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§1. INTRODUCTION

1.1. This paper continues the study of value distribution of p-adic holomorphic functions
(see [Hal]-[Hab], [H-M]). Our purpose is to construct a p-adic analogue of Nevanlinna
theory. Asit is mentioned in earlier papers , the study is motivated by the works concerning
the relation between number theory and value distribution theory (see [Lal}, [La2], [La3],
[Nol], [No2], [Vo)]).

1.2. One of most essential differences between complex holomorphic functions and p-adic
ones is that the modulus of a p-adic holomorphic function depends only on the modulus of
arguments, except on a "critical set”. This fact led us to introduce the notion of height of
a p-adic holomorphic function. Using the height one can reduce in many cases the study

of the zero set of a holomorphic function to the study a real convex parallelopiped. This

makes it easier to prove p-adic analogue of statements of Nevanlinna theory.

1.3. It is well-known that the Lelong number plays an important role in the theory of
complex entire functions. Here we define the Lelong number of a p-adic entire functions

of several variables . In the p-adic case we do not know how to define an analogue of the
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"volume element”, and we use here the notion of local heights. The study of the zero set

of an entire function by using the Lelong number will be described in a future paper.

1.4. There are interesting relations between the value distribution theory, Diophantine
problems and hyperbolic geometry. Some of them are deep results of Faltings, Vojta,
Noguchi and others , while many statements are still conjectural (see [Lal], [La2], [Nol],
[No2], [Vo]). In the p-adic case, because of the total discontinuity it is difficult to define
an analogue of the Kobayashi distance. In this paper we propose a definition of p-adic
hyperbolicity in the sense of Brody. Namely, a domain X in the projective space P*(C,) is
called hyperbolic if every holomorphic map from C}, to X is constant. We shall prove some
theorems of Borel type on maps with the image lying in the complement of hyperplanes and
algebraic hypersurfaces. Our purpose is only to exammine in p-adic case some properties

of hyperbolic spaces described in Lang’s book [La3).

1.5. The contents of the paper are as follows. The heights of p-adic holomorphic functions
are defined in Section 2. We give an analogue of the Poisson-Jensens formula and basic
properties of heights. §3 is devoted to p-adic Lelong number. In §4 we are trying to find

an analogue of hyperbolicity .

1.6. The author would like to thank the Max-Planck-Institut fir Mathematik in Bonn

for hospitality and financial supports.

§2. HEIGHTS OF p-ADIC HOLOMORPHIC FUNCTIONS

2.1. Let p be a prime number, @, the field of p-adic numbers, and C, the p-adic
completion of the algebraic closure of Q,. The absolute value in @, is normalized so that
|p| = p~'. We further use the notion v(z) for the additive valuation on C, which extends
ord,. Let D be the open unit disc in Cp:

Dy ={z € Cp;|2z| < 1}
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and D = D, x ... x Dy the unit polydisc in C;,‘.

Let f(21,...,2&) be a holomorphic function in C: represented by the convergent series:

oo
_ E : m me
(1) f(zl,n., Z") -_— aml___m.zl 1...zk .
|ml=0
We set:
Am = Qm,...mi»
m __ my my
2™ =M,

[m|=my + ... + mg,
mt = mqyt; + ... + mt;.

Then for every (ti,...,t;) € R* we have:
lim {v(am)+ mt} = oco.
m|—o0

Hence, there exists an (m,,...,m;) € N* such that v(an) + mt is minimal.

2.2. Definition. The height of the function f(z1,...,2x) is defined by

Hi(t1,...,tx) = mi m t}.
st k) . 5?33|I.'<m{v(a ) + mt}

We use also the notation Hg(z1,...,2:) = Hs(v(z1),...,v(zx)).

2.3. Let us now give a geometric interpretation of heights. For every (m,...,m) we
construct the graph ', . ., representing v(a,,z™) as function of (¢;,,...,tx). Then we

obtain a hyperplane in R¥+!:
Pml'"ml . tk+1 = v(am) + mt.

Since I lilm {v(am)+mt} = oo for every (¢, ...,tx) € R* there exists a hyperplane realizing
m|—00

te1(Tmyomi) S tet1(Tmt oot )
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for all Lt .my - We denote by H the boundary of the intersection in R* x R of half-spaces
of R¥*1 lying under the hyperplanes 'y, .. .m,. It is easy to show that if (1, ...,%x,tk4+1) is

a point of H, then tx4; = Hy(ty,..., tx).

2.4. To study of the zero set of a holomorphic function we need the following definition

of local heights.

We set:

k
Ip(ts, s tk) = {(ma, ..., mi) € N¥, v(am) + Zmiti = Hy(t1,...,tx)}
=1
n}*’(tl, o ty) = min{m;|I(my, ...,mi,..,mi) € If(ty,...,tx)}
n; (t1,...,tx) = max{m;|3(m,,...,mq,..,mx) € Ir(ty,...,tx)}
It is easy to see that there exists a number T such that for (¢,,...,t) 2 (T, ...,T) (this

means t; > T for all i), the numbers nf(t,,...,tx) and ny (¢, ...,ts) are constants. Then

we set:

A (t1, v te) = nf (b1, te)(T — t;)
hi(t1, . te) = n(t, ., (T — t:)

hi(th, -y ti) = A7 (t1, e te) = KT (b1 o tr)

k
Bty onte) = 3 Bty o).
=1

2.5. Definition. h(t;,...,t;) is said to be the local height of the function f(z,..,2:) at

(tlv ---:tk) = (U(zl)’ '-'av(zk))'

2.6. One can prove basic properties of the height and local height by using the geometric

interpretation 2.3. For our purpose we need some of them, namely, the following.

2.7. H is the boundary of a convex polyedron in R¥+1,
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2.8. If we denote by A(H) the set of the edges of the polyedron H then the set of the

critical points is exactly the image of A(H) by the projection:

7x : R¥ x R — RY,

2.9. We can show that for every finite parallelopiped in R¥*!, P = {—00 < r; <
t; < +00,t =1,....,k+ 1}, HN P x R consists of parts of a finite number of hyperplanes
Cm,..my- Indeed, these are the hyperplanes such that at least for an index : we have

m; = n}(t1,...,tx) or m; = n] (t1,...,tx) for a point (t1,...,tx) € P.

2.10. For every finite parallelopiped and every hyperplane L in general position with

respect to H, LN H N P is a part of a hyperplane of dimension k — 1.

2.11. If for 1 < k the hyperplane t; = s; =const is not in general position, then the

hyperplane ¢; = s; £ € are in general position for small enough € . Moreover we have:
PP-}) He(..,site..)=Hp(...,8,...).

"2.12.The set of critical points mz A(H) is an union of hyperplanes of dimensions less or

equal k£ — 1.

2.13. Suppose that S = §1N...NSx_; , where S is the hyperplane t; = s;, t =1,...,k—1.
Replacing S; by Sfb‘ : t; = 8i * € if necessary, one can suppose that the hyperplanes §;
are in general position. Then the intersection S N7z A(H) N P is a finite set of points.

Note that we are using "general position” in an evident sense.

2.14. Now we are able to formulate and prove an analogue of the Poisson-Jensen formula.

For any (1, ...,t¢) € R* we set:

Bp(ty, oty te) = Lim hy(ty, ... ti £ €, .., ti)
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and for two points (t1,...,t) and (71, ..., T} ):

6 = hIS(4E, . 8600 TS TewY
— REEE e t80 1, TRSH o T )

+ 3 RE (At 8 T o T ™)
8

where ¢; = sign(7; — t;) and the sum takes all s; € (T};,¢;) . Note that by 2.4 the h;
are vanishing , except possibly on a finite set of values s;, and §; does not depends on the

choice of T'.

2.15. THEOREM. ( The Poisson-Jensen formula).

k
Hs(Ty, ey Tg) — Hf(tl,...,tk) = Z €ib;.

=1

PROOF: By using 2.3 - 2.14, it suffices to prove Theorem 2.15 for holomorphic functions

of one variable.

Let f(z) be an entire function on Cp and let ¢, >t > 0. Then the formula in Theorem

2.15 takes the following form:

(2) Hy(to) — Hy(t) = h7(to) = RF () + Y hy(s)
tora>t

Suppose that t, > t; > t; > ... > t, > t are all the critical points of the function f(z).

Note that the height H;(s) is a linear function of s in every segment [t;41,%;] and we have:

ny(t) = n} (tet1)
Hy(s) = U(an}"(tk+l)) + n?(tk+l)3 = U(an;(:,)) + ny (t)s.

From this it follows that :

Hy(te) = Hi(te1) = [v(an-(i,)) + 07 (0] = [0(0n1 (4, 4,) + Ttk + 1]
=n7 ()t — tetr)
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Hy(to) — Hp(t) = Hy(to) ~ Hy(ts) + Hy(t1) — Hy(t2) + -
+ Hy(tn) — Hy(2)
= (n} (to)to — ny(to)t1) + (ny(t1)ts — ny (t1)t2) + .
+(ny (ta)tn — ny(tn)t)
= b7 (o) + ta(ny (tr) = 0} (to)) + ta(ny (t2) — n7 (t1)) + ..
+ ta(n} (tn) = 17 (tn-1)) — AE (D)

=h7(t) —hF(®)+ Y hy(s).

te>adt

Theorem 2.15 is proved.

2.16.Remark. Note that the formula 2.15 is ananlogous to the classical Poisson-Jensen

formula. In fact, suppose that ¢, = oo, f(0) # 0and tis not a critical point of the

function f(z). Then we have Hy(t,) = —log,|f(0)], Hf(t) = log, |f(z)| on the circle

Iz} = p~*, hy(t,) =0, Z hs(s) — h'}'(t) = 2 —log, |;|, where the sum extends over
to>a>t

all the zeros z; of the function f(z) in the disc |z] < p~*. Then the formula 2.15 takes the

following form:
logy(z)=t |£(2)] — log, If(0)] = ) —log, |z].

Recall that the classical Poisson-Jensen formula is the following:
1 2x .
3 | ToElfe )8 ~log IO = Y ~(ordu)logal,
2m 0 a€D,a#0

where D is the unit disc in C and ord, f is the order of f(z) at a.

2.17.Remark. The formula 2.15 is not symmetry with respect to variables t,,..., 1,
and then one obtain a number of formulas of the height via local heights. Then it follows
many equalities relating local heights. This fact has an analogue in the case of holomorphic

functions of two complex variables (see [Ca]).
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2.18.Remark. In [Ro] Robba gave an ”approximation formula” , from which follows the
Schwarz lemma for p-adic holomorphic functions of several variables. One can also obtain

the Schwarz lemma by using the formula 2.15.

Let us finish this section with the following important theorem, the proof of which is

easy by using the geometric interpretation of height.

2.19. THEOREM. Every non-constant holomorphic function on C:,‘ is a surjective map

onto C,.

§3 . LELONG NUMBER

3.1. Definition. The Lelong number of a holomorphic function f(z1,...,zx) at the point

(#1,...,2x) is defined by:

k
vi(z1y .y 2k) = z{ni—(tl’ oy tk) — n?(tlr wati)}

where t; = v(2;).

3.2. Example . In the case of n = 1, vy(z) is the number of zeros of f at v(z) =1

with counting multiplicity (see [Ma)).

3.3 Remark. The Lelong number of a holomorphic function f(z) depends only on the

modulus of the arguments.

3.4. LEMMA. vg(z1,...,2:) # 0 if and only if v(z1,...,2x) € ®xAn(y), where TeAp(y) is

the projection of Ay(f) C R* x R on RF.

PROOF: In fact, suppose v¢(z1,..,2x) # 0 and denote t; = v(z;). Then for every i,
nf(t1,...,t) = n(t1,...,tx) and there exists an unique n; such that the set {(mi,...,mz) €

Iy,m; = n;} is not empty. From this it follows that Iy contains an unique element
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(n1,...,ns), and we have Hf(ty,...,ts) = v(an)+nt, [f(z1,...,2)] = p~Hs(18) Hence,
(B2, k) & TR Br(g)- |

Conversely, suppose v¢(z1,...,z¢) # 0. Then there exist at least one indexe ¢ such that
n(t1,...,tk) # n¥(t1,...,tx). Therefore by using Remark 2.9 one can see that there exist
at least two faces of H(f) containing the point (¢y,...,£x). This means that v(z;,...,v¢) €

kA p(s). Lemma 3.4 is proved.

3.5. THEOREM. A holomorphic function f(z1,...,2x) is a polynomial if and only if the

Lelong number v¢(z1, ..., z) is constant for large enough ||z|| .

PROOF: From the properties 2.7-2.13 of height one can show that vg(z,...,2¢) = const
for large enough |z|| if and only if there exist finitely many hyperplanes I'y,,...m, appear

in the construction of Hy. This is equivalent to that f is a polynomial.

3.6. Remark. In the case of functions of one variable v;(z) = const is equivalent to

that v¢(2) = 0 for large enough |z|.

84. HYPERBOLICITY

4.1. Definition. A subset X of the projective space P™(C,) is called hyperbolic if every
holomorphic map from C, into P"*(C,) with the image in X is constant.
Note that by a holomorphic map from C, into P?(C,) we mean a collection f =

(fo, f1y--y fn) where f;(2) are holomorphic functions having no zeros in common.

4.2. Examples. 4.2.1. The unit disc D € C,, is hyperbolic. Indeed, every holomorphic

function on C, with values in D is a bounded entire function , and therefore, is constant

(Theorem 2.19).

4.2.2 . If X,Y are hyperbolic, the X x Y is hyperbolic. Hence, a polydisc D x ... x D
in P*(Cp) is hyperbolic.



4.2.3. From Theorem 2.19 it follows that the sets C,\{ one points } and P!\{ two

points } are hyperbolic.

4.3. Remark. For any hyperbolic set X € CJ , C7\X is not bounded. Indeed, if
Cy\X is bounded, then Cp\X C B, for a ball of radius r. For a constant a with |a| > r

the following map
f:Cp—CF, ze(z,z+a,..,2+4a)
has the image lying in  C7\B,, and hence X is not hyperbolic.

4.4. Let H; ,(k=0,1,..,m) be hyperplanes of P*(C,) , then they said to be in

general position if any [ (I < n+1) these hyperplanes are linearly independent.

4.5. THEOREM. The complement in P"(C,) of n+1 hyperplanesin general position

is a hyperbolic space.

Indeed, let f : C; — P™ be a holomorphic map with image lies in the complement
of n + 1 hyperplanes in genenral position.. Let (z,,...,z,) be the coordinates of P*(Cp).
Then there is a projective change of coordinates such that these hyperplanes are defined

by the equations z, =0, ...,z, = 0. Now we can write f in homogeneous coordinates

f=orns fn)-

By the hypothesis the functions f,,..., f» are non-zero entire functions in C,, and then

they are constant.

4.6. THEOREM. Let X,,...,Xn4+1 be n+1 hyperplanes in P*(C,) in general position. Let
X=XUuXU..UX

be their union. Then

1) P*"(Cp,)\X is hyperbolic.
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2)for every {i1,...,tk,J1, -y Jr} = {1,...,n + 1} the space
(X,'l N...N X.'. )\(X_,‘l v..uJ Xj,,)

is hyperbolic.

ProOF: 1) Theorem 4.5.
2) Let

f:C,— Xi,n..NnX;\X;,VU...UKXj,

be a holomorphic map. Since the hyperplanes are in general position , X = X;, Nn...NX;,
can be identified with P"~*. Then {X;,, N X} are in general position in X. We have

r=(n—k)+1, and 2) is a corollary of Theorem 4.5

4.7. THEOREM. Let X — Y be a holomorphic map of p-adic analytic spaces. Suppose
that Y is hyperbolic, and for every y € Y there exists a neighborhood U of y such that

n~1(U) is hyperbolic. Then X is a hyperbolic space.

PROOF: Let f : €, — X be a holomorphic map. then =.f is holomorphic, and is
constant, since Y is hyperbolic. We set y, = 7. f(Cp). Let U, is a neighborhood of y, such

that #=1(U,) is hyperbolic. Since the image of f lies in #~1(U,), f is constant.

4.8. THEOREM. Let f be a holomorphic map from C, into P*(C},) with image lies in the

complement of k > 2 different hypersurfaces. Then there exist proper algebraic subspaces

Xl,...,Xm, m= k(k — 1)

, such that the image of f lies in the intersection of X,,.., Xm.

PROOF: Let Py, ..., P; be the homogeneous polynomials defining the hypersurfaces Y1, ..., Yi.ll
For every 1,1 <t <k, P;.f is constant. We can find numbers «; such that a;(P;.f) —
a;j(P;.f) =0on Cp. We set

Qij = a;P; — ajP;.
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Then @;; are homogeneous polynomials , which define the algebraic subspaces X1, ..., X,
m= E(_k_z-:‘ll Note that X;’s are proper algebraic subspaces, and the image of f lies in

their intersection.

3.8.. Remark. The theorem can be regarded as an analogue of the Green theorem in

the complex case (see [La3])
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