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1. INTRODUCTION

In proving a Van Hamme type congruence the first author was led to consider some con-
gruences involving alternating multiple harmonic sums (AMHS for short) which are defined
as follows. Let d > 0 and let § := (s1,...,54) € (Z*)?. We define the alternating multiple
harmonic sum as

d k.
H(8;n):= Z H M

klsi‘
1<ki<ko<-<kg<n i=1 %

By convention we set H(§;n) = 0 any n < d. We call £(8) := d and wt(§) := Z?:l s
its depth and weight, respectively. We point out that ¢(3) is sometimes called length in the
literature. When every s; is positive we recover the multiple harmonic sums (MHS for short)

whose congruence properties are studied in [5, 6, 11, 12]. There is another “non-strict” version
of the AMHS defined as follows:

d k.

- sgn(s:)"™

S(s5n) = E H TZ\
1<k ko< <ha<n =1 Ki

By Inclusion and Exclusion Principle it is easy to see that
S(3in) =Y H(¥;n), (1)

H(3in) =) (1) 10s(7n) (2)

where 7 < § means 7 can be obtained from § by combining some of its parts.
The feature of this paper is a systematic treatment of the congruence property of H(5;p—1)
for primes p > |§| + 2 by using intimate relations between Bernoulli polynomials, Bernoulli

numbers, Euler polynomials, and Euler numbers.
1



2 ROBERTO TAURASOT AND JIANQIANG ZHAO*

We now sketch the outline of the paper. We start §2 by recalling some important relations
among AMHS such as the stuffle and reversal relations. Then we present some basic properties
of Euler polynomials which is one of the fundamental tools for us in the alternating setting.
Then we describe two reduction procedures in §2.3 for general §, which are used to derive

congruences in the depth two and depth three cases in §3 and §4, respectively.

Theorem 1. Let a,f € N, § = (s1,...,80) € (Z*)* and §' = (s2,...,80). Then for every

prime p > a + 2 we have the reduction formulae

-1 1
H(a,§) EjH((a—l)@sl,é")— 5H(a€931,§")

p—1l—a
—a\ B
Y (pk) Lk +a-1)® 51,5,
9
2

—a
k=2 p

H(—a,5) 5(1‘1:_2317—@ (H() ~ H(-s1,5")

p

-y (p - /1 . a) EO gkt aye (—s1). 8,

2
k=0

where E;,(0) = 2(1 — 2541 By .y /(k + 1).

In §5 we deal with the homogeneous AMHS of arbitrary depth and provide an explicit
formula using the relation between the power sum and elementary symmetric functions and
the partition functions. The last section is devoted to a comprehensive study of the weight four
AMHS in which identities involving Bernoulli numbers such as those proved in [11] play the
leading roles. For example, by writing H(—) = H(—;p — 1) we find the following interesting
relations (see Prop. 16, Prop. 17 and Prop. 18):

1 =2
H(1,-3)= §H(—272) Ekz_o2kBkBp,3,k (mod p),

1
H(_la?’vp_ 1) =- iqup*i’) (mOd p)7

5
H(1,-2,-1)=H(1,-3) — quBp_g (mod p),
— — 1 4

H(-1,1,-1,1) = H(1,~1,1,-1) = - = <qup_3 n 2qp> (mod p),

1
H(-1,1,1,-1) EE(6H(1, —3) + 7g,By_s + 2q;‘;) (mod p).

for all prime p > 7, where g, = (2P~! — 1)/p is the Fermat’s quotient. None of the above
congruences can be obtained simply by the stuffle and reversal relations.
This paper is written while the second author is visiting the Max-Planck-Institut fiir Math-

ematik whose support is gratefully acknowledged.

2. PROPERTIES oF AMHS

2.1. Stuffle relation. The most important relation between AMHS is the so called stuffle
relation. It is possible to formalize this using words as in [13, §2] or [8, §2.2] which is a
generalization of the MHS case (see [5, §2]). Unfortunately, for AMHS we don’t have the
integral representations which provide another product structure for the alternating multiple

zeta values.
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Fix a positive integer n. Let 2 be the algebra generated by letters y, for s € Z*. Define a
multiplication % on 2 by requiring that * distribute over addition, that 1 x w = w1 = w for
the empty word 1 and any word w, and that, for any two words wi,ws and two letters ys, y¢
(s,t € Z¥)

Ysw1 * Yrwz = Yo (w1 * Yyrwa) + Y (Yswi * we) + Ysge (w1 * wo) (3)
where s @t = sgn(st)(|s| + |t|). Then we get an algebra homomorphism
H: (A,x) — {H(S;n):5€Z",reN}
1 — 1

Ysqy -+ - Ys, /> H(Sl,...,sr;n).
For example,
H(=2;n)H(=3,2;n) = H(—2,-3,2n) + H(—3,-2,2%n) + H(-3,2, -2 n)
+ H(5,2;n) + H(=3,4;n).

There is another kind of relation caused by the reversal of the arguments which we call the

reversal relations. They have the form

H(sl,...,sr;p—l)Esgn(Hsj)(—l)TH(sr,...,sl;p—1) (mod p),
j=1
(4)
S(81y...y83p — (H@) S(spy...,813;p—1) (mod p),
for any odd prime p > wt(5).

2.2. Euler polynomials. In the study of congruences of MHS [5, 11, 12] we have seen that
Bernoulli numbers play the key roles by virtue of the following identity: ([1, p. 804, 23.1.4-7])

. d+1\ By 441,
E § o > 1.
2 ( . >d+1n , Vn,d>1 (5)

In the case of AMHS, however, the Euler polynomials and the Euler numbers are indispensable,

too. Recall that the Euler polynomials F, (x) are defined by the generating function

2¢tT e tn
a1 = Z En(x)ﬁ
n=0
Lemma 2. Let n € Z>o. Then we have
d—1 1 n n
—1)4" = (-1 E,(d) + En(0)) = Fpdad"™" 6
> (-1 S (FD 7 Ea(d) + E,(0)) > ()P (6)
where
(=17 Eq(0)/2, if a <n;
Fogoe=14 (1—(=1)HE,(0)/2, ifa=n>0;
—(1+ (=1)%)/2, ifa=n=0.
Moreover, Fq(0) =1 and for alla € N
20+1 1 2
_ s o — _ % (1 _9atl
£0= 2 (B (3) ) =0
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Proof. Consider the generating function
oo d—1 d—1
> (Yo )
n=0 \i=1 i:l

()1

—_et — 1 -1
_(=nTlet 41
B et +1

72( )1, d)+En(o))g—1 (8)

Now (6) follows from the notorious equation (see for e.g., [1, p. 805, 23.1.7])

B0 =3 (7) Eat0pan (9

a=0
for all n > 0. Equation (7) is also well-known (see for e.g., item 23.1.20 on p. 805 of loc.
cit.). O

Remark 3. The classical Euler numbers Ey, is defined by

et+e t ZEk*

They are related to Ex(0) by the formula (see [17 p. 805, 23.1.7])
m m—k
m Ek 1
E = — | —= .
w0=2(1)3 ()
k=0
Corollary 4. Let a € Z>o and p be a prime such that p > a + 2. Then
2(1 — 2P~9)

B,_q (mod p), if a is odd;
H(—a;p—1) = %717a (10)
MpB 1 (mod p?), if a is even.
a+1 P ’

Proof. Taking d = p and n = p(p — 1) — a in the Lemma we see that
H(=a;p =1) =Fpp-1)—appp-1) T P0P = 1) = ) Fpp1)—appp-1)-1-a

1
=Ep(p-1)-a(0) — ipaEp(p—l)—l—a(O) (mod p?),

since all the coefficients in (6) are p-integral by (7) and the property of Bernoulli numbers: B,
is not p-integral if and only if p — 1|m > 0. Then the corollary directly follows from (7) and

Kummer congruences

Bp(p—l)—a = Bp-1-a (mod »)
pp-1)—a p—-1-a ’
Bpp-1)-a+1 — Bpa

pp—1)—a+1 p—a

(mod p).
U

Remark 5. The corollary can be obtained also from [10, Thm. 2.1] combined with [9, Thm. 5.2].
Notice that when a is even both terms in [10, Thm. 2.1] contribute nontrivially since the
modulus is p2.
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2.3. Two reduction formulae. We now prove two reduction formulae of H(§) for arbitrary
composition §, corresponding to the two cases where § begins with a positive or a negative

number.

Theorem 6. Let a,l €N, 5 = (s1,...,57) € (Z*)* and 5" = (s2,...,50). Then for any prime
p>a+2

-1 1 P /p—a\ B
H(a,§) = —H((a=1)@s1,5) ~ sHa®s,5)+ Y (ka‘)p_’f H((k+a—1)®sy,8).
=2

k
(11)
Proof. By definition
S L, sgn(sg)7e a sgn(sp_q)7e1 e sgn(sy)? ol pl-a
H<@v$>=z Tse] Z Tse 1l Z |al\ ZJ
je=1 Je jer=1  Je-1 ji=1 j=1
11— —1 L g,—1 . io—1 .
:pza p—a\ By pz: sgn (s )" NZ: sgn(se—1)” JQZ: sgn(s1)”" p—a—rk
= k )p—a o] Toe 1] foil L
k=0 je=1 Je jeer=1  Je—1 a=t 1
which is exactly the right hand side of (11). O

Theorem 7. Let a,{ €N, 5§ = (s1,...,50) € (Z*)* and §' = (sa,...,50). Then for any prime
p>a+2

p—2—a 1—a _ 9k+1 1 ’
B Z ( 1 )%H((k+a)@(81)>§)'

Proof. By definition and Lemma 2

) p—1 SgH(SZ)jZ Je—1 SgIl(ngl)jzfl Jj2—1 Sgn 81 Ji—1 p .
H(a,5) =) el 2 ol 3 e Z

je=1 Je—1=1 -1 =1 1 j=1
N (P 1 @) B(0) R sen(s)” K~ sgu(seo) R sen(s)
=2 U p ) X T X e Y
k=0 je=1 Je je—1=1 Je—1 =171
~1 L Ge—1 ; ja—1 ;
Ep-1-4(0) R sgn(se)’ sgn(se—1)7 ! sgn(sy)’ j
+ 2 Z -|se| Z Jse_1] Z Tl (1 — (—1) 1)
je=1  Jt jer=1  Jo—1 a=t N1
—2—
E, 1400 . —1—a\ Ex(0 .
S GG CNED BN (SRR E]
=0
The theorem follows from (7) easily. O

3. AMHS OF DEPTH TWO

In this section we will provide congruence formulae for all depth two AMHS. All but one
case are given by very concise values involving Bernoulli numbers or Euler numbers (which
are closely related by the identity (7)). Throughout the rest of the paper we often use the
shorthand H(—) = H(—;p — 1).
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Theorem 8. Let a,b € N and p be a prime such that p > a+b+2. If a+b is odd then

_1)b
H(a,b) = (a i)b (“ ' b) Bypup (mod p), (12)
H(—a,—b) =(2P"*"* —1)H(a,b)  (mod p), (13)

_ —a—b
H(—a,b) = H(a, —b) E%Bp_a_b (mod p). (14)
If a+ b is even then we have

H(a,b) =0 (mod p), (15)

_(2*-2)(2"-2)
H(—a,-b) :WBP_QBP_Z, (mod p). (16)

Proof. Congruences (12) and (15) follow from [11, Thm. 3.1] (see [5, Thm. 6.1] for a different
proof). Congruences (13) and (16) are given by [10, Thm. 2.1] combined with [9, Thm. 5.2].
Let’s consider the two cases H(a,—b), H(—a,b) when a+b is odd. By stuflle relation (see §2.1)

it’s easy to see that for («, 3) = (a,—b) or (—a,b) we have

0=H(a)H(B) =H(,3) + H(B,a) + H(a @ 3) (mod p)
=H(a, ) +sgn(af)(-1)***H(a, B) + H(a ® 3) (mod p)
=2H (o, 8) + Hla @ 3) (mod p).
Thus
_ 1 _1—gprab
H(—a,b) = H(a,-b) = —§H(—a -b) = ai—i—be_a_b (mod p)
from Cor. 4, as desired. O

Even though we don’t have compact congruence formulae for H(—a,b) and H(a, —b) when
a—+b is even we can prove two general statements using the two reduction procedures provided
by Thm. 7 and Thm. 6.

Proposition 9. Let a,b € N and p a prime such that p > a+ b+ 2. If a+ b is even then

p—a-l 2p—a—b—Fk
—a\ 2(1— 2% BrBap_a_b_
<p “) ( ) BiBap-—abk (mod p).  (17)

Hla-b=-Hba= 3 " ) = a@ a0 b

Proof. By the theorem modulo p we have

p—a—1
_ _ p—a Bk ) “(a .
H(a,—b) = kzzo ( B )p_a H(—(a+b+k—1)).

To use Cor. 4 we need to break the sum into two parts, i.e., when a + b + k < p and when
a+ b+ k > p. In the first case we can replace k by k + p — 1 and then to get the correct term
in (17) we only need to use Fermat’s Little Theorem 2°P+1-¢=b=k = 22p—a=b=k (104 p) and
Kummer congruence Byy1_gq—p—k/(p+1—a—b—k) = Bop_q_p—i/(2p —a—b—k) (mod p).
This finishes the proof of the proposition. U

The second reduction procedure, Theorem 7, provides us another useful result on AMHS of

even weight and depth two with two arguments having opposite signs.
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Proposition 10. Let a,b € N and p a prime such that p > a+b+2. If a+b is even then we

have

—2—a-b ) o
H(—a,b) Ep Z p—1—a\2(1 =211 —20""""F)\By 1By 0y
’ k (k+1)(a+b+k)

=1
p—l—-a k+1 2p—1—a—b—k
“1—a)\ 2(1 — 2kt (1 — 9% Bii1Boy 10 b
+ 2 (p k a) ( x(k—kl)(l—ka—klj% HEEE (mod ).
k=p—1—a—b
Proof. By Theorem 7 we have modulo p
p—l-a k1
p—1—a\(1—2"")By,
H(—a,b) = —— =T H(-(k b
Can= 3 (1) T o)
since H(b) = 0. The rest follows from Cor. 4 similar to the proof of Prop. 9. O

The two propositions above will be used in §6 to compute some AMHS congruences explicitly.

4. AMHS OF DEPTH THREE

All the congruences in this section are modulo a prime p. Recall that for MHS we have the
following statement (see [11, Thm. 3.5] or [5, Thm. 6.2]).

Theorem 11. Let p be a prime and a,b,c € N such that p > w :=a+ b+ c is odd. Then

Aber-1 =1 (1) - ()] 222 moan).

a C

When w is even and p > w + 3 [11, (3.13)] yields

p+l—w
H(a,b,c;p—1) =— Z (1)C<a+k> Bi <w+k 1)BP+1—“J—’€

k a+k c w+k—1
h=0 (18)
s (a+k\ Bp [w+k\Bap_w_s
B Z (=1) E Ja+k c w+k
k=p+1l—a—>b

For AMHS, we first observe that for any «, 3,7 € Z we have
H(a, 8,7) =H()H(B)H (v) — H(y)H(8,a) = H(y)H (B & )
—H(v,8)H(o) — H(y ® B)H () + H(v, B, )
+H(y® B,0) + H(y,B® )+ H(y® B ® a).
This can be easily checked by stuffle relations but the idea is hidden in the general framework

set up by Hoffman [4]. Combining with the reversal relations we can obtained the following
results without much difficulty. We leave the proof to the interested reader.

Theorem 12. Let p be a prime and a,b,c € N such that p > w where w:=a+ b+ c.
(1). If w is even then

2H(a,—b,c) =H(—c —b,a) + H(c, —b — a), (
2H(a,b,—c) = — H(—c)H(b,a) + H(—c—b,a) + H(—c¢,b+ a), (20)
2H(—a,—b,—c) =— H(—c¢)H(=b,—a) — H(—c¢,—b)H(—a) + H(c+ b, —a) + H(—c,a + b).
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(2). If w is odd then
2H(a,—b,—c) =H(c+b,a) + H(—¢,—b—a) — H(—c)H(—b, a), (22)

2H(—a,b,—c) =— H(—c¢)H(b,—a) — H(—c¢,b)H(—a) + H(—c — b, —a) + H(—c¢,—b — a).
(23)

Because of the reversal relations when the weight is even there remains essentially only one

more case to consider in depth three. This is given by the next result which will be used in §6.

Theorem 13. Let a,b,c be positive integers such that w := a + b + ¢ is even. Then for any
prime p > w + 3 we have

p—w+1 B B ok
H(a,—b,—c) = — Z ( p—a ) (k te 1> (1 = 2%) Bk Bpw—k+1
p

P —w—k+1 c ak
— pic p—a k+071 (172k)BkB2p—'w—k
2p —w —k c ak
k=p+1—b—c

(1271 —2+")B, o ,B, .
(a+b)c '

Remark 14. The condition p > w + 3 can not be weakened since
H(1,-2,-3) =RHS +5# RHS (mod 7).

Proof. The proof is essentially a repeated application of Thm. 6. But we spell out all the details
below because there are some subtle details that we need to attend to.

By (5) and Fermat’s Little Theorem we have modulo p

P 1 Z—z—l

H(a,—b,—c)

ar’%

j p 1— bzkp l—a
l —1—a B i—1

s ( L) S,
1 =0 p=ai=

"?
L

7

where p(k) =0if k <p—a—band p(k) =p—1if k > p—a— b (to make sure all exponents
are positive in the sum of the second line above). By Lemma 2

n —1

r e p—a\ B n\ & -
H(a,—b,—c) = ( R )p — > <r) > (=1 T i
0

e r=0 i=1
i k —\r (p—a)(r+1) i=1
p—1l—a n+1 p—!
p—a\(1—2"")ByByyy i ¢
+ Ut
= ( k> poamry VY

where n = p(k) + p — a — b — k. Here we have used the fact that when r = 0 we have
Fpi, = (~1)""! and thus the inner sum is -7~ "¢ = 0 (mod p) except when p — 1|n — ¢,
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i.e., except when n = ¢ and k = p — w. But then B = 0 since w is even by assumption. Thus

o T ()

0<k<p—a
c<n
p—1l—a
— 1-2"*HB. B,
+H(-) Y (p a>( JPeBos,
prd k (p—a)(n+1)

Now if ¢ is even then H(—c) = 0 (mod p). So we may assume c is odd in the last line above.
Then k +n + 1 is always odd so that ByB, 11 # 0 if and only if k =1andn=p—a—-0b— 1.
Hence

p

—w—1 - P _ op—w—k+1
Hia, b )= 3 (p a) (p a—b k) (1-2 )BiBp—w—k+1
k

k p—w—k (p—a)(p—w—k+1)

p—a\(2p—1—a—b—Fk\(1—-22"""MBy By, 4 4
k 2p—1—w—k (p—a)2p—w—k)

(1-2)(1— 2B, . ,B, .

(a+b)c '

[}

p—1

+
rvj:
/N

After substitutions k — p — w + 1 — k in the first sum and k — 2p — w — k in the second sum

the theorem follows immediately from Cor. 4, O

5. AMHS OF ARBITRARY DEPTH

In this section we provide some general results on AMHS without restrictions on the depth.
We first consider the homogeneous case for which the key idea comes from [11, Lemma 2.12]
and [5, Thm. 2.3].

Let p; = 221 JJ; be the power-sum symmetric functions and e; = Zj1<_”<ji xj, -+ T; be
the elementary symmetric functions of degree i. Let P(¢) be the set of unordered partitions of
0. For A = (A1,...,\) € P({) we set py = [[,_, pr,- Recall that the expression of ¢; in terms

of p; is given by the following formula (see [7, p.28]):

P1 1 0 . 0
P2 D1 2 .. 0
E!ez = 0 = Z CAP- (24)
Pe—1 Pe—o pe_g - £—1 AEP(X)
De Pe—1 Pe—2 - D1

Denote by O(¢) C P({) the subset of odd partitions A = (A1,..., ) (i.e., A; is odd for every
part).

Lemma 15. Let a,f € N and p a prime such that al <p—1. Set H(—) = H(—;p—1). For
an odd partition A = (A\1,...,\.) € O(f) we put Hx(—a) = [[\_; H(=Xia). Then

0H({~a}')= Y cxHa(—a) (mod p) (25)

AEO(8)
where ¢y are given by (24). In particular, if a is even then (25) =0 (mod p). Ifa > 1 is odd
then (25) is congruent to a Q-linear combination of Bp_x,q -+ Bp—a,qa for odd partitions \ =

(A1, -+ Ar). If a =1 then (25) is congruent to a Q-linear combination of q, B, - Bp_a,

s+1 "
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for odd partitions X = ({1}*, As41,...,Ar) (N > 1 for all i > s), where g, = (2P71 —1)/p is
the Fermat’s quotient.

Proof. (25) follows from [11, Lemma 2.12] and [5, Thm. 2.3]. The last part follows from [10,
Thm. 2.1] and [9, Thm. 5.2] O

For example, by [10, Thm. 2.1] and [9, Thm. 5.2(c)] we have
H(-1) = H(1; (p— 1)/2) = ~2, (26)

we have O(2) = {(1,1)},0(3) = {(1,1,1),(3)},0(4) = {(1,1,1,1),(1,3)}. Tt is obvious that
C(1,,1) = 1, C3) = 2, €(1,3) = 8, €(1,1,3) = 20, and €(1,1,1,3) = C(3,3) = 40, which implies that

2H ({—1}?) =4q;, (27)
6H ({—1}) = — 8¢} + 2H(-3), so H({-1}%) = —%q; (lij_g (28)
24H ({—1}") =16q, + 8H(—1)H(-3), so H({-1}") = gqf, - %q,,Bp,g,, (29)
51H ({—1}°) = — 32¢) + 20H(—1)*H(-3), so H({-1}°) = 714—5(12 - %qu,,,g (30)
and
6'H ({—1}°) =64q; + 40H (—1)>H(—3) + 40H(-3)?,
H({-1)°) =) + 2aBps + 5 Bos. (31)

6. AMHS OF WEIGHT FOUR

In [10] the first author studied the congruence properties of AMHS of weight less than four.
In this section, applying the results obtained in the previous sections we can analyze the weight
four AMHS in some detail. First we treat some special congruences which can not be obtained

by just using the stuffle relations and the reversal relations. Let p > 7 be a prime and set
A=A, -, K=K, as follows:

p—3 p—3 p—3
A= Z BkBp,g,k7 B = Z QkBk‘Bp,g,k, C = 2;0_3_IC.BICBZ,,;g,k7
k=2 k=2 k=2
p—3 p—3 3_k
. BiBy_s_1 ok BkBp - _ w-3-kp B _
D:=Y" . Z , F:= . ,
k=2 k=2
p—3 p—3 p—3
G = Z kByBp 3 1, J:= Z 2*kByB, 3 i, K: 23 FEBLB, 3 4
k=2 k=2 k=2
Then by [11, Cor. 3.6] and simple computation
3
=-B,_3, G=0, CEB—EA, K=-3B-J+3A (mod p). (32)

Proposition 16. Let p > 7 be a prime. Then we have the following depth two congruences
1 =
H(1,-3) =5 H(-2,2)=B - A= > 2"BiB,_3_ (mod p), (33)
k=0

1
~qpBp_3 (mod p). (34)

H(-1,3)=- 5
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Proof. We take congruence modulo p throughout this proof. By Prop. 10 we have

112 By B 1
H(=3,1) = = 23 (k- 2)(k +3)(1 = 2F)(1 - 2777 =2t - 2By
k=1
_1 = k p—3—kBeBp3-k 1
=3 > (k+1)(k+2)(1 —2%)(1 -2 )= — StBys.
k=2
by the substitution k — p — 4 — k. Similarly we can get
p—3
3_ g BeBp—3— 3
H(-2,2) == (k+2)(1-2%)(1 - 2073 ") =022 4 2, B,
k=2
= BB
— —3—ky PrDp—3—k
H(-1,3) =2 (1-29)(1 - 03} 222k oy g
k=2
Using (32) we reduce the above to
5) 3
8H(=3,1) =3A 3B+ 0D — 2B —2F — 2q,B, 3 (35)
5 3
H(-2,2)=2B — 2A — §D +2FE +2F + iqup,g (36)
5
H(-1,3) = +5D 2B —2F —24,B, (37)

On the other hand, by Prop. 9 we get

-2
2 = [p—1\1—2%4Fk
0 )

L
= - 73]6317_3_;@ + 2qup_3

Pl 3—k
b3 ok

=-2 Z BBk + 20, By
k=2

=2E — 2D +2¢,B, 3.

by the substitution b — p — 3 —b. Thus by the reversal relation

H(-3,1)= —H(1,-3) = 2D — 2E — 2¢,B,_s. (38)

Similarly we find
H(-2,2)=—-H(2,-2)=B—-A+2FE —2D +2¢,B,_3, (39)
H(—173)E—H(3,—1)E%(—J+3A—3B+2D—2E). (40)

Then by adding (35), (36), (38) and (39) altogether we have
AH(—3,1) + 2H(~2,2) =0
which implies the first congruence in (33). Now adding (38) and (39) yields
—H(-3,1)= H(-3,1) + H(-2,2)=B— A (41)
which is the second congruence in (33). Plugging this into (35) we see that

gD —2F —2F — gqup_g =0
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which combined with (37) produces (34). This finishes the proof of the proposition. O

Proposition 17. Let p > 7 be a prime. Then we have the following depth three congruences

1 1
H(1,-1,-2) E§H(1, -3)+ 5] (mod p), (42)
5
H(1,-2,-1)= H(1,-3) *quBp_g (mod p), (43)
1.3
H(2,-1,-1)=-H(1,-3) — §J—|—quBp_3 (mod p). (44)
Proof. By Thm. 13, Prop. 16 and (32) we get
p—3
2H(1,-1,-2)=— > (k+1)(1—2")ByBys r =B—A+J—G=H(1,-3)+J (45
k=2
p—3

5 5
H(1,-2,-1) Z (1=2%)BiBy—s — 0pBps = H(1,=3) = 50,5,

4

l\)

1 3
+ *qup73 = —H(]., —3) - §J + iqupfg,

(k+2)(1 —2%)B,B
2_1_1 Z + Q)kp3k i

as claimed. O
By (20) it is readily seen that

2H(1,1,-2) = H(—=3,1) + H(—2,2) = —H(—3,1)

from (41). In fact, by stuffle and reversal relations we can now find congruences for all weight
four AMHS of depth up to three. By reversal relations we only need to list about half of the
values. Write Ha11 := H(—2,1,1). Then

H(4)=H(-4)=H(2,2)=H(-2,-2)= H(1,3)=H(1,-2,1)=H(-1,-2,-1) =0,
H(1,-3) = —2Ho11, H(2,-2)=4Ho, H(1,-1,2) = 3Hos11,

H(-1,-3) = QQpo 35 H(3,-1)= 5‘]po—3,

H(1,-1,-2) = —Hoi1 + 3J, H(-2,-1,-1) = 2H211 — ¢,Bp—s3,
H(-1, ,1) = —Ho1 + 4qup 3, H(-1,1,2) =2Hs11 — %qup,;;,
H(=2,1,-1) = 3Ha, — 27 + 3¢, B, 3, H(1,—2,—1) = —2Hyy; — 2¢,B, s,
H(—1,2,—1) = —4H11 + J — 3¢, B,_s, H(2,—1,—1)=2Hy — J + 3¢,B,_s.

We now turn to the depth four cases.

Proposition 18. Let p > 7 be a prime. Then we have the following depth four con-
gruences

HQ,-1,-1,1)= —3(H1,-3) + J +qt)  (modp),
H(-1,-1,1,1)=H(1,1,-1,-1) = 2—14 6J+7qup_3+8qf; (mod p),
H(-1,1,-1,1) = H(1,-1,1,-1) = -4 apBp-3+2q;) (mod p),

H(-1,1,1,-1) = % 6H(1,-3) +7qpBp—3 +2qf; (mod p)
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Proof. By Thm. 6

p—3
H(1,-1,-1,1)=— H(-1,-1,1) — %H(—Q, ~1,1) = ByH(—(k+1),-1,1),
k=2
1 L
H(L1,~1,-1) == H(1,~1,-1) = JH(2,~1,-1) = > BeH(k+1,~1,-1).
k=2
Using reversal relations and (22) we see that
1
H(1,-1,-1,1) == H(-1,-1,1) - S H(-2,~1,1)
1823
50 Be(Hk+2.0) + H(=(k+1),-2) = H(~(k+ 1)) H(-1,1)),
k=2
(46)
1
H(1,1,-1,-1) == H(1,~1,-1) - S H(2,-1,-1)
183
— S 3 B(H@ b+ 1)+ H(-1, (b +2) = H(-D)H(-1,k+1)).
k=2
(47)
Note that by Thm. 6
p—3
—H(-1,1)=H(1,-1) = = ) (-1)*BcH(~(k + 1)),
k=0
p—3
H(1,1,-1)=— H(1,-1) — fH(2 —1)+ Y BpH(-1k+1).
k=2

We may use (12), and (13) to simplify (46) and (47) further. For all k =2,...,p—5

we have

H(k+2,1) =~ By sk, H(—(k+1),-2) = %(213—3—’“ — 1)(k +2)By3-4,
(48)
H2,k+1)=— (E+2)Bys- H(-1,—(k+2)= (2 3F - 1)B, 3.

2 )
(49)
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However, one has to be very careful in applying these formulae because the formulae

might fail when & = p — 3. We need to compute these separately as follows:

p—1 1 i—1 1 p—1 i1
=1 j=1 i=1
p—1 i—1 p—1
(—1) (=1)7 (—=1) 1-2¢ 1Y\ _
H(_(p - 2)7 _2) = 7/2 .p72 = 12 (_1)l 4 - Z = 0,
i=1 j=1 J i=1
p—1 i—1 p—1
1 1 1—1 1
H(2,p—2)=H(p—2,2) = _ZTZZP =-> 5 =5=0
i=1 j=1 i=1
p—1 ;i—1 : p—1 .
(—1) (—1) 1+(-1)" 1
H(-L—~(p=1) == H(=(p—1).—1) == 3 == 3 o =3 ok = Shi(-1) = =,
i=1 j=1 i=1

by (26). We see that only H(—1,—(p — 1)) fails the formula in (49) and therefore we
get

1 1 1
H(1,-1,~1,1) == H(=1,-1,1) = gH(=2,~1,1) + gH(=DH(-1,1) = 2H(~1,1)*

and

H(1,1,-1,-1) =H(-1,-1,1) — %H(2, —1,-1) + %H(—l)(H(l, 1,—1)+ H(1,-1) + %H(Z, —1))

-3

1% k+2)B,_3_p L4 1

-5 By, (_()21’3 4 (p3k 1)Bp_3_k> i Eq”B”_?"
k=2

Now by [10, Cor. 2.4, Cor. 2.5] we know H(—1,1) = —qz, H(-1,-1,1) = qg + %Bp_g,
and H(1,1,-1) = —%qf; — L By_3. Together with (26) these yield

-3
1 1 1 1 1% 4
H(17 -1,-1, 1) == §BP*3 - §H(_27 -1, 1) - gqf? B §A + Z Z(2p 3k 1)(k + 2)BkBp—3—ka
k=0
1223
> BB, 5 .

1 1 2 1
H(1,1,-1,-1) =Bys — s H(2,~1,-1) + gq]‘i +30Bps + A+ G-
k=0

2
It now follows from (32) and the substitution k¥ — p — 3 — k that

3
(1 —2%)(k + 1) By Bp—3,
0

H(1,-1,-1,1) = 1H( 2,-1,1) 14+1p7
Y 9y 9 - 2 ? Y 2qp 4k_
1 1 2 1
H(1,1,-1,-1)=— -H(2,-1,-1) — ~H(1,-3) + 2qyBp_3-k + =05
(77 ’ ) 2 (7 ) ) ) (7 3)+3Q}7p31€+3Qp
Hence (18) and (18) quickly follow from (45) and (44).
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Finally, (18) follows from stuffle relations applied to H(—1)H(1,—1,1) and then
(18) from stuffle relations applied to H(—1)H (1,1, —1). This finishes the proof of the
proposition. O

For other depth four and weight four AMHS we have the following relations derived
from the stuffle relations and the congruences obtained above:

1
H(1,1,=1,1) =2H>11 + 3H (=1, 1,1, 1) + 5By,

H(—1,-1,1,—1) =6Ha11 + 3H(1,—1,—1,—1) — 4, B,_3 — 2q},
1 2

H(_la_L_l’_l) = §QPBP*3+§Q;1-

On the other hand, we can only deduce from Thm. 6 and Thm. 7 that

—3

1

H(L,1,1,-1) == H(1,1,-1) = g H(2,1,-1) = 3 BrH(k+1,1,-1),
k=2

H(-1,-1,1) — H(1, -1, 1)) -

3

+> 1 -2B.H(k+1,-1,1),

2

bS]

H(2,-1,1)

N | —

H(_la _17 _17 1) =—q

/N

=
|

T

where, by the reduction theorems again,

-1 1

p—k—2
p—k—-1 B; .
—H k+1,—-1

H(k+1,-1,1) zﬁH(—(k +1),1) - %H(—(k +2),1)
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Observe that the indices k and j in the above sums can be both taken to be even

numbers. Thus by Prop. 9 and Prop. 10

p—j—k—2 . 2p—i—j—k—2
‘ p—j—k—1\2(1—-2%"7 )BiBop—_i—j—k—2
Hi+k+1,-1)= < ) - — )

( =2 (p—j—k-12p—i-—j—k-2)

7

=0
_p‘jz‘:’“‘z <p k- 1) 2(1 — 2= NBB, i i pq
= i G+E+D)(+i+k+1)
p—j—k—4

1 ) (i+1)(i+j+k+2)

20 -2 -2 B,
p—j—k-1

= i i(i4+j+k+1)

—j—k—1Bp_1

=2

20 —-27"" By j k-
jt+k+1

Consequently, both H(1,1,1,—1) and H(—1,—1,—1,1) can be written as a triple sum

with most of the terms given involving products B; BjByB),_;_j_—2. It is very likely

_qp

that modulo p we cannot reduce H(1,1,1,—1) and H(—1,—1,—1,1) to a linear com-
bination of AMHS of depths up to three. At least in theory one possible way to check
this hypothesis is to find six infinite sets of primes S; = {pgk) ck>1},...,8 = {pék) :
k > 1} for each of the following six elements:

bl(p) :JP? bQ(p) :H(lﬁ_s)’ b3(p) :H(1>_17_17_1)7

b4(p) ZQ;)la b5(p) ZQPBP*& b6(p) :H(_1717171)>
such that for each choice (pgk), . ,pék)) we always have b; (pgk)) =0 (mod pgk)) for all
i # j and bj(p§k)) # 0 (mod p}k)) for all j = 1,...,6. In practice this is extremely
difficult to carry out. For example, if by(p) = 0 (mod p) then the prime p is called a
Wieferich prime. The only known Wieferich primes are 1093 and 3511 and if any other
Wieferich primes exist, they must be greater than 6.7 x 10! according to [2]. It turns

out that
[Jp,H(1,-3),H(1,-1,-1,-1), H(—1,1,1,1)] =[1023, 529, 670, 952] (mod 1093),
[Jp,H(1,-3),H(1,-1,-1,-1), H(—1,1,1,1)] =[1618, 2160, 1620, 540] (mod 3511).

In order to understand the general mod p structure of AMHS we need to consider some

infinite algebras similar to the adeles (see [14]).
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