t1 )) + ...

+tn(nj(tn) - nj(tn-l)) - hj(t)

=hf(to) - hj(t) + L hf(S)'
t.> ..>t

Theorem 2.15 is proved.

2.16.Remark. Note that the formula 2.15 is ananlogous to the classical Poisson-Jensen

formula. In fact, suppose that t o = 00, /(0) =f 0 and t is not a critical point of the

function fez). Then we have Hf(to) = -logp 1/(0)1, Hf(t) = logp If(z)1 on the circle

Izi = p-t, hf(to) = 0, L hJ(s) - hj(t) = L -logp IZil, where the surn extends over
t,,>a>t

a1l the zeros Zi of the function fez) in the disc Izi ~ p-t. Then the formula 2.15 takes the

following form:

logv(z)=t 1/(z)1 -logp 1/(0)1 = L -logp jzd·

Recall that the classical Poisson-Jensen formula is the following:

1 121f

271" log If(ei8 )ld8 - log 1/(0)1 = L -(ordaf) log lai,
o aED,a:;eO

where D ia the unit disc in C and ordal ia the order of fez) at a.

2.17.Remark. The formula 2.15 ia not symmetry with respect to variables tl, ... , tk,

and then one obtain a number of formulas of the height via local heights. Then it follows

many equalities relating local heights. This fact has an analogue in' the case of holomorphic

functions of two complex variables (see [Ca]).
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2.18.Remark. In [Ro] Robba gave an "approximation formula" ,from which follows the

Schwarz lemma for p--adic holomorphic functions of several variables. One can also obtain

the Schwarz lemma by using the formula 2.15.

Let us finish this section with the following important theorem, the proof of which is

easy by using the geometric interpretation of height.

2.19. THEOREM. Every non-constant holomorpbic Eunction on C; is a surjective map

onto Cp •

§3 . LELONG NUMBER

3.1. Definition. The Lelong number of a holomorphic function j(Zl, ... , Zk) at the point

(Zl, ... , Zk) is defined by:

k

Vj(Zl, ... ,Zk) = L{ni(tt, ... ,tk)-nt(t1, ... ,tk)},
i=l

3.2. Example . In the case of n = 1, Vj(z) is the number of zeros of j at v(z) = t

with counting multiplicity (see [Man.

3.3 Remark. The Lelong number of a holomorphic fWlction j(z) depends only on the

modulus of the arguments.

3.4. LEMMA. Vj(ZI, ... , Zk) i= 0 iE and only if v(z}, ... , Zk) E 1rk6.H(f), where 1rk6.H(J) is

tbe projection oE 6.H(/) C R k x R on R k.

PROOF: In fact, suppose Vj(Zl'''' Zk) i= 0 and denote ti = v(zd. Then for every i,

nt(t1' ... , tk) = ni(t1, ... , tk) and there exists an unique ni such that the set {(mI, ... , mk) E

Ij, mi = nil is not empty. From this it follows that I f contains an unique element
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(nIl"" nk), and we have H/(t l , ... , tk) = v(an ) +nt, I/(zl, ... , ZA:)I = p-H/(tt, .."t1 ). Hence,

(tl, ... , tk) rt 7rkßH(f)'

Conversely, suppose V/(Zl, ... , Zk) f= O. Then there exist at least one indexe i such that

ni(tl, ... ,tk) f= nt(tl' ... , tA:)' Therefore by using Remark 2.9 one ean see that there exist

at least two faces of H(/) containing the point (tb ... , tk). This means that V(ZI, ... , VA:) E

7rkßH(f)' Lemma 3.4 is proved.

3.5. THEOREM. A bolomorphic function I(ZI' ... , Zk) is a polynomial if and only if the

Lelong number V/(Zb ... , ZA:) is constant for large enough IlzU .

PROOF: From the properties 2.7-2.13 of height one ean show that v/(zl, ... , Zk) = const

for large enough IIzl1 if and only if there exist finitely many hyperplanes r mt .. ,ml appear

in the construetion of H/. This is equivalent to that I ia a polynomial.

3.6. Remark. In the case of functions of one variable vf( z) = const is equivalent to

that vf(z) = 0 for large enough Izr.

§4. HVPERBOLICITV

4.1. Definition. A subset X of the projective space pn(cp ) ia ealled hyperbolic if every

holomorphie map from Cp into pn(cp ) with the image in X is constant.

Note that by a holomorphie map from Cp into pn(cp ) we mean a colleetion I ­

(10,/1, ...,In) where li(Z) are holomorphic functions having no zeros in common.

4.2. Examples. 4.2.1. The unit disc D E Cp is hyperbolic. Indeed, every holomorphic

funetion on Cp with values in D ia a bounded entire function , and therefore, is constant

(Theorem 2.19).

4.2.2 . H X, Y are hyperbolic, the X x Y ia hyperbolic. Hence, a polydisc D x ... x D

in pn(cp ) ia hyperbolic.
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4.2.3. From Theorem 2.19 it follows that the sets Cp\{ one points} and Pl\{ two

points} are hyperbolic.

4.3. Remark. For any hyperbolic set X E C;, C;\X is not bounded. Indeed, if

C;\X is bounded, then C;\X c Br for a ball of radius r. For a constant a with lai> r

the following map

/:Cp--+C;, z.....-+(z,z+a, ... ,z+a)

h88 the image lying in C;\B r , and hence X is not hyperbolic.

4.4. Let Hk , (k = 0,1, ... , m) be hyperplanes of pn(cp ) ,then they said to be in

general po"ition if any 1 (1 ~ n + 1) these hyperplanes are linearly independent.

4.5. THEOREM. Tbe complement in pn(cp ) oE n +1 byperplanes in general position

is a byperbolic space.

Indeed, let / : Cp --+ pn be a holomorphic map with image lies in the complement

of n + 1 hyperplanes in genenral position.. Let (X O ) ... , x n ) be the coordinates of pn(cp ).

Then there is a projective change of coordinates such that these hyperplanes are defined

by the equations X o = 0, "'l X n = O. Now we can write f in homogeneous coordinates

/ = (/0' "') In)'

By the hypothesis the functions /0) ''', /n are non-zero entire fWlctions in Cp , and then

they are constant.

4.6. THEOREM. Let Xl, .•. , X n+1 be n +1 hyperplanes in pn(cp ) in general position. Let

x = Xl U X2 U ... U Xn +l

be their union. Tben

1) pn(cp)\X is byperbolic.
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2)for every {i1 , ••• , i k , j J, ... , j r} = {I, ... , n + I} the space

is hyperbolic.

PROOF: 1) Theorem 4.5.

2) Let

be a holomorphic map. Since the hyperplanes are in general position, X = Xii n ... nXi,.

can be identified with pn-k. Then {Xjm n X} are in general position in X. We have

r = (n - k) + 1, and 2) is a corollary of Theorem 4.5

4.7. THEOREM. Let X ~ Y be a holomorphic map oEp-aclic analytic spaces. Suppose

that Y is hyperbolic, and for every y E Y there exists a neigbborbood U oE y such that

1r-1 (U) is hyperbolic. Then X is a byperbolic space.

PROOF: Let / : Cp ~ X be a holomorphic map. then 1r./ is holomorphic, and is

constant, since Y is hyperbolic. We set Yo = 1r./(Cp ). Let Uo is a neighborhood of Yo such

that 1r- I (Uo ) is hyperbolic. Since the image of f lies in 1r- I (Uo ), / is constant.

4.8. THEOREM. Let f be a bolomorphic map from Cp into pn(cp ) witb image lies in tbe

complement oE k ~ 2 different hypersurfaces. Tben tbere exist proper algebraic subspaces

XI, "" X m , m = k(k; 1), such that the image oE Elies in the intersection oE Xl, ,., X m .

P ROOF : Let PI, ... , Pt be the homogeneous polynomials defining the hypersurfaces YI , •.. , Ys; .•

For every i,l :::; i :::; k, Pi.! is constant. We can find numbers (Xi such that (Xi{Pi./) -

Ctj(Pj.f) =0 on Cp • We set

11



Then Qij are homogeneous polynomials , which define the algebraic subspaces XI, ... ,Xm ,

m = k(k - 1). Note that Xi'S are proper algebraic subspaces, and the image of f lies in
2

their intersection.

3.8.• Remark. The theorem can be regarded as an analogue of the Green theorem in

the complex case (see [La3])
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