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ABSTRACT

Let V be a finite dimensional real Euclldean space and let G be a
finite Irreduclble group generated by orthogonal reflections across
hyperplanes in V. We study interpolation of operaters in G-invariant
norms on V. A collection of G-invariant norms is called G-sufficlent if
any G-invariant norm is a strict interpolation norm for this collection.
Using the general theory of sufficient collections we calculate
explicitly two remarkable minimal sufficient collections and study their

exiremal properties.
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Nahum Zobin, Veronica Zobina

To our teacher, Professor Selim Krein,
on his 75" birthday
Introduction.

Here we present a detalled exposition of our results on interpolation
of operators in finilte dimensional spaces with norms invariant under the
action of a Coxeter group.

The first result of this sort was a finite dimensional verslon of ihe
well-known theorem due to B. Mityagin (5] and A.P. Calderon [3],
asserting that every Bn-invariant norm on R" is a strict interpolation
norm between the 1: - and l: - norms ( Bn is the group generated by all
permutations and all changes of slgns of canonical cocordinates in R" ).

It follows from our results that, say, 1: - norm is not a strict
interpeclation norm for any finlite collection of Bn- invariant norms,
all different from the l; - norm. So, the above two norms are , in this
sense, extremal Bn— invariant norms . What 1is the reason for such an
extremality 7 What are the analogs of these norms if we consider other
groups (or semigroups) ? These questions were studied for general groups
[ 13,14 ] and, further on, for general semigroups [ 10,11 1, a full
exposition of the general theory is contalned in [ 12 ].

The case of Coxeter groups is especlally interesting because 1t
turned out that it is possible to give final answers to almost all
natural questions.

The first results were obtained in [ 8,9 ], but at that time we had

no general theory and the results were very far from being final. It is



interesting that a bit earlier M.L. Eaton and M.D. Perlman in their
investigation of analogs of Schur majorization motivated by problems of
statistics [ 4 ], came to a necessity to study geometry of convex hulls
of orblts of vectors under the action of Coxeter groups. This was a
crucial point of our research and there are some intersections in thelr
and our results in this theme. A new approach was proposed in [ 13,14 ]
and it gave a possibility te understand the problem deeper. An intense
research was undertaken in 1979-1989 and we have obtained final results,
which were partlally announced in [ 11 ], the proofs were very
complicated and depended heavlily on the classification of Coxeter
groups. Recently we found new ldeas which permitted us to give new and
simpler proofs.

The paper is organized as follows. In § 1 we briefly describe the
general theory of sufficlent collections, introduce main notlons and
formulate main results. § 2 is devoted to a short introduction into the
thecry of Coxetef groups, adjusted to our needs. § 3 contalns some
additional material on Coxeter groups ( maybe, it 1is known to
specialists, but we could not find it 1n literature ). § 4 is devoted to
a realization of the general construction of éufficient collectlons in
the specific situation of Coxeter groups. In § S we study deeper
extremal properties of the canonical collections which are not covered
by the general theory. § 6 contains expliclit formulas for standard
collections for some Coxeter groups. § 7 is devoted to some remarks on
connections between the results of the paper and other problems of the
Interpolation theory.

Acknowledgement. We are greatly indebted to our teacher Professor
Sellm Grlgor’evich Krein for numerous frultful discussions, valuable

remarks and encouragement.



§ 1. A review of the general theory.

PROBLEM. Let V be a real finite dimensional linear space. Let G be a
group of linear operators acting on V. A closed convex G-invariant set U
is called G-symmetric . A collection of G-symmetric sets { Ua }aEA is
called sufficient (or,better, G-sufficient) if for any linear operator
L: V » V the inclusions LUa < Ua (V « € A) 1imply the 1inclusions
LU ¢ U for any G-symmetric set U.

The problem is to describe all sufficient collections, to construct
certain canonical collections and to investigate them. This was done in
[ 14 ]. The papers [ 8,10,13,14 ] are mostly short announcements. The
most complete exposition of the theory for general semigroups of
operators is contalned In [ 12 ], a brief survey of the theory is
contained in [ 11 ].

The main goal of this paper is to give a complete account of the

results concerning the reallzation of the general theory in the case

when G is a finite irreducible Coxeter group.

NOTIONS. Our approach 1s based on a systematic exploitatlon of the
cancnlcal duality between the space End V of llnear operators on V and
the tensor product space VeV’.

Sufficlent collections are described in geometric terms connected

with certain sets : & , K(#) , Extr K(&) , u° , S(U) , defined below :

A = ( aef € VeV’ : sup <ga,f> s 1 }
ges



( For a uniformly bounded group G the set # is compact if and only if G

acts irreducibly ).
K(#) = conv 8@ - the closed convex hull of the set & .
Extr K(&8) - the set of extreme points of K(H).
W={feV : <x,f> 51, ¥xeU} - the polar set of U,
S(U) = { xef e VeV’ : x e U, f € u° b

Con = conv {gx: geG} - the closed convex hull of the G-orbit of x.
The following Theorem 1.1 gives a description of all sufficient

collections.

THEOREM 1.1. A collection Ua }aen of G-symmetric sets is

sufficlent if and only if

K(8) = conv U S(U )
@
aEA

CANONICAL COLLECTIONS .
v Collections, consisting of G-symmetric sets of the form Con are

called simple collections .

Collections consisting of G-symmetric sets of the form (Coc,f}o

are called dual-simple collections.

There are two canonlical collections constructed with the help of the

following sets T and T’



M ={aeV: 3 fa e V', aefa € Extr K(d) }
" = { fevV': 3 a_ e v, af@f e Extr K(4)} }

The collection { Coca }aeﬂ is called the simple canonical collection;

1s called the dual-simple canonical

o
the collection { (Coc.f) }feﬂ’

collection,
THEOREM 1.2. The canonical collections are sufficient.

EQUIVALENCE OF SUFFICIENT COLLECTIONS. Conslder the set of all compact
convex subsets in V. This set of subsets 1s equlpped with the so called
Hausdorff topology. The Hausdorff dlistance between two sets 1s defined
as follows :

dH (Ui.Uz] a inf { A : U1 < U2 + AB, U2 C U1 + AB 1},

where B is a fixed nelghborhood of the origin in V. It is clear that
the Hausdorff topology does not depend on the choice of B.

Let N limH denote, respectively, the closure, the
convergence and the limit in the Hausdorff topology.

Let { Ua }aeA be a sufficlent collection of bounded G-symmetric

sets . It is clear that any collection of the type { A U } is
o x EA

sufficient and any collection {WB}BEB such that

YVaeA, 3 {Bl} c B Ua = 11mH WB ,

1 1

is also sufficlent. This remark implies the following

DEFINITION 1.1. Sufficient collections ({ Ua }aEA and wB }BEB of

G-symmetric bounded sets are called equivalent if



H .
{AaU_} = { uWB }

H

a “AER, aea ueR, BeB
If
H H
{ AUa }Aeﬁ,aeA s pr }ueR,BEB

then the collectlion { Ua }aeA is said to be smaller than the collection

{ Hﬁ }Ber
THEOREM 1.3. The simple canonical <collection ( Coca }aeﬂl is the
smallest simple sufficient collection. The dual-simple canonical

collection { (Coc*f)° } is the smallest dual-simple sufficient

reTl’

collection.

THEOREM 1.4. The smallest sufficient collection exists if and only if

the two canonical collectlons coincide.

§ 2. A survey of the theory of Coxeter groups

A Coxeter group G is a group of linear operators in a real Euclidean
finite dimensional space V, which can be described as follows: fix a
finite number of hyperplanes in V contalning the origin, then the group
G is generated by orthogonal reflections across these hyperplanes. Let n
be a unit vector orthogonal to a hyperplane across which a reflection g
acts. Then the reflection g is defined by the formula

gX = X = 2n <x,n>

We consider finite Coxeter groups. The finiteness condition on the
group G implles severe restrictions upon positions of the hyperplanes.

If reflections across two hyperplanes belong to a finite group, then the



angle between these two hyperplanes must be E , meN, mz 2.
All hyperplanes, such that the reflections ‘across them belong to
the Coxeter group, split the space into connected components - interiors

of polyhedral cones; these cones are called Weil chambers.

A hyperplane contalning a (dim V - 1) - dimensional face of a

Well chamber is called a wall. The group G is generated by reflectlons

across the walls of any Well chamber ( [1], ch.V, 3.1, Lemma 2 ). Any
Weil chamber is a fundamental domaln for the group G ( [1], ch.V, 3.3,
Th.2 ), this means that the G-orbit of any x has exactly one point in
common with any Well chamber. The group G acts transitively on the set
of Well chambers - for any two Weil chambers there exists exactly one
element of the group mapping the first chamber onto the second one.
([1], ch.V, 3.1, Lemma 2, and ch.V, 3.3, Prop. 1). Well chambers of any
Coxeter group such that the origin 1is 1its only flixed point are

simplicial cones, this means that every extreme ray of the chamber does

not belong to exactly one wall of the chamber ( (1], ch V, 3.9,
Prop.7 ).
A Coxeter group G is usually described with the help of 1its

Coxeter graph ' (G). The vertices of the graph aré in a one-to-one

correspondence with the walls of a Well chamber ( or with the extreme
rays of the chamber - an extreme ray corresponds to that unique wall of
the chamber which does not contain 1t }; two vertices are connected by a
bond if and only 1f the angle between the corresponding walls is g,

m = 3. This number m is attributed to the bond of the graph.

For a Coxeter group without nontrivial fixed points the
irreducibility 1s equivalent to the connectedness of 1lts Coxeter graph

( [1], ch.V, 3.7, Corollary ).



If G 1s a finite Coxeter group then its Coxeter graph has no cycles
([1], ch.V, 4.8, Prop.8). A vertex of a graph is called an end vertex

if it is connected with exactly one other vertex. A vertex is called a

branching vertex Iif it is connected with at least three other vertices.

The Coxeter graph completely describes the Well chamber and the
Coxeter group as well. All Coxeter graphs are classified and, hence, all

finite irreducible Coxeter groups are classified too ( see [1]).
§ 3. Coxeter groups : stabilizers and supports

Let C be a Well chamber. Let W(1l) denote the wall of C corresponding
the vertex mn(i) € ['(G). Let n(i) denote the unit vector of the inner
( with respect to C ) normal to W(i). For every 1 there exists exactly
one extreme ray of C not contalned in W(i). We let w(i) denote the
vector situated on this extreme ray, normallzed by the condition
<n(1),w(i)> = 1, So, we obtain

<n(1),w(j)> =
0, 1= ]

In the theory of Coxeter groups the vectors Ain(i) ( with special A's )

are called roots, and the vectors % w(l) are called fundamental
1

welghts.
Let g(i) denote the orthogonal reflection across the wall W(i)
g{l)x = x - 2<n(i),x> n(1)
Let a' denote the unique element of orbca , belonging to C.
DEFINITION 3.1.
supp.a = { n(l) € T(G) : <n(1),a'> >0} =

= {n(1) €eTFG) : a ¢ W)}



One can easily see that if we decompose a“l =) Aiw(i) ( Ai z0),
then supp a = { n(1) : A >0 }. One can easlly prove that supp.a does
not depend upon the choice of the Well chamber C.

Let Ji, cee .Is be the sets of vertices of connected components of
the Coxeter graph I'{(G). Let Gp denote the subgroup of G generated by
reflections across the walls W(1), n(i) e JP. Let

Vp ={xeV:gg=x VYge Gp}'L
It 1s clear that Gp are normal subgroups in G , Vp are Invariant under

G. It is known ( [1], ch.V, 3.7, Prop.5 ), that

G=G6 xGx...xG , VaVeVe ... eV,
1 2 1 2

s s
the actions of Gp in Vp are lIrreduclible. It follows {from the above
that a vector x from V belongs to a proper G-invarlant subspace 1f and
only if supp x Iintersects with every Jp ,1 s ps=sg,

Let a € C, consider

Ca) = ( n wit))pc=(0(n W) nC
n(l)isuppca 1:a€W (1)

C(a) 1s called the cell of a.

Let K¢V, let StabGK denote the stabllizer of K, i.e.,

StabGK ={geG: gg=x, ¥YXxeK}

It is known that -

(1) Stabca = StabGC(a) and ) W(i) is the set of fixed points of
K(l)esuppca

Stabca ( (1], ch.V, 3.3, Th.2);

(i1) Stabca is a Coxeter group, it is generated by reflections across
the walls of the chamber C, containing a, i.e., it is generated by the
reflections g(1) ( n({i) ¢ supp_a ) (f1), Ch.V, 3.3, Prop.1). We consider

the action of Stabca on C(a)l to avoid nontrivial fixed points,
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cla)* = [( N Wii) )nc 1t = span { n(1) :m(i) & supp a }
H(l)ésuppca

One can easlly see that
dim C(a)! = dim V - card supp_2a ™)

If S is a subset of vertices of the graph I'(G), then let T'(G)\S denocte

the graph obtained from T'(G) by erasing all the vertices belonging to S

together with all bonds lncldent to these vertices.

PROPOSITION. 3.1. T(Stabca ) = T(G)\Suppca.
C{a)

PROOF. Consider the traces of the hyperplanes W(i) on C(a)l. i.e.,
consider the hypersubspaces W(1) C(a)* in the space Cla)'. The angles
between the walls W(i) colncide with the angles between their traces.

These traces obviously form a Weil chamber for the group Stab a
c(a)

so the Coxeter graph F(Stabca J_) 1s completely defined by the
C(a)

angles between the walls W(i) , n(i) ¢ Suppa, i.e.

F(Stabca J_) = F(G)\suppGa. [
C(a)

Let prab denote the orthogonal projection of the vector b on the

subspace cla)t .

PROPOSITION 3.2. supp_. . a(prab) = suppr\suppGa.

b
G

PROOF. b = ¢ + prb , ¢ e W(i). Note that b e W(i)
1:a€W (1)

( (i) ¢ supp a ) if and only if prab € W(i) n C(a)l

11



supp (prub) = { n(i) e F(Stabca ) prab ¢ C(a)* nwi =

1

Stabca cla)

= { n(1) eT(G) : n(i) ¢ supp.a, prb ¢ W(i)qn Cla)’ =

{ (1) e T(G) : a € W(1), prab ¢ Wi ) =

={n{l) eT(G) : aeW(l), b e W)} =

suppr \ supp_a. (]

PROPOSITION 3.3. Let G be irreducible. Stabca N is lIrreducible if

and only if supp_a consists of an end vertex.

PROOF. If the group Stabca N 1s 1irreduclible then C{a) is

a

1-dimensional ( or else there exist nontrivial fixed points for the

actlon of Stabca on a' ). Applying the equality (*) above, we obtaln
Card supp,a = dim V - dim C(a)l =dim V- (dimV - 1) =1

So, supp_a consists of one vertex.

L

Let us show that this vertex from supp_a 1s an end vertex. As C(a)l = a

then Stabca = Stabﬁa and the action 1is 1irreduclble if and

C{a)

only if F(Stabcal 1) is connected ( Stabca , acts without
Cla) C{a}

nontrivial fixed points, see (1) above) or, equlvalently, F(G)\suppca is
connected., But suppca consists of one vertex, so £his vertex must be an
end vertex, because I'(G) is connected ( G 1ls irreducible ) and I'(G) does
not contain cycles ( see § 2 ). »

§ 4. Canonical collections for Coxeter groups

Let G be a finite Iirreducible Coxeter group acting in a finite

dimensional real Euclidean space V. We consider V = V’ and the duality

12



is given by the G-invariant scalar product < , >. These agreements and
the orthogonality of operators from G imply the coincidence of the sets

N and N’,

LEMMA 4.1.

(i) sup <gx,f> = <x,f> If and only if x and f belong to the same Weil
gEG

chamber;

(11) if sup <hx,f> = <x,f> = <gx,f> then there exists w € G such that
h€G

gx = wx and wf = f.

PROCF .
(1) Let f belong to a Well chamber Co' take any h e Stabcf and consider
ancther Well chamber hCo' Obviously, f belongs to the chamber hCO.
Conversely, 1if C0 and C1 are Well chambers and f € Co N C1, then take
the element h € G such that hC0 = C1 ( it exists because of the
transitivity of the action of G on the set of Weil chambers - see § 2 )
and notice that f and hf belong to the same Weil chamber Cl. so f = hf,
and h € Stabcf. So, we have proved that the elements of Stabcf and the
Well chambers containing f are ln a one-to one correspondence. So, if x
and f do not belong to the same Weil chamber then hx ¢ Co for any
h € Stabcf. Consider the walls W(i) of Co' such that f € W(i). The
subgroup Stabcf is generated by the reflections across these walls, so
it 1s possible to find h € Stabe such that <hx, n(i)> 2 0 for all 1
such that f € W(i). But if hx ¢ C, then there exists 1o such that

<hx,n(io]> <0, so f ¢ H(lo) and <f.n(10)> > 0. Then

<g(i°)hx.f> = <hx - 2n(10)<hx.n(10)>,f> =

= <hx,f> - 2<hx,n(i )><n(1),£> > <hx,f> = <, h7l> = <x, £>

13



and therefore if x and f do not belong to one Well chamber then <x,f> <
< max { <gx,f>: g € G }. If there exist two Weil chambers Co and C1 such

that x,f e C0 and gx,f € C1 then there exists h e Stabe such that hC0

= C1 and therefore hx, gx € C1' so hx = gx, and <x,f> = <hx,hf>
= <gx,f>. The assertion (1) is proved.

(11) If sup <hx,f> = <x,f> = <gx,f> then by (i) there exist Weil
he&G

chambers C1 and C2 such that f,x € C1 and f,gx € Ca' As the group G

acts transitlvely on the set of Well chambers ( see § 2 ), there exists
an . element w € G such that wC1 = Cz' S0 gX, WX € C2 and f, wf € Cz

therefore gx = wx and fx = x. ]

REMARK 4.1. The assertion (i1) of Lemma 1 may Be reformulated as
follows:
Let x,y belong to one G-orbit and let
<x,f> =<y, f> =max { <t,f> : t € orbcx = orbﬁy }.

Then x,y belong to one Stabe-orbit

THEOREM 4.1. z € Extr(CoGa)° if and only if Supp .z consists of one
vertex and for every connected component U of F(G)\suppcs the

intersection supp_a | U is nonempty.

PROCF. Let 2z € Extr(CoGa)°. We may assume that z and a belong to
the same Well chamber C. As z € Extr(CoGa)o there exists a (dim V - 1) -

dimensional face of CoGa such that z 1is orthogonal to this face,

14



“i.e., the system

S={x¢e€ orbca 1 =<x,2> =max ( <h,z> : h € orbca )}
1s complete in V. Note that the vector a belongs to thls system. Due to
the assertion (ii) of lLemma 4.1 the system S coincides with the
Stabcz-orblt of a.

Decompose a =a + a_, a € C(z), a_ € clz)* a = pr a. Then
1 2 1 2 2 et

abGzaz, as C(z) belongs to the

for every x € S, x = a ty,VyE€ orbSt
set of fixed vectors of Stabcz. Se, S c Clz)* + { va: v € R }, and
if the system S is complete then dim Clz)* + 1 = dim V.

As card supp .z = dim V - dim C(z)' we obtain that card supp .z = 1.

Moreover as the system S = a + orb .2

Stob_ is complete in V, then a,

2

cannot belong to a proper Stabcz~invar1ant subspace in C(z)l. therefore

a_ must Iintersect with every connected component of
Stabczlc(z)l 2

SUpp

I'(Stab z| ) or, due to the Propesitlions 3.1, 3.2, suppca\suppcz
c(z)

must intersect with every connected component of F(G)\suppcz.

These arguments may be obviously reverted. |

THECREM 4.2. a € N If and only if supp.a consists of exactly one

end vertex of TI'(G).

PROOF. Let a € M, then there exists f € V such that asef e Extr K(H),
hence a € (Con)°. f e (Coca)°. so the supports of a and f consist of
one vertex each and suppcf intersects wilth every component of

T(G)\suppca and supp_a intersects with every connected component of

15



F(G)\suppcf, hence supp,_a consists of an end vertex.

Conversely, suppose that a € C and suppca consists of an end
vertex of I'(G). Take any f € C Extr(CoGa)°. Then suppcf also consists
of an end vertex of TI'(G) and surely supp.a * SuPpr ( Th. 4.1 ). Note
that a € Extr(Con)° ( Th. 4.1 ), and that Stabca acts Irreducibly on at
( Prop. 3.3 ).

Let us show that aef e Extr K(&). Consider a decomposition

aef = ¥ Alai@fi , Al = 0, ?Ai = 1, ai‘ﬁvfl e 4.

We show that alef1 = a®f. Apply the operators gel ( g € Stabca ) to the
equality and sum up the results. We obtaln

( Card Stab.a ) aef =} Al( ) gal]@f1
1 qestabca

L
, a _ = via , a_¢€ a . Then

Decompose a, = a + a
1 i1 11 12

i2

) ga = ) g(a‘1+ a ) = (Card Stab_a )au + ¥ ga
qEStabGa qEStabca qEStabGa

The second term vanishes because of the irreducibllity of Stabca on al

{( this term belongs to a' and it is Stabca—invariant ). So, we obtain

asf = } Aa ef = T Aiv‘(asfl)
1 1

therefore f =} Av it

Let us prove that vlfi € (CoGa)°. Really

1

via=a, = ergstaba L 82
G qEStana
Therefore
_ 1
vaef = Card Stab a ) gaiofl'
G gES tabca

Since aiefi € A3 we conclude that for any h € G

_ 1
= CardStaba L ‘heaf> =1
G qEStubGa

<hvw a , >
1 1

16



So, vf € (Coa)®. But feExtr(Coal® and f=Faf),
vlf1 € (Coca)°. Therefore vlf1 = f and as

_ - 1, _ 1
aef =} A ef, ) Aa e ;1f =7 Al ;lal)ef

we obtain that'a =} A!( % alL
1

1 _ 1 o o
As ;!alef = alof1 € 3 then ;lal € (Cocf) . But a € Extr (Cocf)

1

- - 1.
and a = Y, A’(;lal), therefore a = a. So, a‘ofl =vae— f =aef. =

1 i

M

THEOREM 4.3. Let G be a finite irreducible Coxeter group. There
exists the smallest sufficient collection ( = the canonical éollections

coincide ) if and only if the Coxeter graph has no branching vertices.

PROCF. The canonical collections colncide

{ Co_a }aéﬁ = { (Cocf]o Yeem
if and  only if for any a € M  there exists f € T such that
Coca = (Cocf)o. or Extr (Coca)o = orbe. or, equivalently, for any a € M
all vectors from Extr(CoGa)° have the same support, but every end
vertex, different from supp, 2, 1s supporting a vector from (Coca)° - see
Th.4.1. So, there is only one end vertex in r(G), different from SUpp, 2,
so there are only two end vertices in I'(G) and this happens if and only

if there is no branching vertices in TI'(G) (because T(G) contalns no .

cycles - see § 2 ). [
§ 5. Standard collections

We want to investigate the structure of the canonical collections in
more details. One can easlly see that there are "surplus" sets in the

canonlical collections: if a set U belongs to a canonical collection then

17



any set kU also belongs to it ( k € R ). We want to eliminate such
surplus sets. Conslder the group 6 consisting of operétors kg ,
“k € R\{0}, g € G . Obviously 6 Nn="n, e é transforms J1 into M and M
is fibered into nonintersecting a-orblts).

Choose a representative b in every a—orbit in 91 and let ﬁ denote the

set of such representatives.

DEFINITION 5.1. Every collection { Cocb }beﬁ is called a standard

simple collection. Every collectlon { (Cocb)o }beﬁ is called a standard

dual-simple collection.

Obviously, standard collections are equlvalent to the corresponding
cancnical ones and therefore inherit many of their properties.

It is possible to calculate the number of elements in standard
collections and to prove that this number is the smallest possible among

all suffliclent cellections.

I. COXETER GROUPS AND SPECIAL PERMUTATIONS OF COXETER GRAPHS. Consider a
Well chamber C. Obviously -C is also a Weil chamber. As the group G acts
transitively on the set of Well chambers, then there exlists exactly one
element W, € G such that wo(-C) = C. If -0 € G then W, = -0. Conslider
the operator wo(—ﬂ). It maps C onto C, it is an orthogonal operator ,
therefore it preserves angles between the walls of C and it maps extreme
rays of C to extreme rays of C. Therefore it gives rise to a special
permutation m of vertices of the Coxeter .graph I'G). m is trivial if
-1 € G. This permutation mn preserves bonds and their multiplicities
because the operator wo(-ﬂ) preserves angles between walls. So, the

permutation m maps end vertices to end vertices, glving rise to a

18



permutation m of the set of end vertices, the permutation n 1is
completely defined by the permutation wn. The permutation 7w contains
cycles of length at most two, because [wo(-u)]2 = ( really,

[, (-0)1% = w ®

€ G, w02 maps C to C, therefore w°2 =1 ).
LEMMA 5.1. Let supp x and supphy consist of one vertex each.
Then x 1s G-equivalent to y if and only if = Supp.Xx = supp.y or

Supp_x = supp_y.

PROOQF.
X is G-equivalent to y «» 3 g e G, k € R\{0} , x = kgy
: 1
< 3 k € R\N{0O} SUpPp, ¢ X = SUPP Y
¢=> SUpPp X = Supp y - or suppG(-x) = supp_y

&> Supp X = sSupp y or suppcwo(-x) = SUPP.Y

¢ SUpp X = SuUpp Yy OF T SUPP.X = Supp y n

COROLLARY 5. 1.
If -0 € G then x is G-equlvalent to y If and only if SUpp X = Supp_y.
If -1 ¢ G then x is G-equivalent to y If and only if supp x = supp.y or
W SUpp X = Supp.y.

II. SUFFICIENT COLLECTIONS CONTAINING THE SMALLEST NUMBER OF SETS.

THEOREM 5.1. Let G be a finite irreducible Coxeter group. The number

of elements in a standard collection equals

(i) the number of end vertices of the Coxeter graph provided the

operator -0 € G.
(1i) the number of end vertices of the Coxeter graph minus 1 provided

the operator -1 ¢ G.
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PROOF. It 1is known from the classiflcati;n of connected Coxeter
graphs ([1], ch. VI, 4.1, Th.1 ) that there may be two or three end
vertices in a Coxeter graph. So, 1f -0 ¢ G then,

(1) In the case of two end vertices, ; changes places of these vertlces
and therefore vectors supported at thesé vertices are é-equivalent.

(11) in the case of three end vertices ; changes places of two of them
and leaves the third end vertex fixed (because it contains cycles of
length at most two), therefore vectors supported at the first two end
vertices are a—equivalent and as for vectors supported at the third
vertex they are a—unequivalent to the previous vectors.

The number of sets In a standard collection is equal to the number
of vectors 1in ﬁ. or, equivalently, to the number of palrwise & -
nonequivalent elements in M, or, equivalently, to the number of pairwise
;-nonequivalent end vertices of I'(G).

So, if -8 € G this number equals the number of end vertlices.

If -1 ¢ G then there 1is exactly one pair of ;-equivalent end

vertices so the number of elements of J equals the number of end

vertices minus 1. »

Now we want to study general sufflclent collectlions containing the
minimal possible number of sets. We shall prove that in the most case§
these sufficient collections are the standard ones.

Let { Ul } be a finite sufficlient collection. Its sufficiency is
equivalent to the inclusion

Extr K(4) < U S(Ul)
1

But we know all vectors from Extr K(#): consider the set { n(a) } of end

vertices of the Coxeter graph I'(G) and let w(a) € C , suppcw(a) = (o).
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One can easlly see that

Extr K(4) = { k(a,Blgwl(a)ohw(B) : g,h € G, « * B, n{a), n(B)

are end vertices of I'(G), k(«,B) = ZBTET%ETET; }

Note that if k(a,Blw(alew(B) € S{U) and U 1s G-symmetric then
k(a,B)gw(a)ehw(B) e S(U) for all g,h € G. So, the collection { Us } 1s
sufficient if and only if we can distribute all elements of the type
k(a,Blw(a)ew(B) among the sets S(Ul). We must know which of the elements
h(a, Blw(a)ew(B) are "compatible", i.e., can belong to one set S(U), and
which are not.

Let G be a finlte irreducible Coxeter group.

LEMMA 5.2. Let e oe, € Extr K(4). Let U be a G-symmetric closed set
such that ee®e, € S(U) , and ve € Extr U, % e, & Extr U (vo>o0 )

Then He ¢ Extr U° for any u > 0,

PROOF. We may consider that e, e, belong to the same Well chamber,

Let g < Stabce1 . Then < g e, e > =L e, e >=1

Represent the element % e2

I+ follows from the irreduciblility of the group Stabce1 on e: that

~ 1
R ¥ g5 e, = ave Card(Stabcel)
gESt.z:nbc'e1
Hence
1 ~ 1 _
; g e, =ave.
Card(StabGel) q

But the left part of this equality is a convex combination of elements
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(o] o
from U. Hence « ve1 € U, and

1 ~ 1
< ave ,ve > = { —— < - e ve > =1
1" 1 ) T R

Card(Stab e ) gestab e
G 1 G 1

Now assume that pe € Extr U for some u>0. As av > 0
<e2, e1>
(a0 = S ) and ave € U°, then p = av. But If p > av then
v <e1.e1>

1 = <ave ,ve > < <ue ,ve > s 1
1’ 1 Me Ve !

since He € v, ve € U. Thus, ¢ = av and therefore e, ( = ave ) is a

[}
e € U

) (g € Stabcel), which

- L

convex combination of the elements g

differ from He, . But this contradicts to our assumptlon, that

He, e Extr U°. [ ]

LEMMA 5.3. Let -1 € G . Let elsea € Extr K(8). Let U be a closed
~ G-symmetric set and e ee, € S(U). Consider any xoe, € Extr K("8). Then

xae1 ¢ S(U).

PROOF. It follows from the incluston elae2 € S(U) N Extr K(&) that

for some ¢ ve, € Extr U and —%— e2 € Extr U’ . As -0 € G we may

conslider 3 > 0.

Analogously , if xee € S(U) ) Extr K(#) , then for some & > 0

x € Extr U, and % e1 e Extr Uo, but thls contradicts to the assertion
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of Lemma 5.2. ]

It follows from the Classification of Coxeter graphs that if T (G)

has a branching vertex then it has three end vertices.

LEMMA 5.4. Let -0 € G and let T'(G) have a branching vertex. Let wn(1),
n(2), n(3) denote the three end vertices of T(G). Let e be supported
at n(i) , e € c(i=1, 2, 3).
(1) Let es®e , eode € Extr K(&) . If eiaez, eoe € sv) then
U= 2ACoe.
G 1
(i1) Let eoe eoe € Extr K(&) . If e®e , eoe € S(U) then

’

- o
U=p (Cocel).

PRCOF.

(1) As e®e e de € S(U) n Extr K(&) then there exist A,u such that

hei,ue1 € Extr U, and % e % eae Extr U°. As -1 € G we may assume that
A, > 0 and therefore A = y. So, Ael € Extr U, % e, % e3 € Extr U°.

Then

A Coe < Uc (Coxe)®n (Coxe) =A{conv [ (Coe)U(Coe)l )

It follows from Theorem 4.1 that Extr (Coce1)° = (orbe) v (orb.e.).

0_ 0_ . -
Therefore (Conel) = conv Extr (Cocel) = conv | (orbcezl U (orbcea) ] =
= conv [ (Cocez) U (Coces) ], therefore
2]
A CoGe1 = A {conv [ (Cocez) U (Coce3) 1y =U

The assertion (11) is proved similarly. (]

REMARK 5.1. Note that the condition -0 € G is very substantial. If

-0 ¢ G then we may only assert that if eoe, e®e ¢ S(U) n Extr K(&)
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then there exist A , u € R such that Ael € Extr U , He, € Extr U,

% e, € Extr U° and & e, € Extr U°. Certainly, if A and p are of the same
sigh then we can assert that A = u and repeat the arguments of the
previous proof. But if -0 ¢ G then it may happen that A and u are of the
different signs and, for example A = —u, then we only know that % e, and

- % e, belong to Extr U° . It may happen ( and it really happens ) that

e, € orbce2 and therefore we only know that e ®e, € S(U), this 1is
certainly not sufficient for the validity of the assertion that
Us=s ACoGei.

THEOREM 5. 2. Let G be a finite Iirreducible Coxeter group .

(1) The number of sets in any sufficient collection is not smaller
then the number of sets in a standard collection.

(11) If the Coxeter graph has no branching vertices or the operator
-0 € G then any sufficlent collection consisting of the same
number of elements as a standard one - is a standard collection
itself,

(ii1) If the Coxeter graph has a branching vertex and the operator
-1 ¢ G then there exist non-standard sufficient collections
consisting of the same number of elements as the standard ones.
They may be described as follows :
let T = ( e.e, )}, every sufficient collection { U1'U2 } is of the

form :
o o
U1 = (Cocez) , B Coce2 < U2 cB <e2,ei> (Cocel) ,

= <e ,e > °,
U2 a Gc'Ge2 , B Ccace1 < U1 c B e.e, (CoGea)

PROOF.
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(1) If the Coxeter graph has no branching vertices then by Theorem 4.3
the two canonical collections <coinclde and they form the smallest
sufficient collection. A standard collection (which is equivalent to the
respective canonical one) is also the smallest collection. Hence there
is a sgtandard subcollection in any finite sufficient collection.
Therefore it remains to prove the assertion only for groups with
branching graphs.

Let { U1’ - .Un } be a sufficient collection.

As we know from the classification of Coxeter graph ([1], ch.VI,
4.1, Th.1 ), the branching Coxeter graphs have three end vertices.
Therefore standard collections consist of three sets if -0le G and of two

sets If -1 ¢ G (see Theorem 5.1 ). Consider these two cases.

I. -1eG, N ={ e.e,e, .

One may consider that all et's belong to the same Well chamber . The

points Lnjeleej ,» 1 =2 3, 1,3 = 1,2,3, are extreme points of K(4),

1

here v = Consider the points

<e ,e >
i)

v ege , v._e® , v_e® € Extr K(4)
121 2 23 2 3 313 1 . -

Assume that v,,%,%¢, € S(Ui} then by Lemma 5.3 v,.e,0e, ¢ S(U1) and
v, t,0e ¢ S(Ul) . Let v,,e,0e, € S(Uz) then v,,e,8¢, ¢ S(Uz) E Hence

v, ©,9¢, must belong to the third set S(Us)' This means that the

collection { U1, e ,Um } consists of no less than three sets.

II. LlLet -0 ¢ G. Conslder the permutation m of the end vertices of
the Coxeter graph, which was defined in part I of § 5. The permutation ;

transposes two end vertices and leaves the third one fixed.
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~

Let 1 = {el,ea} and let e, be the vector corresponding to the n-fixed

belong

vertex of the Coxeter graph. ( One may consider that e and e,

to the same Weil chamber ),
So, v .e®e, € Extr K(#&), vaezee1 € Extr K(4d) (vij > 0).

Assume that v .eee, € S(U) and v,e.ee ¢ S(U). ( We cannot use

Lemma 5.3, since -0 ¢ G ). Then for some ¥ and &

v
ye € Extr U, 12 e, € Extr u°
¥
and
v
e € Extr U, -2 e e Extr U°.
2 5 1

Remark that in thls case the numbers % and 8§ can be of arbitrary signs.
But by the choice of e i -e = wWe { the operator W, was defined
inpart I of § 5 ). As U is a G-symmetric set then HOU = U and therefore

v
yw e (=-ye ) € Extr U . Analogously, 2lye == -2l e ) g Extr U° .
o1 1 5 o1 s 1

v
Then |7| e € Extr U and 2t e, € Extr U° , but this is impossible by

|81

Lemma S.2.

Thus , v_e ®e_and v_e ®e cannot belong to S(U) simultaneously.
1271 2 212 1

Hence the collection { Ul } consists of no less then two sets.
(1) is proved.
(11) Let { U1 } be a finite sufficlent collection conslsting of the same
number of sets as a standard one. We show that ({ U, } is a standard
collection itself.

If the Coxeter graph T(G) has no branching vertlces then the

canonical collections colncide and there exists the smallest sufficlent

collection (see Theorem 4.3). Then there exists a standard subcollection
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of the collection { U1 }. So, the assertion (ii) 1s obvious.

Let the Coxeter graph have a branching vertex , and -1 € G. Then

-~

every standard collection consists of three sets . Let M = { el.ez,e }

( we consider e e, e belonging to the same Well chamber).
Every extreme point vuel@eJ ( vL1 >0, 1, =1,2,3) of K(8) must
belong to one of the sets S(U1)' S(Uz), S(U,)
Assume that v e oe € S(U1)’ then by Lemma 5.2
v,.e,8e. € S(U1)
v,e0e ¢ S(U1)
v, % ¢ S(U1)
Let v, .8 ee. € S(Ua)' then by Lemma S.2

V,,8,%e, ¢ S(Uz)

v, e,%e, ¢ S(Uz)
v e e, & S(Uz)

As V8,08, € S(U1) , S(Uz) then v, e.0e € S(U3) , and then
v, .8, %e, ¢ S(Ua)' Conslider v eoce . As 1t does not belong to S(U3]

then it must belong to S(U1) or to S(Uz) . We consider both cases.

The first case. Let v eee ¢ S(U1) then v,.e.%e, € S(U1) .

e oe, ¢ S(Ua)' Then immediately v,,e%e e

As 1)32e3@ma2 & S(Uz) then SR

¢ S(Ua} ( by Lemma 5.3 ).
So, v, 8,9, € S(Ua)' and we obtalin the following :
v e,8e, v eee € S(U1)

v e®e ,v_ege € S(U)
232 3'"212 1 2
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V31 %3%8 0 V5%,%, € S(U:a)
By Lemma 5.4 these 1inclusions 1imply the following equalities:

U =2ACoe, U =ACoe, U =ACoe..
1 1 G 1 2 2 62 7’3 3¢ 3

The second case. Let v ,e.ee € S(Ua) then v21e2®e1 ¢ S(Uz) (and

earlier we had v_e®e, v_eoe ¢ S(U)). As v_ese ¢ S(U), ¢ S(U)
31 3 1 323 2 2 2t 2 1 1 2

then v_e ®e € S(U_ ). Hence
21 2 1 3
v e %e, & S(Us)’ KL ¢ S(Ua) , V.8, 0e, ' S(Ua)'

Now, as v,.8.0€e, ¢ S(Uz). S(Ua) then V,,€,.8¢, € S[U1)' Thus we obtain

the following
vxzeioe2 . Ve 8e € S[Ull
v eee , v_eoe € S(U)
13 232 3 2

13

v ege , v._.eoe € S(U.)
21 2 1 3173 1 3

By Lemma 5.4 these inclusions imply the following equallties :
= ° - o = o
U1 ul(CoGez) , U2 uz[CQGea) . U3 ”3(C°cei) .

(11) is proved.

(111) Consider a sufficient collection {U1’U2}' Consider (as above) that

e and e, belong to the same Well chamber. There are three end vertlces

of the Coxeter graph I'(G) corresponding to the vectors e, e, e, Let

H081 = -81 , woez = -e3 y W 5
{ vlj = EE_lE_; J, they all belong to Extr K(#&), so we must distribute
1" 7}

°e3 = -e2 . We consider elements v1

e ®e
1}
the elements v”eioeJ among the sets S(Ul] and S(Uz).

Remark that v _ = v _and v. = v_. Indeed :
12 13 21 31

b
—
—
(=




and the second equality may be proved similarly.

Let v e®_ € S(U) then v e € S(U) . ( Indeed , v e ®e =
121 2 1 1371 3 1 13°1 3

= v eoe, = V1z(-e1)°(—ea) = V1z(”oe1)°(woez) € S(Ul))

By the same reason as 1in the proof of (11) we obtain : as

v e10e2 € S(U1) then vmezoe

12 € S(Ua)'

1
As above, one can show that the inclusion 1221e245>e1 € S(Ua) implies
the inclusion v, e.ee ¢ S(Uz) . So, we have got that

v ege , v ege € S(U) and v_ewve , v_ede € S(U).
121 2 131 3 1 212 1 313 1 2

We have distributed almost all elements of Extr K(#) between S(U1) and

S(UZJ with the only exceptions of v23e20e3 and v32e3®e2. Let us see what

is the situation with them.

Obviously v, =v_ and if v_e e ¢ S(U‘]. then v_e e ¢ S(Ux)'

Let 1 =1, 1.e., v,,8,0¢, € S(Ul). Then S(U1) > v ee®e, v eoe.

It follows from the first inclusion that Ael € Extr U1 and

%2 ez € Extr U1° for some A. From the second inclusion we have

v
He, € Extr U1 and —;—3 e, € Extr Ulo. The signs of A and p must be

different ( really, 1f Ap > 0 then we consider vectors

v

12 o
e € Extr U1 and YR {uez) € Extr U1

and we obtain a contradiction with Lemma 5.2 ).

Without loss of generallty we may assume that A > 0, pu < 0. Then

pe, = | ] w e  and the element ]u|woe3 1s an extreme point of U, and,
hence |;1|e:1 is alsoc an extreme point of Ui. Then by the Remark 5.1,

using the fact that A and |u| are both positive we conclude that
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Now the set U2 is submit to the only restrictlion :

v,e%e € S(Uz)' For example, the set Coce2 satisfies this condition.

21

Thus a non-standard collectlon {( 12

o
Y Cocez) . Cocez} 1s sufficient.

Note that one can take U2 to be any set such that

) 1 o
B CoGe2 c U2 < B 5 (Cocei).

1 =2 vz

Then for some A , u

Ae_ e Extr U_ ,
2 2

uez € Extr U2 .

-V
23

Signs of and A must be

-y
23

e = — w e
TR 4 o3

i must be the same,

Then U = A Co e..
2 G 2

,8,%e, € S(Uz) .

therefore A = u. Consider

21

v__e

Th v
en 23 2

" oe_ € S(Uz)

e ®e
172 1°

e e Extr U°
1 2
e € Extr U°
3 2

different ( by Lemma 5.2 ) , since

is an extreme point of U2°. Hence the signs of A and

A > 0.

And U1 is submit to the only one restriction

v, .e,%e, € S(Ul). It follows that U1 may be any closed G-symmetric set

12

satisfying the condition

——

Coe < c
B G1 U1
12

B o
- (CoGez) . =

§ 6. Explicit formulas for standard collections.

All finite 1irreduclble Coxeter groups are classified,

divided into 4 countable famlillies :

groups :

Their

they are

Ak. Bk, Dk, Jz(p), and .6 exceptional

Coxeter graphs are classified

30



( see [1], ch.VI, 4.1, Th.1 ).

As it was mentloned above, in the theory of Coxeter groups special
vectors on extreme rays of Well chambers are called fundamental welghts
and they are calculated explicitly ( see [1] ). There are also
descriptions of the action of the operator m on the vertices of Coxeter
graphs. In some cases there are explicit descriptlons of Weil chambers
and the related operators a +— a-.

We calculate standard collections for Coxeter groups such that there
exist simple descriptions of thelr actions. Slightly different formulas

were given in the survey [11] but we prefer to give them here for the

sake of completeness.

Group Ak (kz2).

V is a hyperplane of the space Rk+1

k+1
V={x-= (xl. e xk+1) : ¥ x =0 }
. 1=1
el are the vectors of canonical basis :
e1 = (1,0,...0), ez = (0,1,...,0), ... , ek+1 = (0,0,...0,1).

The action of the group Ak: permutations of coordinates of a vector
in the canonlcal basis (the trivial case is not under consideration).

The Coxeter graph is : o—o— ... —0—o0 . As the Coxeter graph has no
branching vertices then there exlsts the smallest sufficient collection
(Theorem 4.3).

A Well chamber:

C = Xx=(x,...,X )i xzxz..2x2zX
{ ( 1 k+1 1 2 k k+1’

»*
LLet x be the only vector of orbcx in the Well chamber C, 1.e., the
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L]
operation x +— x is the permutation of coordinates in the

nonincreasing order. The fundamental weights are the following

i k+1
w =(81+... +e ) - — '} ¢
' k+#1 j=1 1
The fundamental weights corresponding to the end vertices of the Coxeter

graph ( i.e., the set 3t ) are

k+1

w =€ - L € =1 k,-1,-1,...,-1)
k+1 j=t ] k+1
Kk < 1
w = ( € +... €, ) - — ¥ &€, =— (1,1,...1,-k )

k+1 jm1 7 k+1
Remark that -0 ¢ Ak. Then by Theorem 5.1 standard collections consist of

one set (the number of end vertices minus 1). The permutation =

transposes the end vertices and therefore M = { w, }. A standard

cocllection { CoA w, }.
k

Co w = X : <X,8Ww > = sup <gW , LW > =
A1 { ' 89y P <8w,,gw, }
k quk

- -
= X <X, 80> S <X ,0> S <w ,w> =
{ 89 k 1" 'k }

1 X . . 1
={x:--—():xi-xk+1-k)s } =
k+1 1=1 (k+1)
k » » » -
_{x:121xl - X ksl h={x: -xkﬂ-xkﬂ-ksl}
*
={x: - xk+1-(k+1) =1}={x:( m;ln X, J(k+1) = -1 }.'
“ w
Taking w o= — we obtain

k+1

~

Cko ={x:minxiz-1}
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Group Bk (kz2).

V = Rk. The action of the group : permutations and sign changes of

coordinates in the canonical basis.
The Coxeter graph : o—o— ... -2 . As graph has no branching
1 2 k

vertices, then the canonical collections coinclde and this 1s the

smallest sufflicient collection.

The fundamental welights :

w =g *e +.. +te = (1,1, ... 1,0, ... ,0) (1 wunits)

A Well chamber

= X = X ,0.0.,X X z2x. =z ,..zgx =20

. .
x denotes, as above, the image of the vector x in the Weil chamber,

»

i.e., the operation x » x 1is a non-increasing permutation of the vector

).

( IX1|,|X2|, M '|xkl

The fundamental welghts corresponding to the end vertices of the

Coxeter graph ( l.e., the set 1l = { 0,0 } ) are :

w =€ = (1,0, ... ,0)
wkﬂl(l,l, ..o .1)
2

The oPerator -0 € Bk. It follows that standard collections consist of

two sets : { Co_ w , Co_w }.
B, 1 B k

#*
Co w ={ % <X ,0>s5<w,0>1}=
Bk 1 k 1"k

]
——
=

1

kK, 1
Exis-}=
1=1 -2
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This is the unit ball of the space l:

»

Co w = X: <X ,w> 3 <w,w> =
Bkk{ ' kl}

. 1 1
= { x: X == } = { x: max [x1| s =}

k
© "

This is a ball of the space i

The assertion about the sufficiency of the collection

{CoB w, , Co wk} is the Mityagin-Calderon theorem ([3,5]).
K K

It follows from our general theory that this collectlon 1is the
smallest one. This means that the norms of 1: and 1: are not strict

interpeolation norms for any finlte collection of Bk—symmetric norms.

Group D (k=z=3)

k

V=R The action of the group : permutations and sign changes of

even numbers of coordlnates .

k-1
P
The Coxeter graph : o—o—o- om0y
1 2 0
k
The fundamental weights :
w =g +¢g_+ ...+ =(1,1, ...1,0, , 0,
1 1 2 1
1 units, 1 s 1 s k-2;
w == (e +¢g_+ +e _+eg -e )=
k-1, 2 k-2 k-1
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( £ + e + ... +¢ + £ + e J)==1(1,1, ... ,1).

A Well chamber

C={x=(x, ... ,X): X 2x ... &% z x x| s x
{ ( 1’ 'k 1 2 k-1 %’ | kl k-l}

The fundamental welghts of the Weil chamber C corresponding to the end

vertices ( l.e., elements of the set 71 ) are

w =€ = (1,0, ... ,0)
o = (1,1, ... 1,-1)
2
w o= ! (1,1, 1)
2
We omit the factor % in the formulas for Wy 9

The graph has a branchlng vertex therefore the canonical collections
do not colncide and the smallest collection does not exist.

The vector x. may be obtained from x as follows : the coordinates of
x are rearranged in the modulus‘nonincreasing order. If the number of
negative coordinates of x is even then all coordinates of x‘ get the
signs "+". If the number of negative coordinates of x 1is odd then the
last coordinate of x' gets "-" and the other coordinates get "+".

To describe the canonical collections we need to consider two cases.

I. Let k be an odd number. Then the operator -0 ¢ Dk and therefore
{Theorem 5.1) that =standard collectlons consist of two sets. The action
of the operator uo-(-l) on the fundamental weights of Weil chamber 1is

the following :

w(-1) : v »>w , w 5> W
o] 1 1

A standard simple collection : { CoD w CoD w b
k *
L] L 3
o W = X: o, > 5 <w >, X 0> 5 < ,w > =
c D { 1 1" k-1 " © @ }

1 k-
k

35



. L *
Co w = {x: <X ,0> 5<% ,u>, <X ,0>s<w ,0> } =
Dk k-1 1 k-1 1 k k-1 k
» k
= { x (x)151.):(x)5k-2}=
i=1
k L
= { x : max |xl| s 1, ):lel-*(x ), - min |x1| s k-2 } =
1=1 1
x N{x}
={x:mx |x|s1 T|x]|+mnn|x| (1) -1) sk-2}
1 i=1 i

Here N(x) 1s the number of negative components in the vector x.

A standard dual simple collection : { (CoD wl)o . (CoD wk)o }.
K x

=
0 —
(CoDkwl) = { %X : <X ,w1> 51} =

»
={x:x1=1}={x:max |x1|sl}
151 sk

**
o —
(Conwk) ={ x: <x.wk>sl}-

1-1
»
.={x:Z(X)51}=
1=1 !
k »
={x:Z|xl|+(x)k-m1n|xl|$1)=
1=1 |
K
o { x: ):|xl|+m1n|x1|((-1)N(x’-1)$1}
1=1 1

Let k be an even number, then -1 € Dk. A standard simple collection

, Cow _, Co, @ } is the following

Co w
{ D Dk k-1

k

1

K
CoDw1={x:):|xi|51}
K 1=1

36



N{x}

k
C = {x : max le' s 1, l};l|xi| + min |xi| ((-1) - 1) s k-2 }

o W
D k-1
k

K
CoDuwk = { x: me |x1| s 1, 121|x1| + min |x1| (-(-1)¥®

-1) s k-2 }

A standard dual simple collection

o] o [}
{ (CoD wl) . (CoD uk_l) , (CoD wk) }
k " K

(Cow)®={x: max |x | s 1)
D 1 1
% 151 Sk—1

k
(Co, wk_1)° ={x: L|[x]|+mn [x]| (-(-" - 1) s 1)
k 1=1 i

k
N(x)
(Co wk)° ={x: LI[x| +mn |x]| ((-1) *

k i=1 i

-1) s1}

Group Iz(p)

The group Iztp) acts in R° as follows : fix two straight lines

containing the origin with the angle g between them. The group Iz(p) is
generated by orthogonal reflections across these lines. In particular,

12(3) = A3, 12(4) = B, , 12(6) = G

) The corner bounded by two rays,

X
situated on these lines ( the angle between them equals g ) 1s a Well

chamber. The Well chamber C has two fundamental welghts W and w,- The

P
Coxeter graph ls : o—o0 . The Coxeter graph has no branching vertices,

so the canonical collections coincide and the smallest sufficient
collection exiéts.

If p is an even number then -1 € Iz(p), therefore standard
collections conslst of two sets : regular p-polygons, one with the

vertex on the ray, contalning W, the other -- on the ray, contalning W,
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If p is odd then -1 ¢ Iztp) therefore standard collections consist
of one set : regular p-polygon with a ;ertex on one of the fixed lines,
i.e. on one of the rays w, (1=1,2).

Any sufflcient collection consists of no less then two ( p even ) or
one ( p odd ) sets and any sufficient collectlon with such number of

elements 1s a standard one.
Groups E6 , E7 , Ea , F4 ’ l-l3 ’ H4 .

As for the rest Coxeter groups mentloned above we don't know simple
descriptions of their actions, so we don’t know simple descriptions of
the operations X x. and thls 1is why formulas for standard
collections in terms of this operation are noneffective. As Coxeter
graphs of these groups are well known ( [1)] ) we can only answer the
question on the the existence of the smallest sufficlent collection and

the number of sets in standard collections.

Group E6. The Coxeter graph is : o—o—0—0—0 . As the graph has a
1 3 |45 6
o]
2

branching vertex then the canonical collections do not coincide, so the
smallest sufficlent collectlon does not exist. The operator wo-(-l) acts
as follows

Wwel-1) : v 20, W20 , W > .
(o] 1 6 2 2 6 1

Every standard collectlion consists of two sets.

Group E7 . The Coxeter graph is : o0—o0o—0—0—0—0 .The canonical
1 3 |45 6 7
s}
2
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collections do not coinclde, so the smallest sufficlient collection does

not exist. -1 e E7, every standard collection conslsts of three sets.

Group E8 The Coxeter graph is : o—0—o0—0—0—0—0
1 3 |as s 7 8

(o]

2

The canonical collections do not coinclde, so the smallest sufficient
collection does not exist. -1 € Ea' so every standard collection
consists of three sets .

4

Groﬁp F4 . The Coxeter graph is : o—o0—o—0 . There exlists a
1 2 3 a4

description of the action of F‘4 but it 1is rather complicated. The
canonical <collections coincide, forming the smallest sufficient
collection, since there is no branching vertices in the graph . -1 € F4,

hence standard collections consist of two sets.

5

Group H The Coxeter graph is : o—o0—o . The canonical

5 -
collections coinclde and form the smallest sufficlent collection.

-1 € Ha’ so standard collections conslst of two sets .

5

Group H The Coxeter graph 1s : o—o0—0—0 .The canonlcal

4
collections coincide and form the smallest sufficlent collection. -1 €

e H4. so standard collections consist of two sets .

§ 7. Some remarks,

K - MONOTONICITY. Consider a collectlion of pseudonorms { H-Ha }. One may
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construct the following K-functional (see, e.g. [ 2 1) for x € V, td 0

K (x; ta; H-Ha) = inf { ¥ tau Xy Ha s x =Y X, }
o a
The pseudonorm K-l 1s said to be K-monotone ( with respect to the

pseudonorms u-na ) if the following implication holds :
if K (x; ta; ||-||a) = K (y; e n-ua) for all ta 20
then I x I s |l y Il

One can easily prove that 1f a pseudonorm is K-monotone with respect
to a collection pseudonorms, then 1t is a strict interpolation norm for
this collection. In [ 3 | 1t was shown that every Bn-invariant norm is
K-monotone with respect to the norms ( 1: . 1: ).

It was observed in [ 6 ] that a pseudonorm 1is K-monotone with

respect to a collection of pseudonorms { H-Ha } If and only if for every

xeV, feV

’ a — —
Px 0 b f 0 zinf { Tz, 0 0e | f=L¢ > x=Lz, }
o,k k a
( Here -1, (and, respectively, i-1%) denotes the pseudonorm on V',
conjugate to the pseudonorm -1 ( respectively, H-Ha ).

PROPOSITION 7.1. Let G be a finite irreducible Coxeter group. Any
G-invariant pseudonorm 1is K-monotone with respect to any standard

simple collection.

PROOF. Take any G-invariant pseudonorm, then 1lts unit ball U is a
G-symmetric set. U° is the unit ball of the conjugate pseudonorm. Take

2]

xellxNU, felfn U, Thenfell x I Il f II’(Con)°. Decompose f:

= ’ o =
f =% v f  where f e Extr Il x I I £ I (Con) » v, 20, L v, = L

So, Card suppcfk =1 ( see Th. 4.1 ). Then xef =} vkxsfk . Obviously
K
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xeillxtf II’(Conk)o , S0 we may decompose X:

X=YyYA X .,
ok’ ok
o,k

’ =]
i € Extril x 0 & £ 1 (Cocfk) , Aak z0 |, E Aak

So, SUPP X . consists of an end vertex of I'(G) for every a,k. Decompose

xef
xef =3 ¥} VA KBl
« Kk
’ o =
Obviously fk e I x I n £ (Couxak). Let SUPP X n(s(«,k}), where

n(s(a,k)) is an end vertex of T(G), so Cocxmk belongs to the simple
canonlcal collection.
Let M = { w(s) : s € S } and let H-"s denote the pseudonorm whose

unit ball is CoGw(s), n(s) is an end vertex of T'(G).

We obtdln
s{0,k} _
ale vlra b1 ¥, foeio! £ ! =
fk s (0, k)
- - ’ ‘
_azk| YA | X us(u.k)n " N 0 £
fk ) i flt (o, k)
k- 1
3 ’ 1
As e € (CogXy) o then M x M o! e ! L
=1 o]
‘ 8(, k) F -
oA« ||s(a.k) v £ s L vl xhuf s
o,k a,k
= x i 0f£N
~and f = E kau , X = E Aaxxak » =

RECONSTRUCTING COLLECTIONS OF NORMS FROM THE SET OF INTERPOLATION NORMS.
In the survey [ 2 ] the following question was asked : is it possible to

reconstruct two norms, defined on the space V, knowing the set of all
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strict interpolation norms for this couple of norms 7

Recently 0. Tikhonov and L. Veselova have shown that the answer l1s

yes" ( private communication ). The answer to the above question ls
"no", if to consider not two but three inltlal norms on V - one may
consider two different standard collections - a simple one and a dual
simple one - for the group Dn, n even ( the set of all strict
interpolation norms here is exactly the set of all Dn-lnvariant norms ).
If we replace the word "norm" by the word "pseudonorm" in the above
question, then again the answer 1ls "no" - a counterexample 1is given by
two different standard collections for the group Dn, n odd. These

collections consist of two sets each, they are certainly nonequivalent

and have the same set of strict interpolation norms.
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