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HIGHER AIRY STRUCTURES AND TOPOLOGICAL RECURSION FOR SINGULAR
SPECTRAL CURVES

GAFETAN BOROT, REINIER KRAMER, AND YANNIK SCHULER

ABSTRACT. We give elements towards the classification of quantum Airy structures based on the W (gl,.)-
algebras at self-dual level based on twisted modules of the Heisenberg VOA of gl,. for twists by arbitrary
elements of the Weyl group &,-. In particular, we construct a large class of such quantum Airy structures.
We show that the system of linear ODEs forming the quantum Airy structure and determining uniquely
its partition function is equivalent to a topological recursion a la Chekhov-Eynard-Orantin on singular
spectral curves. In particular, our work extends the definition of the Bouchard-Eynard topological
recursion (valid for smooth curves) to a large class of singular curves, and indicates impossibilities to
extend naively the definition to other types of singularities. We also discuss relations to intersection
theory on moduli spaces of curves and give precise conjectures for application in open r-spin intersection
theory.
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1 INTRODUCTION

Introduced by Kontsevich and Soibelman in [KS18], Airy structures consist of a system of linear
PDEs depending on a parameter 7 and satisfying a compatibility condition, so that they admit a
simultaneous solution which is unique when properly normalised. This solution is called “partition
function” and is encoded in Taylor coefficients F;, indexed by integers n > 1 and (half-)integers
g 2 0, which are determined by a topological recursion, i.e. a recursion on 2g — 2 + n. The interest in
Airy structures comes from the numerous applications of the topological recursion in enumerative
geometry, see e.g. [Eynigal.

The purpose of Part I of this work is to construct new Airy structures from representations of
the ‘W (gl,)-algebra. The latter is realised as a sub-VOA of the Heisenberg VOA ¥¢cr. Twisting the
free field representation of Fc- by an arbitrary element of the Weyl group o € &, gives rise to an
(untwisted) representation of ‘W (gl,). Applying a “dilaton shift”, [BBCCN18] constructed all the Airy
structures that can arise when o is an r-cycle or an (r — 1)-cycle. Our work explores the possibility of
constructing Airy structures from arbitrary o € &,: we will obtain in Theorem 2.11 conditions on ¢
and the dilaton shifts that are sufficient for the success of this construction. This gives rise to many
new Airy structures and thus partition functions, for which it would be desirable to find enumerative
interpretations. This approach and the result are presented in Section 2 while Section 3 is devoted to
the proof of the main Theorem 2.11.

In Part II, we show that the topological recursion for all these Airy structures can be equivalently
formulated via residue (hence, period) computations on possibly singular spectral curves. Roughly
speaking, a spectral curve is a branched cover of complex curves x : C — C, equipped with a
meromorphic function y and a bidifferential wy, on C2. The original formulation of the topological
recursion, with a spectral curve as input, was developed by Chekhov, Eynard and Orantin [EOo7;
EOo9] in the case of smooth curves with simple ramifications. The output of this CEO recursion is
a family of multidifferentials w,, on C" that have poles at ramification points of x, are symmetric
under permutation of the n copies of C, and obtained recursively by residue computations on C. As
observed already in [EOo9] and revisited by [KS18; ABCO17], the corresponding Airy structure is
based on the Virasoro algebra and related to the W (gl,)-algebra; for each g, n, Fy, or w,, contain
the same information packaged in a different way. The definition of the CEO topological recursion
was extended in [BHLMR14; BE13] to smooth curves with higher order ramification points, and its
correspondence with ‘W (gl,)-Airy structures when o is an r-cycle was established in [BBCCN18]. An
important application of this correspondence is a conceptual proof of symmetry of the w,, based on
representation theory of ‘W-algebras. This led the discovery of a non-trivial criterion on the order of
y at ramification points for the symmetry to hold. From [BHLMR14], it is easy to propose a definition
of the CEO recursion also valid for singular spectral curves (see Equation (73)), i.e. if C has several
irreducible components intersecting at ramification points of arbitrary order. It is however unclear
(and in fact not always true) that this definition leads to symmetric wg,.

In Proposition 5.18 and Theorem 5.23, we show that this definition naturally arises from the ‘W (gl,.)-
Airy structures with arbitrary permutation o encoded the ramification profile over a branchpoint in
a normalisation of C, and dilaton shifts specifying the order of y at the ramification points. Smooth
spectral curves correspond to ¢ having a single cycle. Besides, the basic properties of Airy structures
guarantee that the corresponding w,, are symmetric. The results of Part I therefore give sufficient
conditions on the ramification type and the order of y at ramification points for the symmetry to hold,
see Definitions 5.19 to 5.22. The central result of Part II is then Theorem 5.23 giving the correspondence
between those Airy structures and our extension of the CEO topological recursion.

In terms of spectral curves, the CEO-like topological recursion provides the (unique when properly
normalised) solution to the so-called “abstract loop equations”. The latter express that certain polyno-
mial combinations of the (wg,,)g, are holomorphic at the ramification points. This in fact provides
tools that have been used to establish applications of the topological recursion e.g. in matrix models
[BEO15], in Hurwitz theory [BKLPS20; DKPS19], and to the reconstruction of WKB expansions [BBE15;
IMS18; BEM17]. The setup of abstract loop equations was developed in [BEO15; BS17] for smooth
curves with simple ramifications and extended in [Kra19, Section 7.6] to higher order ramifications. In
Section 5.3, we define a notion abstract loop equations for arbitrary spectral curves (Definition 5.12)
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and prove they admit at most one normalised solution (Proposition 5.15), which must then be given
by our extension of the CEO recursion (Equation (73)). The question of existence of a solution is
then reduced to proving this formula yields symmetric wy,,. As we establish the equivalence of the
abstract loop equations with the differential constraints built from ‘W (gl,)-algebra representations
(Proposition 5.18), it is sufficient to check that the latter form an Airy structure to establish symmetry.

Our results give a definition of topological recursion for many spectral curves that could not be
treated before, for instance

y(x—-y")=0 r>1,

(1-xy*) =0,
x? —y2 =0
(1-xy’)(x-y+1)=0, (1)

(1-xy)(x—y+1D)(x—y+t)=0 teC\ {1},
(1-xy)(x-y+1)(y—1t)=0 teC,
(1-xy)(x—y+1)(x—ty) =0 teC\{1}.

In general, nodal points such that y tends to distinct non-zero values on both sides are admissible. if
Ci @ P;(x,y) = 0 are admissible for i € {1, 2} do not intersect in C? at zeroes of dx or singular points
of C;, then C : Py(x, y)P2(x, y) = 0 is admissible. The complete list of conditions defining admissible
spectral curves according to our work can be found in Section 5.4, and they only regulate the behavior
of x and y at the points where the cardinality of the fibers of x jump (zeroes of dx and singular points).
Examples of non-admissible curves are:

1-x%*y° =0,

(x=yH(1-xy") =0,
(x-»x-y)=0 rez,
P _ 9 = . (2)
xP —y1=0 p,q coprime and p > 1,¢ > 0,
(x-y*? =0,
(x =) (x =y =0.
In general, the following cases are not admissible for us: non-reduced curves, curves where dy and
dx have a common zero, reducible curves where there is a point at which at least two irreducible
components C; and C, meet and where dx has a zero and y is regular on C; and y is not identically
zero on C,. It would be desirable to understand if the admissibility conditions can be weakened even
more with a suitable modification of the topological recursion residue formula.

We expect all the partition functions of the Airy structures present in this article to admit an
enumerative interpretation, i.e. that w,, or Fy, can be computed via intersection theory on a certain
moduli space of curves. This was achieved by Eynard in [Eyni1; Eyni4b] in the case of simple
ramification points on smooth curves and y holomorphic, in a form that has a structure similar to
the ELSV formula [ELSVo1], and found applications in Gromov-Witten theory [EO15] and Hurwitz
theory [SSZ15; KLPS17]. The case of y having a simple pole was later treated by Chekhov and Norbury
[Nor17; CN1g]. Part Il explores the generalisations of this link to other spectral curves that can directly
be reached by combining known results with the results of Parts I and II. This stresses the role of
Laplace-type integrals on the spectral curve. Although it is not essential in the theory, in the case of
global spectral curves the Laplace transform of wg 2 enjoy a factorisation property reminiscent to the
use of R-matrices in the theory of Frobenius manifolds. This was known by [Eyni4b, Appendix B] for
smooth spectral curves with simple ramifications, and we show in Corollary 7.10 that it extends to
singular spectral curves in a slightly different form.

In Section 7.2.3, building on [BBCCN18] and Theorem 5.23 we generalise Eynard’s formula to all
smooth spectral curves with arbitrary ramification and y of order 1 at the ramification points — this
involves Witten spin classes. This answers a question of Shadrin to the first-named author. In Section 8,
we apply our general results to the ‘W (gl;)-constraints of Alexandrov [Ale1s] for the open intersection
theory developed in [PST15; Buris; BT17; ST a]. The open intersection numbers can be packaged
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in a generating series w;};,en. As Alexandrov’s W(gls)-constraints have been identified with an Airy
structure in [BBCCN18] for o = (12)(3), we deduce from the results of Part II that a);’f;fn
extension of the CEO topological recursion applied to the curve y(y? — 2x) = 0 (corollary 8.8). Using
modified “W-constraints, Safnuk had derived in [Saf16] a residue formula associated to this curve, but
its structure is different and not easily generalisable. On the other hand, we can easily conjecture a
residue formula for the open r-spin theory. This conjecture is equivalent to the ‘W (gl,) constraints
first mentioned in [BBCCN18, Section 6.3]: we expose it in more detail, in particular specifying the
normalisations necessary for the comparison, and give some support in its favor by comparison with
[BCT18].

satisfies our

Remark 1.1. At the time of writing, there are several foundational conjectures in open intersection
theory. In Section 8.1 and Section 8.5, we formulate the ones that are directly relevant for us and
explain the logical dependence of our statements on these conjectures.

In fact, one of the initial motivation of our work was to generalise the structure of Safnuk’s residue
formula [Saf16] to higher r, and seek along this line for a definition of topological recursion for curves
with many irreducible components. Our conclusion is that, although we do not know how to generalise
the structure of Safnuk’s recursion, there is a simpler and general definition of the recursion, which
retrieves open intersection theory when applied to the reducible curve y(y? — 2x) = 0.

The W (gl,)-representations that we consider have an explicit though lengthy expression. We
extract from them a few concrete calculations:

e General formulas for Fy3, F; 1 and F; ;, and partial computations for Fy4. Their symmetry
give necessary constraints for o and the dilaton shifts. They are weaker than the sufficient
conditions under which we have an Airy structure according to Theorem 2.11. However, we
are inclined to think that our result is generically optimal, i.e. that the sufficient conditions in
Theorem 2.11 are also necessary conditions for generic value of the dilaton shift, that could be
implied by the symmetry of F,, for higher n > 5.

o Ifo=(1---r=1)(r)or(1---r), wederive in Section 2.4 from the ‘W-constraints a homogeneity
property, the dilaton equation, and the string equation when it applies.

While this work was in the final writing stage, we learned that results similar to our Theorem 2.11
but restricted to the case of cycles of equal lengths (perhaps with a fixed point) are obtained in an
independent work of Bouchard and Mastel [BM20]. The question of defining a Chekhov-Eynard-
Orantin topological recursion on singular curves mentioned in their work is solved by Part II of our
work.

NoTATION

N is the set of nonnegative integers and N* = N \ {0}. For n € N, we denote [n] = {1,...,n},
and in particular [0] = 0. More generally, if a < b are integers, we denote [a, b], [a,b), (a,b], (a,b)
the integer segments, where the bracket (resp. parenthesis) means we include (resp. exclude) the
corresponding endpoint. If @ > b we set [a, b] = 0. Furthermore z[,] = {z1,...,2x}.

A partition of r € N, denoted A - r,is A = (A4,..., A7) such that A; +- - - + A, = r. We will sometimes
(but not always) require A; > 1,41, in which case we say that 1 is a descending partition. Often it is
convenient to express equal blocks A; = Ajy; = -+ = Aj4, as )L;.’. Moreover, to any descending partition
A one can associate a Young diagram Y, in a bijective way. For example all notations

A=(4331) — 1=(43%1) «— Y,=

characterise the same descending partition A + 11. The size of A is |A| = }}; A; and its length is
t(A) = max{i | A; > 0}.

If A is a finite set, we write L A to say that L is a partition of A, that is an unordered tuple of
pairwise disjoint non-empty subsets of A whose union is A. We denote ||L| the number of sets in the
partition L.

All of our vector spaces or algebraic spaces are over C. We denote C(y) a 1-dimensional complex
vector space equipped a non-zero linear form y.



PART I - CrAssIFICATION OF ‘W (gl,)-AIRY STRUCTURES

2 CONSTRUCTING AIRY STRUCTURES

In this Section, we recall the definition of Airy structures and their partition function and its
adaptation to the infinite-dimensional setting for which it will be used. We present the main results of
Part [, i.e. we exhibit Airy structures that can be constructed from ‘W (gl,)-algebra modules, while the
proofs are carried on in Section 3.

2.1 AIRY STRUCTURES

2.1.1 Finite dimension

We first present the definition when E is a finite-dimensional C-vector space. For convenience,
let us fix a basis (e;)aea Of E and (x,)qea be the dual basis of E*. We consider the graded algebra of
differential operators D", also called Wey! algebra. It is the quotient of the free algebra generated by

hz, (xq)aeca and (hdy,)aeca, modulo the relations generated by
[7i0x,, xp] =T 8ap, [Xa Xp] = [110,, idx,] =0 a,bel, 7i central.
and equipped with the grading
deg x, = deghoy, = degh% =1,
We will write P = Q + O(n) for two elements P, Q € ’DZ if they agree up to at least degree n — 1.

Definition 2.1. A family (H;);¢s of elements of DZ is an Airy structure on E in normal form with
respect to the basis (x4)4ea if I = A and it satisfies:

o The degree 1 condition: for all i € I, we have

H; =hoy, + 0(2). (3)
e The subalgebra condition: there exist flk] € D}il such that for all i, j € T
[Hi, Hj] =% > £ Hy. (a)
keA

A family (H;);es of elements of Z)Z is an Airy structure if there exists two matrices N € C*! and
M e CP*4 such that

Va, b e A, Z Na,iMi,b = 5a,b
iel

Vi,jel, Z Mi,aNa,j = 5“
acA

(5)

and the family H, = Y, N, H; indexed by a € A is an Airy structure in normal form.

Being an Airy structure does not depend on a choice of basis, but being an Airy structure in normal
form does. Airy structures in Definition 2.1 would be called in [BBCCN18] “crosscapped higher
quantum Airy structure”. “Crosscapped” refers to the presence of half-integer powers of 7 and we
comment it in Section 2.3.5. “Higher” means that compared to the definition in [KS18; ABCO17], it can
contain terms of degree higher than 2. “Quantum” is used to distinguish it in [KS18; ABCO17] from
the classical Airy structures where the Weyl algebra is replaced by the Poisson algebra of polynomial
functions on T*E. We simplified the terminology as the restriction to maximum degree 2 and the
classical Airy structures will not play any role in this article and handling half-integer powers of &
does not lead to any complication in the theory.

The essential property of an Airy structure is that it specifies uniquely a formal function on E.
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Theorem 2.2. [KS18, Theorem 2.4.2], [BBCCN18, Proposition 2.20] If (H;);er is an Airy structure on E,
then the system of linear differential equations

VacA  H,-Z=0 (6)
admits a unique solution Z of the form Z = exp(F) with
n9! .
F= > ——Fyn  Fyn € Sym™(E") )
ge%N )
neN”
2g+2—n>0

Z (resp. the Fy ;) is called the partition function (resp. free energies). Equation (6) implies a recursive
formula for Fy,, on 2g — 2+ n > 0. We will typically be interested in the coefficients of decomposition
of the free energies on a given basis (x4)4ea of linear coordinates of E, for which we use the notation:

Fg,n = Z Fg,n[alw--,an]xal © Xa, ®)
ai,....an €A
When the Airy structure has normal form with respect to this basis, the explicit recursion to obtain the
Fynlai, ..., ay] from appears in [BBCCN18, Sections 2.2 and 2.3]. We reproduce it in Equation (32) at
the only place where it is used in the article. We will be led to work with Airy structures that are not
given in normal form (cf. Section 3.1), but for which there is an equivalent formulation of the recursion
in terms of spectral curves (Part II), that is often more efficient for calculations (cf. Section 6).

2.1.2 Infinite dimension

In this article we need to handle Airy structures for certain infinite-dimensional vector spaces. This
requires some amendments of the previous definitions which we now explain.

A filtered vector space is a vector space E together with a collection of subspaces 0 € 7HE C F2E C
.-+ C E, called the filtration. Throughout this paper we will assume that for any filtered vector space
E, the F,E are finite-dimensional, and that E = (. 7, E. Two filtrations ¥, ¥ on a vector space E
are equivalent if for any p > 0 there exists p” > 0 such that F,E C TP’,E and for any q” > 0 there exists
q > 0 such that 7':1',E C F4E. In particular, all filtrations on a given vector space satisfying our extra
assumptions are equivalent.

A filtered set is a set A together with a collection of subsets 0 C fiA C LA C --- C A. Again, we
assume all f,A are finite and A = - fpA. A filtered basis of a filtered vector space (E, ) is the data
of a filtered set (A, f) and a family (e;),ea of elements of E such that (ea)aepr is a basis of 7, E.

Let (E, ) be a filtered vector space, and for convenience choose a filtered basis (e;)qc4 and the
corresponding linear coordinates (x;),c4. We consider the completed Weyl algebra with respect to
this filtration, ﬁz It consists of elements of the form

n N _
Z Z Z oo cOMay,....am a1, . . ., an) Xg, =" " Xa,, N0, Moy, , (9)

m,neN ay,....an€A ay,...,a, €A
jEIN

where for any p > 0, the coefficients cW [@i,...,am; a1, ...,a,] vanish for all but finitely many
ai,...,ap € fpAand j,ay, ..., an. One can check this does form a (graded) algebra.

If (I, f’) is a filtered set (which is unrelated to (A4, f)), we say that a family (D;);¢; of elements of
ﬁg is filtered if for any p > 0, the coefficients Cl.(j) [ai,...,am;a,...,a,] in the decomposition (9) of
Dy, vanish for all but finitely many ay, ..., a, € fpAand i, j,ai,...,a,.

Definition 2.3. A filtered family (H;);er of elements of 132 is an Airy structure on E in normal form
with respect to (x4)aea if (I, f') = (A, f), and

o the degree one condition holds ;

o the subalgebra condition holds for some filtered family ( flkj) i.jker of elements of ﬁg’
A filtered family (H;);er of elements of 132 is an Airy structure on E if there exist N € C* and
M € C4 such that:

o for eachi € I, Nj; vanish for all but finitely many a € A ;



o for each a € A, M;, vanish for all but finitely many i € I ;

e N and M are inverse to each other in the sense of (5) — where the sums are finite due to the
previous two points ;

e the family H, = 3;¢; N, iH; indexed by a € A — which is a filtered family of elements of @Z
by the first point - is an Airy structure on E in normal form with respect to (x;)gea-

The notion of Airy structure does not depend on the choice of filtered basis, and only depends
on the equivalence class of the filtration of E. We will sometimes omit to specify the filtration when
it is evident. The existence and uniqueness of the partition function (Theorem 2.2) extends to this
infinite-dimensional setting and for each g, n, and p, the summation of (8) with a; restricted to f,A is

finite, that is F,, € SM}

2.2 THE W(gl,)-ALGEBRA AND ITS TWISTED MODULES

The Airy structures constructed in this paper are obtained by considering twisted modules of
Heisenberg vertex operator algebras (VOAs), taking subalgebras of the associated algebras of modes,
and using a dilaton shift to break homogeneity. The idea of this construction dates back to [Mil16].
It was developed more systematically in [BBCCN18, Sections 3 and 4] and we refer to that paper for
details. Here we summarise the main points of the construction.

2.2.1 The Heisenberg VOA and ‘W (gl,)-algebras

Definition 2.4. Let ) be a finite-dimensional vector space with non-degenerate inner product (-, -).
The Heisenberg Lie algebra associated to [ is given by

b= (y[*'] ® CK) ® Cy, (&1 + aK, gm + bK] = R (&, n)1614m0 K,

where we write & := £ ® t!, and Cj, = C[h%]. The associated Weyl algebra is defined as a quotient
of its universal enveloping algebra: Hy = lI(f)) /(K — 1). The Fock space Fy is the representation
of Hy generated by a vector |0) and relations &[0) = 0 for £ € b, [ > 0. The Heisenberg VOA is
the vertex operator algebra with underlying vector space 73 equipped with vacuum |0), state-field
correspondence Y: ¥ — End F[[x*'] given by

(|0> %) = idgp
Ealoy %) = > aF
lez (10)
1 dh! 1 kn1

(&l - €0, 10),%) = e Y (EL,10).%) - o Y (E410), %),

1) (ki — 1)! dicki— ( —1)! dickn-
and conformal vector @ = % 2 )(_1 )(_1 |0) for an orthonormal basis (x”); of b.

The W-algebra associated to the general linear Lie algebra gl, at the self-dual level is denoted
‘W (gl,). It can be constructed as a sub-VOA of the Heisenberg VOA ¥y attached to its Cartan subalgebra
h = C" C gl,. We identify § with its dual using the Killing form and take y’ € ) to correspond to the
roots under this identification. Note that they are orthonormal.

Theorem 2.5 ([FL88; AM17]). W(gl,) is the sub-VOA of Fy freely and strongly generated by the
elements

wi=e;i(xiy.. ., x0) 10y, i€ [r], (11)

where e; is the ith elementary symmetric polynomial in r variables.

We introduce the modes W; i and their (i-form valued) generating series W;(x) with the formulas

o O Wik(d)' RPN
W;(%) = 1227 = Y (w;, %) (d2)". (12)
Remark 2.6. Contrarily to [BBCCN18], we do not include a factor of r'"! in the definition of w;. Our

convention that W is the coefficient of %~ (k+) This coincides with the convention taken in [BBCCN18,
Section 3.3.4] but differs from the convention ¥~ **1) used in the rest of [BBCCN18]. We also find
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convenient to consider the generating series of modes of conformal weight i to be i-differential forms.
The variable x is often denoted z in the VOA literature. However, in Part II, we will see that this
variable can be interpreted as the pullback under the normalisation morphism of a function usually
denoted x for a spectral curve. For consistency, we therefore chose to use the letter x, and use the
letter z for local coordinates on (the normalisation of) the spectral curve.

2.2.2  The mode algebra and its subalgebras

Let A be the associative algebra of modes of ‘W (gl,), see [FBZo4, Section 4.3]. Furthermore, let
L(A) denote the set of possibly infinite sums of ordered monomials in A whose degree and conformal
weight is bounded ; we equip it with the bracket #7![-, -], making it a Lie algebra.

Definition 2.7. We say that a subset S C [r] X Z of modes generates a Lie subalgebra of L(A) if
the left A-ideal generated by @®; x)esWi is a Lie subalgebra of L(A). An equivalent condition is the
existence of f((l]kl)) (v € L(A) such that

V(i k), (LK) €S, Wi Wil =h D £330 0
(D en
More precisely, it is first required that the right-hand side defines an element of L(A), and then that it
coincides with the left-hand side.

Given a partition A + r, we set

AG) = min{mzo ‘ i }

=1
and we define the index set

L= {(ik) e[r]xZ | AGl)+k>0}. (13)

Theorem 2.8. [BBCCN18, Theorem 3.16] For any descending partition A v r, I, generates a Lie subalgebra
of L(A).

2.2.3 Twisted modules

Let 0 € S, be an arbitrary element of the Weyl group of gl,. It is a permutation of the elements y’
and can thus be decomposed into d > 1 cycles o = 03 - - - o¢ with each cycle o, of length r, > 1 such
thatr; +---+rg =r. If d = 1 then o is a transitive element After relabelling of the elements of the
basis of the Cartan, we can assume that o, acts as

. 1+r(,—1 24711 Yutr (-1 1+r(,—1
O-IJ' X lllJ_)X [}1]_> —)X” lﬂl_)X lllJ’

while keeping all other y’ fixed, where we introduced the notation r,) = S F_r,. It is then easy to

v=1
check that
)7

Ty
a.— Z l9r—FaJXj+r[u—1] i p e [d), ae[r, 9, = A/

is an eigenvector of the action of ¢ on ), with eigenvalue 1952. We define the currents via the state
field-correspondence

JRE) =Y Loy, )= Y (14)

ke—+Z
with fractional mode expansion on these eigenvectors introducing the differential operators
ho,u if k>0
k
1
=1 mQ, ifk=0 , (15)
—kx" i ifk<o0

with Q,, € C, acting on the space 7~ = Ch 1 [(xh )ueld), a>0]. Note that the formal variables x and xf are

unrelated. The state-field correspondence °Y can be extended to the whole space #y by using formula
(10). This turns (7, ?Y) into a twisted representation of #, whose restriction to ‘W (gl,) becomes an



(untwisted) representation of ‘W (gl, ). For details see [Doyo8; BBCCN18]. We define the twist modes
ik by .
(dx)*

xk+i

TWi(F) = TY i, %) (dF) = ) Wik

keZ
where w; are the strong generators of ‘W(gl,) from (11). They are differential operators acting on 7.

Lemma 2.9. [BBCCN18, Proposition 4.5 and Lemma 4.15]. For an automorphism o with d cycles of
respective lengths r,, the o-twisted modes read

Wor 333 [, @

Mc(d] iy€lr,], ueM kezM peM Ty
Z iy=i Xy k=
where the Wi” .. are defined as
pslp
I_iu/ZJ . i i‘u
1 bt B U
TPy S L I N R R
ipoky r, < 2Ju i (i, — 27! 2ju+1° £2j,+2° Py, PF >
w0 2t = 2j) Pl €2 1=2j,41 !
10} =ruky

with coefficients ‘I’,(‘f”) (--+) € Q admitting a representation in terms of sums over rth roots of unity:

r-1 Myp_y+m,
() . N — 1 grmar-irma ma;
¥ @z, 0) = i Z l_[ (Imar — Gmar-1)2 1—[ 7 ’ (18)
m1¢$ly_0 I'= 1=2j+1
where & = ?7/",
In terms of generating series, this lemma can be restated as
W} (%)
wo=) > |l==
Mcld] iyelry] peM peM T
Zy iy=i
Li/2] . ~\ 2j ru—1 i
1 i'n’ dx i
ACE Z —( ) ( > ) [ ] ) ) (19)
| _ | J+1s s U1
Tu 21] (l 2’]) a2j+15---3i=0 ! 1=2j+1
If we also take a generating series in i by defining
un d . u .
WHEu) = —+ DWW, W EW = ) W ET
A=l i=1

this can be written compactly as
d
W (% u) = ]_[ ruWH(Z,u) .
p=1
Introducing the filtered vector space

d d
E=H Py, B =P P, (20)

k>0 p=1 k<p p=1

we see from the condition of summations in (16)-(17) that each W;; belongs to the completed Weyl
algebra ZSZ according to the definitions in Section 2.1.2. Even more, any family (W) k)er for which
miny k > —oo is a filtered family of elements of 232 Our goal is to construct Airy structures from these
operators. The degree one condition requires the operators to have the form 70 + O(2). Unfortunately,

ik does not have this form as it is homogenous of degree deg “W; = i in view of (16). Thus in
order to construct an Airy structure we first have to break up this homogeneity.



r,s s=1 r=r's+1 |r=r's+s—-1 s=r+1

(r’+1) columns (r’+1) columns

r boxes ‘

E::: | H

TaBLE 1. The partitions A, 5 associated to different values s.

2.3 AIRY STRUCTURES FROM TWISTED ‘W (gl,) MODULES

2.3.1 From a twist with a transitive element

First let o be a transitive element, i.e. d = 1. Then "W = rl_iVl/ilk, and to simplify the notation we
can omit the superscript 1. One can break up the homogeneity of the differential operators °W; i by
performing a dilaton shift

Js ™ Js—1 (21)
for a fixed s > 0 while keeping all other J, for a # —s unchanged. Formally one defines

. . . Je
Hip =T - "Wy -T7, T = exp (—h—) )
S

It follows from the Baker—Campbell-Hausdorff formula that conjugating with T means shifting the Js
as in (21). The action on the completed Weyl algebra DZ is then well-defined. Then, certain subsets of
the modes “H; . yield Airy structures.

Theorem 2.10. [BBCCN18, Theorem 4.9] Let 0 € S, be transitive and s € [r + 1] withr = £1 mod s
and Jy = 0. Let us define A + r to be the descending partition

(r) ifs=1

A=1 (1) ifs=r+1 . (22)

(" + 1), (")) if r=r's+r"” with r” € {1,s — 1}

Then, the family of operators
ri_l O-Hi’k i€ [r], k> 1—/1(1')+§i,1

forms an Airy structure in normal form on E = B, _, Cxx), seen as a filtered vector space when equipped

with the filtration E, = @ks;z C{xy).

The partition A chosen in (22) to define the mode set determines the subalgebra associated to this
Airy structure by using Theorem 2.8. The corresponding Young diagrams are depicted in table 1.

2.3.2 A generalisation to arbitrary twists

Let 0 € S, be a permutation with d cycles of respective lengths ry,...,rg, sothatry +---+rg =r.
Then the differential operators W ; act on the space

C 1 [(x&peral, aso] -

Again, we will break up the homogeneity of W; i by performing a dilaton shift. There are d independent
families of variables (x) 4o labelled by i € [d] in which we can perform the shift. Two types of shifts
will in fact lead to Airy structures:
o simultaneous shifts in each of the d sets of variables.
o simultaneous shifts in all but one set of variables and the label j1 of the unshifted set of variables
correspond to a fixed point r, = 1.



Let us thus choose s, € N* U {co} and, for each y such that s, # o, t, € C*, for each y € [d] and define

) ) . T
Hyo=T-Wy 17, T= ] e (_rutul : (23)

S

peld] : sy#co H

We chose to include a normalisation factor r,, to simplify later computations. Remember that conjugat-
ing with T means nothing but shifting

Yue[d], keZ ]fk —>]fk—r,1t,,5k,sﬂ.

and its action on the completed Weyl algebra 232 is well-defined. It turns out that, with the right
choice of parameters, certain subsets of these operators “H; ;. indeed form an Airy structure.

Theorem 2.11. Letd > 2,r,...,rg > 1 andsy,...,sq € N* U {oo} be such that
r r r,
as25 .54
s1 Sy Sd

Let Q1,...,Q4€C, ty,...,t5-1 € C*, and if sy # oo also ty € C*. Assume that
d
Z Q,=0, t;“ # t,v whenever y # v and (ry,s,) = (r,,5,).
p=1

Definer = ZZ:I ry andlet o € S, be a permutation made of disjoint cycles of respective lengths (rq, .. ., rg).
Assume that

e r; = —1 mod s;.

o s, =1foranyp ¢ {1,d};

e rg=1mod sg4.

and define A - r to be the descending partition
B ((r] + 1), ra, 13, ..,rd_l,rl’isd) if rg#1
(GRS VNN Y ifrg=1"

(24)

7o | Tu -

where we set ry = I—§J Then, the family
"Hie, i€lrl,  k>1-2>)+6

is an Airy structure (not necessarily in normal form) on the filtered vector space E given in (20).

We call the case s; = oo the exceptional case and the other case the standard case. The proof of the
Theorem will be presented in Section 3. The exceptional d = 2 case was already obtained in [BBCCN18,
Theorem 4.16].

Remark 2.12. Note that the conditions imply that s; € [r; + 1] and if rg > 1,54 € [rg — 1].

The partition A in (24) can be depicted as

ri+H
[ M i
A2 =r]+1
| [ o =
Asi+ =72
Asi42 =r3
| ] Asi4d—2  =Td-1
[ ] Asi+d-1 =Ty

Sdl — * /\,SIM =Ta

[T+ ] /\-51+sd+d—2 =1y
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In case rq = 1 the last block r/* is simply absent. Going through all cases one thus finds that every
descending partition A + r is either of the form depicted in table 1 or of the form (2.3.2). This implies
that all the subalgebras mentioned in Theorem 2.8 support two Airy structures: one standard and one
exceptional.

2.3.3 Arbitrary dilaton shifts and changes of polarisation

In order to connect with the theory of the Chekhov-Eynard-Orantin topological recursion, we
ought to be able to conjugate the °W; ;. with more general operators, inducing dilaton shifts in several of
the variables and also making a change in polarisation. This section is completely parallel to [BBCCN18,
Section 4.1.5].

First, let us consider a general dilaton shift

M
T=exp| Y (h‘lFo,l[_”k]+h‘%F%’1[_"k])% . sp=min{k>0 | Fo["]#0}.

peld]
k>0

with arbitrary scalars Fj, ; [ I k] for h € {0, %}. The seemingly complicated way to denote these scalars
will become natural in Part II, see e.g. Equation (79). Effectively, this shifts

]fk_)Jfk"'FO’l[—”k] +h%F%,1[—”k]

and by construction of the completed Weyl algebra, its action on 232 is well-defined. It should be
interpreted as a deformation of the case where there is a single non-zero shift

FO,I[—I;,,] = _r/ltl_l~ (25)

The F 1 give an extra possible deformation as we have allowed half-integer powers of 7.

Another deformation we would like to consider is the change of polarisation, given by conjugation
with the operator

H v
<i>:exp i Z FO,Z[_pk_yl]]ki

2h it kl
k,[>0
where F [ ks k fl] are arbitrary scalars. Effectively, it shifts
7 H BV ]IU
]—k — ]—k + Z FO,Z[_k —l] T . (26)
veld]
>0

Once again, the action on 13};;1 is well-defined. We want to consider the conjugated operators
Hiy = T - Wik - 7971, (27)
Theorem 2.13. Defining t, by (25) and with the same conditions for d, (r,, s, t,, Q#)Z=1 and the same
range for (i, k) as in Theorem 2.11, the operators ° H; . in Equation (27) form an Airy structure on E.
This theorem is proved in Section 3 and the result will be reformulated in terms of spectral curves

in Section 5.

2.3.4 Necessary conditions
Theorem 2.11 gives sufficient conditions for the operators
"Hip, i€[r],  k=1-A>)+8, (28)

with A as in (24) to form an Airy structure. By checking the symmetry of Fy3, Fo4 and F 14, We could
prove that most of these conditions are also necessary, and we believe that a more thorough analysis
would actually lead to the conclusion that they are all necessary for generic values of (t,, Q,),.
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Proposition 2.14. Letd > 2,ry,...,rg > 1 andsy,...,sq € N* U {co} be such that % > > ;—j and

choose A as in (24). Assume that for all Q1,...,Qq € C, t1,...,t4-1 € C*, and in case s4 # oo alsoty € C*
such that

Qu=0, and t;” # t;” whenever y #v and (ry,s,) = (r,,8,),

=
||M&
L

the operators (28) form an Airy structure. Then necessarily

e r; =—1mod s; ;
o s, €{1,2} forallp ¢ {1,d};
e ry=1mod sg4.

Moreover ford > 2, if (ry, su) = (ry,s,) for p # v then necessarily s, = s, = 1.

The proof of this Proposition can be found in Section 6.3. We in fact use the reformulation of the
‘W-algebra differential constraint in terms of topological recursion on spectral curves (Theorem 5.23 in
Part II), as the calculation of the wy,,s — which are generating series for the F ;s — appears simpler than
with the differential constraints (6) themselves. In the course of the proof of Theorem 2.11 in Section 3,
we will see that coprimality of r, and s, and non-resonance condition for the t, (Remark 3.4), as well
as non-vanishing of all but maybe one dilaton shift (Remark 3.15) are obvious necessary conditions to
obtain Airy structures with our method. The assumption ZZ:I Q. = 0 is not always necessary and we
obtain finer information on this in Proposition 6.4, but we adopted it here to simplify the statement of
Proposition 2.14.

2.3.5 Half-integer or integer powers of h?

There are several reasons to allow half-integer powers of 7 in Airy structures instead of just integer
power. Our construction admits natural extra degrees of freedom when o has at least two cycles,
namely the parameters Q in Theorem 2.11. This is relevant for applications to open intersection theory,
where we have to allow indices g to be both integer or half-integer — see Section 8.1 and Theorem 8.7.
As it does not lead to any complication, we write the whole article allowing g € %N. In the terminology
of [BBCCN18], we are dealing with crosscapped Airy structures. If all monomials in H; only feature
integer powers of 7 then F,, in (7) vanishes for half-integers g. It is therefore straightforward to
specialise our results to allow only integer g, as it is more common in topological recursions. Let us
however note that half-integer g already made their appearance in certain other applications of the
topological recursion, such as non-hermitian matrix models [CE06], enumeration of non-orientable
discretised surfaces [CEM11], Chern-Simons theory with gauge groups SO(N) or Sp(2N) [BE17a],
etc.

2.4 STRING, DILATON AND HOMOGENEITY EQUATIONS

Lemma 2.15. Consider one of the Airy structure of Theorem 2.10 or Theorem 2.11. For any g,n > 0 such
that2g —2+ (n+1) > 0, any pi, 11, . . ., jin € [d] and p1, ..., pn > 0, we have

d n p rz _ 1 QZ
s ln m st ln H H

Dt [ = D) PRy [ ]+ Byada e ). (29)
r 24r, 2r,
p=1 m=1 Hm H H

Proof. We express the constraint “H;—p =0 - Z = 0, as it is always part of the Airy structure. From
(16)-(17) and taking into account ]él = ht O, and the evaluations

1
‘{lr(O) (q1,92) = 5 (r25r|Q1 5r|fJ2 - r5r|q1+qz) ’

(1) _ _r(r2 - 1)
w0y = [

(30)

5



we obtain

d
U‘/Vizz,k:() = Z ot Z WF fk + Z Wfowlljo
p=1 HFV p<v
k>0
_ i (Z ryér”‘k - 1]” J# + (r,u - 1)Qf,h (r;zl - 1)h) Z (Z]ﬂ ] QIIQIJ
= K’k - —ruk’rok
p=1 \ k>0 T 2ry 24ry pEY \ k>0 "

(31)

To get “Hj=p k=0 We have to apply the dilaton shifts ]f'sy — ]f'sy — ruty,, which simply results in adding

a term ZZ:1 ty ]SPL to (31). Expressing the constraint

Vk >0, llk Z = (Z )

and using the assumption ZZZI Qu =0, we see that “H;—p y— - Z = 0 implies that Z is annihilated by

the operator
d 2 2
ry—1 0
R ( —”)}
; { " ;0 kZk 24r,  2ry
By the representation (15) of the Js, this yields (29) for the coefficients (7) of the partition function. O

The partition functions of these Airy structures for o = (1---r) or (1---r — 1)(r) enjoy an extra
property of homogeneity, which turn (29) into an analog of the dilaton equation.

Corollary 2.16. Assumed = 1 and (r1,s1) = (r,s) withr = +1 mod s. Then, the coefficients (7)
of the partition function of the Airy structure of Theorem z.10 satisfy Fy,[p1,...,pn]l = 0 whenever
i1 Pm # s(2g — 2 + n), and the dilaton equation

-1
Fg,n+1 [S,Pls v ,Pn] = s(zg -2+ n) Fg,n [Pl, .. pn] + 5g,15n,0 .

24
Corollary 2.17. Assumed = 2,r; = —1 mod sy, (r2,52) = (1,00) and t; = ﬁ Then, the coefficients
of the partition function of the Airy structure described in Theorem 2.11 (also appearing in [BBCCN18,
Theorem 4.16]) satisfy Fyp [pl1 o pln ] = 0 whenever ) _1 pm # $1(2g9 — 2 + n), and the dilaton equation

ré—1 .\ (r+1)Q?

24 2
Proof of Corollary 2.16. In this case we only need to consider g € N. The Airy structure is in normal
form up to an overall normalisation, and we can decompose for i € (r] and k > 1 — A(i)

r'™ Hig = Jngik) Z Z COMG k), qel Jgy -+ Jar

6.jEN qE(Z*)f
2<0+2j<r

where I1(i, k) := rk +s(i — 1). Setting Fos[p1, p2] = |p118p,4p,,0, [BBCCN18, Corollary 2.16] gives the
following formula for the coefficients of the partition function:

CONpilq, ...,
Fynlpro-opal = ) ne al 5 Z [ 1 Fnptottu 1ap Pl - (32)

Fonst| s gy ] = 51029 =24 1) Fyu[ g 0 po | + ( 84.10m0 -

Ve ST o
< <r

€(Z{)’ _ h:p—N

q [+]+Zp€p(hp71):g

Here, p + [¢] means that p is a set of non-empty subsets of [¢] which are pairwise disjoint and whose
union is £, and for p € p we denote q, = (gm)mep. Then, i+, (n] is a family of (possibly empty)
pairwise disjoint subsets y, of (n] indexed by p € p, whose union is (n]. The double prime over the
summation means that the terms involving Fy 1 [gm] or Fo2[qm, gnr] are excluded from the sum. We
note that the summation condition is equivalent to

Zg—2+n+(1—{’—2j)=Z(2hp—2+|p|+|,up|).
peEP
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Since £ +2j > 2, this is indeed a recursion on 2g — 2+ n > 0 to compute Fy, starting from the value of
Foa.

Fo 2 obviously satisfies the homogeneous property. Assume the Fy v for 0 < 29’ —2+n’ <2g-2+n
satisfy homogeneity. So, the summands that may contribute to (32) are such that

t n
s2g-2+n+(1-£-2))) = > s@hy—2+pl+lpo) = Y q+ D pm- (33)
pEP =1 m=2
Writing p; = I1(i, k) and applying the dilaton shift J ¢ — J_; — 1 to (17) we know that C) [p,|q] is a
linear combination of terms inside which

¢
Z q—st’' =rk,
I=1

where £ + ¢’ =i — 2j. Hence
¢
Dla=pits(i-2j-t). (34)
I=1

Together with (33), this proves homogeneity of Fy,. By induction, homogeneity is established for all

g, n.
We then apply Lemma 2.15. In our case, there is a single 1, t, = % and Q, = 0. Using homogeneity
to simplify the right-hand side of (29), we obtain
rt-1
Fgns1[8, P15 pnl =529 = 2+ n)Fypn[p1, ..., pn] + 3g00n,1 1
O

Proof of Corollary 2.17. The argument is similar and we only point the minor differences that must
be taken into consideration. Although half-integer g and j are now allowed, this does not spoil the
sum constraints appearing in the recursive formula for F, and which were used in the argument.
According to (16) and (23), we have for i € (r; + 1]

—(i—1
Hia =7 (Wit 3 W , (35
k'€Z ]—lsl _’J—lsl -1
where by convention Wr11 +1x = 0. The analysis of the previous proof applies to the term W'llk Due

to the equation “Hy - Z = ( ]rl1 et ]If) = 0, we can obtain a recursion in normal form involving only
Fyn| ! 1] by substituting
0 if k2 <0
]]i — —h%Ql if kz =0 (36)
1 .
_]Vlkz lf k2 >0
or 0, and makes it contribute to a coefficient

in (35). This converts Vvilfl,k“]lffk' into _M/il—l,k’]rll(k—k’)

c [p1lq1, - - -, qe] where now g, = ri(k — k’) and

-1
(qu) -1 =k,

I=1
with (£ — 1)+ ¢’ =i—1-2j. Hence

4
qu=r1k—slt"=p1+sl(l—2j—{’),

I=1
which is the same as (34) and is all what we need to repeat the previous proof and establish homogeneity.
We then specialise Lemma 2.15 to our case, thatis t; = ﬁ and t; = 0, while Q, = —Q;. Setting p; = 1
for all i € [n] in (29) and using homogeneity to simplify the right-hand side, we deduce
rd—1 . (r1 +1)Q?
24 2

Fonet| s pr o pn ] =129 =2+ ) Fyn| p, 0 p, 84,101 -



For the two above cases, we also have a string equation when s; = r; + 1.

Lemma 2.18. Assumed = 1 and (r1,s1) = (r,r + 1). Then, the coefficients of the partition function of
the Airy structure described in Theorem 2.10 satisfy

Fg,1+n [1, pl» e >pn] = Z meg,n [pl’ e ,pm—l’pm - Pm+1, oo >pn] + 5g,05n,25p1+p2,r .
m=1

Lemma 2.19. Assumed = 2,s; = r; + 1 and (rz,s2) = (1,00). Then, the coefficients of the partition
function of the Airy structure described in Theorem 2.11 satisfy

n
11 1 1+ 1 1 1 -1
Foinlip o pul = ZPmFy,n[pl L s ot e pn | 0500n,28p 4, r + 04,10n,10p,.r Q1.
m=1
Proof. The string equation corresponds to the operator H;—; x=_1, which is only present in the Airy
structure for d = 1 when s = r + 1, and for d = 2 if s; = r; + 1. The proof of the above relations is then
similar to the one in Lemma 2.15. ]

3 PROOF OF THEOREMS 2.11 AND 2.13

This Section is mainly devoted to the proof of Theorems 2.11 and 2.13. These theorems state that
certain collections of operators (“H; k) (i k)er defined in Equations (23) and (27) are Airy structures. In
fact we only prove the second theorem, and note that the first is a special case. We first prove this in
the standard case, proceeding as follows.

(I) The operators of an Airy structure must be of the form J% + O(2). It is thus necessary to first
identify the degree zero and degree one term of “H; ;. in order to check this condition.
(II) In general, one will find that

“Hik = cig + Z M ik, (ma) Ja +O(2). (37)

peld]
a€zZ

for some matrix M and constants c; ;. This means that for generic i, k we may expect terms
proportional to J*, = ax);. We will thus construct an index set I C [r] x Z such that for all
(i,k) € I we have ¢;x = 0 and M) (ua) = 0if a < 0.

(IIT) Nevertheless, even restricted to I the degree one term (37) is in general a linear combination of
many J4's for a > 0. In order to bring the operators into the normal form of an Airy structure
J¥ + O(2) where each (11, a) appears in a unique operator, we will show that the matrix M
restricted to I is invertible under certain constraints on the dilaton shifts. One can then obtain
the operators

THY = ) (M) i) Hik = B + 0(2),
(ik)el
which are of desired form.

(IV) The modes (H,’;)(,Je[d], a>0) satisfy the subalgebra condition if and only if the (W) (i x)er
do. The latter is satisfied when I is induced by a descending partition of r as specified in
Theorem 2.8. This criterion thus allows for an easy check whether the mode set constructed in
(IIT) satisfies the subalgebra condition (4) of a higher quantum Airy structure.

Together the results of (III) and (IV) will directly imply Theorem 2.13 and hence Theorem 2.11 in
the standard case. The steps (I) to (III) will be carried out in Section 3.1 and step (IV) is performed in
Section 3.2. In Section 3.3 we treat in less details the exceptional case, as it resembles the standard case
in many ways.

First, let us recall some notation. Let o € &, be a permutation with d cycles of respective length r,,
such that r = r{ + - - - + rg. We can then define the dilaton shifted modes

"
“Hi :=f"TW})k-T_1, f::exp Z h_lFo,l[_‘uk]% , Su :=min{k>0|F0,1[_”k]¢0},
]

peld
k>0
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which in the following are the central objects of study. Here “W; are the o-twisted modes from
Lemma 2.9. Compared to Equation (27), we do not introduce the coefficients F 1 and Fy, here yet, as it

turns out these are not important for most of the proof. As in Equation (12), it will be useful to gather
these in a generating function.

THy (dx\" - .
UH,(X'):Z?]C(%) :T.O'M/i()z),]‘ 1.

keZ

We will also recall from Equation (14)

=y T e

ke—+Z

and define J**!(x) = Zr” ! JH4(x). To treat these currents more uniformly, we introduce C= |_| Cus
the union of d copies of a formal neighbourhood CF of the origin in the complex plane. We use the
notation (%) for the coordinate in the (:‘P. We define a function : C — C by (%) = z". Cf. Part I

for more on this viewpoint. We then define a unified current

CJPNE() oo dE o dz
J(2) = r _Z]kr;ck/r,ﬁl _Z]kzk+1'
kezZ H keZ

7]

The factor of r, in the denominator is a convention making (38) simpler. We sometimes omit y from
the notation and simply denote z € C. With these notations, we see that the dilaton shift induces

J(2) = J(2) + w01(2), wo1(%) = ZFO,I[_ﬂk] 7 ldz.

k>0

We also use the shorthand notation ¢, = —= Fo 1 [ ] for the leading coeflicient.

3.1 THE DEGREE ONE CONDITION

In this subsection and the next one we assume that all s, are finite. Let us begin by identifying the
degree one component of H;. Let 7; be the projection to degree one.

Lemma 3.1. Foranyi € [r]

CH@)= >, >, J@]]ea:). (38)

zex (&) Zcx7H (&) \{z} ez
|Z|=i-1
So we have
m(THig) = Z Mgy, (ma) Ja » (39)
peld]
acZ

with a matrix M) (ua) having the property that, for each (y, a), there exists K, 4 such that for any
i€[r] andk > K,y we have M), (ja) = 0.

Note that the right-hand side is a symmetric function in the elements of ™! (), and therefore it
contains only integral powers of &.

Proof. From Equation (19), we see that “W;(¢) is a linear combination of currents

B2 I l—l: ﬁ _]”’“7(’5’):.

HEM [=2j,+1
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After the dilaton shift, these will only contribute to the degree one component of “H;(¢) if j, = 0 for
all p € M. We have

tp
ﬂl(am(é’)):ﬂ'l Z Z 1_[%( Z (0)(a1,,..,aﬁl):1_[1—[]#,“7(5):) ,
Mcld] iy€[ry] peM peM Ty al....a! G[Orﬂ) HEM =1
Dy ip=i
(40)
and therefore on the right-hand side we need to take the contribution of the shifts in all factors but one.
The definition (18) of the ¥ is nothing but a sum over subsets of Galois conjugates of the function %,
so we obtain

lp
ool o= Y )
a’f,...,a’;ﬂe[o,ry) I=1 ngc’l(._f)n(:‘” ZeZ
1Z =iy
The sum over M C [d] in (40) ‘globalises’ this sum of subsets from one component CNI, to all of C.
As stated before, the degree one projection extracts the dilaton shifts of all but one (the choice of
z) of these factors, which proves (38). We obtain the matrix M by expanding this equation in ¢ and
collecting the contributions of J%. The vanishing property comes from the fact that w; contains only
nonnegative positive powers of z. O

We will restrict the range of indices on both sides and show that the matrix M is invertible in order
to bring the differential operators into the normal form of an Airy structure. But first, we would like
to see that this matrix is invertible without restricting it to any subspace yet. Define

r

TH(&u) = ) TH(§ .

i=1
Then

i (TH(E w) Z > D J@[Jea = 1@ [] @ren).

i=l zex (&) Z<x 1 (&)\{z} ZezZ zex1(&) zZex1(&)\{z}
|Z]=i-1

(41)

We are looking for the inverse to this operation. Remember from (25) that for any p € [d] we write
b=~ Fog[ 4.

sy ”

Lemma 3.2. Assume gcd(ry,s,) =1 forall p € [d] and t;” # t,¥ for any distinct p,v such that Z—Z =
Then the currents can be recovered from mr ("H(&, u)) as follows:
m (H(x(z),u)) du
P {(TH(#(2), v)
u=—w0;(2) [ ez l(x(z))(u + o1 (2’ )

(42)

Proof. If we plug Equation (41) back in Equation (42), we get

Res Z J() 1_[ (u+wo1(¢")) 1—[ (u +a)0,1(z'))_1du

el TR pert ® (@) 7 ex1(x(2)
_ R J(Q) du
= €s —_——

u=-w 1 (z) rei T3 (2) u+ wo,1 (g)

Because we took z in a small neighbourhood of zero (but of course not zero itself), the conditions of
the lemma ensure that all wg1({) for ¢ in the same fibre have different values. Therefore, the only
contribution to the residue comes from { = z. O

Remark 3.3. The other inverse relationship,

m(PH(x(2z),u’)) du’
mi (PH(E u)) = Z l_[ (u+wo1(z"))  Res H(THE ), u) -
2e51(8) 2 €1 ()\ {2} w=001(2) [1zez1(5(2)) (W + w0,1(2 )’




20

follows immediately from Lagrange interpolation since 1 (“H(x(z),u)) is polynomial in u.

Remark 3.4. For Lemma 3.2 and Remark 3.3 to work, all we really need is that wg; takes distinct values
on all elements of the fibre of & near the ramification point £ = 0, i.e. the map (%, wg): C — T*P'is an
embedding on a punctured neighbourhood of the ramification point. The conditions ged(r,, s,) = 1 and
t;“ # ;v for p # v such that :—: = % ensure this. In the undeformed case, the setting of Theorem 2.11,
i.e. monomial wy 1, this is in fact necessary as well as sufficient.

Suppose there were a y1 such that ged(ry,s,) =d, > 1,letz € (:‘#, and let & be a primitive r,th root
of unity. Then x(z) = x(3*/%z) and w1 (z) = wy, 1(19’/4/ #z). So in Equation (41), the dependence on
J¥ is given by

( ) r‘“/d” Zdﬂ ]( - '” )
j=1 ‘91+]ry/dﬂz

(u+ wo1(z)) E = u+ wg1(z") _

Zex 1 (®) Y S on@s) elfc—ll(f) o) Z‘ U+ o (9'2)

Performing the j-sum, we see that 71 (PH(&, u)) only depends on J for d, | a. Therefore, it is impossible
to retrieve all J% from 7, (°H).

In the case p # v such that :—: = ¢ and t[[‘ =t,", the situation is similar. First note that by redefining
the local coordinate on é,,, we may actually assume ¢, = t,. Writing the local coordinates as z € éﬂ
and z’ € C,, we then have wg,(9'z) = wg(92’) for all i € [r.]. By the same argument as above,
71 (H) then depends on J% and J, only in the combination J& +J, so again we can never retrieve the
individual J% and J?.

For the deformed case, see Remark 3.11.

Since the w1 are power series with exponents bounded below (by s, on component C ), We can
see that for any i, the set of k such that °H; ;. gets a contribution from J; with a < 0 in Equation (38)
is bounded from above. Therefore, the following definition makes sense.

Definition 3.5. For i € [r], we define kmin (i) to be the smallest K such that for all k > K, 71 (°H;x)
given by Equation (38) lies in the linear span of J% with s € [d] and a > 0 solely.

It turns out that k;, (i) can be approximated as follows.

Lemma 3.6. If:—i > > :—: and ged(ry, s,) = 1 for all p € [d] we have kyin (i) < drs(i) where

_ Sl(:l_l)J’“‘Si’l’ 1<i<n
_ sz(i—rrl—l)J — 51+ 8i14r, s rt <i<rp
. 2
bea(i) =1 L ' . : (43)
sq(i=r[g-11-1) i

where for a subset M C [d] we denoted Ty == 3 ep Ty and sm := X Sy

Proof. Recall that k is the exponent in

1 (“Hix) ( d_g)i (0

& ¢
As we also get i factors of % on the right-hand side of Equation (38) (one from J and i — 1 from the
wo,1, we will concentrate on the remaining powers of &.
From Lemma 3.1, we see that in order to determine an upper bound ky,ax € Q for the exponents
k in (44) for which we get a non-vanishing contribution from J% with a < 0 it suffices to inspect
a = 0 and to take only the leading order of all w ;s into account. More specifically, to make k in (44)
as large as possible we need to choose the wy ;s efficiently: an wp; on branch v has leading order
(z’)sv% = § v ?5 So, to minimise the power of &, we need to take 3 minimal, i.e. Z— maximal, i.e. v
minimal. From this it follows that the maximal k such that J;, a < 0 can contribute, is found by first
taking all r; factors wg; with arguments on component v = 1, then the r, on component v = 2, up until
we get to i — 1 factors.
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Ifi € [r], we get —kmax = %(i — 1) from this, while for i € (r[,_q},r[y)], we similarly get
~kmax = (i=rpu-11—1) i—” + 25;11 i—”r,,. Of course, it might still happen that the coefficient of the power
u v

& kmax yanishes due to cancelling contributions of different combinations of w;s. However, in any
case kpax € Q is an upper bound for k € Q for which J; with a < 0 can still contribute. Therefore

Kmin (i) < min {K ez ) K > —(S[”_l] +(i— Flu-1] — l)i—:)} i€ (r[y_l],r[y]] .

Finally, let us argue that the right-hand side of the above equation is nothing but d, (i) as defined in
(43). If i € (r(u—1] + 1,7 [,)], this is clearly true, as then (i — r[ﬂ,l])i—z ¢ Z, and taking the integral part
implies strict inequality. If i = r|,_1] + 1, we need to add 1 to obtain strict inequality, explaining the
Kronecker symbol in (43). O

Remark 3.7. For generic w1, i.e. generic values for dilaton shifts, we even have kpin (i) = drs(i) for
all i. Indeed, it should be clear from the proceeding discussion that the case kmin(i) < drs(i) can
only occur if the leading order inspected in the proof of Lemma 3.6 vanishes. This can only happen
if £kmax gets contributions from several combinations of wq;s, which however is only possible if in
case i € (r(u—1],7[u] we have av # u with Z—z = :—: This can be compared in Part II to the results of
Lemma 5.4 and Proposition 5.13.

From now on we will always assume that ;—1 >...2 :—j if not stated otherwise. The modes selected
with the help of b, ¢ (i) via

“Hiye i€ [r], k2bs(i)

shall be shown to be an Airy structure for some certain (r,, s,,)l‘le. For future reference let us therefore
define the following index set.

Definition 3.8. We define the index set I; 5 to be

Ls={(1Lk) e [r]XZ | k=Dd(i)} (45)
with by (i) as in (43).

With the fact that kmin (i) < drs(i) and Equation (43) we have two different characterisations of I .
The first property tells us that for (i, k) € I s the degree one projection of “Hj . is a linear combination
of J§ with a > 0 only while the characterisation in (43) will be important later in order to check whether
the modes satisfy the subalgebra condition. In the following we will need yet another characterisation
of I s.

Lemma 3.9. Assume gcd(ry,s,) =1 forall € [d]. Then, (i,k) € [r] X Z belongs to I s if and only if
there exists yi € [d] such that

0, (i,k) = A, > 0,
where 11, (i, k) = ryk +s,(i — 1) and A, = v 118y — TuS[p-1]-
Proof.
Hﬂ(i, k)= Hﬂ(i’ + -1 k' — S[ﬂ_l]) .

Now using that I1,(i, k) = I1,(j,I) with i, j € [r] and k,[ € Z if and only if there exists an m € Z such
that i = j + mr, and k = [ — ms,, we see that (i, k) has to be of the form

i=i"+mry+rp, k=k"—ms, —sp-1

for some m € Z. Remember that we need to prove that k > d;(i). First assume m > 0 and choose
A > psuch that i € (rp-1},7a;]. Since ¢ > 0 we know that

o r,,(i'—n

J + 871 (46)
T
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and if i — r{3—1] # 1 we thus find that

. spi—rppzp—1)
br,s(l) == \‘+J — S[a-1]

~ {sﬂ(i’ +mry —rpa- — 1)

' J—ﬂkﬂ

- su(i” = 1)

ST | T mse = Spe)
7

< k' —msy, —spu-1] — Oia

<k.

In the second and third line we used that & > ;L: for v < v’ and in the fourth line we plugged in
the expression for i and used (46). In the case i — r[j_1] = 1 we have to be more careful due to the
additional contribution from the Kronecker delta in d;s(i). We find

s r#(i’—l)

J + 01 — msy — S[-1]

Tu
su(i’ = 1)
> T T My = S
7]
su(i"=1)
=TS T T T M S
7]

N

= —S[A-1] — —'u(l'/ +mry —riga-1] — 1)
Y

==S[1-1]

=0s(i) - 1.

In this calculation we used the arguments from the prior one and identified i — r3_;] = 1 in line three
and five. This closes the case m > 0. The case m < 0 is left to the reader.

Now let (i,k) € I.s. We choose y € [d] and (i’,k’) € [ry] X Z such thati = i’ + r,_;) and
k = k" - s[;-1]. Then we immediately find that IT, (i, k) = I1,(i", k") + A, which means it suffices to
show that II,,(i’, k”) > 0. But this follows from k > b (i) which written out is nothing but

o r,,(i'—l)

. J—ﬂwu+&n
using Lemma 3.6. Plugging k = k" — s{,_1] into the above expression one finds that k’ satisfies (46)

which is equivalent to our claim that IT, (i’, k") > 0. O

Remember that we defined the matrix M;x),(,,a) to be the collection of coefficients

m(CHig) = > Mk ua Ji

peldl, acz

of the projection to degree 1. It is given abstractly in Lemma 3.1. So far we found out that M admits a
two-sided inverse and moreover we characterised those modes featuring only derivatives in degree
one. The next step is now to combine both results in order to bring the operators (H; k) (ix)er,, into
the normal form of an Airy structure.

Lemma 3.10. Assume ged(ry,s,) = 1 forall p € [d] and t;” # 1, for any distinct p,v with Z—“ =
o

Then, there exists matrices N(,,q),(ik) and M ik, (ua) indexed by (p, a) € [d] X N* and (i,k) € I (see
(45)) obeying the vanishing properties in Definition 2.3, that are inverse to each other, and such that

“Hua= ). Nyaio "Hix  (a) € [d] xN*
(i,k) €l s

satisfy the degree one condition.
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Proof. From Lemma 3.2 and Remark 3.3 we know that the matrix M encoding the coefficients of the
degree one projection of the modes “H; x admits a two-sided inverse, if we keep the full range of
indices (i, k) € [r] X Z and (g, a) € [d] X Z. However, we actually need such a relation between the
semi-infinite column vectors

—  (TH
H_:= (”1(0Hi)k))(i,k)elm and J-= (]a)(y,a)e[d]xN* :
For this, let us also introduce the semi-infinite column vectors

He= (mCHO) one,  @d Je=Ua) paeraxcn

we (i) 1= (1)

We can then write Equation (41) symbolically as H = M - J. The vanishing properties of the matrix M
guarantee that this product is well-defined (i.e. the evaluation of each entry involves only finite sums).

By definition of I; 5, this splits as
H\ (M- 0 \[]-
H, B Moy My i

Writing N for the inverse of M, the relation M - N = id implies that M__ - N__ = id_ (with obvious
notation). As these are semi-infinite matrices, we cannot conclude yet that N_ — -M_— =id_. This
conclusion will nevertheless come from the analysis of N. According to Lemma 3.2, seen N as a linear
operator we have

and the infinite column vectors

N:Y(&u) — Res 1(x(2), w) du (47)

u=-001(2) [l zex1(3(z)) (U + wo1(z))
By a straightforward calculation, we see that, if z € Cﬂ and z’ € C,,, then, as z — 0,
O(zsﬂ’ldz) v>p
O(z " Mdz) v<p .

wo,1(2") — wo1(2) € {

Considering the term related to “H; x, we see after some elementary addition of exponents that

dé ~T1, (i,k)+A dz
N (F) ) oo (F)).
For this to contribute only to J_, we need IT,, (i, k) = A, > 0, which by Lemma 3.9 is given for (i, k) € L.
Thus N;_ = 0 and by a similar reasoning as before, N__ - M__ =id_.

From (47), one can check the desired vanishing property for the entries of N__ and therefore,
applying the matrix N__ to the semi-infinite column vector with entries

”l( zk Z M(zk) (p.a) ha H (i> k) € Is

peld]
a>0

is well-defined and gives the semi-infinite column vector J_.

To completely prove the degree one property, we need to check that for any (i, k) € I, the degree
zero component of “H; . is vanishing. Following the proof of Lemma 3.1 one finds that the projection
to degree zero of °H;  for arbitrary i and k is

w(H(E) = Y, [ [ea. (48)

ZcxTV(§) z€Z
|Z|=i

Similarly to Lemma 3.6, we then see that in order to get a non-vanishing contribution to o (°H;x), we
need

k< = (spp-1) + (i = rpe IJ)S”)
where the difference with that Lemma is the substitution of i — 1 by i. By the proof of that lemma,
Bes (D) > =(Spu-1) + (= Py = D) > =(Spea) + (=) 32) (49)

Hence 7y (°H; ;) = 0 for (i, k) € L, and this concludes the proof. O
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Remark 3.11. As in Remark 3.4, the actual requirement for Lemma 3.10 to work in some way is that
wo,1 takes distinct values on all elements of a fibre close to the ramification point. However, in case
several wg 1s agree up to leading order, the index set I s would need to be adjusted to account for this:
we would get kpin (i) < dr5(i) the order of vanishing of N [ur_if_k (d—g )l] would change. However, if
we adjust I 5, our argument for the subalgebra condition Lemma 3.13 does not work anymore. On the
geometric side of topological recursion, Proposition 5.10 also needs this particular range of indices,
and would have to be adjusted substantially.

There may still be cases where this can be made to work, but goes beyond the scope of this work.
In any case, more conditions would be necessary, as the specific example of a spectral curve with two
components in the vein of Section 6,

XM =%,  y(l)=Li  y(Z)=1L+1

with wp; = ydx yields a non-symmetric w; ; and therefore cannot correspond to an Airy structure.

3.2 THE SUBALGEBRA CONDITION

Having proven the degree one condition for the modes
i ik (l, k) S Ir,s
with index set I; s as defined in (45) we need to check whether these modes form a graded Lie subalgebra
as demanded for Airy structures. In order to do so we use Theorem 2.8 stating that if I is induced by a

descending partition then (°H; ) (;k)er generate a graded Lie subalgebra. By this we mean that there
exists A; > -+ > Ay with Z§:1 Aj = r such that I = I where

Lo={Gk) e[r]xZ | Vie[r], A®i)+k> 0},

AD) = min{m ' Z/lj > i}.
=

In our case at hand we want to check whether I s U {(1,0)} is induced by a descending partition. We
will later then exclude “H; o from the associated mode set by setting this mode to zero. Explicitly, this
means that we want to classify the cases in which there exists a descending partition A + r such that
A(D) =1 =0g5(i) + ;1. Writing i = i’ + r[,_1) for i’ € [r,] again assuming ;—1 >0 2 Z—j we can write
out d; (i) using Lemma 3.6 and obtain

and we set

so(i’ = 1)

Iy

A =1+ { J +8[p-1] = 0,1 Op>1- (50)
The case d = 1 was studied in [BBCCN18], resulting in the following correspondence.

Lemma 3.12. [BBCCN18, Proposition B.1] Letr > 1 and s € [r + 1] be coprime. Then there exists a
descending partition A = (Aq, ..., A;) such that

1
A =1+ {MJ i € [r] (51)
r
if and only if r = £1 mod s. In this case A is given by
M=c=do=r' 41, Aeg=-=A=r, £=5=84ru1, (s52)

writingr = r's+r” withr” € {1,s—1}. In particular we have A = (r) fors = 1 and A = (1) fors = r+1.
This lemma has the following generalisation to the case d > 1.

Lemma 3.13. Letd > 2. Given % > 2 ;—Z with r, and s, coprime for all u, then there exists a

descending partition A = (Ay,...,A¢) of r = r1 + -+ + rq such that (50) is satisfied if and only if the
following holds
(i) r1 = -1 mod s; ;
(ii) sy =1 forallp € (1,d) ;
(iii) rg = +1 mod sg.
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In this case A is given by

D (G R VRN PN R I A IR B (53)
((V{+1)51,r2,r3,...,rd71) rg=1 > 53
where r;l = Lru/sul.
Proof. First, let us prove that (i), (ii) and (iii) are necessary such that
. s,(i'=1)
p(i) =1+ |2 - J+s,,1 — 8116051, (50)
v

where we write i = i’ + r[,_;] as always, admits a descending partition A such that p(i) = A(i). We
begin by presenting a few general statements regarding the construction of A following the lines of
[BBCCN18, Proposition B.1].

Assume p : [r] — N is weakly increasing with p(1) = 1 and

p(i+1) - (i) € {0,1}.
Let ky < --- < ky—1 be a complete list of jumps of y in the sense that
prj+1) = p(xj) = 1.
Additionally, set k¢ := 0 and k; := r. If we further define
Vj e [f], Aj =K =Ko, (55)

o)

However, the partition A := (A4,...,A,) is in general not descending. What one should take away from
this construction is that A; measures the length of the interval between the (j — 1)th and jth jump of p.
Let us get back to our case at hand where p is given by (54). The first constraint on ry, ..., rg and
$1, ..., Sq comes from the requirement that (i + 1) — p(i) € {0,1}. At the value i = 1+ r,_4] with
v > 1 we find for r, > 1 that

then by construction

u(i) = min {m

p2+rp_q)) - H(1+r[u1])—1+{ J+S[u1 =821 — (1+8[p-1] — 611)
V

S
—1+{”J,
ry

implying that necessarily s, < r,. Forr, = 1and 1 <v < d one finds that

(56)

P2 A+ri-) = p(l+rp-)) = s,
implying s, = 1. Notice that we do not get any restrictions for sy in the case ry = 1 since y actually
does not depend on s.
Regarding sy, by writing s; = s] ry +s;” with s € [0,r7) we find for i < r; that

s;’i s/ (i-1)
r 1 .

This implies that either s; = 0 in which case s{" € [0,r;) may be arbitrary or s{ = 1 and

=

which can only hold if s € {0, 1} since otherwise for increasing i the right-hand side jumps earlier
from zero to one than the left-hand side which violates the inequality. The two cases translate into the
constraint that s; < r; + 1. If r; = 1 this is also true since in this case

p(2)—p(1) =s1 -1
implies that s; € {1, 2}. To summarise, the demand that (i + 1) — p(i) € {0, 1} gives us the constraints
D s1€[r+1];
1) sy € [ry—146p,1] for pe (1,d) ;

’

pi+1) —p(i) =sp +
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(I) sq € [rq] ifrg # 1.
In the case s; = r{ + 1 one can argue that the above conditions already imply that (i) to (iii) hold. Indeed,
since we assume that :—1 > :—” for all u € (d] the case s; = r; + 1 forces :—“ < 1for all g > 2. Thus (II)
p" “

forces d = 2 and due to (III) necessarily ry = 1. This case is clearly covered by (i) to (iii).

Now assume s; < r;. By assumption there exists a descending partition A = (A4, ..., A¢) with p(i) = A(i).
In order to find a description of A in terms of (55), notice the similarity between (54) and (51) for fixed
vand i’ € [r,]. Except for the constant shift s,) and the §y; the two maps coincide, which means
that except for the transition values i = r[,_;] — r[,—1] + 1 they jump at the same value i’. At the
transition points we find for all v < d that

N
ﬂU+rm)—ﬂ0wﬂ={f}—l=&

and if r,4; > 1 we have
p2+rp) —p(l+rp) =1
as discussed in (56). This means that if we let A#* = (A¥, ..., Afy) denote the partition satisfying

s,(i" = 1)
M) =1+ “—J i’ € [r,]
Y
and set A := (1) if r, = 1 then the partition
1 1 1 1
A Ay e WAy WAL
2 2 2 2
-1 A5 L ALy AL+
3 3 3 3
1= -1 LA L LA AL
d d . d d
AL=1 A5 .o LA LAY,

is the one satisfying p(i) = A(i). Note that in case s, = 1 the pth line

H H H H
(A =LA LA A+

must be replaced with (..., s - .). Since we assume A to be a descending partition, A# has to be
descending as well for all y1 € [d]. Consequently Lemma 3.12 tells us that r,, = +£1 mod s,,. Note that in
order to apply Lemma 3.12 here we use that the range for value of the s, is constrained by (I)-(II)-(III).
Now at the transition between two parts of the partition we see that the constraint )[él# +12> 2 B
is always satisfied, because if we consider the explicit form of A;l given in (52) we find that

Tu

Ao, +1= +12>

Fu+1 Fu+1
ﬂJ+1>{ﬂJ+1—1=A§‘“—1

Sp sy+1 3;1+1

for s, s,41 # 1. Here we used that by assumption :—” > 2 for all 4 <v. There are similar arguments
,u v
for the case where s, or 5,41 is equal one.
One obtains further restrictions on the choice of s, considering the constraint that
+1 +1
Yy e (d], AT —1> A, f”_l > A5, +1. (57)

Assume for example that s; > 2 and r; = +1 mod s;,i.e. r; = r] sy + 1. Then (52) tells us that /1% =r/+1
and 4y = ... = A = r{. But this contradicts (57) for u = 1 since 4] _; < A + 1. Consequently we
are left with r; = —1 mod s; which is nothing but (i). It is straightforward to see that condition (57)
checked for arbitrary v induces (ii) and (iii).

Following the previous analysis of the necessary conditions it is straightforward to see that if
r,....rqg and sq,...,sq satisfy (i) to (iii) the partition (53) corresponding to the diagram (2.3.2) is
descending and indeed satisfies u(i) = A(i). O

We now have everything at hand to prove the standard case of Theorem 2.13.
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Proof of Theorem 2.13, standard case. Recall that the situation of the theorem is as follows:

“Hig = T - "Wy - T71071,

[
Fim exp ZZ( A 4] b )2 | = 2,

peld] k>0
1 Jk . Ji
Ty = exp| = Z ZFm[” T; = exp ZZF.,I[—Fk]? ’
peld] k>0

pe[d k>s,

. 1 R (o4
@::exp(ﬁ Z FO»Z[—pk_l] kkll).

preld]
k,1>0

[T

e

Up to now, we have only considered the conjugation with T}, so let us finish the argument for that
case first.
The selected modes

Hy=T-"Wie- T delr],  k2i-A%i)+8y (58)
with the partition
a {((r{ +1)%, 19,13, . ..,rd_l,ra’lsd) NIED!
((rf+ D)%, rors, .. Tam1) Jra=1

exactly correspond to the modes (“Hj k) (i) er,, Where I.¢ is the index set defined in (45) by performing
the identification of index sets via Lemma 3.13. Thus, Lemma 3.10 tells us that after a change of basis
the modes (58) satisfy the degree one condition. Since by assumption

1
“Hyg="Wig=Ji+ - +J8=h? (Q1++Qq) =0,

the modes (58) satisfy the subalgebra condition if the modes (“Hj k)i k)1, do. Here I is defined as in
(13). Now using that “H; . is obtained from “W;\ via conjugation the claim immediately follows from
Theorem 2.8.

For the general case, conjugating also with T, and ®, note first of all that conjugation preserves
commutation relations, so the subalgebra condition still holds. For the degree one condition, note that
conjugation by T, gives the shifts

T = Jeene F AL

which preserves degrees, and only acts on ]If with k < 0, which do not occur in 4 (f"l Wik - fl_l) by

the previous parts of the computation. Likewise, conjugation by ® acts as in Equation (26), which again
preserves degrees and only affects ]]’: with k < 0, so it also preserves the degree one condition. O

3.3 THE EXCEPTIONAL CASE

Contrary to the case considered before let us now allow s, = oo for y € [d]. Let us write
C, = I_I CN‘#,

peld], sy#oo
and C_ for the collection of all components C’,, on which s;, = co.

Lemma 3.14. Foranyi € [r]

(CHi(®) = ), > J@ ] ]ea:). (59)

zex (&) Zcx 1 (§)\{z)nCy Z'eZ
|Z|=i-1

Proof. The proof of this Lemma is verbatim to the one of Lemma 3.1 taking into account that wg (%) =0
for all y € [d] with s, = co. O
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Remark 3.15. Let us make two important observations. First notice that if we write ry. := 3 /¢ (4], 5,200 Tu

then
m(CHea®)= Y. J@ [ ] @)

zex"1(&)NC- 2eCy

and moreover that for all i > r, + 1 we have

m (THi(€)) = 0.

Especially, from the last identity we deduce that, in order to end up with an Airy structure, it is
necessary to have at most one y € [d] for which s, = co. Moreover, necessarily for this  we need
ry = 1. Otherwise, there is no hope to obtain an Airy structure.

Motivated by Remark 3.15 in the following we will assume that only (r4, sg) = (1, o0) while for all
other y € [d — 1] we have s, # 0o, what we call the exceptional case in Theorem 2.11. Moreover, let us
assume that as before & g 22 rd L. Rather than working with expression (59) we will mainly use
that by (16) we have

Hitk + Z "Hi’_l’k_a ],f i€[r], kez
a€z
where °H’ ik s obtained from “Hj by formally setting J¢ equal to zero. Of course, ?H], may be
computed via (38) replacing d with d — 1, i.e. these are modes of the standard case. Therefore as the
modes “H; . are build up from modes considered in Equation (38) and an additional factor J¢, we can
use the analysis of the standard case from the previous section in order to prove Theorem 2.11 in the
exceptional case as well.

Proof of Theorem 2.13, exceptional case. As in the standard case we know that conjugation with

) J” . 1 R
T, == exp i; Z ZFll[” @::exp(% Z FOZ[ﬂk—I] kll)

1 k>0

preserves the Airy structure conditions. It is hence sufficient to prove that

. . J;
‘7H,-,k::Tl-"I/Vi,k-Tl1 ielr], k=1-2A3)+di1, T .—exp( Z ZFOl ”k k),
peld] kzs,
SpFoo

where we chose the partition
= ((r{+ 1) ror3 s ra1) s

form an Airy structure. Indeed, as we have

1
JHLO:hz(Q1+...+Qd)=0’

which vanishes by assumption, the selected modes already satisfy the subalgebra condition using
Theorem 2.8. It therefore remains to show that after a suitable change of basis the operators can be
brought into the normal form of an Airy structure. First, let us argue that

w1 (THik) = 71 (TH] ) + ) mo(TH ) Je (60)
ac’l
for k > 1 — A(i) + J;1 is a linear combination of J's with a > 0 only. Using Lemma 3.13 we see that
1— A(i) + 8;1 = drs(i) where
su(i’ = 1)

J — S[p-1] + i1 i"elry, p<d
Tu

br,s(i/ +r[,u—1]) == {

and dy4(r) = —s[4-1] + 1. Comparing this expression with (43) and remembering that kmin (i) < dps(i)
for all i < r indeed shows that the first term 7; ("Hi k) is a linear combination of J4's with a > 0 only.
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That the second term Y ,cz 7o (“H,_

fact that 7o (“H;_ , ) = 0 unless k — a < d.5(i) as observed in (49). Hence,

m(“Hix) = m (PH, ) + Z mo(TH ) JE el k2000
a>k—bes (i)

J4 is a linear combination of (J)4¢ only follows from the
a a y

is indeed lies in the linear span of (]5)(#’a)€[d]xN*.
In order to bring the operators into the normal form of an Airy structure, let us make use of our
observation earlier made in Remark 3.15 that

MOHR) = Y mH )
a>k—bdys(r)

This can be rephrased in the sense that 71 (“H, k) = Yas0 Ak—ds(r)+La ]j where A is an upper
triangular matrix whose diagonal entries

d-1

A = 70(TH] 1) = (0™ [ | (Fou[ 4, 1)7 # 0

p=1
may be read off from (48) by taking only the leading order contributions of the wq s into account.
Thus, one can find a two-sided inverse fo A, and applying it to the semi-infinite vector (?Hj k) (ik)er,
we get ("I:I,-,k)(i,k) e1,, for which

a1 (dﬁr,k) = ]lf_h,,s(r)n :

By taking again suitable linear combinations, we can use the above modes in order to eliminate all J¢
from sy (‘7 Ni’k) for i < r,i.e. get operators (ITIi,k)(i’k) eI, With (60) transform into

Vi € [r), k> br,s(l.) s T (Uﬁi’k) =1m (O-H;’k)

This expression is exactly the degree one projection of the operators considered in Lemma 3.1 where
we shifted in all cycles. From Lemma 3.10 we know that they can be brought in normal form, provided
we can argue at last that the degree zero projection of these modes is vanishing. This is indeed the
case: since 1 (UHi,k) = JTO(JHl.’k) and we know by (49) that the degree zero of H], vanishes as long as
k > by 5(i), we see the same holds for @ ik ’

O
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PART II — SPECTRAL CURVE DESCRIPTIONS

In this second part, we translate the differential constraints coming from the ‘W -algebra representations
of Section 2 into constraints on the order of poles of certain combinations of multidifferentials w,, on a
spectral curve built from the coefficients F,,. The latter constraints are called “abstract loop equations”.
In a second step, we show that the unique solution to the abstract loop equations is provided by an
adaptation of Bouchard-Eynard topological recursion to the setting of singular spectral curves. In fact,
this provides us with the right definition of the topological recursion a la Chekhov-Eynard—Orantin
in this setting, together with the proof that it is well-defined.

4 FrROM AIRY STRUCTURES TO LOCAL SPECTRAL CURVES

4.1 FIELDS FOR A SINGLE CYCLE

We will start by reconsidering Section 2.2.3 in the case of ¢ consisting of a single cycle, of length r.
In this case, we can omit all py-indices, and consider

hoy, ifk>0
Je=1 n2Q ifk=0 |,
—kx_g if k<0

the standard representation of the Heisenberg algebra of gl,. It is useful to write X = 2. We split the
current as follows:

d 1 Qd
1@ =Y 2L @ s @t £,
keZ
Ji(2) = Y Tk dz,
k>0
Jedz
@)= Y S

Choose a primitive rth root of unity & and let f(z) = {z, 9z,..., 9" 'z}. Set

dz,dz
d 1422
B =

We can rewrite (19) as

: j
Wi(x) = z Z Z ﬁ 11:1[ w35 (Zai-1, Zo1) n Qsz H J+(Z1) 1_[ J-(Z1),

"z:li>f)  osj<lif2) leds © iea, leA
AgLUA,LIA_=[2j+1,i]

(61)
As in Section 2.3.3, let us apply a general dilaton shift and change of polarisation to these operators.
We take

T= exp ( Z (71_1 Fo1[—k] + I F%,l [_k])]_k) )

k>0 k

. 1 JiiJk,
@:exp(ﬁ Z Foal—k1, —k:] ok ),

kikz>0 kike

in which we can always assume that Fy,[—ki, —k2] = Fo2[—k2, —k1], and introduce

H;(%) = T - Wi(x) - T7'd71 .
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The effect of the dilaton shift T in (61) is to replace J,(z) with J,(z) + e (w%,l(z) - Q%) + wo1(2),
where

001(2) = ) For[-k]27dz,

k>0
dz _
a)%!l(z) =Q < + ZF%’I[—k] 2 1dz.
k>0

Using the Baker—Campbell-Hausdorff formula, it is easy to see that the net effect of the change of

polarisation @ is to replace a)(s)’[;Jl with

dz dz 1 ko
wo2(21,22) = ﬁ Z Foal~ki, —ko] 272327 dzydz,
172 ki ky>0
and to replace J_(z) with'
J-(2) = ) JedEx(2), (62)
k>0

where for k > 0

’

de-(z) = ;zii +Z wdfl@) = Res (/Oz wo,z(;z))(dL

Nk+1°
>0 Z)

For uniformity we also define for k > 0

d&(z) = zFdz.

So, we can rewrite

001(2) = " For[-k] d&i(2),

k>0
01,(z) = Qd&(2) + ) Fy \[-k] dék(2),
k>0
dz; dz,
wo2(z1,22) = ———— Z Foa[—k1, —kz] dé, (21)dé, (22) -
(21 — 22)
k1,k2>0
so that we have
To(2) = J(2) = ) ke déi(2)
k>0
We then obtain
hj+%|A% | j
rH;(x) = Z G-z l—l w0,2(Z21-1, Z21) ]—[a)o,l(zl) 1_[ w1,(Z1)
Z: [i]>f(2) I=1 IeAy leA; (63)
0<j<li/2] z 3

AgUA 1 UALUA_=[2j+1,i]
2
[[#@) [] @),
Z/€A; Z'€A_
We prefer to convert this expression into a sum over subsets Z C f(z) of cardinality i. Then, we have
to sum over partitions By LI ... L B; LI Ay |_|A% UAyUA_ =Z where |B;| = 2 forany [ € [j], and it can

arise in exactly 2/ (i — 2j)! terms in (63) corresponding to the choice of an order within each pair B;,
and the choice of a labelling by [2j + 1, i] for the elements in A LIA; UA, LIA_. So only the factor 1/;!

2
remains. It can also be erased by forgetting the ordering of By, ..., B;. More precisely, introducing the

IMore precisely, the conjugation by & leaves J_(z) invariant and add extra terms with positive Js in J; (z). We collect all
terms with negative (resp. positive) Js in J; (resp J-), thus leading to (62).



32

set P (f(z)) whose elements are sets of disjoint pairs in §(z), and writing LIP := | |pcp P if P € P (f(2)),
we obtain

() = Y > AT o0z [Jons@) [ 02,

ZCi(z) (LP)UAGUA | UALLA =Z {z’,2" } €P Z/ €A Z/€A;
2

121 Pep(i(2)
[]%@ [] 5.

Z/ €A, zZ/eA_

4.2 FIELDS FOR AN ARBITRARY TWIST

We now return to the general situation of Section 2.2.3. Let o be a permutation of [r] with cycles of
lengths r, labelled by ;1 € [d]. For each i € [d], we have generators ],f of the Heisenberg algebra of
al,:

7o, u ifk >0
p 1 K
—kx" i if k<0

whose currents we split as J/(z) and J#(z) in the same way as in Section 4.1. We obtain modes Wlﬁ "
indexed by i, € [r,] and k,, € Z for a representation of the W(gl,) algebra given by (17). To match
Section 4.1, we introduce for each p € [d] formal variables z such that X = z"#. These z thus depend
on 1, but they will appear in generating series with superscript p so that one can infer directly from
the formula which power r,, one should use to relate it to the global variable x.
At this stage we are naturally led to introduce a curve which is the union of copies of a formal disk
for each p € [d]:
C=

d
p=1

o C, = SpecC[z] .
When necessary to avoid confusion, points in C will be denoted (#) to indicate in which copy of the
formal disk we consider them. One can consider % as a branched cover C — V := Spec C[X] given

by z > z'* on the uth copy of the z-formal disk. The smooth (but reducible) curve C is in fact the
normalisation z: C — C of the singular curve

d
C = SpecClx, 2] /( n(x -z'™)).

p=1

The branched cover #: C — V factors through x: C — V. This is the local picture we will globalise
later in Section 5 by considering more general branched covers

~ T X ~
C—C—YV, X=xor,

where V, C are regular curves and C is a possibly singular curve whose normalisation is C. For the
moment we stick to the local setting.
Let us again consider a general dilaton shift and change of polarisation

u
f:exp( Z (h_lFo,l[fk] + 1 F%’l[*ﬂk]) %)’

peld]
k>0
. 1 uov
® =exp o7 Z Fo,g[_k_l |’
preld]
k>0

and the conjugated operator
Hy (d%)'

Hi(%) =T - wi(#) - 1767 =) o

keZ
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To express H;(X), we introduce the basis of meromorphic 1-forms dgjj on C, indexed by y1 € [d] and
k € Z. It is defined by

k>0 ¢ d&(Y) =06,,7 " dz,
dz Foz[k l] _
k>0 - dg'jk(;)zaﬂ,yﬁJrZTz“dz.
>0

We also introduce the meromorphic forms w1, w1 ; and bidifferential w; on C:
L

wo,1 = Z Foa| %] &,

peld]
k>0
_ /1 H o
o= D, Qua+ D P f] e,
peld] k>0
td Ha
a)oz—a)(s)2+ Z F()z[ K —kz Pld
H1p2€ld]
ki1,k2>0

where

std(vi vo) _ 51/1,112 dz;dz;
w0,2(21 Zz) - (Zl _ 22)2

For k € Z, we introduce the 1-form on C
dgp (%) =dg (%).

We recall that the index y € [d] of the component to which a point z’ € C belongs is implicit in the
data of z’.
Similarly to Section 4.1, the effect of the dilaton shift is to replace J*(z) with

J@) 1 (g, (4) = Q) + wua (4),
while the effect of the change of polarisation is to replace a)gfg(zl, 2z5) with wgo (4 £) and J¥(z) with

C(H) = ) e (4).

k>0

For uniformity we also set

Te(4) = J(2) = ) el A (%)

k>0

We can repeat the argument of Section 4.1 with several s, defining the fiber over % in C

d
f(z) =] |2,
p=1
and getting

HEH= Y S W T wna@2) [ on@) [ on@)

ZCi(z) (UP)UAGUA | LA, LA =Z {z/,2"}eP 7' €Ay ZEA,

1211 Pep(i(2)
[1%E [] 5@

Z/ €A; z/€eA_

(S
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4.3 ACTION OF THE FIELDS ON THE PARTITION FUNCTION

Given a formal function

g=>0, n>1 Hiseens I—lne[d] ' i=1
29-24n>0 ky,.  k,>0

let us compute G;(%¥) = e "H;(x)ef - 1. The partition function e’ is annihilated by the differential

operators above a certain index in the ‘W if and only if the G; satisfy certain bounds on their pole
orders as X — 0. Because F is a function (i.e. it does not contain a differential part), it commutes with
o2, Wo,1, @1 ¢, and J;. The only non-trivial computation is

3

e T T (2)ef = J.(2) + [T (2)), F],

where each term J_(z”) obtained like this has to act on a later [ J_(z""), F], as it annihilates 1. The J_
commute among each other, so we get a partition of A_ into sets of operators acting on a single copy
of F. We obtain

Gi(i)= ). > AT T w0a@2) [T @0a@) [ 0142

ZCf(z) (UP)UAGLA 1 UALUA =Z {z',2" }eP Z/ €Ay Z/€A
—7 2 2
1Z1= Pep (7(2)

[1( 2 Ete o, )

ZeAs Vix

—1+|L
o +E F ML VL1 o VLmp VLI d&* ’
T gu.|Ll+mr | kp ey - l’L,mL] fo,l éY—kz’ (Z) ’
LFA.  LeLug: [mr]—[d] Lt le[my]  z€L

gr,mp >0, LeL br: [mp]-N*

291, —2+mp+|L|>0 kr: L-N*

(65)
where yi: Ay UA_ — [d] associates to z’ the index pi» € [d] such that z’ € f,_, (z), and we identified
p;, and k; with the tuples (p)zer and (kz)zer.

We decompose G; in homogeneous terms with respect to the exponent of 7 and the number of xi :
g n? .
Gi(®) = > = Gign(%).

n!
g,;n>0

In order to completely rephrase this in terms of spectral curves, we need to get rid of the x’kl and replace

them with d&s. For every n, prepare a tuple w,] = (w j);'l:l of points on C and define

n

Sé,iﬁ(f;w[n]) = l_l ad g (w;) Gign(X) .

j=1
To compute it, we introduce the multidifferential forms forg > 0 and n > 1 such that2g —2+n > 0

n

. e i i
Ogn(zn .. oz) = >0 Foalle ] [ ]dg ). (66)
i €ld] j=1
ki,....kn>0

Besides, under this action, we get

o Ykt (2] = 3 ket ) a0

k>0 k>0

which is the series expansion of wg( }, # ) with |z| < [w].
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We then notice that the sums over IEZ/, ki, vy and £ in (65) recombine into
E(Ew )

= . 2. PN 2.

ZCf(z) (UP)LAGLA 1 UALUA_=Z 11 Ac—[n] LFA_ gL >0, LeL

|Z|=i 2 Mty [n]\it(As) 291 —2+|L|+|ML|>0
PeP(f(2)) t o g1 ~2+|LI+|Mr | _

2IAL HIPIHA- 42 (gr—1)=9

[T @22 [] @) [] 011G [ | @02 2) [ [ oginiemiLwm,).

{z’,z" }eP Z/ €Ay F4 EA% Z/ €Ay LeL

We now observe that the factors w1, @ 11 @02 can be treated uniformly by summing over partitions

L + Z and allowing (g, |L| + my) = (0, 1), (%, 1), (0,2), which were exactly the terms for which
29 — 2+ |L| +mp < 0. We get

Sé,i')l(i;w["]) = Z Z Z 1—[ ngs|L|+|NL|(L’wNL) .

Zcf(z) v Z gr.>0, LeL LeL
|Z|=i Nrilnl g=ity, (g0-1)

4.4 From PDES TO ABSTRACT LOOP EQUATIONS

Theorem 2.13 gives sufficient conditions on the values of (ry)l‘le, of positive integers (sﬂ)z:v of

scalars (tl,)l‘f:1 and (Q,,)Zl:1 to get a unique F of the form (64) such that for any i € [r] and k > d;(i)
e’FHi,keF -1=0.

The translation of these differential constraints in terms of the correlators @ = (wg,n)g,n defined in (66)

is called “abstract loop equations”. It says that for any n > 0, we have

R . d~ i
aé,l%(f;w[n]) € o(#7=0) . (—x) , £—-0.

X

In other words, Sg(f,l (X,w[n]) is meromorphic and has a pole of order strictly less than d.s(i) + i at the

point X = 0in V. If we let 61;',1 (z,w,)) be its pullback to a meromorphic i-differential on C, this is
tantamount to requiring that, for any y € [d]

dz

Egn(45 win) € oz ). ( -

i
), z—0.

5 TOPOLOGICAL RECURSION ON GLOBAL SPECTRAL CURVES

We are going to formalise what we have found in the context of global, possibly singular spectral
curves. This will lead us to define the appropriate notion of abstract loop equations in Section 5.2, and
to show in Section 5.4 that its unique solution is given by an appropriate topological recursion a la
Chekhov-Eynard—Orantin, that is by computing residues on the normalisation of the singular curve.

5.1 SPECTRAL CURVES

Definition 5.1. A spectral curve is a triple C = (C, x, y), where C is a reduced analytic curve over C
and x, y are meromorphic functions on C, such that all fibers of x are finite.

Note that C is not necessarily connected, compact, or irreducible. We will work with its normalisation
n : C — C, which is a smooth curve. We have meromorphic functions ¥ = x o 7 and j = y o 7 defined
on C. Let b c C be the set of points b that have a neighbourhood Uy, such that the cardinality of the
fibre of x is constant on U, \ {b} and strictly smaller at b itself. It is the collection of branchpoints
of ¥ and images of locally reducible points away from co. We also denote a = x™1(b) and @ = x~1(b).
We assume that b is finite. As a result, a and a are also finite. Note that, since we assumed that all
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fibers of x are finite, the same is true of X and there cannot be an irreducible component of C where
is constant.

If « € a, we let U, C C be a small neighborhood of « that is invariant under local Galois transfor-
mations and

00: = ﬂil(Ua)a Uc/z = Ua \ ”71(0‘), Vo = x(Ug), Vo: =V \ {x(a)}.
Without loss of generality we can assume that V, c C. If z € Ua, we define
fa(z) =57 (2(2)) N Uy, fo(2) = fa(2) \ {2}, Gg=7""(a).

Note that d, is in bijection with the set of branches in C above «, and we denote dg, = |d,|. For each
€ g, we introduce a small neighborhood C,, of i1 in C, such that 7(C,,) = U, as well as Cp=Cu\{u}.
We have of course

U= | |Gy

HEQy
By taking a smaller neighborhood, we can always assume that the (é/,) ueq are pairwise disjoint. As

anticipated in Section 4.2, if we want to insist that a point z € U, belongs to éﬂ, we will denote it (#).
The fibers can be decomposed

fe(2)= | |Tu(@),  §u(2) =Ta(z)NC,.
HEA

We denote r,, = [f,(z)| which is independent of z € é;, and ry = |fo(2)| which is independent of z € UD',
In particular

If y is a small loop in V,, around x(«), it induces a Galois transformation in the cover 5(‘0“, that is

foreach z € UO’{ a permutation o, of f4(z), which on Tfﬂ(z) restricts to a cyclic transformation of order
ru. This integer represents the order of ramification at y € a, of >~C|C~H.

Remark 5.2. If |ay| = 1, C is irreducible locally at @, hence smooth at «. We can then use the same
symbol to denote the point @ € C and the unique point above it in C. If |d,| > 1, C is reducible locally
at a, hence singular at a. If |a,| = 2, & is a node. For y € a, we have r, = 1 if and only if ;i is not a
ramification point of X. We say that the spectral curve is smooth if all ramification points in C are
smooth.

For each a € a and y € a,, there exists a local coordinate { on é,l such that
x(5) =x(a) +{(2)™.

As in Section 4.2, when working with local coordinates it should be clear from the context which C,,
is involved. Specifying such coordinates requires the choice of a r,,th root of unity for X — x(a). We
assume such a choice is fixed. We also choose a primitive r,th root of unity, denoted J,,.. If z € C ;’v the
set of coordinates of the points in f,(z) is

{0 | veda jelnl}.
Let us write locally at 1 € a the Laurent series expansion of the function j
. 1 -
P(E) ~ Do R B ] 8,
Tu
kezZ
and define
sy=min{k€Z | Foi[ /] #0} €ZU{+o0}.

In particular, s, = +oo if y vanishes identically in the connected component of y in C.If sy, is finite, we
introduce

1
tli = —a F()’][—I:ql#] .
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We equip a,, with a total order < satisfying
p<v = - = —

and denote < the corresponding strict order. (Such orders exist.) Note that the inequality still makes
sense for us such that sy = +00. Then, in agreement with Section 3, for A, u € a, we let

(Wl ={ved, | v=<uy},
={vea, | v<p},
ALpl={vea, | A<v=<u},
and likewise for the open segments [A, p1), (A, u], etc. For instance [g) = [min a,, ). If M C a,, we let
= Y sw= s
HEM HEM
For y € a, we define
Dy = T[S = ST
Definition 5.3. For a € a, we define a function of z € U, by
V()= [] (G=)-3@).
7' €fy(2)
In the next paragraph we will need to study the order of vanishing of these functions at a. This is
given by the following lemma.
Lemma 5.4. If one of the following conditions is satisfied

(i) there exist distinct u,v € a, such that Sy =8y = +oo; or
(ii) there exists at least one 1 € Q, such thats, = +co andr, > 1,

then Y, (z) vanishes identically on é,, for the ui involved in these conditions. Otherwise, for any u € Q,,
we have Y, (z) € O({"*) whenz € éy approaches y, where

v, =(su—r)(ra—1) = Ay (67)

If furthermore either

(iii) there exist distinct y,v € Q4 such that S, Sy are finite, ;—Z = ;—Z and tlrf =t";or

(iv) there exists i € a4, such that s, is finite and ged(ry,s,) > 1,
then Y, (z) € O({%*). If none of the above conditions are satisfied, then there exists a non-zero scalar
to such that Yo (z) — tau ™ € O({™™).
Proof. If s, = +00, j is identically zero for z € é,l. Conditions (i) and (ii) both imply thereisa z’ € /,(z)
such that y(z’) = 0 as well, so one of the factors in Y, (z) vanishes identically.

We now assume that (i) and (ii) are not satisfied. Let us add for the moment the assumption that all
s, are finite. We compute

ru—1 )
[] 5 -3) = ( [ e - 1)) (=t,) " GO U O (¢ Uil 1 (68)
z'€fu(2) Jj=1

and observe that the scalar prefactor in the first term is non-zero if and only if r,, and s, are coprime -

. . -1 o g
in that case it is equal to rﬂt;” . Forv € a, distinct from p, we have

ry—1 )
n (JN/(Z,) - )N/(Z)) = l_[(—tl,l?{/é/rﬂ(sv_rv)/rv + tﬂé’s/x_ru + .. )
2’ €fu(z) j=0 (69)

— tpgyé/min(rusy,rvs‘u)—ryry + O(é/min(r},sy,r,,s‘,)—r,,r,,+1) ,

where - - - are higher order terms, and

—tY if rus, < rusy

bty = t;” if rus, > 1Sy,
v v : —
i if rus, =rusy
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We have t,, = 0 if and only if (y,v) obey the condition (iii). Multiplying (68) with the product of (69)
over allv # y1, we deduce that Y, (z) = te,{" + O({***!) and t,, = 0 if and only if the conditions (iii)
and (iv) are satisfied, with the exponent

v, = (sy—ry)(ry— 1)+ Z (min(rysy, rusy) — rury)

VFEL
=Ty —Su+ Z (min(rﬂs,,, FuSy) — rﬂr,/)
vely (70)
=—ru(rg—1) —s, + Z FuSy + Z FuSy
v<pu vEU

= (su - rp)(ra -1)- AW
as claimed. This concludes the proof in absence of an infinite s.

Now let us assume there exists a unique yi_ € a, such that s, = +co. As we assume that (i) and (ii)
are not satisfied, we must have r, = 1. If y # y_ and we take z € éﬂ, we only need to pay attention to
the factor (69) for v = yi_, and in fact Equation (69) remains valid, hence Y, (z) =ty ™ + O({"*")
with the same expression for v, and the same discussion for the (non-)vanishing of t, . Notice that by
definition of the order we must have y_ = max(a,) so y_ does not appear in A,. If z € C,._, the factor
(68) is absent in Y, (z) and the other factors v # p_ are as in (69). But, as y_ only appears in v, via the
first term of the first line of (70), which can be consistently set to 0 since r,_ =1, the formula for v,
remains valid. O

Remark 5.5. Notice that if (iv) does not hold, i.e. any finite sy, is coprime to r,, the condition = v g
Sy Sy

equivalent to (ry,s,) = (r,,s,). In that case, condition (iii) can be replaced with a more symmetric one

(iii)’ there exist distinct y,v € @, such that s, s, are finite, (ry,s,) = (r,,s,) and t;“ =1,

5.2 CORRELATORS, MASTER LOOP EQUATIONS AND TOPOLOGICAL RECURSION

Let C = (C, x, y) be a spectral curve with normalisation 7 : ¢ —C.

Definition 5.6. A fundamental bidifferential of the second kind on C is an element
B e H'(Cx C; K (20))%,

with biresidue 1 on the diagonal A c Cx C‘, where K is the sheaf of diﬁerentials onC.

A crosscap differential on C is the data of a (possibly empty) divisor D on C \ a and

q € H (C;Kx(D +4d)),
such that
Va € a, Z I-Zlfl?q(z) =0.

HEQy

Definition 5.7. A family of correlators is a family of multidifferentials @ = (wgn)yc 11 ON C such
that wg1 = ydx, wgs is a fundamental bidifferential of the second kind on C, w 1 is a crosscap
differential, and for 29 —2+n > 0

wgn € H(C"; (Ks(+a))=) .
It satisfies the projection property if for 29 — 2 +n > 0,
z
wgn (21, Z[2,n]) = lezeys (/ woz2 (-, zl))wg,n(z,zu,n])‘ (71)
ped H

Note that (71) is automatically satisfied for (g, n) = (0, 2). Differentials satisfying the projection
property cannot have residues, and if they are holomorphic, they must vanish. We can always assume
by taking smaller neighborhoods that the divisor D of the crosscap differential is supported outside
UgeaUg-
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Definition 5.8. Let @ be a family of correlators, and m > 1, g € %N and n > 0. The genus g,
m-disconnected, n-connected correlator is defined by

WomnGimpop) = >, | [owmmmELon).
Lr[m] LeL
UreLNL=[n]

m+3; (grL-1)=g

We define ‘W, , by the same formula, but omitting any summand containing some ;.

Ifi € [rq], we let »; Uo(,i) —> V,, be the smooth curve obtained by taking the fibered product of i
copies of X : U, — C, deleting the big diagonal A(i), and quotienting by the (free) action of ;. Points
in 00(,i) are exactly subsets of cardinality i of f,(z) for some z € Uo’l We have natural holomorphic
maps

(U \ A =T 25V,
where q; forgets the order of elements of an i-tuple and x;({z1,...,2,}) = X(z1) = -+ = x(z;). Let
l; : UL\ A®) — C' be the natural inclusion. We introduce

W = @li(wgm) e H(V; x C" K& w Ka(+)™") "
Ecyn = X Eitn

where all operations do not concern the last n variables. More concretely,

Sél;)g’n(xO; Z[nJ) = Z (Wg,i,n(Z; z[n]) s
ZCx 7 (x0)NUg
1Z|=i
" (72)
Sa;g,n(ZOQZ[n]) = Z (Wg,i,n(Z3Z[n])'
nga(z[))
1Z|=i

The symmetry factor i! disappeared since ‘W, ; , is symmetric in its i first variables. Note that reading
(72) in the local coordinate {j of z; € U;: each term may be multivalued - i.e. fractional powers of
{(zo) could appear — however the sum is single-valued as it is the pullback along X of a 1-form on V..

Definition 5.9. We say that a family of correlators satisfies the master loop equations if for any g € %N
and n > 0 such that 29 — 2+ (n+1) > 0, forany « € aand i € [ry], any p € a,, when z; € C~;,
approaches p, we have

T

Z S(ggl;;,n(zoﬂ[n])( _ wo,l(Zo))ra_i — O(§—1+ny+(r#—1)(ra—1) (dg‘/)m) .

i=1

The relevance of this notion comes from the fact that the master loop equation can be solved by the
topological recursion.

Proposition 5.10. Assume that none of the conditions (i), (ii), (iii), and (iv) appearing in Lemma 5.4 are
satisfied. Then, if w is a family of correlators satisfying the master loop equation (Definition 5.9) and the
projection property (Definition 5.7), we must have for any g € %N andn > 0 such that2g—2+ (n+1) > 0,

_ (1Z]+1) . ’ .
wgner (20,2101) = ), ), Res ( Z K\ (2032, 2YW) 112 Z3 2, | (73)
AEQ €y nga(z)
where for m > 2 we have introduced the mth recursion kernel for |[Z| =m -1
/: wo2(+, o)
[loez ((3(2) - 3(2))d%(2))

Proof. The proof is similar to [Krai9, Theorem 7.6.5], the only difference being the order of the
pole in the master loop equation. For completeness, we include the argument here. By definition,

K™ (20;2,7) = — (74)
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Wg’l » = Wgn+1. By the projection property and Definition 5.3

Wg,n+1 (20, Z[n])

_ZZIZ{eﬂs(/ wo,2(+s ZO)) Wiin(z:2[n)

it (75)
= _Z Z Res[dra) (20 T (2) Wy 1 (203 2(n)) - Ya(2) - (di(z))(ra—l)’

aca ped,
where we noticed that

f: wo,2(+ 20)
Yo(2) (d(2)) Y

always considering z € f,(z) as the first element of the set. Let & € a, and use the combinatorial
identity [Kra19, Lemma 7.6.4], which states that

K\ (2032 (2)) = -

> Wz [ ((5E) - 5(2)di(2) Zaé’;n@ Ziu) (— w01(2))""

{z}czcia(z) Z'€fa(2)\Z

Isolating the term Z = {z} and substituting in (75), we obtain

Ogmer(z0.2m) = ) ) Res K™ (zo,fa<z))( Z&ngn(z 2in) (— @01(2)™”"

aEaueq
Y WG [ (G@) - 9(2)di)
{z}cZCia(2) 7' €fa(2)\Z

SDIDINET D W LIC ]

XEQ pEd, {z}cZCia(2)

(76)
By Lemma 5.4 and the assumption, we know that for z € CN‘;, approaching p
Yo (2)(d5(2))" " ~ g, D0 (dgye?

for some non-zero scalar t, . Since the numerator of the recursion kernel vanishes at order 1 at z = i,
the master loop equation implies that the first term inside the bracket of (76) is O(d{) hence does not
contribute to the residue. Besides, the contribution of the second sum can be simplified by observing
that
K (20:2) = K™ (z0310(2)) || ((3(z)) - 5(2))d%(2)) .
2 efa(2)\Z
O

Remark 5.11. From the proof, we see that if one of the conditions (i) and (ii) appearing in Lemma 5.4 is
satisfied, the recursion kernel is ill-defined as the denominator vanishes identically in the neighborhood
of some p. Besides, if one of the conditions (iii) or (iv) is satisfied, the same thing could occur or at least
the order of vanishing of the denominator is finite but higher than the one specified by Definition 5.9.
In the latter case, one can still ask for the analogue of Proposition 5.10 simply by modifying the master
loop equation to require that the first sum in (76) is O(d{).

We note that the right-hand side of (73) involves only wy » with 29’ —2+n’ < 29— 2+ (n+1). For
a fixed @™ = (w1, @ 1y wo,2), there exists at most one way to complete it into a system of correlators
satisfying the master loop equation and the projection property: the wy,, are then determined by (73)
inductively on 2g — 2 + n > 0. However, such a system of correlators may actually fail to exist at all.
Indeed, (73) gives a non-symmetric role to zy compared to zy, ..., z,, therefore the wgu41(20, .. ., 2n)
that (73) compute may fail to be symmetric, and so would not respect Definition 5.7.



41
5.3 ABSTRACT LOOP EQUATIONS

We now address the aforementioned problem of existence of the solution to the master loop
equations, thanks to the results obtained in Section 4. We first introduce a seemingly different notion
of “abstract loop equations” valid in the setting of Section 5.1. It will turn out that they give the right
generalisation of “abstract loop equations” proposed in [BS17] for smooth spectral curves. We will show
that, under admissibility conditions on the spectral curves that pertain to our constructions of Airy
structures in Section 2, the abstract loop equations have a solution satisfying the projection properties,
and imply the master loop equation. Therefore, this solution must be given by the topological recursion
formula (73), and this proves a posteriori that this definition is well-posed, i.e. it produces inductively
only multidifferentials that are symmetric under permutations of all their variables. A direct proof of
symmetry by residue computations on C seems rather elusive.

Let C be a spectral curve as in Section 5.1. We introduce integers d, (i) for each @ € a and i € [r4]
matching Lemma 3.6. If i € [ry], we first decompose it into i = rp;) + i’ for the unique 1 € a, such
that r(;) <i < r[y). Then, i’ € [r;] and we have

s (1" =1)
ra

Dy (i) = —l J —s[y +0i1. (77)

Definition 5.12. We say that a family of correlators satisfies the abstract loop equations if for any
ge %N and n > O such that2g — 2+ (n+1) > 0, for any @ € a and i € [r,] when xy — x (&) we have

. (o ()-1-5,,) {dxo\i
8,511;)9,n(xo;2[n]) — 0(3(0( (i)-1-6;1) (_0) ) )
X0
This condition is equivalent to the property that, for any y € a, we have when z, € C ,, approaches pu.
(i 1y (0 () -1-6:1) ( 400 |/
atgl;)g,n(ZOQZ[n]) =O( orll ' ' (_) )
%
Proposition 5.13. Assume that none of the conditions (i), (ii), (iii), (iv) appearing in Lemma 5.4 are

satisfied. Then, the abstract loop equations imply the master loop equations.

Proof. We treat the case where s, is finite for all 1 € a. The case where there could exist y, — € a,
(which is then unique) such that s, = +oo is left as exercise to the reader.

For each @ € a and i € [r,], the abstract loop equations imply that for any p € a, we have when
zo € U, approaches p

S(S{l;)g,n (ZO§ Z[n] )( - wo1 (Z))ra—i — O(év_r” (D (i) =1=684,1) =i+ (s =1) (ra—i) (dg)ra) .
Comparing with Definition 5.9, the result will be proved after we justify that
Pu(i) = —ru(de (i) = 1=6i1) =i+ (sy — 1) (re — 1) = (= 1+ 0, + (ry — D) (ra — 1))
is always nonnegative. We recall the definition of v, in (67)
0y = (sy = 1) (ra = 1) = T[Sy +S[pyru-

We decompose i = r[y) + i’ with the unique A € a, such that r[y) <i < r3jandi’ € [ry], and we

denote A, = min a,. Inserting the definition of d, (i) from (77), we obtain

(=)
.

p,,(i) = Sy(l —i+ I‘[ﬂ)) + rp(l + { +S[0) —S[p — 5)L>)La5i’,l) .

We are going to use often the inequality

[x] >x—1. (78)
Checking nonnegativity of p, (i) is done by a case discussion.

o If y = A, this becomes
su(i’ — l)J
Ty

Fori’ = 1and y > A4, we get p,(i) = 0. For i’ = 1 and p = A, we get p,(i) = ry, > 0. For
i’ > 2, using (78) yields directly p, (i) > 0.

pu(i) :sﬂ(l—j’)+ru(1+ { _5p>ﬁa5i’,1)-
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o If y < A, we have

sa(i’—=1)

+ — 1.
- J S{uA) i ,1)

m&o:sﬂl—rMD—iq+q{1+{
For i’ = 1, this simplifies into
Pu(i) = =SuT () + 1uS[ua) -
By definition of the order, for allv € [y, A1) we have :—: > :—Z therefore p, (i) > 0. For i’ > 2,
we can use i—j > i—z and (78) and obtain p, (i) > 0 as well.
e If u > A, we rather have
sp(i'=1)

- —0x52,001] -
” J S[Au) ~ OA=2,011

Pu(i) = s, (141 i)+ rﬂ(l + [
For i’ = 1 and A = A, this simplifies to
Pu(i) = STy = rusiy) + 1y
and thanks to the inequality Z_j > :—Z for allv € [p) we deduce p,(i) > r, > 0. For i’ = 1 and
A > Ay, we have
Pu(i) = SuT A = TuS(ag -
Due to the inequality Z—Z > :—Z for allv € [A, ) we have again p, (i) > 0. For i’ > 2, we use the
inequality (78) to write
sp(i'=1)
A

Pu(i) > sy (L4 — i) +71y =S

. SA Su
>r,(i’ =)= == +r1,)S.—S r
u( )(m ry) [0S = SIAmTa

and due to the ordering we find again p, (i) > 0.
mi

Remark 5.14. In the proof we see that for any « € a, there exists y € a, and i € [ry] such that p,(i) = 0.
Therefore, we do use all the vanishing provided by the abstract loop equations to derive the master
loop equations.

Combining with Proposition 5.10, we obtain the following result.

Proposition 5.15. Assume that none of the conditions (i), (ii), (iii), (iv) appearing in Lemma 5.4 are
satisfied. For a fixed (w01, @o 2, 0’1,%): the topological recursion (73) gives the unique — if it exists, i.e. if
the result is symmetric in all variables — solution to the abstract loop equations.

The notion of abstract loop equation was first introduced [BEO15; BS17] for smooth curves with
simple ramifications and was shown there to be a mechanism implying directly the topological
recursion. This was extended to higher order ramifications on smooth curves having j holomorphic
near a in [BE17b; BBCCN18; Kra19], and to the more general case where ydx is holomorphic near a
in [BBCCN18]. The novelty of Propositions 5.10 and 5.13 here is the treatment of possibly singular
curves.

54 TOPOLOGICAL RECURSION FOR ADMISSIBLE SPECTRAL CURVES

In this paragraph, we express the abstract loop equations in a more algebraic way, that will make
the bridge to Airy structures. The converse route was anticipated in Section 4.

Let C be a spectral curve. We can attach to it a local spectral curve matching the definitions in
Section 4.2. Namely, we let

Cloc = |_| Cloc, é}l"c = SpecC[[{] .

pea
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For each p € a, define CN’LOCI = Spec C(({)) and let
L= H (G Kaye ) = C(9)-d¢

be a copy of the space of formal Laurent series, and

L HO (CIOC Cloc = @ Ly .
pea
We denote by
Loc, : H*(U;K(+a)) — £,

the linear map associating to a meromorphic differential its all-order Laurent series expansion near y

Loc = @ Locy, .

pea

using the local coordinate { in Uﬂ, and

We define elements dé'z € L,indexedby py € aandk >0

dg(¥) = 6,0 {7 de.
We introduce the standard bidifferential of the second kind on U, that is
wstd(;zll gz) — 5;11,#2 dg(zl)dg(ZZ)
PRI ((z) - {(z2))?

Let now @ be a family of correlators on C. We can encode the correlators wy, with 29 —2+n >0
by the following Laurent series expansion

Loc(wo,1) = ZF01 dfk,
ped
k>0

Loc(wy 1) = Z (Qy &y + Z Fiyl d§k) (79)

pea k>0

0C®2((/)0’2 _woz) _ Z FO,Z[ ﬂ]il 7k2] d /11d ,Uz

1,2 €Q
ki1,k2>0

Using the fundamental bidiffergntial of the second kind, we introduce another family of differentials
& 4> now globally defined on C and indexed by y € @ and k > 0

z d (Z')
et o) =es [ onaten)) o 0

Notice that it is such that, for any p,v € a

8,.,dC % e
LOCy(dffk)= H +Z 02[kk l]dfl-

k+1
é/ >0

Assuming that w satisfies the projection property, by symmetry we can apply this property to each
variable to obtain the existence of a finite decomposition for 29 —2+n > 0

wgn(aiz) = DL Fallo D ]_[d (2. (81)

u
where F,, [ X ] are scalars.

Definition 5.16. The partition function Z associated to a w satisfying the projection property is

defined as
Z = e Z Z hi! gn - un] l_lxu,

€s N n>1H1- - €8
I ki ...kin >0
2g 2+n>0
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We now would like to translate the abstract loop equations on @ into constraints for its partition
function. For this purpose, we introduce for each a € a a copy Wy, x of the differential operators in
Equation (16) indexed by i € [r,] and k € Z forming a representation of the W(gl,_)-VOA using as
twists permutations o, which is a product of disjoint cycles of respective orders (r,,),¢s,- They are
described in terms of the Heisenberg generators indexed by 1 € d and k € Z

hax;: if k>0
Je=3 mQ,  ifk=0
—kx" k<0

where we use
= Resw z
Qu pary %1( )

coming from the crosscap differential. Then, we construct the dilaton shift and the change of polarisa-
tion

n
T= exp Z (h_l Fo,l[_ﬂk] +h F%l[—ﬂk]) % ’
pea
k>0

. 1 By
— - pov kI

® =exp 7 Z~F0’2[*k’l Xl

HUEQ

k>0

Definition 5.17. To a spectral curve C equipped with a crosscap differential W14 and a fundamental
bidifferential of the second kind w2, we associate the system of differential operators indexed by
aeaq,i€[ry]landk €2

Hyip =T - %Wy - T71 071,

where WS _is as in Equation (16), and o, is the monodromy permutation at a. We also introduce the set
I= {(a, i k) ) xeq i€ [ral k> 0a(i) —61;1} .

Proposition 5.18. Assume that none of the conditions (i), (ii), (iii), (iv) appearing in Lemma 5.4 are
satisfied, and let w be a system of correlators satisfying the projection property. Then, the abstract loop
equations for w are equivalent to the following system of differential equations for its partition function:

Y(a,i, k) € 1, e FHyire -1=0. (82)

Proof. If |a| = 1 this is the computation done in Section 4.4. Given the formalism that we introduced,
it is straightforward to adapt it to handle several as, where the H,.; x now form a representation of the
direct sum over a € a of the W(gl, _)-VOAs. O

It is now easy to combine the construction of Airy structures in Theorem 2.11 with Propositions 5.10
and 5.13 to obtain our second main result. We recall that we had defined

1
b= -Ful 4],

Definition 5.19. We say « € a is regularly admissible if

e C is irreducible locally at «, that is |a,| = 1.
e 7 is holomorphic near « and djy(a) # 0.

In that case, in all the previous definitions and constructions in the neighborhood U, we replace
y(z) with y(z) — y(«). In particular, we take s, = ry + 1, and the value of y(«) plays absolutely no
role in all the results we have mentioned.

Definition 5.20. We say « € a is irregularly admissible if

e for any y1 € a, such that r, > 1, j has a pole at s but ydx is regular at y. In particular, this
imposes s, € [1,7,).
e for any distinct y,v € a, such that (r,,s,) = (r,,s,), we have t;” £ 4.
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o if |a,| > 1, there exist distinct yi,, i € a4 such that r,, = ¥1 mod s, and :’i > ;"—’ and for
= = et -

~ _ Ty Ty

any p € ag \ {yi-, pi }, we have s, = 1 and R e

e if |a,| = 1 thenr, = +1 mod s, for i € a,.

These conditions always imply that for any u, we have ged(r,, s,) = 1; in other words the plane
curve (C, %, ) is locally irreducible at . Here, the second condition avoids the pathology of (iv) in
Lemma 5.4 and the next results. The third condition is then equivalent to avoiding the pathology (iii)
in Lemma 5.4, because :—: = ;—5 and (ry, s,) coprime, (r,,s,) coprime imply that (r,,s,) = (r,,s,). The
fourth and fifth conditions match those in Theorem 2.11 if d > 1, and the case d = 1 corresponds to
Theorem 2.10.

Definition 5.21. We say « € a is exceptionally admissible if

e there exists a unique p_ € a, such that sy =+oo,and it hasr, =1.

o the three first properties in Definition 5.20 that do not involve p_ are satisfied.
e there exists i € a5 \ {y-} such that r,, = —1 mod s,,.

e forany p € ag \ {p—, i+ }, we have s, = 1 and ::—: > 7y

Allowing infinite s, the first condition guarantees that we avoid the pathologies (i) and (ii) in
Lemma 5.4, which make the denominator of the recursion kernel be identically zero in some open set.
The last two conditions match those in Theorem 2.11.

Definition 5.22. A spectral curve C = (C, x, y) is admissibleif all « € a are either regularly, irregularly
or exceptionally admissible. The tuple (r,,s;,),cz, is called the type of the ramification point « € a.

Theorem 5.23. Let C be an admissible spectral curve equipped with a fundamental bidifferential of
the second kind wo 2 and with a crosscap differential W1 . Then there exists a unique way to complete
(w015 W1 wo2) into a system of correlators w satisfying the projection property and the abstract loop
equations (or the master loop equations). Moreover, wy,p is computed by the topological recursion (73)
by induction on 2g — 2+ n > 0, and the result of this formula is symmetric in all its variables. The Fg,
determined by its decomposition are the coefficients of expansion of the partition function of the Airy
structure introduced in Definition 5.17.

For smooth curves with simple ramifications - i.e. C=C,|dg] =1andr, =2forall « € a - the
symmetry is proved in [EOo7, Theorem 4.6]. For admissible smooth curves, Theorem 5.23 is proved in
[BBCCN18, Theorem 5.32]. For singular curves, the admissibility condition we have adopted is not far
from being optimal for this formulation of the abstract loop equation/formulas like (73). It may not be
impossible to define a topological recursion for more general spectral curves, but either the formula
(73) will have to be different or the exponents in the master loop equations/abstract loop equations
should be increased, in a consistent way so that there still exist a unique symmetric solution.

5.5 DECOUPLING OF EXCEPTIONAL COMPONENTS

If we erase some or all of the components of an exceptionally admissible local spectral curve C
indexed by the p_ € a such that s, = co, we still obtain an admissible local spectral curve C’. We
prove below a decoupling result if w2 has no cross-terms with these components and w ; vanishes on
these components. This decoupling means that the computing w,, on C and restricting to C’ gives the
same result as restricting (w1, wo.2, @ 1 1) to C” and then computing wy,, by the topological recursion
onC".

Proposition 5.24. Let (C, x, y) be an exceptionally admissible spectral curve, equipped with a funda-
mental bidifferential of the second kind wq , and with a crosscap differential CINE

Let a’ be a non-empty subset of exceptionally admissible ramification points, and denote o’ the set of
p- € a such that y_ € a, for somea € a’ and s, = co. Assume that for any y_ € 0’ andv € a '\ a’ we
have

(Loc,_ ® Loc,)(wg2) =0, Loc,, (‘0%,1) =0.
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Then, if we denote @ the outcome of topological recursion and
[
Loc" = u Locy,
pea\a’
the Loc’-projection of the system of correlators w obtained from (C, x, y, wo 2, 0)1,%) by the topological
recursion (73), satisfies the topological recursion on the local spectral curve
(élOC)/ _ u é,u
pea\a’
equipped with the restriction of x, y, g, @1 ; onto (C°¢)’.
3
Proof. We detail the proof in the case of a single ramification point with s, = co. The general case
follows because topological recursion is local. It suffices to work from the start with the normalised
local spectral curve attached to (C, x, y). We write C¢ for the connected component of Cloc associated
to y_ and Cl°° for all other components.
First let us prove all wg, with exactly one argument in Cloc are zero. We will prove this by induction
on the Euler characteristic. The base cases hold, as w1 and w1 1 vanish on C'°¢ and w2 does not have
cross-terms. For the induction step, let us recall the topological recursion formula (73).

wg,n+1(ZO>Z[nJ)=Z ZP}SS( Z K (20 YW, 711 (Z3 21 |
a0 pen, | \(2)CZCHa(2)
B f: wo,2(, 20)
T2, ((3(z1) = §(z1))d%(21))

In this case, a = {0}, and do = {0 € Cl°,0 € Cl¢}.
Let us analyse this formula with z, € C¢ and all z; € C}fc for i € [n]. First, because the w2 does
not contain cross-terms, we must have z € C_,soalsoy =0 € Cl¢. Because 56|C~'l_oc is injective, fo(z)

Klgm)(zo;z[m]) =

contains no other point in Cl¢. Hence for all terms in the sum, Z N Cloc = {z}, and by the induction
hypothesis, all ' W’(Z; z[,) are zero (they contain a factor wg ,» with 29" —2+n’ < 29— 2+n and one
argument in C1°).

Now, we will prove the proposition using a similar induction. The base cases, w1 and w2 (and the
trivial w1 1) do indeed not mix several components.

For the induction step, we again look at the topological recursion formula. Let us look at the terms
contributing in the case zj and all z[,) are in Clc, As before, z € Cl°. Furthermore, fy(z) contains
exactly one element, say ¢, in C'°, so any Z contains at most one such element. Any term in the sum
not containing ¢ also contributes to the topological recursion on C\°¢, and all terms including  must
vanish by the first part of this proof, as they have a factor wy »» with exactly one argument - namely {

—in Cloe, o

6 CALCULATIONS FOR LOW 2g — 2 + .

In this section, we calculate some of the first correlators in the unique way of Theorem 5.23, but for
not necessarily admissible spectral curves. In this generality, there is no guarantee for the correlators to
be symmetric, and we will find that indeed they are not for certain choices of parameters. As correlators
coming from Airy structures are symmetric by construction, these calculations give necessary condition
for our collections of differential operators to form Airy structures. These conditions are summarised
in Section 2.3.4.

6.1 THE STANDARD CASE

Let us consider the spectral curve with a unique ramification point & at which d irreducible
components labelled by a, = a intersect, and defined for y € a and z on the yth component of the
normalisation by the formulas

x("z’)zz'”, y(é’):—tﬂzsﬂ_rﬂ.
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We equip it with the bidifferential and the crosscap differential

dz;dz, _ Qudz

wo2(5 %) = S, @)t w1(%) ==

We assume that ged(r, s,) = 1, and that for ;—Z = Z—z and p # v we must have t;” # 1,7, The correlators

fory=2-2g9g—-n=-1are

w03(21,22,23) = Z I}fs Z Ky(z1, 2, Z') (600,2 (2,22) 02(2', 23) + w0 2(2, 23) W02 (7, Zz)) )

pea # Z€f (z)

c%ﬂmﬂgzzkgs2:Kﬂhjjﬁ@m&Jﬂw?@ﬁ+mﬂ5ﬂﬁw$&n, (83)
pHea z €f (z)
()= Y Res 3 Ky(mz2)(002(22) + 03,2 01,(2),
pHea z'€f'(z)

where
f: 600,2(', z1)
(y(2) = y(2/))dx(z)

In this section, we compute these correlators, and show that the symmetry of wg3 and w 1, poses

K, (z1,2,2") =

constraints on the parameters (r,,, S by Q,,)Fe&. We also obtain similar constraints from partial cal-
culation of wq 4. In light of Propositions 5.18 and 5.23, these are necessary constraints to obtain Airy
structures from the construction presented in Section 2, thus proving Proposition 2.14.

6.1.1 Genus zero

In this Section, we calculate wy 3 and obtain constraints on the parameters of the Airy structures
that are necessary for the symmetry of the correlators wg3 and wg4. In theory, the same approach
could get constraints from «wq ,, which we believe get progressively closer to the sufficient conditions
from Theorem 2.11. However, the computations also get quite involved, and we have not calculated
these in full generality.

Proposition 6.1. Assumer, and s, are coprime for all i € a. Then wq3 is symmetric if and only if the
following holds

(i) ry =+1 mod s, forall p € a.
(ii) For all iy # pp withs,, > 2 such that either

ry, =1 mod s, andry, =1 mod s,

or
ry, =—1mod s, andr,, =—1 mod s,
T T
one has | 21| # | 2.
[o-] # [52]
When these conditions are satisfied, then w3 is given by
wos (M 1) = Z CuSpy iz s p kikzks dz1dzzdzs (84)
0321 2 z3 P Kitl Ko+l _ks+1  CKitkatks.sy 4
T FHE kkeks>0 21 %2 %3
where
’ ’
-r ry=r,s,+1
— " /L
Cuy = K K (85)

’ 7 _ :
ry+1 Ty = FySu+ Sy 1

Proposition 6.2. Let y, v, and A be distinct such that :—“ == :—j Then
;1 v

woa(L f 2 2) =0

if and only if s, = 1. Therefore, wo4 can only be symmetric if there are not three such irreducible
components with s, > 2.
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Before we prove these two results, we first give some more general considerations for calculating
the genus zero correlators.

Recalling Equations (73) and (74), we see that the recursion kernel can be split in factors coming
from different irreducible components of the spectral curve. First, note that in K(z1;z, Z), we always
need z; and z to lie in the same irreducible component, and then we have

z zdz;
0)0,2(',21) =T -
i Z1 (Zl - Z)

Because wq in our current situation does not mix irreducible components, this shows immediately
that to get symmetric correlators, we need

w0,3(“ v /1)20

21 22 23

unless ¢ = v = A: if one (say p) is different from the other two, we can use the recursion with respect
to its variable, and get z € C,, so both terms in (83) would involve an w,, between two different
irreducible components.

This vanishing can then be used to calculate wy 4 with arguments in exactly three different irreducible
components. All terms involving K® would also involve a vanishing «y 3, while the same argument
as for w3 above shows that the contribution of K® to such w4 should vanish - it also involves only
woz2- In fact, this same argument could be applied to wo4( % 2, z, 2, ) (We only need one irreducible
component to be different from all others), but this turns out not to give a new constraint, so we omit
it here.

Remark 6.3. This argument can be used inductively to show that all w, , with exactly one argument
on a given irreducible component must vanish. This is analogous to the proof of Proposition 5.24, but
also uses that all arguments of the recursion kernel must couple to a different correlator, as we restrict
to genus zero. However, in general the recursive computation of these correlators does require K (™
of order m up to the degree of x, and therefore becomes quite complicated.

For the remainder of this Section, we restrict to recursion kernels coupled to wy2’s, which is sufficient
for our calculations. We also assume z; € C,,. From the shape of the recursion kernel, we obtain several
possible contributions (combining factors from the kernel and the correlators):

(1) There will always be one term

zdz, dzdz,,

z1(z1 - 2) (2 — zm)?

with z,,, € C‘#.
(2) For any other z,, € C,, we get a contribution
9 dz,,

rut (9 = 1)z (9572 = 2m)?

where d,, is a primitive r,th root of unity and we need to sum over all subsets {a,,} C [r, —1]
of size determined by the number of z,,, € éﬂ.
(3) For any v # y and z,, € C,, we get a contribution

9bm grulrv=1 dz,,

ry(tygsmsuzrus,,/ry—l _ t‘uzsl‘*l) (ﬁfmzru/rv — Zm)?

and we need to sum over all subsets {b,,} C [r,] of size determined by the number of z,, € C,.

We need to take the series expansion of each of these near z = 0. For (1), this is

zdz; dzdz,,

z1(z1 — 2) (z — zmm)?

= dzdz;dz,, Z kzl_[_lz,_nk_lz“k_1 )

tk>1
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The summations for cases (2) and (3) get quite complicated for general sizes of the subset, but for size
one, they are computable. For case (2), we get

-1 a ry—1r,—1
19[1 dzm dZm S S Sasp kl?ak —k 1 k Su
Z as, =1 (992 — z )2_ ZZ[ Z
a=1 rﬂtp(g,u = 1)z 1z m r a=1 =0 k>1
ru—1
dzm < —k—1, k-
T2 Z r/‘ Tulsut+k — )k K
H # k>1 ¢=0
dz -1
— =m ([p(k ”2 )kZ;k_IZk_S”,
Py k>1

where ¢, (k) is the unique ¢ € [0, r,) such that r, | s, ¢ + k.

For case (3), there are three different subcases, depending on the sign of :—” - ;—”:
L v

(32) If:—z = Z—Z, we get

r b _ R AR RAC)
9 mzr,,/ru 1 dz t!
Z ” m _dz, Z o = W i

m
= ry(tvﬁgmsyzrﬂsy/rv—l _ tﬂzs,,—l) (ﬁsmzrﬂ/r” _ “
(3b) If:—” > we get
o v
"'y bm v—1 —
Z 9,mzlul" dzp, __dzm (t_u)’ ez 1 (o D+k) s,
e rv(tyslljmsuzr,,su/ryfl _ tyzsﬂ—l) (19,Ijmzr”/r” _ Zm)2 ty P ty

rylsy (6-1)+k

(3¢) If:—” < :—”, we get
L v

i gym Tl dzm _dzm b\ k1 (k) (e,
-_—— - m v .
= ry(tyﬁsms”zr”s”/r’ﬁl _ t‘uzsl‘fl) (l9llj7mzru/ry _ zm)z t, K ty
rylspt—k

Proof of Proposition 6.1. Above the proposition, we already argued that w3 vanishes unless all argu-
ments are on the same branch. Let us first calculate the value of w3 with all arguments on the same
branch p. For this, we get the contribution from case (1) and the one-argument version of case (2), and
then take the residue:

(/()0,3(411 élz Z) R d koz —[z l kg 1 €2+k2 1_- 1 (f (k ) r;u B l)k —k3—1 ](:3—3,J
—_— = es z - zZ, ~ Z
dzydzydzs Z 2% ruty Z AT 2 373

b,ko>1 /1 H k3>1
- 1 _
+dz Z k321[3 ! k3 Totaths=1_—_ — Z (fp(kz)——)k z, k=1 ko S”)
b3,k3>1 Il'uk2>1

1 - - T - —_ —
= — Resdz Z koks (t’ﬂ(kz) +{’y(k3) —ry+ 1)21—[—122 ka 1Z3 s =1 ekt —s,—1
rut, z=0
wH tkyks 21

- % S ke (ko) + fu(Kks) = 1+ )2 T T S
HH K kakes 21
For r,, = 1 this expression vanishes and hence is symmetric. In case r, > 1 we know from [BBCCN18,
Proposition B.2] that for s, € [r, + 1], this is symmetric if and only if +1 mod s,. If however, r, > 1
and s, > r, + 1 it is easy to see that the correlators can never be symmetric. Let us assume w3 is
symmetric. Then for all ki, k2, k3 > 0 satisfying k; + kz + k3 = s, we must have

k2k3 ([p(kZ) + fl—‘(k?’) —Tu + 1) = k1k3 (fp(kl) + [y(k:;) Ty + 1) .

Plugging k; = 1, ko = r,,, and k3 = s, — r, — 1 into the above equation the right-hand side vanishes and
we obtain

rﬂ({’y(su—rp— 1) —rﬂ+1) =0.
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From this we deduce that £,(s, — r, — 1) = r, — 1. This means that there must exist an m such that
mry = s, —ry—1+s,(r, —1). This in turn implies that r, = 1 which contradicts our starting assumption.
We therefore conclude that the symmetry condition for w3 (%, £ % ) is exactly captured by (i).

To show Equation (84), recall that £,(k) is the unique ¢ € [0,r,) such that r, | s,¢ + k. In other
words, there is an m such that m(r/s, + £,) = sufu (k) + k. Viewing this formula modulo s, shows that

fork <s,
k ife, =1
m= ot :
su—k ife,=s5,-1
From this, it follows easily that (£,(k;) + £,(ks) —r, +1) = ¢, as ka, k3 < s,

Now let v € @ withv # p. On the one hand w3 (., %, £ ) always vanishes, while on the other hand
wo3( % 4 z ) may be non-zero. Let us calculate the latter. For this, we get a contribution from case (1),
and the one-argument version of case (3), and take the residue.

If :—” = £, this gives

m v

. Fu—t (k) =1 6, (k)
W03\ z; 2z z k=1 —ko— _ ty ke _
( 122 3) = Resdz Z k2k32 ky IZ ko lzk1+k2 1°H 2z ks lzk3 Sy
dz;dz,dzs 2=0 1 2 T m
ki,k2,k3>1 v H
tr;,—{’y(k)—ltfll(k)
H v —ki—=1_—ky—1_—ks—1
= Z ————— kak3 Ok iakptkss, 21 24 0 250 .
L H H
ki,k2,k3>1 v H

This vanishes if and only if s, = s, < 2, which agrees with (ii) in this case.
Now, assume ;—” > ;—” Then
i v

wo3( 4 4 z) 1 k=1 _—~kp=1 _keythep=1 [ B\ —ksm1_ (s, (6=1)4ks) s
W = _t_ Resdz Z koks z, z, ARG t_ Z3 zvr v R
=0
#1022023 N k1.kz,ks, 621 H
ry|sy (6—1)+ks
1 61 ki—1_—ky—1_—ks—1
- v —ki—-1_-kp=1_—ks—
= koks 2™ 2y 2y 5k1+k2+(s,,(f—1)+k3)%‘—fsu,o

t
Hkiko ks> H
ry|sy (6—1)+ks

1 £\ by (ka)+r ! et et g
1 Z _u) k2k321k1 122k2 1Z3k3 1
Hley ko ks>1820 °H

) 5k1+k2+(s,,({U(k3)+r,,{”)+k3)%—(t’,,(kg)+r,,€’+1)s,,,0 :
This vanishes if and only if
ki + ko + (ks + 5,6, (ks)) 2= + €' (rusy = rusy) # (6.(ks) +1)s,,

for all k; > 0 and ¢’ > 0. Then plugging in

kar! ksr,, ifr =
sty = | 50| Tw iry,=rs,+1

&y (kS) = > (86)

k(g + 1) 4 [ S iy = s, s, - 1
we see that the statement is equivalent to

k(r,—r)s,) + (t” - [%J) (rusy = rusy) ifr,=rls,+1
Su2< ) B L [kG1n) 3 ., B
k((r11)s, —ry) + (£ + | =) (rusp = rusy)  ifry =r)s, +s, -1

for all k > 0 and ¢’ > 0. Using now that by assumption 0 < r,s, — r,s, the latter holds if and only if

k(ry—r)s,) — l’%J (rusy —1usy) ifr,=r)s,+1

sp—2< (87)

k((r, +1)s, —ry) + [k(rr’/’;l)-‘ (rusy —rysy) ifry=ris,+s,—1

for all k > 0. The above constraint is both necessary and sufficient for wo3( % £ 2, ) to vanish.



51

Let us prove that (87) is automatically satisfied for all k > s, if r, = £1 mod s,. First, assume that
r, = 1 mod s,. In this case we have

’

, kr),
k(r,—r)s,) — {r—J (rusy — rusy)

v

_ k+ (E - V&J )(rﬂs,, )
r

Sv Sv v (88)
s
>tk
Sv
= Sy
for all k > s, where we used that
k ’
k| k.
Ty Sv
The case r, = —1 mod s, can be covered using similar arguments. Thus, it suffices to inspect (87) for
k < s, in which case the constraint reduces to
k (ry —sur)) ifr,=r/s,+1
Su—2< ’ ’ forall k € [s,) . (89)

syt+k(ry—su(r,+1)) ifr,=rls,+s,—1

In order to derive the second line we substituted s, — k — k. In the following going through all cases,
we will prove that, under the assumption of (i), property (89) is satisfied if and only if (ii) holds.

o 1, =1,s, + 1: Clearly, (89) is equivalent to
su(rp +1) <1y +1.
Checking this expression for the two possible choices of r,, we find the following.

- =7 -1 ion & > v
Tp =TSy +sy—1: Due to the assumption » > 5 we always have

1 1
re>rh———>r,—1
Sy Su

and thus
su(r, +1) < su(r;l+ )=ry+1.

This shows that indeed (89) is satisfied, i.e. wo3| £ 4 2, | = 0 in this particular case.

- 1y =r,s; + 1: We can assume that s, > 2 since s, € {1, 2} is covered in the case considered

before. Then (89) is equivalent to the constraint
<r, -1,

’
r, <1y

which is always satisfied unless

7
Ty =Ty

S . . Ty ry , ,
which is nothing but property (ii). Note that due to 5 > s we always have r/, > r).
® r, =r)s, +s, — 1: Again we may assume that s, > 2 since s, € {1,2} is a special case of the
one considered before. Notice that for s, > 2 the constraint (89) is equivalent to
r
L>pria. (90)
Sp

— —1- 1
- rp=rgspts— L In this case,

r 1
—'uzr;l+1——.
Sy Sy

Clearly, this is at least r/, + 1 if and only if r), > r/,, which is exactly (ii) in this case.
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-y = rl’lsl, + 1: Because :—Z > Z—z we get rl’l > r,. Thus
T 1
—#zrl’l+— >r,+1,
Su S
implying that (89) and (ii) are both automatically satisfied.

To sum up, we found that, under the assumption that (i) holds, wo 3 [ [ ] = 0 if and only if (ii) is
satisfied. This closes the case :—’; > ;—Z

T, . . . . .
For S—" < ;—”, the situation is similar. We calculate
1 v

HoHY
W03\ z; 2z, 2z 1 k=1 —koy— _ tu\e-1 4 _ TH L (p—
( 12 3) — 2 Resdz Z kszZlkl lzzk2 1 ki+ky—1 Z (u) Z3k3 1 (ks=ts,) -+ (=1)s,

=0
d21d22d23 tv z Ky o >1 =1 tv
ry|spt—ks
_1 By \ 1ot = (k) =1 feaz R k1 ki1 (91)
e - 2R3z 2, 7 %4

Yy ko kst 21 b
Okt (s (o =ty (k) 50) 2+ (r =ty () =1)5,0

Hence, this vanishes if and only if

sy—2< (k+ syl’y(k)):—:‘ + 0 (rysy — rusy) — 6, (k)sy,

for all k > 0 and ¢’ > 0. Plugging in the explicit expression for £, (k) this constraint translates into
k(r, —sur,) + (1 + VrLLJ) (rusy = rusy) ifr,=r)s, +1

sy—2< /
k(=ry+s,(r, +1)) + (1 - [MD (rusy—rusy) ifr,=ris,+s,-1

(92)

for all k > 0 using that r,s, — r,s, > 0.
Let us consider the case r, = r}s, + 1. First, we assume k > r,, and write k’ = k — r,. Then

k/r/

14

’

k
%J) (rusy —rusy) = k' (ry = sury) + (1 +

v

k(ry —sur,) + (1 + J) (rusy = rusy) + 1y,

so if the inequality holds for k’, it also holds for k. It follows that we only need to consider k < r,,.
The case k = r,, should be treated separately. In this case,

’

r
k(ry —sury) + (1 + { . VJ) (ruSy = ruSu) = ruSy — ruSy + 1y

v
This is greater than s, — 2 if and only if r}s,s, + 1 > r,(s, — 1). If r, = r;lsﬂsu — 1, this always holds, as
then rl’J +1 <r,, whileifr, = r;ls,, + 1, this is implied by (ii).
Now assume s, < k < r,. Then

4

k
k(ry —sur,) + (1 + { Ty J) (rusy = rusy)
ry
kr, ruSy
- Sy . Ty
k(ry = sur)) + (k - {EJ) (rys,, - r,,)
Ty Sv

o)
p) = Suo

Sv Ty Sv

> k(ry —sur,) +

\%

and so (92) is automatically satisfied if (i) holds. The case r, = r}s, + 5, — 1 can be treated with similar
arguments and is therefore omitted.

Thus, under the assumption that (i) holds we deduce that w3 (%, £ 2, ) vanishes if and only if (92)
holds for all k € [s,). It is straightforward to see that this is in turn equivalent to the statement that

spt+k(-ry+sur))  ifr,=rls,+1
Vk € [s0), spy—2< (93)

k (—r,, + (1) + 1)) ifr,=r)s,+s,—1



53

Let us stress the similarity between the constraint (89) and the above one. It is therefore not surprising
that one can prove that (93) is equivalent to property (ii) under the assumption that (i) holds. Since one
can use similar arguments as in the case of (89) we omit the further analysis of this constraint. O

Proof of Proposition 6.2. In order to calculate this via the topological recursion formula, we need to
take the residue of the product of three contributions: once (1), with m = 2, and twice (3a), once for
(v, z3) and once for (A, z4). The first factor has a first order zero in z, while the other two each have an
order s, — 1 pole in z, with non-zero coefficients at each lower order. As all of these coefficients also
incorporate powers of z[4), it is easily seen that the terms contributing to the residue may not cancel,
as long as 2(s, — 1) — 1 > 1. This proves the formula.

As w4 (v, i, p1, A) is always zero, due to the structure of the recursion kernel, the last statement
follows as well. O

6.1.2 The Bouchard—Eynard formula for (0,3) does not hold in general

Let us compare wg 3 with

v w0,2(2, 21) w0 2(2, 22) W0 2(2, 23)

_ Z s Z k1k2k3 le d22d23 5k1+k2+k3,s#
- Hubospisst kit kot _ks+1 )
u kkoks>0 21 %y %3 TS = 1)

According to [BE13, Proposition 11], @3 = wq 3 for regularly admissible spectral curves. More generally,
if the spectral curve is admissible, comparing with Proposition 6.1, we see that wg3 = @3 if and only
ifc, = ﬁ or s, < 2 for each y € a. The condition ¢, = ﬁ implies that s, = r, + 1, which by
property (ii) of Proposition 6.1 can only hold for one 1. Comparing with Theorem 2.11, we see that
e.g. (r1,s1,72,52) = (5,3,3,2) gives an Airy structure for which wg3 # @o3. We conclude that [BE13,

Proposition 11] does not always hold in our general setup.

6.13 (g,n)=(32)

Proposition 6.4. Assume gcd(ry,s,) = 1 for all y € a and that (i) and (ii) from Proposition 6.1 hold.
Then W1, is symmetric if and only if

(iti) If s, > 2 andr, =1 mod s, for u € a then

Z Q,=0 and Ve e [s, — 3], Z Qv(t—v)rﬂ:o.

r”¢l‘ vEp tﬂ
Ho T .
§>$ sp=1, L%J:ru

(iv) Ifs, > 2 andr, = —1 mod s, for y € a then

ryf
O, + Z Q,=0 and Ve € s, - 3], Z Qv(t_”) =0.

vVEU vEU

oy T
Erkgos so=t.[Z]=r,

(v) Forall u # v with [:—:J =2,

Sv
ry=-1mod s, and r, =1 mod s,,

and s, s, > 1 we have

Qu=-0v.
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If these conditions are satisfied, we have ifr, =r/s, +1

Hop
w%,Z(Zl 2 )
’ v
k]kz ledZZ Q,ury 5 tvy tpy S S
= Z Tl _fptl - tr ki+ka.sy — Z —try T Qv ki+k2,2 Os;,2
kike>0 %1 %2 HOH vEp tp v
Tw_ru
sy su
ry(sy—2 T,
Ql/ tl/ U( # )5 5 Ql/ t)u v 5 5
- 5 ki+kz,2 Os,>2 + A\ ki+kz,2 Os,>2 | »
vEQ HOATH vEL: S,=2, HoAMY
T, T T
s % -, it %z
(94)
and ifr, = r/’lsﬂ +s,—1ands, > 2, we have
B
w%,z(zl Zz)
’ -2
kiky dzydzy (Qu(r,+1) Q, [t 2
- Z ki+1_ko+1 tr 5k1+kz,s,, + Z t_ t_ Oky +hr,2 5su>2
kiks>0 %1 %2 HOH vEL AN
i
so=L [ ]er (95)
T,
Qv ()"
14 v
- Z t_ (t_) 5k1+k2,2 5Sﬂ>2) .
VEU:S,=2, H H
T T
il
Moreover, for i # v we have
dz;dzs Qy t r"‘ . . Ty r
T2 4 T if (ru, su), (ru, sv) satisfy (v) and 5 s
HoUY Tl
) = ’ tle . 6
%32(:1 zz) _dzidzy Quty by lff’,;=ru andsF:sUZZ (9 )

2%25 tp” _t:”
0 otherwise
Before proving Proposition 6.4, we need the following technical fact.

Lemma 6.5. Letry,ry, 51,52 > 0 withr, and s, coprime and :—i > :—z Further assume the integers satisfy
all constraints from Proposition 6.1. Then

A =185 — 181
takes the following values.
e A=1ifs;=1,r = LZ—;J+1, andr, = —1 mod s, or we haves, = 1,1, = [;—IJ andr; =1 mod s;.
o A =max{s;,s;} —2ifs =2, |_:_1J = L;—EJ, andr, = 1 mod s, or we have s, = 2, |_Z—1J = LZ—;J,
andr; = —1 mod s;.
o Otherwise A > max{s;, sz} — 1.

Proof. Let us write ry = r;s, +r,/ withr)/ € [0,s,). Then due to (i) we know thatr) € {15, —1}. We
can thus rewrite

A=sisp(ri—ry)+r{'ss—r)sy. (97)
By simply plugging in the indicated values for r,, s, it is easy to see that they indeed produce
A € {1,max{sy,s;} — 2}. For instance setting s; = 1, r; = rj + 1, and r;’ = s, — 1 we directly obtain
A =1 as was claimed.

It is therefore only left to prove that in all other cases A > max{s;, s} — 1. To do so let us first assume
’

r; = r, in which case (97) reduces to
S1— Sy ifr=s1-1, r)/=s5-1
. . s1Sp—sy—sp ifr=s1-1 r/=1
A=rsy—rysy = - Y
Sp+sz—s182 itry =1, ry =s3—1

Sy — St ifr]” =1, r) =1
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Let us go through the cases separately. First assume r;’ = s; — 1 and r;” = s; — 1. In this case (ii)
forbids s;,s2 > 2. Notice now that since we assume that g—: > g 2 necessarlly A > 0 and therefore
the only allowed cases are s, = 1 with s; > 1 or s; = 2 with s; > 2. Whiles; = 1 and s; > 1 gives
A = s;—1 = max{sy, s2} — 1 the second case was considered before yielding A = s, —2 = max{sy, sz} — 2.
For our further analysis of the case r; = r, we may assume that s;,s; > 2. Then if r;’ = s; — 1 and

ry’ =1 one has
AZSI(Sz—l)—Sz 23(52—1)—322252—3232,
and similarly also A > s;. Now assume r{’ = 1 and r;’ = s, — 1. Then due to s;, s, > 2 one has

A=Sz—31(52—1) <52—2(82—1) =2-5,<0,
which contradicts the assumption that ;—1 > &
s1, Sz > 2 is forbidden by (ii).

Now assume that r| # r;. Due to & > ¢ we thus know that r] > r; which using (97) implies that

Finally notice that the case r;” = 1 and ry’ = 1 for

A= sisp 41 'sa—1ys1

=s1(sp = 1)) +r{s2

\4

_sl+r1 S2,

which is always larger than max{s;, s;} — 1 unless r;’ = 0. However, if ;" = 0 then necessarily s; = 1.
Then either r{ = r, + 1 implying that

Acsor = 1 ifr) =s;-1
=Sy—r, = . ,
sp—1 ifr) =

;o .
or we have | > r; + 1 yielding
A > 2sy—r) > sp > max{s;, sz} — 1.

Note that the cases above in which A = 1 are exactly those considered in the beginning of the proof. O

Proof of Proposition 6.4. Let us start by computing W1, (4 £ ). Inspecting Equation (83) it should be
clear that one may proceed as in the computation of ¢ wo,n. While the second term in in the bracket in
(83) gives a contribution

-1
(=g S T b Qe
w1 = ... €S
2\a 2 =0 L 21(z1 = 2) rt, (95 - D)zt (Fiz - 22)* 2
_dzdz, 20, (ky) — 1+ 1
=7 Z k1+1 k 1 K2 Qu kv, S opt, 8)
k1, k2>0 HoH

the first one gets a contribution of type (1) and additionally a factor

1 Q,dz

ry(tvslljasuzrusy/r,,—l _ tﬂzsﬂ_l) z
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where one sums over b € [r,] if v # p and over b € [r, — 1] ifv = p. This gives

T e zdz; dzdz, o, dz
w1 2 Res Z Z — — . - ——+
vea b=1 1 (21 Z) (Z 22) rv(tvav vzrus,,/rl, t- tpzs” l) z
dzdz, (p(kz) -+l
= Z m{kZQy5k1+kz Sy T

k1,k2>0

—kz Z t5k1+k2 Sp QV fﬂ(kz) rl,—l [[l(kZ)

vEp v
E-_w (99)

Sp

=k Z Z r[l+1Ql/5k1+k2+{'(r,usu TuSp)sSu

v;t/.z >0 ,u
H
S su

+kz Z Z i 7 Qu5k1+k2 = (rusy="rusyu), su}

v;&p >0 ty
p
Sp su

where in the second line we also included the contribution from (98). Let us further on use the notation

dz,dz
M2 — E 1942 H1 H2
w%ﬂ(zl 22) - ki+1 _ka+1 F%,Q[kl kz] .
z

ki,k>0 1 2

Inspecting (99) we notice that for s, < 2 the components F 1 [ ki Ky ] are always symmetric under the
exchange of arguments. To be more precise, for s, = 1 the components all vanish and for s, = 2 they
get a contribution form the first and second line of (99) solely. Hence, using that £,(1) = r), fors, =2
we see that in this case Fi, [,f1 ,52 ] is indeed given by (94).

Now let us assume that s, > 2. Then due to property (ii) of Proposition 6.1 the contribution :—“ =2 in
1 v

(99) has to vanish and one ends up with

(Qu("u —1-4,(kz)) . Z %)

BopY_
F;,z[kl by | = =6k tksss, Ko

Tuty S ty
morw
sy~ sv
t’,
k2 tv v
+ t_ Z - Z t_ Qv6k1+k1+t"(r‘us,,—r,,su) Sy + Z Ql/(Sk1+k2—t”(r,,,sl,—rvs,,),s,J
H >0 vEp \H v;t,u by
o o
Su” s Sp Su

(100)

Since rys, — rys, # 0 for :—" # £ we can analyse the symmetry constraints coming from the first and
I v

second line of (100) individually.
First, assume r;, = ’“,35/1 + 1. Then if k; + k; = s, we may use that

ru—1=ty(ke) =1y — 1 -1 ks =1,k1

to find that
Qur}, 0)
F‘ [ ks ] = —kik, —*= — k, =. (101)
2 uty VZ:‘, Ly
mor
sy~ su

This expression is symmetric under the exchange of k; and k; if and only if

Z Q,=0. (102)

vEU
o
Sp Sy
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Let us proceed by analysing the symmetry constraints coming from coefficients with k; + k; < s, i.e.
we consider the second line of (100). Clearly the case s, = 3 is symmetric. Therefore now assume that
sy > 3. In this case we can only expect a non-vanishing F%’z [151 ,fz ] if [rys, — rusul € [s, — 3] for some
v # p1. Due to Lemma 6.5 we know that for all v either |r,s, — r,s,| = 1 or |rus, —r,s,| = s, — 2 which
limits the cases in which F%,z [,fl ,fz ] # 0 for ki + k; < s, extremely. To be more precise, Lemma 6.5

tells us that |r,s, —r,s,| = 1ifand only if s, = 1and r, = |_:—”J Therefore for 2 < k; +k; < s, we have
p

k ¢ rpt’
F%,Z [151 lilz ] -2 Z Z (_V) Oy 5k1+k2+£’,sy

by >0 vEL by
spy=1,r,= L:—ZJ
ke Z ( ty )r”(su—kl—kz) 0 o)
- - - 17
ty by Iy

sp=1, rvzllJ

which is symmetric if and only if for all £ € [s, — 3] we have

% o) e

v#Ep by
—1r=|E
sp=1,r,= |_ o J
Together with (102) this explains symmetry condition (iii). Regarding the formula for F 1 [ ,fl ,52 ] stated
in (94) notice that for s, = 2 we have

7

Qur! trytr;;
r
' My vty
Fiolt k] = R Oy +hy2 — Z 7 Qv Ok 2
H R y¢y t}l - tv

e _rw

sy su
while for s, > 2 one has

’ ry(su—2) T
Folp )= 20 0. (1) s 0 ()" s
12k ko l— ki+ka.s, ~ 5 ki+ky, 2t 5 ki+ks,2 -
HEH v#EU H H U¢H;5y=2, H v
T, T, T,
vt L] etz

In order to obtain the first two terms in the above expression one applies the symmetry constraint (iii)
on (101) and (103). The third term is due to contributions v # y in (100) for which |r,s, —r,s,| = s, — 2.
Lemma 6.5 tells us that this is the case for exactly those v # p with s, = 2, ;—” < Z—” and |_:—”J = |_;—”J
1 v 1 v

This now explains the origin of all terms occurring in (94) which closes the analysis of the case
ry=rpsu+ L.

Now assume that r, = r;s, +s, — 1 and s, > 2. First let us inspect F%,z [151 ,fz ] given by (100) for
ki + ko = s,. In this case we may use that

ru—1=4(ks) =1, — kl(r;l +1)
in order to find that
Qu(rl +1)
F%,z[” : =k1k2L—kz(%+ %)

ki k:
1k Tt o Lo
o
su " su
for ky + k; = s,,. This is symmetric if and only if
Op+ Z O, =0. (104)
vEU
wory

spu” su
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Now let us turn to the case k; + k; < s,. Again, we may only expect a contribution from v # y in the

second line of (100) possibly leading to a non-symmetric term if |rys, — r,s,| = 1. Now Lemma 6.5

says that |r,s, — r,s,| = 1ifand only if s, = 1and r, = [:—”] Thus, for 2 < k; + k; < s, we find that
i

i k2 t}l rv(sp_kl_kZ)
F%,Z[klkz]z_ Z (_) QV’
V#EU

ty t,
sp=1, r,,=|V:—z—|

which is symmetric if and only if

l’y ruf
> (7)o

V#EL
— _| =
sp=1, r,,—[a]
forall £ € [s,—3]. This condition together with (104) are of course nothing but (iv). Since the derivation
of formula (95) is in line with the one of (94) we omit a further discussion.
Now let us consider F%,z [151 ,:z ] for v # p. First, assume :—: = ;—: Note that in this case property (ii)
of Proposition 6.1 forces s, = s, < 2. Using the same approach as in the derivation of (99) one finds

that
[,u(kl)t[,u(kz)

t

povy Q/J 5 v

F%,z[kl k2] = —ky = Skitkrs, - (105)
by —t]

For s, = s, =1 this expression is always vanishing and hence symmetric. Conversely, for s, =s, =2
we have F%,z [,fl ,:2 ] = F%,z [,52 151 ] if and only if Q, = —Q,, which is captured in condition (v).
Now let us consider the case Z—“ # £ Without loss of generality we may assume that Z—“ > _In this
i v i v
case we have
Fi,|f o]=-k i
alhil=-k ) |2

by 20 by

(106)

5k1+(k2+syly(k2))%—sl,l,,(k2)+t”(r;,sy—rysl,),sl, ‘

)r,,t”+£’,, (kz)

Let us first simplify this expression before turning to F 1 [ ,:2 151 ] Comparing (106) with (91) we can
deduce that property (ii) of Proposition 6.1 ensures that F 1a [ 151 ,:2 ] = 0 unless k; = 1. And moreover
Hvqo_
also F%’z[ 1k, | = 0 unless
-
1+ (kg + suby(k2)) 7= = suly (k) = sy (107)

In equation (88) we have seen that the above relation cannot be satisfied for k, > s,. On the other hand
for 1 < k; < s, plugging in the explicit expression (86) for ¢, (k;) we find that (107) is equivalent to
ko(r, — s,/ ifr,=r's, +1
sy—1= 21y = 51 L v 'jy . (108)
su+ (sy = ko) (ry —sur)) ifr, =r)s, +s, -1
Let us first analyse the case r, = r;s, + 1. Since r,, — s,r;, > 0 and because of (89) condition (108) can
only be satisfied for k; = 1. Otherwise this would contradict property (ii) of Proposition 6.1. However,
plugging k; = 1 into (108) gives
ru=rpSu+sy—1,
. _ T, _ 1%
ie r, =-1mod s, and LﬁJ = L;J
The case where r, = r,s, + s, — 1 can be treated similarly. We can assume that s, > 2 since s, < 2isa
special case of the one considered before. Now since r,, —s,,7;, > 0 (compare with (90)) we always have

S+ (sy = ko) (ry — sury) = sy,

implying that (108) cannot be satisfied for any k; > 0. Thus, F%,z [151 kyz ] =0forallk; > 0ifs, > 2and
ry = rysy + sy — 1. To sum up, assuming that (i) and (ii) from Proposition 6.1 hold we have
&t_yfv(l) P L . ; . .
Flz[]f]z/]: ol b = 2_’SU>’|-S#J_|.SUJ’r,U__ moa s,, ry = 1 mod s,
7 1 k2 )
0 otherwise.
(109)
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One can obtain a similar expression for F 1o [ ,fz /51 ] First, one finds that

s

t
Fy 2lerl= klz o 11 QuOr, k= (6415, Oy (e~ (£41)5,) 22 Lits,,0 -
£>0 H

Then comparing the above expression with (91) one can simplify the expression for F 1 [ ,Z 151 ] as we
did with F%,z [151 kyz ] before. One finds that

—£,(1)
F [u ,1]: %(i—z)m g ki=ky=1,s, >1, [Z—ZJ:[ij,ryz—lmodsﬂ,ryzlmodsy'

1 ty Sv
2,2 k2 kl .
0 otherwise
(110)
Now comparing (109) with (110) it is clear that F%,z [,fl ,:2 ] = F%’z [,:2 151 ] if and only if

Qll ty &M Qv Ly =t (V)
_(_) T (_) (111)
tye \ty ty \ty

in case r, = rl’ls,, +sy—1,r,=r/s,+1,5, > 1,and rl’l = r]. Notice now that due to ¢,(1) = r] and
€,(1) = ry —r, — 1 equation (111) is equivalent to Q,, = —Qy, which is nothing but condition (v). Finally,
notice that the equations (105) and (109) directly imply the formula for w 1 (£ 2,) stated in (96). This
finishes the proof. O

6.1.4 (gn)=(11)
We study separately the two types of terms in (83)

0)1,1(12) ‘*’51( )+a’¥1(ul)’

I'is the contribution from wg, and a) , the one from W10

where w 1.
11 11

Lemma 6.6. Let 1 € [d]. Then

2 _
()=
L1tz 24r,t, z51
Proof. We have
ru—1 94 9
I ppopy  Vpo (d2)”
a)11 ) Iz{es Ku(z 2 94 z) 1- 19“)2 > (112)

where the presence of w, 2(z, 2’) forces the three variables in the recursion kernel to belong to the
same component C of C. To handle the sum, we use the following identity for a not divisible by u

a4 ! m(r, —m)
H H am
— = — L 2 gam, (113)
(1- 99 mZ:0 or,  F

The contribution of each term of the right-hand side of (113) to (112) can be computed similarly to
item (3a). After computation of the residue we find

-1
o (2 = r‘Zm(rﬂ—m)(ry—l—Zt’y(m)) dz,
1,1\z1) — 7 2 1°
=0 Aryty zi“Jr

(114)

and it is enough to sum over m € [r, — 1]. Recall that £,(m) is defined as the unique integer in [0, r,)
such that £,(m) = —mc, mod r,, where c, is given by Equation (85)

In the case r, = r;,s/, + 1, we can decompose m = m’s;, + m” with m”’ € [s,]. It puts m € [r, — 1] in
bijection with (m’,m"”) € [0, 7)) X [s,], and we get

[( )_1 _ I
ulm —rﬂm rum —rﬂm m .
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Then, we have

ry—1 ru=1 s,
Z m(ry —1)(ry —1-26,(m)) = Z Z (m'sy+m”)(ry—m'sy, —m")(r, —1- Zer" +2m’)
m=1 m'=0 m’=1

rp(rlzl -1)

=-—
whence
()= il
PRETT 2arty et

In the case r, = r;s, +s, — 1, we decompose m = m’s, + m” with m” € [0,s,). It puts m € [r,] in

bijection with (m’, m"") € [0, r,’J] x [0,s,) and gives
t(m)=—(r,+ m+(m'+ Dry=r, —m’' = (r, + Hm"”

Then, we have

’

Ty ry o syl
Z m(ry =1)(ry—1-2¢,) = Z Z (m'sy+m”)(r, —m's, —m"”)(2m" + Z(r/'l +m” —r, - 1)
m=0 m'=0 m”=1
~ _rﬂ(rﬁ -1)
e
So, we obtain the same formula for wll ; in both cases. O

Remark 6.7. This computation can also be done directly from the Airy structure, as

6011 ZFII |Qo 2k

k>0
and Fy 1 [k] is the constant term of order 7 in the unique operator of the Airy structure of the form
10y, + O(2). In fact, as (112) coincides with the topological recursion on the sole component CNII of the
spectral curve, the value of Fy;[k]|p=o must coincide at t, = ri with the one computed in [BBCCN18,
Lemma B.3]. This is indeed the case, but we note the calculation by this other method involves the sum

ru—1 2

1 m(r, —m ru(ry = 1)

\I,u)(@):_gz (;1 ):_# 1 ’
— Ty 24

which is much simpler than (114) although it leads to the same result.

To obtain a)H we may split the contribution of the various v as we did in the derivation of Equa-

tion (99). The detalls are omitted and we only give the outcome:

ry—1
g (su+1) "
wn( £)= dleﬂ{_z Qu 2
uty
ry—1
-y O
n Tp  s,+1
vep Tl 21”
Tw_rv
Sp sy
[/
v
- Z Z ol kg4l ki + (SuTpu—Surv)»Sy
VEH ko0 ti Zy
o >0
sy sv
rut’—1
t,u Ql/ S
+ —rui" _k1+l e+t (Surv=surp).Su (
v kso W 7
ot >0
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6.2 THE EXCEPTIONAL CASE

We proceed considering a spectral curve with only one branchpoint. Let us only slightly change
the setting and add a component — the exceptional component - indexed by p_ € a on which

x()=2z  ylz)=0,
ie.r, =1lands, = co.On all other components s € a\ {y_} we still take
M) =% () =g,
and we equip the curve with the standard bidifferential and the crosscap differential

_ Qudz
w%,l(g)_ P

As before we only require that ged(ry, s,) = 1, and that for :—: = ;—E and p # v we must have t;” 1,0
In the following we will compute correlators w3 and w: , and characterise the cases in which they are
3

symmetric. These correlators are still given by formula (83) and we will learn that in the exceptional
case they mostly behave as in the standard case which was discussed in the preceding sections.

Lemma 6.8. The correlators wg3 and w1, are symmetric if and only if the conditions (i), (ii) of Proposi-
tion 6.1 and (iii), (iv), and (v) of Proposition 6.4 are satisfied. In this case the correlators are still given by
the formulas stated in Proposition 6.1 and Proposition 6.4, where any Kronecker delta involving s, = oo
evaluates to 0. Moreover, the statement of Proposition 6.2 also stays valid in the exceptional case.

Remark 6.9. One should remark that all expressions occurring in (i) to (v) make sense even with
s, = oo for asingle y_ € a if we understand r,.=1mods, .

Proof of Lemma 6.8. We begin with the computation of wq 3. First of all we notice that in case y, 2, i3
satisfy y; # p_ the correlator wo3 (% 42 % ) is computed as in the standard case which was considered
in Proposition 6.1 since the bidifferential does not mix the components. So first we can deduce that
restriction of w3 to the non-exceptional components is symmetric if and only if (ry, s,,) %, satisfy (i)
and (ii) and second we know that in this case w3 is given by (84).

The following two cases are discussed quickly: if y, yo, i3 € @ are all pairwise distinct the nature of
the recursion kernel forces wo3(%! 52 52 ) to vanish. If yy = p; = p3 = pi_ it vanishes as well since the
bidifferential is not mixing the components and {'(z) N éuf =0ifz e éﬂf.

So the only remaining case which needs to be covered is the one where the arguments of @ 3 lie on
exactly two distinct components of which one is éﬂf. So let y # p_. On the one hand we know that

wo3(%; 4 ) = 0 while on the other hand (83) tells us that

Hopop-
wo3(h 5y %) _ T s ky+rks—2 ~ko=1_~ks—1 2
—————— = +—Resk, koks 272 R T2, 7, (dz)

= '
dz;dz,dz dz; z= 712z
1622023 1 =# Kok 21
1 ki—1_—kp—1_—ks—1
— —R1— —R2= —R3—
= _t_ Z k2k3 24 29 Zg 5k1+k2+ryk3,sy > (1 15)
H Ky kg ks 1
where we used that
_ d21 ey —
K, 5 ol Z Zhitl=s, —ki—1
Lz2 rut,dz 1
HEH k1>1

In order to have symmetric correlators we therefore need (115) to vanish. Clearly, this is the case if and
only if 2 +r, > s,,. For r, > 1 this is always the case as (i) forces that s, < r,, + 1. For r, = 1 however
the correlator vanishes if and only if s, < 2. It turns out this symmetry condition is already included
in (ii). Assume r, = 1 and s, > 2. Then [:—ZJ =0= [:Z—:J and both r, = 1 mod s, and r,_ =1 mod s,,_

which means this case is forbidden by (ii).
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As with the correlator we considered before,

B pe p
W03\ 2z, 2z, z H- - H —9 —ko—1 —ka—
( 122 3) = ResZK (Z 2 szl/ry) Z 32k3k2k3zk2+k3/rp Zzzkz lz3k3 l(dz)z
dzidzydzs rudzy z=p- ! [z Ry
_ k k 1—1 —ky—1 —kg—l(s
= 2ks z) Zq ey +hat (ks —5,0) /7300
'ukl ko,k3>1
rylks—sy

also has to vanish in order to have a symmetric wg3. This is the case if and only if (k —s,)/r, +2 >0
for all k > 0 satisfying r,, | k — s,. First let us assume r,, > 1. Then (i) forces s, < r,, + 1 which implies
that (k —s,)/ry+2 > (k= 1)/r, + 1 > 0 and thus as required wo3(%; %, £ ) = 0. Now let us assume
r, = 1. In this case

wo3(’ 5 4) _1

k2k3 Zl—kl —1Z—k2—lz—k3—1
dz;dzydz3

. 5 3 Okytkytkss, »
H ey kg ks 1

which vanishes if and only if s, < 2. We conclude that as for the correlator considered before the
condition for wo3(%; %, £ ) to be symmetric is expressed by (ii). This concludes the analysis of wy .
Now letus turnto 1 ,. In the following set a)1 L =01 |0, —o»1-e. with @’ 1, Ve denote the restriction

of @1, to the non- exceptlonal components. Then for dlstmct Ly € a\ {,u } we have

Hvy _

wl 2(21 Zz) - w%’z(h 22
as the bidifferential is not mixing the components. Thus, from the analysis done in Proposition 6.4 we
deduce that the condition ensuring the symmetry of this correlator is (v) and in the symmetric case it
may be evaluated using formula (96). However, if the arguments lie on the same component y #
we obtain an additional contribution

popop ky—2_—kp—1
w%z(:ﬁélz) a)lz(zl zz)"'r/lQp ReSK (z zzm) Zkzzz 222 : (dz)zdzz

k2 >1
, uop dZ]dZZ Q,u,
=wW; (21 zz)_ Z —k2_5k1+kzs
7.2 Zk1+12k2+1 t wH
kkz>1 “1 2 H

coming from the first term in the bracket in (83). This is symmetric for s, < 2 while for s, > 3 we may

use that ] (£, £,) is computed via (100) in order to get
L

HEEAEEY %{_5k1+k2,5#k2(Qﬂ(ru—l—fy(kz))+ 5 %)

ki+1 _ko+1 rot t
kikp21 %1 %2 K ved\{u} H
W
[/
kZ ty "
+l’_Z - Z t_ Qv5k1+k2+{”(r;,s,,—rysl,),s;,
Fo>ot vea\{ppp H
nory
su” su
rpt’
ty v s
+ t_ Qv ki+ko—t (rpsy=rusu).Su .
vea\ {pp-} "
7
Su sy

Comparing (100) with the above equation and following the characterisation of the symmetry of (100)
it should be clear that the condition for the symmetry of W1, (£ £) above is encoded in (iii) and (iv).

Now let us turn to the computation of correlators with arguments lying on the exceptional compo-
nent. It is a straightforward calculation to find that

ledZZ Qﬂ
w1,k ) = —, (116)
3 1 22 zzzg l;; t}l
(rv,s0)=(1,2)
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which is always symmetric. Notice at this point that this is in accordance with (iii) and (iv) as the
two conditions do not imply any constraints for z_. Now let us briefly argue that formula (94) exactly

produces the result for a)%’z(’é; %, ) we obtained above. Since rI’L = I_ZL’—:J = 0 the first term in (94)

vanishes. The two terms after are empty sums, hence vanishing. Thus the last term in (94) is the only
one potentially leading to a non-zero contribution and indeed one finds that the sum condition in
this sum coincides with the one in (116). We therefore deduce that formula (94) even applies for the
exceptional case.

It is also straightforward to compute

Q, dz;dz Q,_ dz;dz

O (et Sused ] Moy H 17<2

W1 y Or 41, w1 ) = Or 41, (117)
232(21 zz) rutlsy tp Zizg 5 2,2(21 zz) rutl,s, tp Zfzg

for i # p_. We therefore deduce the symmetry condition that for all p # p_ with s, = r,, + 1 necessarily
Qu = —Q,_. This condition is however covered in (v). Notice moreover that formula (96) applied to the
case at hand indeed produces (117).
At last, let us show that the statement of Proposition 6.2 is true in the exceptional case as well.
Ty

For this notice that if we choose 1, v, A € a pairwise distinct with :—” =¢= ;—i then already s, < co.
1 v

Thus, @ 4 ( - 2’14 ) gets the same contributions as in the standard case which means that the further
discussion of the symmetry of this correlator must be in line with the proof of Proposition 6.2. O

6.3 NECESSARY CONDITIONS FOR SYMMETRY

We now prove Proposition 2.14. In Section 5.4 we used that Theorem 2.11 gives us conditions
for the values of (r,, s, ty, Q) eq sufficient for the existence of a family of correlators satisfying the
master loop equation and the projection property on that curve. This was done by associating a set
of differential constraints (82) to the curve and showing that these imply the master loop equation.
Note that in order to prove the latter implication we only assumed that none of the conditions (i)-(iv)
appearing in Lemma 5.4 hold. So all further conditions on the input data solely come from Theorem 2.11
which are sufficient for the set of operators in Proposition 5.18 to be an Airy structure.

In Section 6.1 and Section 6.2, however, we used formula (73) to compute the correlators w3, @ 1o
and partly also @4 in the case of one ramification point and arbitrary (r, sy, £, Qy),eq only assuming
that ged(ry,s,) = 1 and

t;” # t,” whenever (r,,s,) = (r,,s,) and g #v. (118)

Here we chose the notation and the bidifferential of the second kind exactly so that the differential oper-
ators associated to this spectral curve introduced in Definition 5.17 are those considered in Section 2.3.2.
As for certain values of (ry, s, t, Qp) ueq we ended up with non-symmetric multidifferentials w,,, we
can deduce that in this case the associated set of differential operators cannot be an Airy structure.
Hence, condition (i)-(v) found in Proposition 6.1 and Proposition 6.4 are necessary conditions for (28)
to be an Airy structure.

In order to be even closer to the notation of Section 2.3.2, let us choose a lexicographic ordering
p = [d] — a satisfying y; < pj.q. Proposition 2.14 addresses the question which constraints the
symmetry conditions (i)—-(v) found in Proposition 6.1 and Proposition 6.4 put on the values of (r,,, s;) ,eq
in case we want the set of differential operators (28) to be an Airy structure for all t,,,...,t,, , € C*
and, if s, # oo, also t,,, € C* satisfying (118) and all Q. , ..., Q,, € C for which

d
2. =0. (119)
j=1

Proof of Proposition 2.14. Due to (i) of Proposition 6.1 we know that necessarily r, = +1 mod s, for all
v € a.If s, > 2 then (ii) tells us that we must have ;Z—l > % Therefore,
1 2

d
2, =2,
=2

vEM
Ty
Spp o Sv
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and hence condition (iii) of Proposition 6.4 forbids that r,, = 1 mod s, and s, > 2 as we can always
choose the Qs such that )’ ;¢4 Qy; # 0. Thus, we are left with r,, = -1 mod s,,,.
Now let us see which values the symmetry conditions allow (r,,,s,;) to take in case j ¢ {1,d}. First,
let us assume :% = % Then by (ii) necessarily s, € {1, 2}. If however :ﬁ > :% then condition (iii)
and (iv) also force s, {E {1, 2} using that we can choose the Qs arbitrary except tilat they must satisfy
(119).

As one can use similar arguments in order to show that also r,,, = 1 mod s,, we omit the further
discussion of this case.
Now let us analyse the implications coming from condition (v) in case of generic Qs. If d = 2 condition
(v) is always satisfied since the requirement that Q, = —Q, for y # v is nothing but property (119).
Therefore, let us assume that d > 2. In this case (v) exactly forbids that r, = r, and s, = s, = 2 for
p # v. Hence, taking into account the other constraints we have already derived for (ry,s,) ez we
deduce that for d > 2 necessarily s, = s, = 1 whenever (ry,s,) = (r,,s,) for some p # v.

Note that due to Lemma 6.8 the above discussion covers both the standard and the exceptional
case. O

PArRT III — APPLICATIONS TO INTERSECTION THEORY

We expect that the coefficients F,, of the partition function for all basic Airy structures (those
of Section 2.3.1 and Section 2.3.2) and the wy, of the corresponding topological recursion can be

represented as integrals of distinguished cohomology classes on My, or its cousins. As soon as such a
representation is known for one spectral curve admitting a single ramification point and whose type
belong to a certain set, it is relatively easy to extend it to any spectral curve having ramification points
whose type belong to this set. The reason is that the corresponding Airy structure is built from the
basic Airy structures by direct sums, change of polarisations and further dilaton shifts, cf. Section 2.3.3.
In terms of partition functions, this is sometimes called “Givental decomposition”.

We develop this idea for two types for which the link to /Vg,n is already known:

o the type (r,s) = (r,r + 1) is related to Witten r-spin theory. The r = 2 subcase is Eynard’s
formula [Eyni1; Eyni4b], and by generalising it to any r we answer a question of Shadrin to
the first-named author.

o the type (11, s1, 72, 52) = (r,r+1, 1, 00) is related to open r-spin intersection theory as discussed
in Section 8.

The type (7, s) for other s is discussed in Section 7.6 assuming the existence of a special class on ﬂg,n
which has only been constructed for (r,s) = (2, 1) so far [Nor17; CN19]. It turns out that Laplace-type
integrals play an important role in such representations, and we first study them in the preliminary
Section 7.1. The method is general: if in the future an enumerative interpretation is found for a larger
set of types, it is rather automatic to follow the strategy at work in these two examples and extend our
representations to any spectral curve having ramifications whose types belong to this larger set.

7 REPRESENTATION OF CORRELATORS VIA INTERSECTION THEORY

7.1 THE LAPLACE ISOMORPHISMS

Letr > 1. If m > 1 —r is an integer, we introduce the r-fold factorial, either by induction

1 ifl-r<m<o0
m!(") = i , (120)
m-(m—-r)! ifm>0
or equivalently in terms of the Gamma function
my
rr (2 +1)

n__ “‘\r 7
T ()
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where we have defined <dr%> =%ifdeZandac€ [r].
Definition 7.1. We introduce two isomorphisms.
e ¢ C¢]dl — wrClur]
k1de — KO ur
e ¢ C[{ (2 — erCler]
k1) =gy s er
Abusing notation slightly we also write £* for the maps extended to the domain C(({))d{ by defining
them to be zero on any monomial not in the original domain of definition.

5

The first map can be realised by integrating over paths from 0 to oo in the x-plane.

Lemma 7.2. We have

r=1 or
+ _&
8 - Z :.1 2imj e wr
j=0 e r Ky
where the constants are .
r _2inja
e r
3= (121)
J a
a=1 rrr(%)
2imj
Proof. Let f; be from 0 to oo in the angular direction e+ . Consider integration along a formal
combination of paths f = ;;é 3J;jp; for some J; € C. For k = dr + awithd > 0 and a € [r], we
compute

r—1
»r inja k ~
/ﬁe—ir kZEdr = e (ur)k;/R e X7 ldx

=rd,u
k a

=3.urrr F(%) k1

with the change of variable X = " /ur and the discrete Fourier transform for a € Z

A 1 = isja
Jda=- eZ a !
r i
We get
/ e_gr/ur kgk—ldév — 24. [gk—ldg]
p
provided we choose
- 1
Sa= -
()
This entails the result by inverse discrete Fourier transform. O

The second map can be realised by contour integration. To this end, let y be the Hankel contour
giving the Gamma function representation (Figure 1)
1
—=‘/exx7“dx aeC,
() Jy
that is, y goes from —co — i0 to —i0, then round the origin to +i0 and ends in —co + i0. Under the

branched covering { — x({) = ", this contour has r different lifts (}’j)]r-:p which we label so that

y; comes from the asymptotic direction e~ 7 (%7*1 (400 + i0), approaches the origin and then ends in
the asymptotic direction e~ 7 *=1 (+c0 — i0). These contours belong to the lattice of rank (r — 1) of
Lefschetz thimbles

V= Hy(C, S Z),
where S); = {z € C | Rex < —M} for some large M > 0. The homology class })_, y; is trivial and
omitting one y; we get a basis of V.
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FIGURE 1. Left panel: contours in the {-plane for » = 6. The striped regions
correspond to Re x > M. Right panel: Hankel contour in the x plane.

Lemma 7.3. We have

j=1 Vi
with the constants already appearing in (121).
Proof. Let € > 0, j € [r] and consider the integral
1 e”
Aj(a) = —/ e {*dC (122)
217 Jy,

for complex a € C. Here, { + {“* is defined in the usual way as the analytic function on C \ R_ such
that for { € R*, we have
lim (¢ +ie)* = e™™¥|{|*.

e—0"
Let us first consider Re ¢ > 0. In this case, as the integrand is regular we can squeeze the Hankel
iz (2k+1) . ~ r
contour to the half-axes of angles e™— r  for k € [r]. After a change of variable X = —%, we find
_atl
€ r i (2j+1) (a+1) iz (2j-1) (a+1) 1 foatl g o
Aj(a) = |- (—e 7 +e - )-—‘/e_"xr+ Ldx
r r JR,

(123)

_atl
(e) T _imjtesn 20 (n(a+ 1)) (a+ 1)
=|- e r - — sin T .
r r r r

We note that by definition in (122), Aj(«) is an entire function of @ € C. This is also true for the right-
hand side of (123): the Gamma function has simple poles when %! € —2N which are compensated by

-
a zero in the prefactor. Then, by analytic continuation the identity (123) remains true for all ¢ € C.
We apply it to @ = —(k + 1) where k is a positive integer that we decompose as k = rd + a with

a € [r] andd > 0. Then
e@E sin(—&k)l"(—k)
r r
1
&

r
k 21 imja
r - -
k
rrl"(; + 1)
k 2imja 217‘[
o

r7 T(4) ki

Aj(=(k+1))

Il
J—
N o
S —

Coming back to the definition (121) of 3;, we get

/eTk dg“:g_[k d¢ .

Y §k+1 §k+1

=i
= 2imr
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7.2 LAPLACE TRANSFORM ON CURVES

7.2.1 Total Laplace transform

Let C be a curve with normalisation 7 : C — C, equipped with a meromorphic 1-form dx. We shall
rely on the notations introduced in Section 5.4. Recall that we write dx = 7*dx, that a is the set of
zeroes of dx (including singular points) and @ = 7~ !(a). Denote the order of a zero of dx at € @ by
7y — 1 (this could be zero if 77(a) is singular). Around each i € a, we have a local coordinate such that

/ﬂ&:g’ﬂ.

We define the vector spaces

1;

V= @ V,, VP = C-ey,l s

pea I=1

and equip V with the pairing 17(e,1 ® €y,m) = 8,,y014m,r,. The fact that e, ,, are null vectors for nis a
convention: it simplifies the formulas in Section 7.2.3 but has no effect elsewhere. When needed, we
shall decompose integers k € Z as

A

k=kr,+k  kelr]
and the index y € a that one should use will be clear from the context. In order to get rid of fractional
powers of the Laplace variable, we introduce the isomorphism
1
o — V: [el

* ek'

1
E, : enuCle
k
€r > e .
wk

where e’ , is the dual basis with respect to the pairing 5. Importing Definition 7.1, for each i € a, we
consider the local Laplace map

L, =E, 08 oloc, : H°(C Ka(*a)) — V€]
and the total map
e, = (@Q;) . HY(C,Ka(+d)) — V*[e].
pea

We define in a similar way

E, - wnClle™ ]| — V,[[ul],

e H(C.Ka(+a) — Vu[[ull,

e - H(C Ka(xa)) — V[[u]] .
where the role of ez’k is now played by e, k.

Remark 7.4. From Lemmata 7.2 and 7.3, we see that the natural variables Laplace dual to x = {" are not
u and €71, but ru and re~!. Moreover, by a different choice of constants (replacing multiple factorials
by values of the T function at rational numbers) the transforms could have been given by a single
integral. We give the Laplace transform in this way to conform to conventions in the literature using
r-fold factorials for the case of a smooth spectral curve, and its relation to the Witten r-spin class.

7.2.2 Two generating series

Assume that we are given a holomorphic 1-form w1 in a neighboorhood of @ in C.
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Definition 7.5. We introduce T(u) € V[[u]] given by the formula
T(u) = Z Tp’ke‘u’]; uk

pea

= ( Z ey,gyus”) + 85 [wo1](w)

pea
SuFoo

D RS AL AP

pea k>0
SpFo

Assume that we are given a fundamental bidifferential of the second kind w2 on the smooth curve
C.

Definition 7.6. We introduce B(u,v) € V®%[[u,v]], given by the formula
B(1,0) = (28) % (w02 — w5)

= Z (k - rﬂ)!(r”) (I- r,,)!(r”) Foz [ fk fl] e, ;i ® eviukvl, (124)
Uea ’ ’
k,1>0

where the second line follows from the decomposition (79).

These definitions in particular apply to admissible spectral curves equipped with a fundamental
bidifferential of the second kind, but make sense in this greater generality. Their relevance will become
clear in Section 7.5.

7.2.3  Factorisation property for B

We prove in this section a factorisation property for B when C is compact. Such a property appeared
in the case where C is smooth and dx has simple zeroes in [Eynig4b, Appendix B].

In light of Remark 7.4, and for this section only, we use the ‘right’ Laplace variables ru and rv
(where r depends on the branch point), and to this end we give the following definition.

Definition 7.7. Let B, (u,v) be the projection of B(u,v) into (V,, ® V,))[[u,v]] and define
B(u,v) = Z By (u/ry,v/r,).

HLUEQR

Proposition 7.8. Assume C is compact and dx is meromorphic. Then

B(u,v) = (uB(u, 0) +vB(0,v) —uv B(u,O)*B(O,v)), (125)
u+v
where A x B = (id ® n ® id) (A ® B). Besides, we have the compatibility relation
B(u,0) — B(0,—u) + uB(u,0) x B(0,-u) =0. (126)
Proof. We have introduced in (80) the family of meromorphic 1-forms
i dd(=") ~
H — . 0 .
ety = es [ onata )| o0 € (G Kk 1) (127)
indexed by p € a and k > 0. We have forv € a
8,,dC Foo| % Y]
N , k-1l +1-1
Loc, (d&",) = St ;‘: — A (128)

The idea of the proof is to derive a recursion for these forms using the action of d(4z) - this is
Equation (130) below. We will first prove it for the polar part near the ramification points, and use that
C is smooth and compact and d% meromorphic on C to get an equality of globally defined meromorphic
forms. This implies a recursion for the regular part of the expansion (128), i.e. the coefficients F 5, and
this will imply the desired relation for B(u, uz).
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Since dx = r,,{"»"1d{ near the ramification point v, we have

dffk k+r, 6,0d0 " Foz [ 5 5] -1 A
Loc,,[ - d( = )] = T ; - o +0(d0) .
As dx is meromorphic, the 1-form
& k+r = Foz[ ro—1
d[ ==k ) + —E£a¢* k 4] =l

is holomorphic on C. Since C is compact and smooth, H; (C, C) is a finite-dimensional symplectic space
equipped with the intersection pairing, and

K := {}/ S Hl(CN, C) ' ‘/0)0’2(', Z) = 0;
Y

is a Lagrangian subspace. From the definition (127), we see that integrating any d&" i fork > 0and
u € a along a cycle in K gives zero. The same is true for the first term in (129) since it is an exact form.
As the period map induces a non-degenerate pairing H(C, Kz) ® K — C and (129) is sent to 0, we
deduce the identity between meromorphic forms

dg'uk k+rﬂ r_lF()z —l
- /" v
d(—cbZ )+ AT Py = ~—dg,, =0, (130)

vea I=1

We now would like to apply the local Laplace transform £;[-] (v) to this relation. Recall that £* by
definition kills the polar part. So, by direct computation on the basis elements with Definition 7.1, we
have

Yo € Ho(é,Ké( *a)) 2; [d(%)](v) = rl [v_lﬁ;;[(p] (v)]+,
P

where [- - - | keeps only the nonnegative powers of v. The expansion (128) implies for any meromorphic
form

E+ d H _ FO’Z [ —I’[k i/l] i '(r,,) 1
S 10) = ), == (=)™ e, o
>0
By comparison with (124), B, , (4,v) can be obtained by the generating series

Bup(uwo) =y k"We uk @ &dE ] (v).

k>0

Applying £7[-](v) to (130), multiplying by k! ﬂ) u k and summing over k > 0 then yields

(rpv)_ (Byp(u,v) = By, (u, 0)) + (r”u)_ (Bﬂ,p(u,v) - Bﬂ,p(O,v))

ry—1

+ > > (dee) B w0)] (e, , ®id)[By,(0.0)] =0

vea I=1
Noticing that n(e,; ® €yr,-m) = 81.m for L, m € [r, — 1] and n(er,, —) = 0, this can be rewritten
(ruu+r,v)By o (u,0) —1,uBy , (1, 0) —1r,vB, ,(0,0) +7,1,uv Z(id@n@id) [B#,V(u, 0)® By,p(O,v)] =0.
vea
Replacing u and v by u/r, and v/r,, respectively, and summing over 1, p € @, this implies the desired
formula (125). Since the left-hand side is a formal power series in u,v, it can be specialised atv = —u.
This is possible on the right-hand side if and only if (126) is satisfied. O
For each y1 € &, we have an orthogonal direct sum V, = *V,, & °V,, with

ry—1

V= @C.eﬂ,l, OVH =Ceeur,
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and we decompose V = °V & 5V with
V=PV, V=PV
ped pei
Definition 7.9. We introduce two generating series
R(u) = nt —uB(u,0) € (V))®*[u],
RY(u) :== n* —uB(0,u) € (V5)®u],

where 7t € (°V)®2 c V®2, is induced by the pairing 7, i.e.

rﬂ—l
”L — Z ( Z € ® e,,,rﬂ_l) , (131)
pea =1

We write 9B, %B, B, and **B for the projections of B on the adequate subspaces in both arguments,
and likewise for R.

Corollary 7.10. Assume C is compact and dx is meromorphic. Then, we have

“B(u,v) = u—.lﬂ,('f R **R0)),

OB (u,0) = (SOR(u) +SR(u) * SORl(v)) ,
"B(uv) = - o (OSRJ‘(U) + SR (u) SSRl(v)),
08 (1, p) = R (1) + R (v) + “R(x) *SORL(U)),

and the following compatibility relations hold
SR(w) % *RH(-u) = 7*
SSR(u) * 'R (—u) = —"R(u),
OSR(u) % SR (—u) = =R+ (-u),
SR(u) **° R (—u) = ="R(u) — °R*(~u).

The structure of the first line is familiar from Givental formalism and from [Eyni4b, Appendix B],
but the other three are new.

7.3  REVIEW OF WITTEN r-SPIN CLASSES

constructed in [PVo1; Chio6], cf. also [PPZ15]. For all integers g,n > 0 such that 2g — 2+ n > 0 and
ki,...,k, € Z, this is a Chow class

For r > 2, we denote w;Spm(kl, ..., k,) the Witten r-spin class, first imagined by [Wit93] and

rspm(kl’ o kn) e CH* (mg,n) )

It is defined via the moduli space of r-spin structures M;Sklm

(C,p1, ..., pn) with a line bundle L — C together with an isomorphism to chog( — Y, kip;). Denoting
C the universal curve and L the universal line bundle, and considering the projection

parametrizing pointed curves

——rspin —_—

£—>C—>/\/(gk1 Mg,,,,

the naive definition is
rSpm(kl, k) = r_gp*ctop((Rlﬂ*L)V) .

This works in genus 0, but if g > 0, then R'z.L is not a vector bundle as R’r, L is non-zero, so
the general construction is more involved. For positive k;, Witten’s class vanishes if one of the k; is
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divisible by r. It is concentrated in codimension®

b (r—Z)(g—l)r—n+Z?:1k,~. (132)

In particular, the class vanishes unless the right-hand side of (132) is an integer, and its integration on
Hg,n vanishes unless D = dim Mg,n =3g-3+n.

We are primarily interested in indices ranging over [r], or [r — 1] since the class vanishes for index
equal to r, but the following property, conjectured by Jarvis—Kimura-Vaintrob [JKVo1, Descent axiom
1.9], explains the appearance of the r-fold factorial in all our formulas, see also [Chio8, Lemma 4.2.8].

Lemma 7.11. [PVo1i, Proposition 5.1] Let g, n, ky, ..., k, > 0 be integers such that 2g — 2 +n > 0, and
decompose k; = d;r + a; with a; € [r] andd; > 0. We have

n
—d: d;
Wb ks, .. kn) =wph ™ ar,an) [ % (= 1Oy
This formula is consistent with the case k € [r] due to the initial condition in the definition (120) of

the r-fold factorial.

Remark 7.12. Witten’s class can be interpreted as a cohomological field theory in the following way:
its vector space V = V"*PI" has a basis (e; )i-! and we define for ay, ..., a, € [r — 1]

(ar,...,a) € CH* (My,) .

rspm( €q ®: ® ean) _ wrspm

V7PN i equipped with product and multiplication
(ea | eb) = Satbyr > (eal ® €q, |ea3) = Wos(eq, ® €q, ® €a;) = Sa+ay+asr+i -

We define the partition function of the r-spin theory by

Z" P (xi)keso]
hI1 s . ki
— pm ki
= exp Z o Z | (ki,.... kn) 1—[ rl Jkixki
g,neN " kyenkn>0 Mg.n i=1
2g—2+n>0
no! rs| = ?
_ Pm d;
= exp Z - Z [ wgn (a1,....an) ]_[ v ]_[(dir +a)") Xd;r+a; | »
gneN Y ananelr-1] VY Man i=1 i=1
2g—-2+n>0 di,....dn >0

where we took into account the dimension constraint (132) to get the second line. Due to the afore-
mentioned vanishing, it is independent of the times with indices divisible by r. Z"*PI* was identified in
[FSZ10] with the tau function for the r-KdV hierarchy. It is also known that Z"P™" satisfies W (gl,)-
constraints — see [BBCCN18] for the history of this result. From there, Milanov proved in [Mil16] that
ZTsPin is the partition function of the Airy structure of Theorem 2.10 with (r,s) = (r,r + 1), as well as
the topological recursion & la Bouchard-Eynard [BE13] for the associated correlators:

rSpm(Q, s ln) = Z (/ wgn(as,...,a) l_l ‘ﬁ ) 1_[ (dir Z:lli':) dé; . (133)

ai,...an€r—1] g.n
di,....dn 20

This result was apparently also obtained by Bouchard and Eynard in an unpublished draft, and appeared
in [DNOPS19] in a form closer to the one we state here.

Theorem 7.13. The correlators w"*P™ are computed by the topological recursion for the spectral curve
(without crosscap)

d¢,dg,
G-0? (134)

2The notion of codimension for Chow classes refers to homology. Therefore, when the Chow class can be realised by a
cohomology class, this codimension is twice the cohomological degree.

XO=C YO=-5  end) =
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Proof. We start from [DNOPS19, Theorem 7.3] which shows that the topological recursion for the
spectral curve

dZ]de

-2t (135)

x(z) =2, y(z) =z, wo2(21,22) =

yields

D e Sl )H(d“;fiiﬁifdz’- (159

ai,...an€r-1]
di,...dn 20

The spectral curve (134) can be obtained from (135) by multiplying y by —l . This multiplies (136) by

(=r)2972t"_So the factors of r cancel and we indeed obtain the correlators a)rSpm(gV Lenesln) O

7.4 DEFORMATIONS ON WITTEN r-SPIN CLASSES

We now recall well-known actions on family of classes, originating from the work of Givental. As
our focus is not on cohomological field theories, some of the actions we allow may not preserve this
property and do not belong stricto sensu to the Givental group. See e.g. [Shaog; Tel12; PPZ15] for
more background.

7.4.1 Translations

Given a formal series T(u) € uV"P"[u]], we can define a new family of Chow classes
[T . Wrspin]g,n: (Vrspin)®n — CH* (/Vg,n) )

We first decompose

T(u) = Z Trd+aeaud

d>1
aclr-1]

and assume that T,;; # 1. Then we introduce

T(u) — T(u) — Tryreu _ Z Trdta e ul

1- Tr+1 d>1 1- Tr+1 ¢ ’
ac[r-1]
(d,a)#(1,1)

and set

[T Wi = 2 — : L) Wl (= ©T () ® -+ @ T(Yinem)

m>0

where 7, : mg,,ﬁm — Mg,n is the forgetful morphism. This definition is well-posed, i.e. the sum has
finitely many non-zero terms. Indeed, if we evaluate on (X)}_, e,,, the codimension (after pushforward)
of the summand proportional to n}"zl Ta;r+p, with djr +b; > r+21is

(g—l)(r—z) (n+m)+Zal+Z(dr+b )) ;((g_l)(r_g)_nJrZ"“ai)Jr?
j=1 i=1

which for fixed g, n, ay, . . ., a, becomes larger than dim Mg,n = 3g — 3 + n for m large enough, forcing
this summand to vanish. The coefficient T,,; plays a special role, which reflects the dilaton equation

(pl)*(w;ifﬂ(al, coesan 1) - Yn) = (29— 2+n) wrSpm(al, e ap) .

The change from T to T reflects this.
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7.4.2  Sums over stable graphs

Let now V be a finite-dimensional vector space and consider a family of classes
Qgn: VO — CH (Mg), gneN, 2g-2+n>0.

Given a formal power series B(uy, uz) € V®[uy, u,]), we can define a new such family [E . Qg’"]g,n by
sums over stable graphs.
Let Gy, be the set of stable graphs of type (g, n). For a vertex v in a stable graph, we denote h(v)

the genus and k(v) the valency.
. 1
[B-Q] , = Z TAuT] " (er)s 1—1 Qp(v)k(v) ]_[ B(Ye, lﬁe')] :
TeG veVert(T) {e,e’ }eEdge(T)

€Gyn

where ir : [T, evert(r) Mh(u),k(v) - Hg,n is the natural inclusion of the boundary stratum associated
to I'. To read this formula, half-edges label the punctures on the curves whose moduli spaces sit at the
vertices. So, we have y/-classes e, /s associated to an edge {e, e’}, and for each half-edge there is a
copy of V* coming from the vertex it starts from, and a copy of V coming from the contribution of the
edge it belongs to. The symbol 5r indicates that we pair them in the natural way. This definition is
well-posed because the dimension of the moduli spaces at the vertices is smaller than the one of Mg,n,
so that only finitely many powers of /-classes can contribute in the sum.

Remark 7.14. This differs slightly from the so-called R-action in Givental formalism, by the fact that
we do not decorate leaves of the stable graph, and we do not assume that B has a factorisation property
in terms of an R-matrix in the style of (125).

7.5 INTERSECTION THEORY FOR REGULARLY ADMISSIBLE SPECTRAL CURVES

Let S = (C, x, y, wg2) be a regularly admissible spectral curve equipped with a fundamental bidif-
ferential of the second kind. In particular, C must be smooth and we can write C and a instead of C
and a, respectively. In this context, as in Definition 7.9 we rather take

V= @ }/7aspin
aea

This amounts to set e, = 0 in all subsequent formulas.
Following Definition 7.5 we have a generating series

T(u) = (Z ea,lu) + 2 (wo1)

aea

Z (ea,lu + Z(k - ra)!(’“) Foa [ —(Xk] €, uk (137)

aea k>0

: Z Z Tk €l uE.

aea k>0

Equivalently, the definition of T means that we have the expansion

k1T iy
Loca(y ~ y(e) =~ 4 3 STk gy

T k>0 @

when z — « in the local coordinate such that x = x(a) + {"=. Due to the regularly admissible condition,
we indeed have T(u) € O(u) and

T(x,r,,+1 =1+ FO,l [ —(ri+1) ] 1,

S0 we can use it to act on Witten r,-spin class. Recall that we have a second generating series B(u,v)
from Definition 7.6.
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Definition 7.15. We let these generating series act on the direct sum of Witten classes to define
QF, = [E?- (b w’aspin)} LVEm s CH* (M) -
aca g:n

Theorem 7.16. IfS = (C, x, y, wo2) is a regularly admissible spectral curve equipped with a fundamental
bidifferential of the second kind wo 2 and zero crosscap form, then for2g —2+n > 0

S
Qs,
Myn i (1= €&ti)”

where €; is the variable in the ith Laplace transform.

(L1 on (wg,n) =

Proof. The spectral curve
50(1’0(2 dZ]de
(71 — 22)*

has T =0 and B = 0, hence QS = P.ea V\fgr,‘,’fpin. It is obtained by taking independent copies of (134)
indexed by a € a. So, its correlators equal to (133), that is

(dire, + l-)'(raﬂ dz;
(/M Wyl ,lea,,m)n 09
g.n

where Wg?n = P 4eq WP, Applying @)}, L., to Equation (138) cancels the factorials and replaces

x(%) =2, }/0(‘;)2—;, wo2(F %) =

(% %) =
d

1reeesln 20
liE[rai]

7~ (dire; tlit1) 47 with e l_edi. The sum over d; can then be performed and this entails the claim in this
special case. o

Applying Theorem 5.23 to the special case, let Z; be the partition function of the Airy structure
corresponding this special case. Its coefficients are

n _ n
ol i :=( /ﬂ Wyn( @, eai,,;,.)ﬂwff)]—[ki!“ai). (139)
g:n i=1 i=1

It corresponds to Fy | [~y | =-1.
Applying now Theorem 5.23 to a general regularly admissible spectral curve, the partition function
of the corresponding Airy structure is

1 ]l 1 J¢
Z = exp ﬁZFo [ % -Zy,  Zy=exp EZ(F‘”[ ]+5k,a+1)k - Zy.
a,ﬁea aca
k>0 k>0
The operation taking Z, to Z; is the shift of times:
Fox| %]+ Skrps B Tak
Xak = Xak t+ kT Xak + ISk

taking into account (137). In terms of the coefficients Fgl’n of Z;, we get

m
.. T it
FL e %] = Z Z L A nzzf’ﬁlﬂ

m>0 ..... Prea
ll .,lm>0
n _ n
- (/ [T-w°],. (8L e .) wai) [ Jrntre)
Mg,n i=1 i=1

by using (139) and comparing with Section 7.4.1. Note the cancellation of the factorials that was the
motivation for our definition of T in (137). Applying £, to the corresponding correlators kills the
remaining factorials, we would prove the desired formula in the case B = 0.

For general B we should still take Z; to Z, and this amounts at the level of coefficients to summing
over stable graphs. Comparing with Section 7.4.2, one can check in a similar way that the factorials
completely disappear, so that the sum over d; become the geometric series in the Laplace variable
€;. m}
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7.6 INTERSECTION THEORY FOR SMOOTH ADMISSIBLE SPECTRAL CURVES

7.6.1  The conjectural (r,s) classes
The basic case of irregularly admissible smooth spectral curves with one ramification point is
. T dz;dz,

xX=z, y=- ; wo,z(zhzz):m,
1~ 22

withr > 2,s € [r—1] and r = £1 mod s. It correspond to the Airy structures of Theorem 2.10, already
obtained in [BBCCN18]. The coefficients of its partition function have the following basic properties
from corollary 2.16 and Proposition 6.1:
(i) Homogeneity: Fy,[p1....,pn] = 0 unless we have 3.7 _, pm = 5(2g — 2+ n).
(ii) Dilaton equation: Fyp41[s, p1, ..., pn] =5(29 = 2+ n)Fyu[p1, ..., pu] for 29 —2+n > 0.
(iii) Special values:

r2—1

Fialp]l = e Op,s »

Fos[p1, pa, p3] = ¢ p1pap3piapyipss »

where c is as in Equation (85).

(iv) Ifs =1, then Fy, = 0 for any n > 3. Indeed, as ¢ = 0 in this case, we have Fy3 = 0 and as it is
the only initial data needed for topological recursion (32) in genus 0, all the genus 0 sector
vanishes.

Remark 7.17. There is no string equation, as the operator Hj—; x=_; is not part of the Airy structure.

Mimicking Theorem 7.13 and taking into account these properties, we are led to propose the
following conjecture — in a slightly more precise form than [BBCCN18, Section 6.2].

Conjecture 7.18. Foreachr > 2 ands € [r — 1] such that r = 1 mod s, there exists cohomology
r,s)

classesw;)n (a,...,an) € CH*(mg,n) indexed by a; € [r] and g,n € N such that 29— 2+n > 0, so that
(o) foranyd; =0

n n

Fyuldir +ay,...dur + ay] = [ |(dir +ar)!"” L e (as,. o an) [ [ (140)
i=1 Mgn i=1

(i) w;,r,;s) (a) has pure Chow codimension

2(2?:1 a;—s(2g—2+n)
r

+(39-3+ n)) .
(ii) denoting 7 : ﬂgml - Mg,,, the forgetful morphism, we have the dilaton equation

Yni” (0 (2) =07, (5,2) (141)
(iii) we have the special values

w(()giS)(ab az, a3) = €Oq +ap+as,s1 € HO(MO,3),
r2—1

0} (@) = 8 —

Uh € HZ(Ml,l) .

(iv) w(();’ls:l) =0 foralln.

The conjecture is proved in the case (r,s) = (2,1) by Norbury [Nor17] where w;’r,’l” in fact exists

in cohomology. In that case there is a single index a = 1, and w;,z,’,l) = Oy, has pure cohomological

degree 2(2g — 2 + n) and is constructed by pushforward from the moduli space of r-spin curves.

Assuming Conjecture 7.18 holds, we will deform (140) to generalise Theorem 7.16 for any smooth
admissible spectral curve. Before this, we need to discuss action of translation and sums over stable
graphs on the (r,s) class.
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7.6.2  Deformation of the (r,s) classes

We introduce ' _
(Vrspm)®n — H* (Mg,n)
n (r,s)
®i:1 eai — wg,n (al’ ey an)
If we have a formal series T(u) € VP [[u]], we will see that under certain conditions we can define
analogously to Section 7.4.1 a new family of cohomology classes

[Tw(r,s) ] o (Vrspin) en _, Ir* (mg,n) .

Assuming T # 1, this is done in terms of the modified generating series

(r.s)

T(u) — Tses _ Z Trd+aeaud

T(u) = ,
1-Tg = 1-Tg
ae[r-1]
rd+a>s
via the formula
T1A7(7,8) 1 (r.5) T T
[TW ]g,n(_) = Z %(ﬂm)*%,n+m( - ®T(lpn+1) - ® T(¢n+m)) > (142)
m>0 "’

where 7, : Mwm — Mg,n is the forgetful morphism. As in (7.4.1), the handling of Tj is tailored to
be compatible with the dilaton equation (141).

Lemma 7.19. Assume that Ts # 1 and T, = 0 for a < s. Then Equation (142) is well-defined, i.e. for any
evaluation on an element of (V"P™)®" the sum on the right-hand side is finite.

Proof. The argument is similar to Section 7.4.1. If we evaluate on (X)}_, e, due to (i) the complex
codimension of the summand proportional to H;-"Zl Ta;reb, With djr +b; > s+ 11s

1 n m 1 n
—[s(2g-2+n+m) - E a; — E (djr+bj))s—(s(Zg—2+n)— E al——m),
r r

i=1 j=1 i=1

which for fixed ay, . . ., a, is negative for m is large enough, forcing this summand to vanish. O

On the other hand, the action of any B € V"P"[[4,v]] via sums over stable graphs is well-defined
since it always involves finite sums.

7.6.3 Intersection theory for admissible smooth spectral curves

Let S = (C,x, ¥, wp2) be an admissible smooth spectral curve equipped with a fundamental bi-
differential of the second kind. Recall from Section 7.2 the definition of the vector space V and the
generating series T and B that can be associated to S.

Definition 7.20. We let them act on the direct sum of (r,, s4)-classes to define

gf( P W<ra,5a))] Ven L cr (M)

aEa g.n

S _
Qin =

Here we suppose the (r,s) class is a Chow class to put them on the same footing as the Witten
r-spin classes, and denote W "+ := WP for uniformity. The admissibility condition for irregular
ramification points matches the condition of Lemma 7.19 so the definition is well-posed.

Theorem 7.21. Assume Conjecture 7.18 holds, and let S = (C, x, y, wo2) be an admissible smooth spectral
curve equipped with a fundamental bidifferential of the second kind w,; and zero crosscap form. Then,
for2g—-2+n>0
QS
()" 0gn) = [
a ’ My i (1 = €¥)
where €; is the variable of the ith Laplace transform.
Proof. The proof, which relies on the correspondence of Theorem 5.23 — already proved in [BBCCN18]

— is similar to that of Theorem 7.16, so we omit the details: the regular ramification points are treated
by Theorem 7.16 itself, and the irregular ramification points using Section 7.6.2. O
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8 OPEN INTERSECTION NUMBERS

In this section, we shall propose precise conjectures about open r-spin intersection numbers using
the partition function of the Airy structure with twist o of cycle type (r — 1, 1) with no dilaton shift
attached to the fixed point, as obtained in Theorem 2.11. Before this, we review the relation between
this partition function for r = 2 and the open intersection theory, and Safnuk [Saf16]’s topological
recursion for it. The latter has peculiar features related to the reducibility of the spectral curve, our
general approach shines a new light on this. These relations depend on some foundational conjectures
in open intersection theory scattered in the literature and that we make explicit.

8.1 REVIEW OF OPEN INTERSECTION THEORY

The enumerative geometry of open Riemann surfaces was developed by Pandharipande-Solomon-—
Tessler in genus 0 in [PST15], and its extension to all genera was announced by Solomon and Tessler.
The upshot is that for g, n,b,m > 0 such that

- X =29-2+2n+m>0, g=29+b-1, (143)

there is a moduli space M np,m parametrizing Riemann surfaces of genus g with b (unlabelled)
boundary components, n labelled interior marked points and m labelled boundary marked points,
equipped with spin structure and a “grading”. It is a real orbifold of dimension

D:=69-6+3b+2n+m,
and admits several connected components indexed by the distribution of the boundary marked points

on the boundary components. Note that g and y are respectively the genus and the Euler characteristic
of the surface doubled along its boundary. This moduli space admits a compactification /Vg,n;b,m on
which one can seek to define and calculate intersection numbers. Denoting L; the cotangent line
bundle at the ith interior marked point, and according to the statement of [ABT17, Theorem 1.1] —
whose proof by Solomon and Tessler has not yet appeared - it is possible to define

Mg,n;b,m

n
D= Z 2d; .
i=1

Here, e is the Euler class relative to some boundary condition s, and [PST15; ST a] give suitable
boundary conditions so that the number is unambiguously defined.

n
ad - —M ®d;
<T21 e T;n (To)m>g,n;b,m =275 e( @}Li ,s) €Q, (144)
i=1

whenever di, ...,d, > 0 are such that

Remark 8.1. For b = k = 0, the moduli space Mg,n;O,O coincides with the moduli space of spin structures,
which is a (29 : 1)-cover including a global Z,-orbifold symmetry of the Deligne-Mumford moduli
space of pointed Riemann surfaces My, ,. Therefore, we recover the usual i/-class intersections

n
<T21 e T;n >g,n;0,o = ‘/‘ﬁ l_[ %ji; i = c1(Ly)

gn i=1
We thank Ran Tessler for his clarification on this point.
It is expected that one can also define geometrically boundary descendants, that we would like to
denote
o o o a2
(g, Ta. 7% T >g,n;b,m €Q,

where now dy, . ..,dp, k1, ..., ky > 0 satisfy the dimension constraint

D:izdi+izkj. (145)
i=1 j=1

or equivalently
n

3(29—2+n+m+b):Z(Zdi+1)+i(2kj+2). (146)
Jj=1

i=1
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One could then consider the generating series

P o1+ Q° P P - = P)
open .40, _ ) ) o
VAL [Q,t it ] = exp E T <1'd1 Ty TR "'Tk,,,>g,n;b,m | |(2d,— + D!y | |(2kj +2)! t,
g,b,m,n>0 ’ i=1 j=1
x<0

where b is the number determined from g, n, m, d;, k; via (145).

A combinatorial model for the intersection numbers (144) — i.e. without boundary descendants —
has been proposed in [ABT17], refining [Tes15] where only their sum over all possible bs was obtained.
As a consequence, their generating series has a matrix integral description. It turns out this matrix
integral allows naturally for the insertion of extra parameters, thus defining a generating series of the
form

ABT o, .0 hg_H%Qb o o 9 o \ABT - o = a
Z [Q;t 3t ] = exp Z W(le"'TdnTkl"'Tkm>g,n;b,m (Zdi+1)”tdiH(ij+2)!!tkj
g9,b,m,n>0 i=1 j=1
x<0
We will not need its precise definition, which can be found in [ABT17, Equation 3.14 and Lemma 3.2].

The Kontsevich-Penner matrix model is another important character of the story. It is defined by
H3 H2A det (A) \9
R A i o e
Hy CANA det(A - H)

6 2
where Hy is the space of hermitian matrices of size N and ca y is some normalizing constant. It
determines a unique generating series of the form

m!n!
g9,.b,m,n>0

x<0
such that for any N > 1

ZKP[ 't°'t"] _ noie Qb< o ) 2] >KP - 2d: + ! £° = 2k + ) £2
Q, ; _exp - = le..~TdnTk1~.~Tkm g,n;b,m ( l+ ) d; ( ]+ ) kj
i=1 j=1

h% Tr A—(2d+1) 5 h% Tr A—(2k+2)
2d +1 )dzo’ (k_ 2k +2 )kzo]'

ZN(A) = Zge [Q; (tf} =

Remark 8.2. In contrast with the aforementioned works, we have included in our definition of the
generating series a variable 7 which is redundant because of the dimension constraint (145), and we
have not written separately the contribution of the closed Riemann surfaces (b = 0). Our definition
can be obtained from [ABT17] by the following substitutions:

N—Q  H—oHtH  A—-HEA  tg—hS Qd+D)IE, s — 7576 (2k+2)1e,

under which 73, ! — Zapr and 7y — Zgp. Our definition can be obtained from [Ale15] by substituting

there

a1 4
N — Qs T2d+1 —hs t2d+l’

Finally, note that the definition of the Kontsevich-Penner matrix model of [ABT17] can be obtained
from the one in [Ale15] by the substitution ® — A — H.

k1 5
Togyo — h3 ot

It is expected that these three collection of numbers coincide.

Conjecture 8.3. There exists a geometric definition of the open intersection numbers with boundary
descendants, and it is such that Zypen = Zagr, that is

o o _0d d \ABT _ o . ..0 .0 0
<Td1 T, Ty Tk gansbom = <Td1 Tdn Ty " Th >g,n;b,m-

Conjecture 8.4. There exists a geometric definition of the open intersection numbers with boundary
descendants, and it is such that Zypen = Zxp, that is

o o a a KP f— o P o a P a
<le T, Tk T T gumibum = <Td1 T4,k Tkm>g,n:b,m'

Conjecture 8.5. We have Zxp = ZapT.
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Obviously, any two of the conjectures imply the third one. They are supported by partial results:

e The specialisation of Conjecture 8.3 to t]f = 0 for k > 0 is proved in [ABT17] conditionally
to [ABT17, Theorem 1.1] whose proof was announced by Solomon and Tessler but has not
appeared yet. The same specialisation in Conjecture 8.4 was anticipated in [Saf16] and proved
there for g = 0, % 1.

o The specialisation of Conjecture 8.5 to Q = 1 is proved in [Ale15] via integrability techniques
and for Q = +1 in [ABT17, Section 4.2] by matrix integral techniques.

e The string and dilaton equations satisfied by Zapr and Zgp are the same [ABT17, Section 4.3].

Alexandrov has proposed various collections of differential operators relevant to the study of the
Kontsevich-Penner model — and therefore to open intersection theory in light of Conjecture 8.4. To
summarise what is relevant for our exposition:

(a) in [Ale1s], Alexandrov uses a representation of the gl;-Heisenberg algebra to construct opera-
tors (ZZ)kzo and (Mz)kz—z - see Equations (7.4) and (7.14) therein — annihilating the Q = 1
specialization of Zgp.

(b) in [Saf16], Safnuk introduced a modification of these operators, denoted (fk)k >_1and (Mk) k>—2
- see Equations (2.9) and (2.10) therein — which still annihilate the Q = 1 specialization of Zp.

(c) in [Ale17], Alexandrov uses a twisted representation of the Heisenberg algebra of gl; to
construct a free field representation of W (sl3) and operators (f,?)kz—l and (/’\/(\kQ)kZ_g - see
Equation (72) therein — annihilating Zgp.

All those operators are related by taking (possibly infinite) linear combinations, but it turns out
choosing one or the other set of operators affects the structure of the recursion one deduces for (- - - YXF.
For sake of comparison and completeness, we review in Section 8.2 the definition of the operators in
(a) and (b) and the topological recursion with strange features that Safnuk derived from the operators
in (b). In Section 8.3, we explain that the operators in (c¢) directly compare to Airy structures for
o = (12)(3) and thus provide a CEO-like topological recursion, whose structure is more transparent
and more general than [Saf16].

8.2 REVIEW OF SAFNUK’S RECURSION

Consider the following representation of the Heisenberg VOA for gl;

T Ot %f k>0
J@ =) =5  Jk=10 ifk=0 |,
kez © —kt_r  ifk<0
and introduce the normal ordered products
1 L
Lz) = 50" = ) 5.
kez ©
M
Mz)=5:)(2)% =y —5.
Zk+3
keZ

These operators form a representation of the W (s1s3)-algebra. The collection of operators mentioned
in (a) are:

— 1 3
Ly = Lok + (k +2) Jox — Jokss + 5k,0(§ + 5) ,

~ 95 4 23
B = Myt + 20k +3) Lok = 2Latss = 20k +3)Jokrs + Jokws + (2 + 6k + 2K o + =0

Then Alexandrov proved in [Ale1s] that (ZZ) k>0 and (]\Z;j) k>—2 annihilate the specialization of Zxp

L};rlzo k>o0,
M;;leo k2—2.

The collection of modified operators mentioned in () read:

Iy =12, My = —]\2;(’ +2(k + Z)ZZ.
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Let us sketch the strategy of Safnuk in [Saf16] — for a better comparison, we set 7 = 1 till the end of
this paragraph. We first rewrite these operators. To this end, we change the currents to include as
zero-mode Q = 1 and a dilaton shift (Safnuk does this later in the computation):
~ jk ~
J@) =) .  Je=Jk—Ok-3+6k0-
z
keZ

Let us also define, following Safnuk, the differential operators

1)12=d2(—d%+§); D, = (dzz)z(dz 3d 3)

dz2 zdz

the one-form 5 = —z?dz, and the projection operators
PO Cz*]dz — C[[z 2]z dz ie{23}.
Then, taking only the parts of the generating series that annihilate Zxp|p-1, we get
J (2) = J(2)dz,

2
L=y ok —P<2>( (g% D7+ ) ))
k>-1
dz . dz)?
M(z) = Z Zzl:ka p(3>( (ja DT + 3( z) j))
k>-2

The last term in the last two lines can be absorbed by defining

dz)?
FO=5@0+ S PE=96 5.
The square of J (z) itself will not be defined due to infinite sums, and somehow the definition (8.2)
implements the right operator product expansion from the W (sls)-algebra, cf. Equation (19). We then
get the following operators annihilating Zip|p=1:

L= 73(”( (j2+1)1{f)) M= 7><3>( (- 1)2{])).
Now, if we write Zgp|p=1 = ef, and commute this through these operators, this gives the equations

0= P (Lo (g7 + 21g)er) < 2O L v+ Di0) 1),
7)<3>( v (g - @zj)eF)=P<3>(3LI7Z(U3—DZU)-1),

U(2) = e " T (2)e" = T (2) + [T (2), F]

is the operator appearing in [Saf16]. In order to recover a spectral curve topological recursion from
this, one should define

where

=9 (z) = (:il Ot» Wgn(21,...,2p) =8z - 02, Fyn .
k>1
If we also introduce the unstable terms
dz;dz, _dz
coming respectively from the dilaton shift, the positive part of J (z) and the zero mode J, = 1, we see
that

wo,1(2) = n(z2), wo2 = [61, F] =

U(z) = 6. + w01(2) + 01, (2) + 6 wop + D OFyn.

29—2+n>0

Reinterpreting the projection operators as residues with the recursion kernel results in
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Theorem 8.6 ([Saf16, Theorem 5.3]). The wy,, obey a modified topological recursion on the spectral
curve with crosscap form

z? dz;dz dz
C, x(z) = Px y(z) = -z, o2(21,22) = ﬁ’ Wi = 2

given by
g1 (20,2n)) = ggg(K@) (20,0) (W 0,03 200) + D10y 12 0, 210))

+ K (z0,w) (Wg',g,n(w,w,w;zm) + Dy0g-1n41 (W, zm))) ,

where W’ is as in Definition 5.8 and

KD (zw) = ((—1)f ./g=_0 w0,2(2,{) _/g:o wo2(2, §))m'

This form of the topological recursion has some odd features. For one, it is a recursion of order 3,
even though the degree of x is only 2. This is also noted by Safnuk, who computes the quantum curve
in [Saf16, Theorem 7.1], and obtains the semi-classical limit y(y? — 2x) = 0. Moreover, the formula
does not include summation over fibers of x — rather, the variable w is inserted several times. Finally,

the operators D; introduce uncommon derivatives. Safnuk posits that these quirks come from the
reducibility of the curve, but in the next section, we will see this relation is not straightforward.

8.3 RELATION TO TOPOLOGICAL RECURSION

In a previous work, it was shown that the operators in (c), i.e. in [Ale17], coincide, up to a change
of variables, with the reduction to W(sls) of an W(gls)-Airy structure, leading to the following result.

Theorem 8.7 ((BBCCN18, Proposition 6.3]). ZX¥ is the partition function of the Airy structure of
Theorem 2.11 with parameters (r1,51,12,82) = (2,3,1,00), t; = %, and Q; = —Qy = Q, and change of
variables

+0

o _ .1 1.1 .2
Lg = Xoq41> k= 2%ok+2 T Xisr> (dk20).

Thanks to Propositions 5.18 and 5.23, we can now convert this into a CEO-like topological recursion
on the reducible spectral curve consisting of the union of two components intersecting at z = 0

x(z) = 2° x(z) =z
C=CUGC,, G :{ , Gy : { . (147)
y(z) =% y(z) =0
According to (81), the suitable definition for the correlators is
KP 1o 1 2 2
wh,n+m(zl t Zn Zp+1 Zn+m)
m KP
_ —|N, b o ] ]
=Y Y o[ 4] =)
g.beN N,UNy=[n] di,....dn 20 ieN, ieN, Jj=1 g.n;b,m
g+%=h kiseeskm >0

(2d, + 1) dz, (2d, +2)!1dz, 77 (2kj +2)!1 dzps
' 1_[ a2 l_[ 2+ n kj+1 ’

aeN, aeNy a Jj=1 Zn+j

where the number of boundaries b is determined in terms of g, n, d, k, m via (145).

Corollary 8.8. Forg € %N andn > 1 such that2g—-2+n > 0, wifl is computed by the topological
recursion on the spectral curve (147) equipped with bidifferential and crosscap form
dz;dz, dz
“’0,2(5} lzlz) = Sy m, w%,l(’zl) = (—1)#* Q ~

for p, py, pp € {1,2}.
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Several sanity checks of this corollary can be proposed. At Q = 0, the variables t? become irrelevant
and Zgp specialises to the Witten-Kontsevich partition function [Witg1; Kong2]

ZX0=0t°¢t"] = h l(/ l_[gb ) (2d; + D125 (148)
g>0 nx1

9" i=
2g—2+n>0
This can also be checked on the topological recursion side. Indeed, Theorem 7.13 for r = 2 states that
the topological recursion for the spectral curve

d¢ide,

XO=F 05 o) = (149)

produces the (g, n)-correlator for 2g — 2 +n > 0:

Wgn (1, .., 8n) = (/ l_W )l_[ (2d; erd?zudgl .

dn, >0 .‘i"l

,,,,,

Note that this case was proved before with a slightly different normalisation by Eynard-Orantin
[EOo07], see also [Eyn1i6].

At Q = 0 we are in position to apply Proposition 5.24, showing that the second component decouples,
ie. w;ffl( le . Zln )|,_, coincides with the correlators of (149). So, the correlators of the spectral curve
(147) at Q = 0 agree with the correlators associated to (148), as predicted by the corollary.

8.4 REVIEW OF OPEN r-SPIN THEORY

——rspin
It is expected that there exists an open analog of Witten r-spin theory, related to a space M ,I; bum

which specialises to the open theory of Section 8.1 for r = 2. It would give for each (g, n, b, m) such
that —y > 0 a collection of numbers

° ° 9 o \7Ispin
<Td1 (al) T 7'—dn (a”)Tkl e Tkm >g,n;b,m € Q
indexed by d;, k; > 0 and a; € [r], which we can collect in a generating series:

Zopen rspin [Q l’o' ta]

b
hg_1+§ Qb ° ° 9 o \7Ispin
= exp Z Z — Z <Td1(a1) co 1y (an)T - 'Tkm>g,n;b,m to.d 1_[ tk_

g9.b,n,m>0 di,....dn >0 i=1
x>0 ai,...an€lr]
ki,..okm >0
(150)
These numbers should vanish unless
(r+1)(Zg—2+b+n+m):Z(rd +a)+Z(rk +r). (151)

i=1

Besides, for m > 1, each insertion of 7 (r) amounts to an insertion of (~1/r) 1'5.

There are several possible choices of conventions (in particular, for orientations) that could affect
these numbers by a prefactor depending only on the topology. We fix them by the normalisation of
the consistency relations with the intersection numbers that are already defined. For r =2 and m > 1,
we want to retrieve the open intersection numbers of Section 8.1

n m 2spin n m’ m
o 7] _ o 7] a
(Mmool ) =Tl 1]
i=1

> . (152)
j=1 g.m;b,m i=1 1=1 Jj=1 g.n,b,m+m’

Notice that the dimension constraint (146) forces b + m to be even, so this is indeed an identity in
Q. In absence of boundaries b = m = 0, we want to retrieve the Witten r-spin class intersections of
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Section 7.3

n
o o i di
<Td1 (al) e Tdn(an)>;,sf:;l(io = '/; w;ssln(al, ey an) 1—[ wi
Mgn i=1
For disks without boundary descendants — that is (g,b) = (0,1) and k; = 0 - the open r-spin
intersection numbers have been defined in [BCT20] in the form

(Wea @L‘Bd ) (153)

where P M is a partial compactification of the moduli space of r-spin disks and W is a bundle which is
the open analogue of R!x, L. We stress that a; in [BCT18; BCT20] corresponds to our a; — 1. These
numbers are computed explicitly for d; = 0 in [BCT18, Theorem 1.2], and in particular

<Tg(a)rg>o,1;1,1 = Jan-

The dimension constraint (151) is the natural generalisation of [BCT18, Section 6.2.1] allowing boundary
descendants, and coincides with (146) for r = 2.

Bertola and Yang have constructed in [BY15] a particular solution of the extended r-KdV hierarchy,
generalising the r = 2 construction of [Buris]. Up to a change of normalisation, this solution is
mentioned in [BCT18] under the name ® and depends on a redundant parameter ¢ and times (Ti)g>o-
We shall use the latter normalisation, and for uniformity denote it Z™3Y[e; (Ti.)x>0]. It gives, for each
(g, n,m) such that y > 0 (see (143)), a collection of numbers

(55 @) 55, @ Y= [

Onlm

9 o \rBY
(ra (@) 1g (@)Tg 7 )i
by writing down the following expansion:
1 d1-3dre d>0
2% [e= (BN (Tapaa = (0 HHE (10, - rou 1) 020
h'T BY [ =
_ o o o o\’ o el
= &p Z Z m!n! Z <Td1 (@) - Tdn(an)rkl T Tk >?;n;m tad; 1_[ tkj :
gnm=0  di,..., dn>0 i=1 Jj=1
x>0 al ne[r]

In absence of an extra variable in Z"8Y playing the role that Q has in (150), one cannot define numbers
depending individually on (g, b), but only on the doubled genus g = 2g + b — 1.

Conjecture 8.9. There exists a geometric definition of the rspin open intersection numbers and it satisfies

9 o \rBY 9 o \Ispin
(rg, (@) g (@)l on) Vo= (rg(a) o (@) o) YV (154)
g,beN
2g+b—1=g
This conjecture is formulated in the restricted case t; = 0 for k > 0 in [BCT18], perhaps because no
geometric construction of boundary descendants in the open r-spin theory is available yet. Under this
restriction, it is supported by the following results:

e the r = 2 case was proved in [Buris] and in agreement with (152) we have ZABT [Q =

L (t9)az0s (t()kxo| = ZP2PR[Q = 1, (87, = 15, 15 4 = 0)as0; (k0]
o the conjecture is proved in [BCT18] for g = 0 for general r. In that case there is a single term
(g,b) = (0, 1) in the right-hand side of (154).

8.5 CONJECTURAL RELATION TO TOPOLOGICAL RECURSION

We now propose a direct generalisation of Section 8.3. We consider the Airy structure of Theo-
rem 2.11 with

1
d=2, (r1,s1572,82) = (r,r +1;1, 00), Q1=-0,=0, t1=;,
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which is also given in [BBCCN18, Theorem 4.16]. We denote Z"™* its partition function and we
decompose its coefficients as

Fr* [ 1 -1 2---2]
hn+ml dir+ay - dpr+an ki -k,

= Z (-1)™r =21 Oapr Q l_[(d r+a; )u(r) l_[(k r+r)v(r)<l.d (a1) - - Tf},,(an)fle "'Tlfm>;:z;b,m'

g.beN j=1
g+%:h
(155)
According to Section 5.4, the corresponding correlators should be defined as
r* 11 2 -« 2
h,n+m(21 " Zn Zn+1 Zn+m)
=5 35 cme([la] 4 []4)
gbeN NoUNy=[n] a:No—[r-1] ieN, ieN,  j=1 g.n:b,m
g+=h iy 20 (156)

kiyeeskm =0

(dir + a)'") dz; (dir + 1)1 dz; (kjr+r)!(r) dzp.j
H lr+a,+l n d r+r+1 H kj+1 ’
i€N, ieNy Jj=1 Znj
and by Theorem 5.23 they satisfy the topological recursion on the reducible spectral curve with two
components intersecting at z = 0:

x(z)=2z" { x(z) =z
C=CUGC,, Cy: 2z s Cy - ,
1 2 1 { y(z) = -2 2 y(z) =0 (157)
equipped with
dzidz, dz

5/11,112m’ w1,(4) = (D" Q

For comparison, let us examine the basic properties of (- --)"™. Firstly, due to the constraint
( ]kr + ]k)Z’ * = 0 for k > 0 and the definition (155), each insertion of 7 ©(r) amounts to the insertion of
(-1/r)z8 ¢ while incrementing the number m by 1. Secondly, the constralnt Hisj=0Z™ =0 gives, by
computations similar to those of Section 2.4, the string equation

<r0<1>]_[rd (a)° >
j=1 g.1+n;b,m
_Z(dlr+a1)<fdl l(al)l_[rd(a,)l_[rk> , +Z(k1r+r)<rl‘31_ nrd(a,)nrk> ,
g.n:b,m g.n:b,m

il =1 =1 j#l

woz2(% )

+ 5g,b,m,05n,35d1,d2,05a1+a2,r + (Sg,O(Sn,b,m,l 5
(158)
with obvious vanishing conventions for insertion of negative indices. This last term gives the special
value
° rx
(% (I)Tg>o,1;1,1 =1 (159)
Note this is compatible with the computation of (117) with the specialisation ¢; = 1/r. Indeed, the
latter yields

(1 2) dz; dz, dz; r'Vdz,
w1 =—rQ— — =-0—
5,2\ 21 22 2 2 2 2 >
2

21 % Z] 23

and thus after taking (156) into account, (159) describes the only non-vanishing intersection number
for (g, n;b,m) = (0,1;1,1). Thirdly, we have from corollary 2.17 the dilaton equation

<Tl(1)l_[1'd(al)l_[1'k> =(r+1)(29—2+n)<1_[1'd(a)1_[1'k>

rd—1 r+1

5g,l(sn,b,m,0+ 2 5g,n,m,05b,2>

g,14+n;b,m g.1+n;b,m (160)
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and the homogeneity property which says that ( - r;’i(ai) [T r,f’_>;;;b3m vanishes unless the
dimension constraint (151) holds.

We predict that the partition function Z"™* describes the full open r-spin intersection theory in any
genera and with arbitrary descendants.

Conjecture 8.10. There is a geometric definition of the open r-spin intersection numbers, and it satisfies

o o P) o \rspin o ° P) 9 \I*

(zg,(ar) -+ 75 (an)T, - Tkm>g,n:b,m = (g, (@) -+ 7g (an)g, -+ Tkm>g,n;b,m :

A weaker prediction involving only quantities whose definition is available at the time of writing,

is that the Bertola-Yang Z"™BY partition function satisfies W (gl,)-constraints with zero mode values
Q1 = —Q; = 1. Including the expected normalisations, this would translate into the following.

Conjecture 8.11. We have forb,m > 0

(25, (@) -5 (an)Tp o rf o = 3 (e (@) ()T T )

g.beN

g+5=g
In support of the conjectures, we see that the basic properties listed for (- - - )* match the ones
listed for (- - - ) in the range of parameters in which the comparison is possible. The dilaton equation
of [BCT18, Proposition 5.3] matches the restriction of (160) to (g,b) = (0,1) and k; = 0. The string
equation of [BCT18, Proposition 5.2] matches the same restriction of (158), and observe that in absence
of boundary descendants the second sum in the right-hand side of (158) is absent. Their extension to
g > 0 expected in [BCT138, Section 6.2] also matches our proposal.

TRR relations involving in a linear way the open r-spin intersection numbers mentioned in (153)
and the closed r-spin intersection numbers are given in [BCT18, Theorem 4.1]. The information of
(153) should be encoded for us in Fi’;, as it is easy to see that the W-constraints indeed imply some

5

quadratic relation with a similar structure involving F;» in a non-linear way and F f*n in a linear way.
) L

As F}* contains only information from the closed sector and satisfies W-constraints on its own, the
structure somehow resembles the TRR relation, but establishing an exact match is left to future work.
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